第一章 酶学与酶工程 (1节)_PPT幻灯片
酶工程第一节酶的生物学功能PPT课件
酶与其他技术的结合
总结词
酶工程与其他技术的结合,如纳米技术、生物信息技术等,将为酶工程的发展带来新的 机遇和挑战。
详细描述
随着科技的不断发展,酶工程与其他技术的结合已经成为一种趋势。例如,将酶与纳米 技术结合,可以制备出具有优异性能的纳米酶;将酶与生物信息技术结合,可以实现酶 促反应的实时监测和数据分析。这些新的技术手段将为酶工程的发展带来更多的可能性。
代谢调控
总结词
酶在生物体内发挥着重要的代谢调控作用,通过影响代谢途径中关键酶的活性来 调节物质代谢和能量代谢。
详细描述
酶可以调控代谢途径的起始、分支和终止,从而调节生物体的能量转换、生长发 育和应激反应等生理过程。酶的合成和降解也受到严格调控,以维持机体代谢的 平衡。
免疫调节
总结词
酶在免疫调节中发挥重要作用,参与免疫细胞的激活、增殖 和分化,以及免疫分子和免疫应答的调节。
03 酶的应用
生物工程领域
生物制药
酶在生物制药过程中用于合成药物、生产抗生素、疫苗等生物制品。
生物能源
酶可用于生物燃料的发酵生产,如乙醇、丁醇等,提高能源利用效率。
生物环保
酶可用于降解污染物,如废水处理、有机废弃物资源化利用等。
医学领域
01
02
03
诊断试剂
酶作为生物催化剂,可用 于医学诊断试剂的生产, 如酶联免疫试剂盒等。
食品添加剂
酶可用于生产食品添加剂, 如甜味剂、防腐剂等,满 足消费者对食品多样化的 需求。
04
酶的未来发展
酶的改造与优化
总结词
通过基因工程技术对酶进行改造和优化,提高酶的活性、稳定性和特异性,以满足不同工业和生物技 术的需求。
详细描述
酶学PPT
第一章绪论第一节酶的发现及研究历史最早的酶学实验: 1783年, 意大利科学家Spallanzani发现鸟的胃液能将肉类分解消化。
酶的最早发现者:1810年,药物学家Planche在植物根中发现一种能使创木脂氧化变蓝的物质,并分离出了这种耐热且水溶性的物质。
最早的酶制剂:1833年,Payen和Persoz用酒精处理麦芽提取液,分离出了一种能溶于水和稀酒精,不溶于浓酒精,对热不稳定的白色无定形粉末,取名为diastase(淀粉酶)。
它能使淀粉转化为糖,不久后用于棉布退浆。
1971年,第一届国际酶工程学术会议在美国召开,主题即是固定化酶,进一步开展了对微生物细胞固定化的研究。
第二节酶学概论一、什么是酶1酶是一类具有特殊催化功能的蛋白质2酶的化学本质是蛋白质。
主要依据是:①酶经酸碱水解后的最终产物是氨基酸,酶能被蛋白酶水解而失活。
②酶是具有空间结构的生物大分子,凡使蛋白质变性的因素都可使酶变性失活。
③酶是两性电解质,在不同pH下呈现不同的离子状态,在电场中向某一电极泳动,各自具有特定的等电点。
④酶和蛋白质一样,具有不能通过半透膜等胶体性质。
⑤酶也有蛋白质所具有的化学呈色反应。
3酶具有蛋白质的一切理化性质。
它也是亲水胶体,具有两性电解质性质,凡能引起蛋白质变性的因素均可致使酶失活二、酶的化学组成1单纯蛋白质的酶类2缀合蛋白质的酶类蛋白质---脱辅酶非蛋白质小分子---辅因子物质或金属离子全酶= 脱辅酶+ 辅因子三、酶的催化作用(一)酶和一般催化剂的共性①凡是催化剂均能加快化学反应的速度,而本身在反应前后都没有结构和性质上的改变。
②只能催化热力学上允许进行的化学反应,而不能实现热力学上不能进行的反应。
③只能缩短反应达到平衡所需的时间,而不能改变平衡点。
(二)酶作为生物催化剂的特点1.反应条件温和2. 酶易失活3.酶具有很高的催化效率酶作为催化剂比一般催化剂更显著地降低活化能,催化效率更高活化能:在一定温度下1摩尔底物全部进入活化态所需要的自由能(kJ/mol)反应所需的活化能愈高,反应速率就愈慢4.酶具有高度专一性5.酶活性受到调节和控制细胞内酶的调节和控制主要方式:a调节酶的浓度酶浓度的调节主要有2种方式:诱导或抑制酶的合成调节酶的降解b通过激素调节酶活性c反馈抑制调节酶活性d抑制剂和激活剂对酶活性的调节e其他调节方式反馈抑制:许多小分子物质的合成是由一连串的反应组成的,催化此物质生成的第一步的酶,往往被它们终端产物抑制。
酶工程-01-酶和酶工程概论1.ppt
应用领域:
食品工业 轻工业 医药工业
酶和酶工程概论
本章主要内容
酶的基本概念和发展历史 酶催化作用特点 影响酶催化作用的因素 酶的分类与命名 酶的活力测定 酶的生产方法 酶工程发展概况
Enzyme Engineering
酶和酶工程概论
Enzyme Engineering
酶的基本概念和发展历史
远古时代 —— 古老的“食品工业”
中国夏禹时代:酿酒、酿醋 —— 粬
醪、醴、麴(曲,粬)
两周时代:饴糖、食酱、腌菜
豆:两周时代的重要礼器和食器,盛放腌菜
公元十世纪:制豆酱
利用曲霉中的蛋白酶水解豆类蛋白得到
春秋战国时代: 用麴治疗消化不良的疾病
Enzyme Engineering
酶是具有生物催化功能的生物大分子。 酶的分类?
蛋白类酶和核酸类酶。
填空练习题:
蛋白类酶分子中起催化作用的主要组分是(),核酸类酶 分子中起催化作用的主要组分是()。 蛋白质 核糖核酸(RNA)
酶和酶工程概论
Enzyme Engineering
第二节 酶催化作用的特点
催化剂的共性
1. 用量少而催化效率高; 2. 能够改变化学反应的速率,但是不能改变化学反应平衡; 3. 降低反应的活化能,从而加速反应的进行; 4. 一般要与反应物形成过渡态。
Enzyme Engineering
酶催化作用的特点——专一性
酶催化作用专一性的相关学说
2、锁-钥学说
整个酶分子的天然构象是刚性的,酶表面具有特定的形状 酶与底物的结合,如同一把钥匙对一把锁一样。
Substrate can match the binding site
第一章 酶学与酶工程 (1节) 酶工程课件
70年代,修饰剂的选用、修饰方法上又有了新 的发展。
此外,对抗体酶,人工酶,模拟酶等方面,以及 酶的应用技术研究 ,在近20年均取得了较大 进展,使酶工程不断向广度和深度发展,显示
退出 出广阔而诱人的前景。
三. 酶工程的研究内容 21世纪酶工程的发展主题
退出
(一)新酶的研究与开发
3.人工模拟酶 人工合成的具有类似酶活性的高聚物。 人工模拟酶在结构上必须具有两个特殊部位,
即一个是底物结合位点,另一个是催化位点 4.杂合酶 是指由来自两种或两种以上的酶的不同结构
片段构建成的新酶。 可以利用高度同源的酶之间的杂交,这种杂
交是通过相关酶同源区间残基或结构的交换 来实现。
退出
1878 德国的Kuhne 定义Enzyme 原意为在酵母中 1896 德国的Buchner证明了酵母无细胞提取液的酒精发酵
作用(1907年诺贝尔奖) 1926 美国的Sumner从刀豆中得到脲酶结晶(1946年诺贝
尔奖) 1969 日本固定化氨基酰化酶,第一次将固定化酶成功地应
用于工业生产。——酶工程诞生 1970 美国的Smith 发现限制性内切酶(1979年诺贝尔奖) 1986 美国cech和Altnan发现核酶(1989年诺贝尔奖)
酶的分子修饰可分为化学修饰和选择性遗传 修饰。
退出
(三)酶的高效应用
3.非水相催化 1984年,美国麻省理工学院从事非水系统内
酶反应的研究,取得成果,由此产生一个全 新的分支学科--非水酶学 非水相催化的特点: 大多数有机物在非水系统内溶解度高。 一些在水中不可能进行的反应,有可能在非 水系统内进行。 非水系统内酶的稳定性更好。 退出 在非水系统内酶很容易回收和反复使用。
最新第一章 酶学与酶工程 (2~5节) 酶工程课件教学讲义PPT课件
b. 共价催化
亲电试剂:一种试剂具有强烈亲和电子 的原子中心。
亲核试剂:就是一种试剂具有强烈供给 电子的原子中心。
退出
c. 邻近效应及定向效应
所谓邻近效应就是底物的反应基团与酶的催 化基团越靠近,其反应速度越快。
退出
d. 变形或张力
退出
e. 酶的活性中心为疏水区域
酶的活性中心为酶分子的凹穴 此处常为非极性或疏水性的氨基酸残基
退出
5.异构酶(Isomerase)
此类酶为生物代谢需要对某些物质进行分子 异构化,分别进行外消旋、差向异构、顺反 异构等
退出
6.连接酶(合成酶)(Ligase or Synthetase)
这类酶关系很多生命物质的合成,其特点是需要三磷酸 腺苷等高能磷酸酯作为结合能源,有的还需金属离子辅 助因子。分别形成C-O键(与蛋白质合成有关)、C-S键 (与脂肪酸合成有关)、C-C键和磷酸酯键。
专一性
活性部位
必需基团
催化基团 催化性质
维持酶的空间结构
退出
三.酶的作用机制
1. 酶的作用过程 2. 酶与底物的结合模型 3 .酶的催化作用
退出
1. 酶的作用过程
酶的活性部位:
是它结合底物和将底物转化为产物的区域,通常是整个 酶分子相当小的部分,它是由在线性多肽中可能相隔很 远的氨基酸残基形成的三维实体。
退出
退出
退出
退出
1.氧化还原酶 2.转移酶 3.水解酶 4.裂合酶 5.异构酶 6.连接酶(合成酶) 7.核酸酶(催化核酸)
退出
1.氧化还原酶 (Oxidoreductase)
包括脱氢酶(Dehydrogenase) 、氧化酶 (Oxidase) 、过氧化物酶、氧合酶、细胞色素 氧化酶等
酶工程 第一章 酶学与酶工程.ppt
(1) 氧化还原酶 Oxidoreductase
催化氧化-还原反应。 包括:脱氢酶和氧化酶。 例,乳酸脱氢酶催化乳酸脱氢。
置中利用酶的催化性质,将相应原料转化成有
用的物质 。
酶工程范围(1971年第一次国际酶工程会议)
酶的生产
酶的固定化技术
酶的化学修饰
酶动力学研究
酶反应器
酶的应用
酶工程的新内容
(1)酶的化学修饰 (2)模拟酶(mimic enzyme) (3)抗体酶(abzyme) (4)核酸酶 (5)有机相酶反应 (6)酶标免疫分析 (7)酶传感器
1.4.1 底物浓度
随着底物浓度的增加,
丙酮酸 + CO2 草酰乙酸
酶用于生物催化的概况
类别
水解酶 hydrolases
氧化还原酶 oxidoreductases 转移酶 transferases 裂合酶 lyases 异构酶 isomerases 连接酶 ligases
占总酶比例% 26 27
24 12 5 6
利用率% 65 25
1.2.4 酶的作用机制 1.2.4.1 锁钥学说 酶分子的天然构象具有刚性结构,酶表面具有
特定的形状。酶与底物的结合如同一把钥匙对 一把锁一样
1.2.4.2 诱导契合学说
酶表面并没有一种与底物互补的固定形状,而只 是由于底物的诱导才形成了互补形状
小结
酶的分类:
氧化还原酶 转移酶 水解酶 裂合酶 异构酶 连接酶(合成酶)
酶工程第一章酶学基础知识PPT课件
酶的生产方式
01 02
微生物发酵
通过微生物发酵生产酶是一种常见的方法。不同微生物具有不同的代谢 途径和酶系,可以产生不同类型的酶。通过选择适当的微生物和发酵条 件,可以大规模生产酶。
酶的分离纯化
通过各种分离纯化技术手段,从生物材料中 提取和纯化酶。
酶的改造
通过基因工程技术手段对酶进行改造,以提 高酶的催化效率和稳定性。
酶的固定化
将游离酶或细胞固定在特定载体上,实现酶 的重复利用和连续化生产。
酶的生产与应用
通过生物工程技术手段实现酶的工业化生产, 并将其应用于各个领域。
酶工程的应用领域
1980年代
随着分子生物学和生物工程技术的迅速发展,酶 工程领域取得了重大突破,实现了酶的大规模生 产和应用。
02
酶的结构与功能
酶的活性中心
02
01
03
酶的活性中心是酶分子中与底物结合并催化反应的区 域,通常由少数几个氨基酸残基组成。
这些氨基酸残基在空间结构上相互接近,形成一个凹 陷的空腔,能够与底物特异结合。
酶的活性中心具有催化作用,能够降低反应的活化能 ,加速化学反应速率。
酶的专一性
酶的专一性是指酶只能催化一 种或一类化学反应的性质。
酶的专一性分为绝对专一性和 相对专一性,绝对专一性是指 酶只催化一种底物反应,相对 专一性是指酶对底物的结构有 一定选择性。
酶的专一性是由酶的活性中心 决定的,活性中心的空间结构 和化学组成决定了酶对底物的 选择性。
03
拓展酶的应用领域,将酶应用 于生物医药、食品工业、纺织 工业等领域,提高产品质量和 降低环境污染。
《酶学与酶工程》PPT课件
NOVO公司使用的菌种有80%是基因 重组菌株。
二类是非水解酶
主要是分析试剂用酶、医药工业用酶、 淀粉加工用酶、乳制品工业用酶
第二节 酶的分类、组成、结构特 点和作用机制
精品医学
23
一、酶的分类 (一)酶的命名法 1、习惯命名法 (1) 依据底物来命名(绝大多数酶):蛋白酶、淀粉酶; (2) 依据催化反应的性质命名:水解酶、转氨酶; (3) 结合底物和催化反应的性质命名:琥珀酸脱氢酶; (4) 有时加上酶的来源:胃蛋白酶、牛胰凝乳蛋白酶。
精品医学
24
(二)国际系统命名
➢ 基本原则:明确标明酶的底物及催化反应的性质(底物为 水时可略去不写)。
➢ 举例:
谷丙转氨酶的系统名 称 : 丙 氨 酸 :- 酮 戊 二酸 氨基转移酶
丙氨酸:α-酮戊二酸氨基转移酶
精品医学
25
(三)国际系统分类法及编号(EC编号)
(1)按反应性质分六大类,用1、2、3、4、5、 6表示:氧、转、水、裂、异、合;
➢ 1:氧化还原酶 2:转移酶 ➢ 4:裂合酶 5:异构酶
是酶学和工程学相互渗透结合、发展而成的 一门新的技术科学 。
是酶学、微生物学的基本原理与化学工程有 机结合而产生的边缘科学技术。
(2)酶工程的历史
1894年,日本科学家首次从米曲霉中提炼出淀粉酶, 治疗消化不良,开创人类有目的地生产和应用酶 制剂的先例。
1908年,德国科学家罗门等利用胰酶 (胰蛋白酶、胰 淀粉酶和胰脂肪酶的混合物),用于皮革的鞣制。
第一章 酶学与酶工程
第一节 酶工程概述
1、酶学发展历史
新陈代谢是生命活动的基础,是生命活动 最重要的特征。
全套课件 酶工程
酶工程
第二章 酶动力学
第一节 酶促反应动力学
一、单底物动力学
k3在单底物酶促反应中,底物(S)首先与酶(E)结合,生成底物和酶的复合物 (ES),然后复合物分解,形成产物(P)并释放出酶,这个过程可表示如下:
式中酶与底物形成复合物的反应是可逆反应,正反应和逆反应的速度常数分别 为k1、k2,复合物分解为产物与酶的反应是不可逆反应,速度常数为k3。
第三节 酶的组成、分类与命名
一、酶的组成
除少数已经鉴定的具有催化活性的RNA分子外,几乎所有的酶都是蛋白质,所 以和其他蛋白质一样,酶也具有四级空间结构形式。根据酶的组成成分可以将酶分 为三类:
1.单体酶 单体酶是指仅有一个活性部位的多肽链构成的酶,其分子量在13000~35000之间。 这类酶很少,且都是水解酶,如胰蛋白酶等
第三节 酶的组成、分类与命名
六、大类酶简介如下:
1.氧化还原酶(oxido-reductases) 氧化还原酶催化氧化还原反应,其催化反应的通式为
被氧化的底物(A-)为氢或电子供体,被还原的底物(B)为氢或电子受体。系 统命名时,将供体写在前面,受体写在后面,然后再加上氧化还原酶字样,如黄嘌 呤:氧化还原酶(习惯名为黄嘌呤氧化酶)。
2H2O2======2H2O + O2 在一定条件下,1mol铁离子可催化10-5mol过氧化氢分解;相同条件下,1mol 过氧化氢酶则可催化105mol过氧化氢分解,过氧化氢酶的催化效率是铁离子的1010 倍。
第二节 酶催化作用的特点
二、专一性
酶的专一性是指在一定的条件下一种酶只能催化一种或一类结构相似的底物进 行某种类型反应的特性。这是酶最重要的特性之一,也是酶与其他非酶催化剂最主 要的不同之处。酶催化的高度专一性是酶在各个领域广泛应用的重要基础。不同的
-酶工程简介ppt课件
Buchner兄弟的试验:
用细砂研磨酵母细胞,压取汁液,汁液 不含活细胞,但仍能使糖发酵生成酒精和二 氧化碳。 证明:发酵与细胞的活动无关。
34
The Nobel Prize in Chemistry 1907
"for his biochemical researches and his discovery of cell-free
19
生物催化剂发展的工业展望
Competitive Imperative
Speed to Market
Current Chemical Varieties
2-5 years
Current Biocatalyst
s
10 years
Biocatalyst of the Future
2-3 years
Cost to Manufacture
机结合而产生的边缘交叉科学。
• 应用主要集中于食品工业、工业和医药工业等领 域。
• 酶工程是生物技术的重要组成部分。
3
二、酶工程相关概念
生物工程(Bioengineering)又称生物技术 或生物工艺学(Biotechnology). 20世纪70 年代发展起来的一门新的综合性技术学科。 综合运用生物学、化学和工程学技术,改造 物种、创造新物种,改造生物体中的某些组 分(如酶、蛋白质、核酸、细胞器),利用生物 体的某些特殊机能(如酶的催化功能、抗体 的免疫功能等) 为工农业生产以及医疗卫生 服务。
that enzymes
virus proteins in a pure form"
can be
crystallized"
James Batcheller Sumner
酶工程精品PPT课件
工业生物技术 (生物催化)
动力学 反应工程 反应器设计
采矿
药物 食品、营养 动物饲料 植物保护 造纸和纸浆 化学品
以生物催化法合成的主要产 品
产品名称
产量
丙烯酰胺
10万吨/年
聚乳酸
1.3万吨/年
阿斯巴甜
2万吨/年
生物柴油与汽油
1000万吨/年
抗菌素中间体6-APA
0.9万吨/年
趋势判断和需求分析
开发生物催化剂:催化性能更好、更快,成本更低 开发生物催化剂工具合:催化反应更广泛,功能更多
样 改善性能: 稳定性, 活性,溶剂兼容性 开发分子模型: 新酶的快速重新设计 创造新技术: 用于新生物催化剂的开发
生物催化剂工程技术瓶颈
对生物催化剂作用机理缺乏深入的认识 对次级代谢产物代谢途径(包括途径间相互关系)缺
新兴、前沿学科往往在学科交叉中产生
生物技术的具体应用
生物技术
医药生物技术 农业生物技术 工业生物技术 环境生物技术 材料生物技术
。 。 。 。
生物技术产业化的三个浪潮
医药生物技术 农业生物技术 工业生物技术
医药生物技术产业
1982年重组人胰岛素上市 至2000年已有基于48种重组蛋白的117种基因工程
乏理解 细胞工程化的方法十分有限(即代谢工程) 生产酶和辅因子的成本过高
当前生物催化的研究热点
新酶或已有酶的新功能的开发 根据已有底物开发新的酶反应 利用突变或定向进化技术改善生物催化剂性能 利用重组DNA技术大规模生产生物催化剂 利用有机溶剂或共溶剂开发新的反应体系 体内或体外合成的多酶体系 克服底物和产物抑制 精细化工品或医药合成技术的放大 辅因子再生 生物催化剂的修饰
生物催化剂的固定化
2酶工程酶学基础PPT课件
COOH
丙酮酸
D-乳酸
.
31
绝对专一性
绝对专一性的另一个典型例子是天门冬氨酸氨裂合酶 [ EC 4.3.1.1 ] ,此酶仅 仅作用于L-天门冬氨酸,经过脱氨基作用生成延胡索酸(反丁烯二酸)及其 逆反应:
COOH
|
CH2
HOOC-C-H
|
天门冬氨酸氨裂合酶
||
H-C-NH2 ============= |
直接有关的部位。
结合基团
专一性
活性部位
必需基团
催化基团 催化性质
维持酶的空间结构
.
25
.
26
.
27
.
28
四、酶催化作用的特点
与非酶催化剂相比,酶具有如下显著特性 1、催化专一性强 2、催化作用效率高 3、催化作用条件温和
.
29
1.酶的催化专一性强
一种酶只能催化一种或一类结构相似的底物进 行某种类型的反应
.
7
第 3 大类,水解酶(Hydrolases)
催化各种化合物加水分解的酶称为水解酶。其反应通 式为:
AB + H2O = AOH + BH 该大类酶的系统命名是先写底物名称,再写发生水解 作用的化学键位置,后面加上“水解酶”,例如,核 苷酸磷酸水解酶,表明该酶催化反应的底物是核苷酸, 水解反应发生在磷酸酯键上。
该大类酶的系统命名为“底物-裂解的基团-裂合酶”,如 L-谷氨 酸 1-羧基-裂合酶,表明该酶催化L-谷氨酸在 1-羧基位置发生裂 解反应。
推荐名是在裂解底物名称后面加上“脱羧酶” ( decarboxylase)、“醛缩酶”(aldolase)、“脱水酶” (dehydratase)等,在缩合反应方向更为重要时,则用“合 酶”( synthase) 这一名称。如谷氨酸脱羧酶(L-谷氨酸 = γ-氨 基丁酸 + CO2),苏氨酸醛缩酶( L-苏氨酸= 甘氨酸 + 乙 醛),柠檬酸脱水酶( 柠檬酸 = 顺乌头酸 + 水),乙酰乳酸 合酶( 2-乙酰乳酸 + CO2 = 2-丙酮酸)。
酶与酶工程绪论PPT课件
酶是具有生物催化功能的生物大分 子。
1982年Cech小组发现RNA本身可以是一 个生物催化剂,称之为核酶Ribozyme。
事先设计好的过渡态类似物为半抗原,按 一般单克隆抗体制备程序获得具有催化活 性的抗体。称之为抗体酶Abzyme。
酶有两大类别:
主要由蛋白质组成称为蛋白类 酶(P酶);
改造酶的特性最有效的方法是定位突变 (Site-directed Mutagenesis)和定向进 化(Directed Evolution in Vitro)。
定位突变技术只对某些氨基酸残基进行 替换、删除、天加或修饰,并不能从根 本上改变酶的高级结构,故有一定的局 限性。
体外定向进化不需要酶的结构、功能关系 和催化机制方面的信息。
生物酶工程则是以酶学和以基因重组 技术为主的现代分子生物学技术相结 合的产物,
主要包括:
①用基因工程技术大量生产酶(克隆 酶);
②修饰酶基因产生遗传修饰酶(突变 酶);
③设计新的酶基因,合成自然界不曾有 的新酶。
1.3 分子酶学工程(Molecular Engineering)
是酶工程在分子水平上的体现。
❖ 一是发展构建工程酶的理论、策略和方法; ❖ 二是在考察和研究生物多样性的基础上发现
新的酶及其工程化; ❖ 三是扩大工程酶的应用领域。
分子酶学工程的基本策略和方法
1)在对酶结构与功能分析的基础上,应 用基因工程、蛋白质工程(包括分子进化) 技术改变或完善天然酶某些性质并构建出 更加实用的新酶,如进化酶、模块酶和杂 和酶等;
蛋白质工程 生物催化过程的开发流程
生物催化过程又是典型的高度不均一过 程,理论上
需要特殊设计的硬件部分, 需要有高催化效率的生物催化剂, 需要实施计算机控制的软件, 需要能降低成本的回收和再利用技术,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)新酶的研究与开发
2.抗体酶(Abzyme)
是一种具有催化功能的抗体分子,在其可 变区(V区)赋予了酶的催化活性。
从原理上讲,只要能找到合适的过渡态类 似物,几乎可以为任何化学反应提供全新 的蛋白质催化剂,即抗体酶。
应用:抗体酶还可用于酶作用机理的研究、 手性药物的合成和拆分、抗癌药物的制备等。
退出
退出
退出
1949年,用液体深层培养法进行细菌淀粉酶的发酵 生产,揭开了近代酶工业的序幕。
50年代以后,随着生化工程的发展,大多数酶制剂的 生产已转向微生物流体深层发酵的方法。酶的应用 越来越广泛。
50年代:开始了酶固定化研究。1953年德国科学家 首先将聚氨基苯乙烯树脂与淀粉酶,胃蛋白酶,羧肽 酶和核糖核酸酶等结合,制成了固定化酶。
酶工程
饰 3 酶的固定化 4 人工合成酶的研究
2. 生物酶工程
1 酶基因的克隆表达 2 酶的遗传修饰 3 酶的遗传设计
退出
60年代,是固定化酶技术迅速发展的时期。1969年, 日本的千烟一郎首次在工业上应用固定化氨基酰化 酶从DL-氨基酸生产L-氨基酸。 ——酶工程诞生
退出
1971年第一届国际酶工程学术会议在美国召 开,当时的主题即是固定化酶,进一步开展了 对微生物细胞固定化的研究。
1973年,千烟一郎首次利用固定化的大肠杆菌 细胞生产L-天冬氨酸。
退出
(一)新酶的研究与开发
3.人工模拟酶 人工合成的具有类似酶活性的高聚物。 人工模拟酶在结构上必须具有两个特殊部位,
即一个是底物结合位点,另一个是催化位点 4.杂合酶 是指由来自两种或两种以上的酶的不同结构
片段构建成的新酶。 可以利用高度同源的酶之间的杂交,这种杂
交是通过相关酶同源区间残基或结构的交换 来实现。
退出
(一)新酶的研究与开发
1.核酶(Ribozyme) 80年代初期,美国科罗拉多大学博尔德分校
的Thomas Cech和美国耶鲁大学的Sidnery Altan各自独立地发现RNA具有生物催化功能. 从而改变了生物催化剂的传统概念。 应用:根据病毒基因组的全部序列,就可以 设计并合成出防治由这些病毒引起的疾病的 核酶。还可以用作研究核酸图谱和基因表达 的工具等其他方面的应用
第一节 酶工程的概述
一.酶工程的概念: 二.酶学研究简史 三. 酶工程的应用简史 四.酶工程的研究内容
退出
一. 概念:
酶工程( Enzyme Engineering)
从应用目的出发研究酶,在一定的生物反应装置中利用 酶的催化性质,将相应原料转化成有用的物质。是酶学 和工程学相互渗透结合形成的一门新的技术科学,是酶 学、微生物学的基本原理与化学工程有机结合而产生的 边缘科学。
70年代,修饰剂的选用、修饰方法上又有了新 的发展。
此外,对抗体酶,人工酶,模拟酶等方面,以及 酶的应用技术研究 ,在近20年均取得了较大 进展,使酶工程不断向广度和深度发展,显示
退出 出广阔而诱人的前景。
三. 酶工程的研究内容 21世纪酶工程的发展主题
(一)新酶的研究与开发 (二)酶的优化生产 (三)酶的高效应用
退出
二. 酶学研究简史
1783 意大利的斯巴兰让“老鹰实验” 证明胃具有化学消 化作用。其巧妙设计:将肉块放入小巧的金属笼中,然 后让老鹰把小笼吞下去,这样肉块就可以不受胃的物理 性消化的影响,过一段时间后取出,发现肉块消失。
1833 Payen和Person从麦芽的水抽提物中用酒精沉淀得 到了一种对热不稳定的活性物质,它可促进淀粉水解成 可溶性糖,称其为淀粉酶制剂(diastase)。有人认为他 们首先发现了酶。
(二)酶的优化生产
酶的优化生产是通过各种调控技术使酶的生 产在最优化的条件下进行,以获得更多更好 的酶。
主要包括三方面的优化: 1.培养基的优化 2.培养条件的优化(如培养温度、pH值、溶
氧量等) 3.分离纯化条件的优化
退出
(三)酶的高效应用
1.酶的固定化 2.酶的分子修饰 3.非水相催化
酶的分子修饰可分为化学修饰和选择性遗传 修饰。
退出
(三)酶的高效应用
3.非水相催化 1984年,美国麻省理工学院从事非水系统内
酶反应的研究,取得成果,由此产生一个全 新的分支学科--非水酶学 非水相催化的特点: 大多数有机物在非水系统内溶解度高。 一些在水中不可能进行的反应,有可能在非 水系统内进行。 非水系统内酶的稳定性更好。 退出 在非水系统内酶很容易回收和反复使用。
退出
(一)新酶的研究与开发
5.端粒酶(Telomerase) 是催化端粒合成和延长的酶。 与细胞的衰老及癌症的发生有很大关系,端
粒能保护真核生物染色体免遭破坏。 正常细胞中的端粒酶活性极低,而肿瘤细胞
中该酶活性很高。 6.极端环境微生物和不可培养微生物的新酶
种 极端环境微生物中酶往往具有特殊的性能。 不可培养微生物是指在实验室内,采用常规 退出 培养方法培养不出的微生物。
1978年,日本的铃木等固定化细胞生产 α 淀粉酶研究成功.所以说,70年代是固定化细 胞技术取得进展的时期.
80年代,固定化细胞已能用于生产胞外酶,因 此,80年代又发展了固定化原生质体技术,排 除了细胞壁这一障碍。
退出
在酶的固定化技术发展的同时,酶分子修饰技 术也取得了进展。
60年代,用小分子化合物修饰酶分子侧链基 团,使酶性质发生改变;
退出
(三)酶的高效应用
1.酶的固定化
是指在一定空间内呈闭锁状态存在的酶或细 胞,能连续地进行反应,反应后的酶可以回 收重复使用。
在大多数情况下,酶固定化以后活性会降低, 但由于可以重复使用,因此该技术能降低成 本,提高经济效益。
退出
(三)酶的高效应用
2.酶的分子修饰
酶有稳定性差、活力不够理想及具有抗原性 等缺点,这些不足使酶的应用受到限制,为 此常需要对酶进行适当分子修饰,以改善酶 的性能。