用7805 集成电路制作经典的电源电路

合集下载

利用7805设计一个输出5V、2A(扩大输出电流)的直流稳压电源

利用7805设计一个输出5V、2A(扩大输出电流)的直流稳压电源

利用7805设计一个输出5V、2A(扩大输出电流)的直流稳压电源
要求:
1)输入工频220V交流电的情况下,确定变压器变比;
2)在满载情况下选择滤波电容的大小(取5倍工频半周期);
3)求滤波电路的输出最大电压;
4)画出系统电路图,并画出变压器输出、滤波电路输出及稳压输出的电压波形
如果是实际使用,就不必那么麻烦去扩流,直接用78H05(最大输出电流5A)来代替7805就可以了。

按桥式整流计算整流压降,变压器的副边输出交流电压应该大于7.8V,可以取8V或9V,即变比取27.5:1或24.5:1。

整流后的滤波电容用2000μF~4700μF/16V铝电解电容。

输出滤波电容用1000μF/10V铝电解电容+1μF独石电容各一只即可。

3个7805并联的方案不可取,在无法确保三只7805的输出电压误差为零的情况下会产生严重的负载电流不均衡。

实用电路图如下(但是输出波形图就不画了,变压器输出是正弦波、稳压输出基本是一直线,整流滤波电路输出是带有很小交流纹波接近直线的波形)。

巧用7805制作连续可调稳压电源

巧用7805制作连续可调稳压电源

巧用7805制作连续可调稳压电源
7805制作连续可调稳压电源的方法:
7800系列三端稳压集成电路广泛用于各种电子电器电路中用作电源稳压,它的输出电压是固定的,但对外围电路稍作改动就可以是一个不错的连续可调稳压电源,用作实验检修之用可行。

制作之前需了解:7800系列三端稳压器按输出电流区分有三种系列,分别是78L00系列最大输出电流0.1A;78M00系列最大输出电流0.5A;7800系列最大输出电流1.5A。

三端稳压器输入输出压差要大于2V。

7805-7818的最高输入电压不能超过35V,7820-7824最高输入电压不能超过40V。

这里选用7805制作了一个5V~12V连续可调的直流稳压电源实例。

图中R1、R2的取值决定了输出电压的可调范围,图示取值可在5~12V稳压范围内实现输出电压连续可调。

最高输出电压受三端稳压器最大输入电压及最小输入输出压差的限制,7805最高输入电压为35V,输入输出压差要保持在2V,该电路中稳压器的直流输入电压约为15V,该电路的输出电压最大值设定为12V。

采用7805的3V集成稳压电源设计

采用7805的3V集成稳压电源设计

版权归原版权人所有,请勿用于商业用途!
更多资料下载: 采用7805的3V 集成稳压电源设计
虽然市面上适用于随身听稳压电源比较多,但是很多质量都不怎么好,所以很有必要自己做一个。

大家都知道三端集成稳压电源性能优越,但是它的最低稳压电压为5V ,不适合直接作为随身听电源,这里稍微添加几个元件,就适合作为随身听的电源了。

具体电路如下图:
电路简单吧?就是采用三个二极管降压,使5V 的直流电变成约3V ,电路输出功率大,性能不错,赶快做一个吧!
下图为印刷电路板图:
电路版图中AI ,A2接交流9V 输入,A3,A4为输出,可别忘了在三端稳压集成电路上加上散热片哦!。

7805稳压电源原理图

7805稳压电源原理图

7805 稳压电源电路图(四)
7805 典型应用电路图 78XX 系列集成稳压器的典型应用电路如下图所 示,这是一个输出正 5V 直流电压的稳压电源电路。IC 采用集成稳压器 7805,C1、C2 分别为输入端和输出端滤波电容,RL 为负载电阻。当输出 电流较大时,7805 应配上散热板。
7805 稳压电源原理图
7805 稳压电源电路图(一) 这是用 LM7805 制做的两个稳压电源电路图,图 1 是可调输出型,通
过改变 R1R2 分压电阻实现变压,图 2 是常用的固定 5V 输出型。变压器输 出交流电压输出建议 7.5V。
7805 稳压电源电路图(二) 由 7805,7905,7812 组成的特殊的线性稳压电源。 如图所示为一种特殊的电源电路。该电路虽然简单,但可以从两个相 同的次级绕组中产生出三组直流电压:+5V、-5V 和+12V。其特点是:D2、 D3 跨接在 E2、E3 这两组交流电源之间,起着全波整流的作用。
7805 稳压电源电路图(三) 7805 三端稳压 IC 内部电路具有过压保护、过流保护、过热保护功能, 这使它的性能很稳定。能够实现 1 安以上的输出电流。器件具有良好的温 度系数,因此产品的应用ቤተ መጻሕፍቲ ባይዱ围很广泛。可以运用本地调节来消除噪声影响, 解决了与单点调节相关的分散问题,输出电压误差精度分为±3%和±5%。

利用7805设计一个输出5V、2A(扩大输出电流)的直流稳压电源

利用7805设计一个输出5V、2A(扩大输出电流)的直流稳压电源

利用7805设计一个输出5V、2A(扩大输出电流)的直流稳压电源
要求:
1)输入工频220V交流电的情况下,确定变压器变比;
2)在满载情况下选择滤波电容的大小(取5倍工频半周期);
3)求滤波电路的输出最大电压;
4)画出系统电路图,并画出变压器输出、滤波电路输出及稳压输出的电压波形
如果是实际使用,就不必那么麻烦去扩流,直接用78H05(最大输出电流5A)来代替7805就可以了。

按桥式整流计算整流压降,变压器的副边输出交流电压应该大于7.8V,可以取8V或9V,即变比取27.5:1或24.5:1。

整流后的滤波电容用2000μF~4700μF/16V铝电解电容。

输出滤波电容用1000μF/10V铝电解电容+1μF独石电容各一只即可。

3个7805并联的方案不可取,在无法确保三只7805的输出电压误差为零的情况下会产生严重的负载电流不均衡。

实用电路图如下(但是输出波形图就不画了,变压器输出是正弦波、稳压输出基本是一直线,整流滤波电路输出是带有很小交流纹波接近直线的波形)。

利用7805及7905设计一个输出为±(59)V1A直流可调稳压电源

利用7805及7905设计一个输出为±(59)V1A直流可调稳压电源

直流稳压电源电路设计学院:信息与控制工程学院专业:自动化班级: 12 —4姓名:张磊张凯秦浩目录一、课题要求 (3)二、课题目的 (3)三、设计思路及参数确定 (3)<1>设计思路 (3)<2>参数的确定 (4)四、设计仪器元件 (5)五、设计内容 (5)<1>设计原理 (5)<2>电路原理图 (6)<3>仿真图示 (6)六、设计总结 (11)七、参照文件 (11)一、课题要求利用 7805、7905设计一个输出±( 5~9)V、1A的直流稳压电源;要求:1)画出系统电路图,并画出变压器输出、滤波电路输出及稳压输出的电压波形和变压器副边的电流波形;2)输入工频 220V交流电的情况下,确定变压器变比;3)在满载情况下选择滤波电容的大小(取5倍工频半周期);4)求滤波电路的最大输出电压;5)求电路中固定电阻阻值和可调电阻的调治范围。

二、课题目的1)结合所学电子电路的理论知识完成直流稳压电源课程设计;2)经过本次设计学会并掌握电子元器件的选择和使用方法;3)经过本次设计熟练掌握Multisim仿真软件的使用;4)加强自主性学习与研究性学习;加强团队合作,提高创新意识。

三、设计思路及参数确定<1> 设计思路交流变整流滤波稳压电源压电路电路负载器可调要获取±(5-9)V 的直流稳压电源,第一应使用变压器,将 220V 的电压降到合适的值。

再经过整流电路,将正弦波变为较为牢固的直流电压。

再经过滤波及稳压电路,将整流过后的电压进行滤波稳压,最后获取悉足要求的直流电源,经过接上负载电阻,满足输出电流为1A 的要求。

<2>参数的确定1)变压器变比选择为了保证输出电压牢固,输出输入间电压差应大于2V,但由于太大会引起三端稳压器功率增大而发热。

由于输出电压要求5-9V,为保证输出电压5-9V 牢固可调,这里的三端稳压器输入输出的电压差取 3V,对于稳压电路,输入电路输入应为12V,依照U0 =1.2 U2,副边电压为 10V,电压变比为 22:1 。

三端稳压7805和7905稳压原理及典型电路.pdf

三端稳压7805和7905稳压原理及典型电路.pdf

42

纹波抑制比 RR
f=120Hz,Vi=8V to 18V
62 73
输入输出电
Vo
lo=1.0A,Tj=25℃
2
压差
输出阻抗 Ro
f=1KHz
15
短路电流 1SC Vi=35V,Ta=25℃
230
峰值电流 1PK Tj=25℃
2.2
℃ μV dB V mΩ mA A
7805 的输入电压范围是多少
7805 应用电路
7805 典型应用电路图:
/image/77485536abfc74e4a3cc2ba9
/image/27d647eef8890fc2b3fb953b
78XX 系列集成稳压器的典型应用电路如下图所示,这是一个输出正 5V 直流电压的稳压电源电路。IC 采用集成稳压器 7805,C1、C2 分别为输入端和输出端滤波电容,RL 为负载电阻。当输出电流较大时, 7805 应配上散热板。
下图为扩大输出电流的应用电路。VT2 为外接扩流率管,VT1 为推动管,二者为达林顿连接。R1 为 偏置电阻。该电路最大输出电流取决于 VT2 的参数。
7805 电参数
参数
符号 测试条件
最小 典型 最大 值值值
单位
输出电压 Vo
Tj=25℃
4.8 5.0 5.2 V
线性调整率 △Vo 负载调整率 △Vo
78**系列的稳压集成块的极限输入电压是 36V,最低输入电压为输出电压的 3-4V 以上。 7V 的电压要想输出 5V,则需要使用低压差的稳压集成块,如附图所示的型号。 也可以使用 3 只普通的整流二极管降压,也能得到 5V 的较为稳定的电压,二极管的允许电流大于你 需要的电流即可。

如何用7805制作一个可调的稳压直流电源

如何用7805制作一个可调的稳压直流电源

如何用7805制作一个可调的稳压直流电源
平时在做一些小东西是难免要用到5V到12V之间的直流电源,所以自己制作一个简单的稳压电源是很有必要而且也很实用,电路很简单,利用7805的稳压效果做个可调电源,原理图如下:
图中R1取220Ω,R2取680Ω滑动变阻器,主要用来调整输出电压。

输出电压Uo≈Uxx(1+R2/R1),该电路可在5~12V稳压范围内实现输出电压连续可调。

由该电路实践证明:(1)R1为固定电阻值,改变电阻R2的阻值就可获得连续可调的输出电压,输出电压Uo近似值等于Uxx(1+R2/R1)。

(2)最高输出电压受稳压器最大输入电压及最小输入输出压差的限制,该固定式三端集成稳压集成电路7805最大输入电压为35V,输入输出差要保持2V以上,若该电路中由于稳压器的直流输入电压为+14V,所以该电路的输出最大值为+12V(可直接用12V 的开关适配器接到7805的1引脚,此时通过实验可以得到最大10.6V 的直流,我所用的R1=200欧姆,R2为1k的电位器)。

7805稳压电源电路图

7805稳压电源电路图

7805稳压电源电路图:7805管脚图7805典型应用电路图:78XX系列集成稳压器的典型应用电路如下图所示,这是一个输出正5V直流电压的稳压电源电路。

IC采用集成稳压器7805,C1、C2分别为输入端和输出端滤波电容,RL为负载电阻。

当输出电较大时,7805应配上散热板。

下图为提高输出电压的应用电路。

稳压二极管VD1串接在78XX稳压器2脚与地之间,可使输出电压Uo得到一定的提高,输出电压Uo为78XX稳压器输出电压与稳压二极管VC1稳压值之和。

VD2是输出保护二极管,一旦输出电压低于VD1稳压值时,VD2导通,将输出电流旁路,保护7800稳压器输出级不被损坏。

下图为输出电压可在一定范围内调节的应用电路。

由于R1、RP电阻网络的作用,使得输出电压被提高,提高的幅度取决于RP与R1的比值。

调节电位器RP,即可一定范围内调节输出电压。

当RP=0时,输出电压Uo等于78XX稳压器输出电压;当RP逐步增大时,Uo也随之逐步提高。

下图为扩大输出电流的应用电路。

VT2为外接扩流率管,VT1为推动管,二者为达林顿连接。

R1为偏置电阻。

该电路最大输出电流取决于VT2的参数。

下图为提高输入电压的应用电路。

78XX稳压器的最大输入电压为35V(7824为40V),当输入电压高于此值时,可采用下图所示的电路。

VT、R1和VD组成一个预稳压电路,使得加在7800稳压器输入端的电压恒定在VD的稳压值上(忽略VT的b-e结压降)。

Ui端的最大输入电压仅取决于VT的耐压。

集成稳压器还可以用作恒流源。

下图为78XX稳压器构成的恒流源电路,其恒定电流Io等于78XX稳压器输出电压与R1的比值。

79XX系列集成压器是常用的固定负输出电压的三端集成稳压器,除输入电压和输出电压均为负值外,其他参数和特点与78XX系列集成稳压器相同。

79XX系列集成稳压的三个引脚为:1脚为接地端,2脚为输入端,3脚为输出端。

79XX系列集成稳压器的应用电路也很简单。

78L05典型电路

78L05典型电路

7805组成的恒流源电路
如图所示的电路是用W7805正集成稳压器组成的恒流源应用电路。

图示电路中正集成稳压器W7805工作在悬浮状态。

在其输出端和公共端之间接入一个电阻,形成一固定电流,让此电流流过负载RL后,再回到电源。

选择W7805输出电压低的稳压器,主要是为了提高效率。

调节R的大小,可以改变恒流源的值(当然不能超过该稳压器的最大输出电流)。

输出电流符合下式: Iout=Vxx/r+5V/R+id 式中,Id为稳压器静态电流,小于10 mA。

当R较小即输出电流较大时,可以忽略Id,但Iout不能太小,否则Id的变化将影响Iout恒流的精度。

当负载RL 变化时,稳压器W7805用改变自身的压差来维持通过负载的电流不变。

7805集成稳压器典型应用电路图...

7805集成稳压器典型应用电路图...

实验一常用电子仪器仪表的使用一、实验目的掌握电子电路中常用仪器仪表的功能及其正确使用方法。

二、实验原理在模拟电子实验中,用来调试电路动、静态特性与工作状况的最常用仪器仪表有:示波器、函数信号发生器、频率计、交流毫伏表、万用表、(可调、固定)直流稳压电源、直流数字电压表、直流数字电流表等。

在实验中,要求能够对各仪器仪表进行正确、熟练的综合使用与操作,这是保证实验正确顺利进行的基本前提。

在需要进行实验测试时,可按信号的流向,遵循:“连线简捷、调节顺手、观察与读数方便”的原则,进行合理布局,将多个测试仪器仪表同时接入电路。

为防止外界干扰信号的影响,在接线时应注意将各仪器仪表的公共端接在一起,即为“共地”。

信号源与交流毫伏表的信号引线均为屏蔽线或专用电缆线,示波器接线为专用电缆线,直流电源的接线通常为普通导线。

三、实验设备1. 双踪示波器2. 函数信号发生器3. 频率计4. 交流毫伏表5. 可调直流稳压电源6. 直流数字电压表四、实验内容1.可调直流稳压电源与直流数字电压表的配合使用1)用直流数字电压表和单个0~18V可调直流稳压电源配合调试出“+12V”直流稳压电源;2)通过两个0~18V可调直流稳压电源连接获得“±12V”的正负对称直流稳压电源;[提示:两电源串联,公共端接地]3)通过两个0~18V可调直流稳压电源连接获得“+24V”直流稳压电源。

[提示:两电源串联,令第二个0~18V可调直流稳压电源的负极端接地]2.函数信号发生器、频率计、交流毫伏表的配合使用要求通过调节函数信号发生器的幅度调节旋钮、频率调节旋钮,以及通过交流毫伏表、频率计的测试,获得一个有效值U = 500mV,频率ƒ = 1KHZ的正弦波信号。

3.数字示波器、函数信号发生器、频率计、交流毫伏表的配合使用记入表4.1.1。

1)数字示波器的基本调试与使用表4.1.1示波器机内校准方波参数测试3)调节函数信号发生器波形选择键,分别得到正弦波、三角波和方波,通过示波器进行波形显示。

电源电路(7805扩流)

电源电路(7805扩流)

分析一下这个经典的电源电路(7805扩流)
作者:Z80栏目:电路欣赏
分析一下这个经典的电源电路(7805扩流)
下图为在非常流行的经典电路上做小许改动的电路图.
电路目的:
1)+24V 转换为+5V +/-5%
2)可提供+2A以上的电流.
主要元件: TIP32C (ST)
L7805CV (ST)
图中的R62,在实际应用中已经更改为22 OHM.
功率元件TIP32C已经加散热片
请坛子里面的各位朋友发表自己的看法分析此电路. 包括:
1. 此电路的具体工作原理.
2. 此电路是否能达到预期的效果.
3. 存在何种问题.
4. 如果图中R62如果减小到诸如1 OHM或者3.3 OHM,会存在什么样的问题.
5. 其他.
* - 本贴最后修改时间:2005-1-27 17:53:41 修改者:Z80
3楼:>>参与讨论作者:微风于 2005-1-28 1:01:00 发布:。

基于7805的直流稳压电源设计

基于7805的直流稳压电源设计

关键词:直流稳压电源;LM7805
一. 直流稳压器的发展 所谓集成稳压器,就是用半导体工艺和薄膜工艺将稳压电路中的二极管、 三极管、 电阻、 电容等元件制作在同一半导体或绝缘基片上,形成具有稳压功能的固体电路. 集成稳压器在近十多年内发展很快.按电路的结构方式分,有单片式集成稳压器和组合 式集成稳压器.按电路的工作方式分 ,有线性集成稳压器和开关式集成稳压器 .按管脚的连接 方式分,有三端式集成稳压器和多端式集成稳压器 .按制造工艺分,有半导体集成稳压器,薄膜 混合集成稳压器和厚膜混合集成稳压器. 集成稳压器是在半导体硅片上使用外延、氧化、光刻、扩散和金属蒸发等工艺制作而 成的稳压电路.这种集成稳压器的各种元件在同一工序中制成. 常用的集成稳压器有下列几种. 1. 多端可调式集成稳压器 这种稳压器取样电阻和保护电路的元件需要外接,它的外接端比较多,便于适应不同的用法。 它的输出电压可调,以满足不同输出电压的要求。目前国内生产的这类产品有 WB712、 WB724、WA705~WA724、5G11、5G14、CW611、CW616、BG602、CW200 系列。 2. 三端固定式集成稳压器 这类稳压器有输入、输出和公共端 3 个端子,输出电压固定不变,CW7800 系列的输出电压 为 5,6,9,12,15,18,24V 共 7 个档次,它们型号的后两位数字即表示输出的电压值, 比如 CW78M00 系列输出电流为 0.5A;CW78L00 系列,输出电流为 0.1A。这类产品具有使用 方便、性能稳定、价格低廉等优点,得到了广泛的应用。 3.三端可调式集成稳压器 它有三个接线端:输入端、输出端、和调节端。在调节端外接两个电阻可对输出电压做连续 的调解。在要求稳压精度较高,且输出电压须在一定范围内做任意调节的场合,可选用这种 集成稳压器。目前国内产品有 CW117、CW217、CW317、CW137、CW237、CW337 等系列。 4.跟踪集成稳压器 有很多电路需要正负电源来组成, 而用跟踪式集成稳压器更为理想。 跟踪稳压器能保证正负 输出电压始终是平衡的, 它的中点始终为地电位, 并有自动跟踪能力, 这类稳压器有 LMY10、 MC1568、MC1468 等。 二、芯片电路原理图、外形及使用要求 1.原理图如图(1)所示:

基于7805设计的直流稳压电源

基于7805设计的直流稳压电源

基于7805设计的直流稳压电源直流稳压电源是一种电子电路,能够将交流电转换为直流电,并且平稳输出稳定的电压。

7805是一款常见的正电压稳压芯片,能够提供5V的稳定输出电压。

基于7805设计的直流稳压电源不仅可以广泛应用于各种电子设备和电路,还可以用于实验室和工作室等场合。

下面将详细讲述如何设计一个基于7805的直流稳压电源。

第一步是准备所需的材料和工具。

除了7805芯片,还需要以下材料和工具:1.变压器:用于将交流电转换为直流电的核心部件。

选择合适的变压器,使其输入电压适应你所需的输出电压。

2.整流桥:用于将变压器输出的交流电转换为直流电。

整流桥能够将正弦波电压转换为直流电压。

3.筛波电容:用于平滑整流后的直流电压,避免输出电压的波动。

4.耦合电容:用于隔离输入和输出电路,保护电路和提供稳定的电压。

5.电解电容:用于提供额外的滤波和稳定输出电压。

6.输出电容:用于进一步平滑输出电压,并提供额外的电流。

7.整流二极管:用于防止输出电压从输出端逆流到输入端。

8.接线端子:用于连接电源和负载。

第二步是进行电路设计。

电路的主要部分包括变压器、整流桥、筛波电容和7805芯片。

首先,将变压器的两个线圈分别与整流桥的两个交流输入端相连接。

其中一个交流输入端连接到变压器的一个线圈,另一个交流输入端连接到变压器的另一个线圈。

然后,将整流桥的直流输出端连接到筛波电容的一个端口,另一个端口连接到耦合电容和输入端的正极。

最后,将输出端的正极连接到7805芯片的输入端,负极连接到7805芯片的地(GND)。

第三步是进行电路的连接和测试。

在连接电路之前,确保电源已经断开,并且所有的连接都正确无误。

首先,将正极端子连接到输入端的正极,负极端子连接到输入端的负极。

然后,将输出端的正极连接到输出端的正极,负极连接到输出端的负极。

接下来,连接电源,并通过电流表测量输出电流。

确保输出电压稳定在5V,并且输出电流符合负载的要求。

如果出现任何问题,比如输出电压不稳定或者电流过大,需要检查电路连接,确认是否存在错误或者损坏的部件。

三端稳压7805和7905稳压原理及典型电路.pdf

三端稳压7805和7905稳压原理及典型电路.pdf
lo=5mA to 1.0A
4.75 5.00 5.25 V
4.0 100 mV
1.6 50 mV
9
100 mV
4
50 mV
5.0 8
mA
0.03 0.5 mA
Vi=8V to 25V 输出电压温 △Vo/△ lo=5mA
0.3 0.8 mA
0.8
mV/
5
一寸光阴不可轻

T
输出噪音电
VN
f=10Hz to 100KHz,Ta=25℃
图 1 78XX 内部电路图 10
一寸光阴不可轻
图 2 78XX 参照测试电路
图 3 外形引脚排列图管脚图
11
一寸光阴不可轻
图 4 纹波抑制电路
图 5 负载调节控制电路 12
一寸光阴不可轻
图 6 与 79XX 系列三端稳压构成的正负对称输出电压电路图
图 7 典型应用电路图 13
一寸光阴不可轻
Quiescent Current 静态电流 IQ
TJ =+25℃
- 5.0 8.0 mA
Quiescent Current 静态电流
变化
ΔIQ
IO =5mA to 1.0A VI=7V to 25V
Output Voltage 输出电压 Drift
ΔVO/ΔT IO=5mA
Output Noise Voltage 输出
电子产品中,常见的三端稳压集成电路有正电压输出的 78 ×× 系列和负电压输出的 79××系列。顾名 思义,三端 IC 是指这种稳压用的集成电路,只有三条引脚输出,分别是输入端、接地端和输出端。它的样 子象是普通的三极管,TO- 220 的标准封装,也有 9013 样子的 TO-92 封装。

基于7805的直流稳压电源设计

基于7805的直流稳压电源设计

基于7805的直流稳压电源设计直流稳压电源是我们日常生活中最常见也最实用的电源之一,通常应用于电子设备、通讯设备和机电设备等领域。

其中,基于7805稳压芯片的直流稳压电源被广泛应用于各种电子设备中,因为它能够为电子设备提供转换、稳定和保护的特性,并且其成本也非常低廉。

一般来说,基于7805的直流稳压电源的输入电压范围是8V - 30V直流电压,额定电压是5V。

该直流稳压电源的设计目的是为了将任意输入直流电压转换为恒定的5V dc电压,且最大电流为1A。

在这篇文章中,我们将为您介绍如何基于7805进行直流稳压电源的设计。

步骤1:确定所需零部件和工具在开始设计之前,您需要确定所需零部件和工具,以确保您所使用的所有零部件和工具符合您的设计要求,同时您也应该具备基础的电路知识和一些基础的电工技能。

在此,我们提供一份基于7805的直流稳压电源设计所需的零部件和工具清单,如下:零部件:1. 7805 稳压芯片2. 1N4007 整流二极管3. 100uF 电解电容4. 0.33uF 陶瓷电容5. 2x 10uF 陶瓷电容6. 2x 0.1uF 陶瓷电容7. 1kΩ 电阻8. 330Ω 电阻工具:1. 电工钳2. 剥线钳3. 铅笔4. 铅芯笔5. 清洁剂6. 锡线7. 变压器步骤2:设计并绘制电路图在您已经准备好所有必要的零部件和工具之后,可以开始设计电路图。

首先,利用电路仿真软件来设计直流稳压电源的电路图,这样可以确保您的电路图中包含的元件符合您的设计要求。

下面是基于7805的直流稳压电源的电路图:![image.png](attachment:image.png)步骤3:进行焊接完成电路图设计后,您需要将所有元件焊接在电路板上,注意离散元件电路的走线,特别是焊接石英晶体、压力变阻器、压力传感器等敏感元器件时,要仔细检查走线是否合理。

步骤4:测试电路并进行调节在完成电路板的焊接之后,您需要将变压器连接到电路板上,并将其插入电源插座。

基于7805设计的直流稳压电源

基于7805设计的直流稳压电源

基于7805设计的直流稳压电源直流稳压电源是一种常见的电源类型,它能够将交流电转化为稳定的直流电。

基于7805设计的直流稳压电源具有以下特点:具有稳定的输出电压、电流,能够供应电子设备所需的稳定电源;应用广泛,适用于各种电子设备,如小型电子仪器、通信设备、自动化设备等;设计简单,易于实现。

以下是一个基于7805设计的直流稳压电源的详细步骤:1.首先,确定所需的输出电压和电流。

在本例中,假设需要输出电压为5V,电流为1A。

2.根据所需的输出电压和电流,选择合适的变压器。

变压器的峰值输出电压应稍高于所需的稳定电压,因此选择一个12V的变压器。

3.将变压器的输出端与整流电路相连接。

整流电路的目的是将交流电转化为直流电。

在这里,可以使用一个整流二极管桥,它由四个二极管组成,能够将交流信号的负半周和正半周分别转化为正向的直流信号。

4.将整流电路的输出与过滤电容相连接。

过滤电容的作用是滤除直流信号中的脉动或纹波,使得输出电压更加稳定。

根据设计要求,选择一个具有适当容量的电解电容。

5.然后,将电容器的负极连接到7805稳压器的输入引脚,并将电容器的正极连接到稳压器的地引脚。

稳压器是一种具有三个引脚的集成电路,能够将输入电压稳定为规定的输出电压。

7805是一种常见的3引脚稳压器,能够将输入电压稳定为5V。

6.最后,将7805稳压器的输出引脚连接到负载。

负载可以是任何需要5V直流电的电子设备。

根据需要,可以添加适当的保护电路,如过流保护电路、过热保护电路等。

设计完整的直流稳压电源后,应进行必要的测试和调整。

可以使用万用表或示波器测量输出电压和电流,并确保其稳定在设计要求的范围内。

如果发现输出电压或电流不稳定,可以调整波纹电容的容量或添加稳压器的继电器来解决问题。

总之,基于7805设计的直流稳压电源具有简单、易实现、可靠性高等优点。

它是一种常见的低功耗电源设计方案,广泛应用于各种电子设备中。

7805稳压电源电路图

7805稳压电源电路图

X78X X2005.09.09 V1.211.5A* X78XX TO-220 , 1.5A1.5A5V;6V;8V;9V;10V;12V;15V;18V;24VTO-2201: ; 2: ; 3:1(Ta=25°C)(Vo=5V to 18V) (Vo=24V)Vi 3540V V R θ JA 65°C/W JC 5°C/W Topr 0~ +125°CTstg-65 ~ +150°CX78XX2005.09.09 V1.22( 0<Tj<125°C,Io=500mA,Vi=10V,Ci=0.33µF, Co=0.1µF)Tj=25°C4.85.0 5.2V Vo 5.0mA<Io<1.0A,Po<15W Vi=7.5V to 20V4.755.00 5.25V ∆Vo Tj=25°C,Vi=7.5V to 25V 4.0100mV Tj=25°C,Vi=8V to 12V 1.650mV ∆Vo Tj=25°C,Io=5.0mA to 1.5A 9100mV Tj=25°C,Io=250mA to 750mA 450mVIQ Tj=25°C5.08mA ∆IQ Io=5mA to 1.0A 0.030.5mA Vi=8V to 25V 0.30.8mA ∆Vo/∆T Io=5mA0.8mV/°C VN f=10Hz to 100kHz,Ta=25°C 42µV RR f=120Hz, Vi=8V to 18V 6273dB Vo Io=1.0A,Tj=25°C 2V Ro f=1kHz15m Ω Isc Vi=35V,Ta=25°C 230mAIpkTj=25°C2.2A0<Tj<125°C,Io=500mA,Vi=11V,Ci=0.33µF, Co=0.1µF)Tj=25°C5.756.00 6.25VVo 5.0mA<Io<1.0A,Po<15W Vi=8.5V to 21V5.76.06.3V∆Vo Tj=25°C,Vi=8.5V to 25V 5120mV Tj=25°C,Vi=9V to 13V1.560mV∆Vo Tj=25°C,Io=5.0mA to 1.5A 9130mV Tj=25°C,Io=250mA to 750mA360mVIQ Tj=25°C 5.08mA∆IQ Io=5mA to 1.0A 0.5mA Vi=9V to 25V0.8mA∆Vo/∆T Io=5mA 0.8mV/°CVN f=10Hz to 100kHz,Ta=25°C 45µVRR f=120Hz, Vi=9V to 19V 5975dBVo Io=1.0A,Tj=25°C 2VRo f=1kHz 19m ΩIsc Vi=35V,Ta=25°C 250mAIpk Tj=25°C 2.2AX78XXX78XX2005.09.09 V1.230<Tj<125°C,Io=500mA,Vi=14V,Ci=0.33µF, Co=0.1µF)Tj=25°C7.78.08.3VVo 5.0mA<Io<1.0A,Po<15W Vi=11V to 23V7.68.08.4V∆Vo Tj=25°C,Vi=10.5V to 25V 5.0160mV Tj=25°C,Vi=11V to 17V2.080mV∆Vo Tj=25°C,Io=5.0mA to 1.5A 10160mV Tj=25°C,Io=250mA to 750mA5.080mVIQ Tj=25°C 5.08mA∆IQ Io=5mA to 1.0A 0.050.5mA Vi=11V to 25V0.5 1.0mA∆Vo/∆T Io=5mA 0.8mV/°CVN f=10Hz to 100kHz,Ta=25°C 52µVRR f=120Hz, Vi=11.5V to 21.5V 5673dBVo Io=1.0A,Tj=25°C 2VRo f=1kHz 17m ΩIsc Vi=35V,Ta=25°C 230mAIpk Tj=25°C 2.2A0<Tj<125°C,Io=500mA,Vi=15V,Ci=0.33µF, Co=0.1µF)Tj=25°C8.659.009.35VVo 5.0mA<Io<1.0A,Po<15W Vi=11.5V to 24V8.69.09.4V∆Vo Tj=25°C,Vi=11.5V to 25V 6180mV Tj=25°C,Vi=12V to 25V290mV∆Vo Tj=25°C,Io=5.0mA to 1.5A 12180mV Tj=25°C,Io=250mA to 750mA490mVIQ Tj=25°C 5.08mA∆IQ Io=5mA to 1.0A 0.5mA Vi=12V to 26V 0.8mA∆Vo/∆T Io=5mA 1mV/°CVN f=10Hz to 100kHz,Ta=25°C 58µVRR f=120Hz, Vi=13V to 23V 5671dBVo Io=1.0A,Tj=25°C 2VRo f=1kHz 15m ΩIsc Vi=35V,Ta=25°C 250mAIpk Tj=25°C 2.2AX78XXX78XX2005.09.09 V1.24,0<Tj<125°C,Io=500mA,Vi=16V,Ci=0.33µF, Co=0.1µF)Tj=25°C9.61010.4VVo 5.0mA<Io<1.0A,Po<15W Vi=12.5V to 25V9.51010.5V∆Vo Tj=25°C,Vi=12.5V to 25V 10200mV Tj=25°C,Vi=13V to 20V3100mV∆Vo Tj=25°C,Io=5.0mA to 1.5A 12200mV Tj=25°C,Io=250mA to 750mA4100mVIQ Tj=25°C 5.08mA∆IQ Io=5mA to 1.0A 0.5mA Vi=13V to 29V0.8mA∆Vo/∆T Io=5mA 1mV/°CVN f=10Hz to 100kHz,Ta=25°C 58µVRR f=120Hz, Vi=14V to 24V 5671dBVo Io=1.0A,Tj=25°C 2VRo f=1kHz 17m ΩIsc Vi=35V,Ta=25°C 250mAIpk Tj=25°C 2.2A0<Tj<125°C,Io=500mA,Vi=16V,Ci=0.33µF, Co=0.1µF)Tj=25°C11.512.012.5VVo 5.0mA<Io<1.0A,Po<15W Vi=14.5V to 27V11.41212.6V∆Vo Tj=25°C,Vi=14.5V to 30V 10240mV Tj=25°C,Vi=16V to 22V3120mV∆Vo Tj=25°C,Io=5.0mA to 1.5A 11240mV Tj=25°C,Io=250mA to 750mA5.0120mVIQ Tj=25°C 5.18mA∆IQ Io=5mA to 1.0A 0.5mA Vi=15V to 30V0.8mA∆Vo/∆T Io=5mA 1mV/°CVN f=10Hz to 100kHz,Ta=25°C 76µVRR f=120Hz, Vi=15V to 25V 5571dBVo Io=1.0A,Tj=25°C 2VRo f=1kHz 18m ΩIsc Vi=35V,Ta=25°C 230mAIpk Tj=25°C 2.2AX78XXX78XX2005.09.09 V1.250<Tj<125°C,Io=500mA,Vi=23V,Ci=0.33µF, Co=0.1µF)Tj=25°C14.415.015.6VVo 5.0mA<Io<1.0A,Po<15W Vi=17.5V to 30V14.251515.75V∆Vo Tj=25°C,Vi=17.5V to 30V 11300mV Tj=25°C,Vi=20V to 26V3150mV∆Vo Tj=25°C,Io=5.0mA to 1.5A 12300mV Tj=25°C,Io=250mA to 750mA4150mVIQ Tj=25°C 5.28mA∆IQ Io=5mA to 1.0A 0.5mA Vi=18V to 305V0.8mA∆Vo/∆T Io=5mA 1mV/°CVN f=10Hz to 100kHz,Ta=25°C 90µVRR f=120Hz, Vi=18.5V to 28.5V 5470dBVo Io=1.0A,Tj=25°C 2VRo f=1kHz 19m ΩIsc Vi=35V,Ta=25°C 250mAIpk Tj=25°C 2.2A0<Tj<125°C,Io=500mA,Vi=23V,Ci=0.33µF, Co=0.1µF)Tj=25°C17.318.018.7VVo 5.0mA<Io<1.0A,Po<15W Vi=21V to 33V17.11818.9V∆Vo Tj=25°C,Vi=21V to 33V 15360mV Tj=25°C,Vi=24V to 30V5180mV∆Vo Tj=25°C,Io=5.0mA to 1.5A 15360mV Tj=25°C,Io=250mA to 750mA5.0180mVIQ Tj=25°C 5.28mA∆IQ Io=5mA to 1.0A 0.5mA Vi=21V to 32V0.8mA∆Vo/∆T Io=5mA 1mV/°CVN f=10Hz to 100kHz,Ta=25°C 110µVRR f=120Hz, Vi=22V to 32V 5369dBVo Io=1.0A,Tj=25°C 2VRo f=1kHz 22m ΩIsc Vi=35V,Ta=25°C 250mAIpk Tj=25°C 2.2AX78XXX78XX2005.09.09 V1.260<Tj<125°C,Io=500mA,Vi=33V,Ci=0.33µF, Co=0.1µF)Tj=25°C232425VVo 5.0mA<Io<1.0A,Po<15W Vi=27V to 38V22.82425.2V∆Vo Tj=25°C,Vi=27V to 38V 17480mV Tj=25°C,Vi=30V to 36V6240mV∆Vo Tj=25°C,Io=5.0mA to 1.5A 15480mV Tj=25°C,Io=250mA to 750mA5.0240mVIQ Tj=25°C 5.28mA∆IQ Io=5mA to 1.0A 0.5mA Vi=27V to 38V0.8mA∆Vo/∆T Io=5mA 1.5mV/°CVN f=10Hz to 100kHz,Ta=25°C 160µVRR f=120Hz, Vi=28V to 38V 5067dBVo Io=1.0A,Tj=25°C 2VRo f=1kHz 28m ΩIsc Vi=35V,Ta=25°C 230mAIpk Tj=25°C 2.2A30 s1 23X78XXX78XX2005.09.09 V1.27456 7R sc =VBE Q2/ Isc Io=I R EG *(I REG -VBE Q1/R1)R1=VBE Q1/I REQ -I Q1*Q18 9X78XX2005.09.09 V1.2810 11 (±15V,1A)12 13X78XXX78XX2005.09.09 V1.29-50-25255075100125((m A )-50-25255075100125((V )1015202530355(A )j =25o=10m V 0101520253035556.74(V)(m A )X78XXX78XX2005.09.09 V1.210X78XXX78XX2005.09.09 V1.21105.06.30V1.1 ” ”11005.09.09 V1.2 ”10X78XX X78XX。

三端稳压7805和7905稳压原理及典型电路.pdf

三端稳压7805和7905稳压原理及典型电路.pdf
lo=5mA to 1.0A
4.75 5.00 5.25 V
4.0 100 mV
1.6 50 mV
9
100 mV
4
50 mV
5.0 8
mA
0.03 0.5 mA
Vi=8V to 25V 输出电压温 △Vo/△ lo=5mA
0.3 0.8 mA
0.8
mV/
5
一寸光阴不可轻

T
输出噪音电
VN
f=10Hz to 100KHz,Ta=25℃
-
Temperature Coefficient of VD 温 ΔVo/ΔT
IO = 5mA
-
度系数
Output Noise Voltage 输出噪声电 VN

f = 10Hz to 100KHz TA =+25℃
-
Ripple Rejection 纹波抑制
ΔVO
TJ = +25℃ IO = 5mA to 1.5A
-
TJ =+25℃ IO = 250mA to 750mA -
Quiescent Current 静态电流
IQ
TJ =+25℃
-
Quiescent Current Change 静态电
IO = 5mA to 1A
-
ΔIQ
流变化
VI = -8V to -25V
图 1 78XX 内部电路图 10
一寸光阴不可轻
图 2 78XX 参照测试电路
图 3 外形引脚排列图管脚图
11
一寸光阴不可轻
图 4 纹波抑制电路
图 5 负载调节控制电路 12
一寸光阴不可轻
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用7805 集成电路制作经典的电源电路2007-10-31 10:02 来源: 作者:网友评论 0 条浏览次数 2011
经典的电源电路(7805扩流)
上图为在非常流行的经典电路上做小许改动的电路图.
电路目的:
1)+24V 转换为+5V +/-5%
2)可提供+2A以上的电流.
主要元件: TIP32C (ST)
L7805CV (ST)
图中的R62,在实际应用中已经更改为22 OHM.
功率元件TIP32C已经加散热片
包括:
1. 此电路的具体工作原理.
2. 此电路是否能达到预期的效果.
3. 存在何种问题.
4. 如果图中R62如果减小到诸如1 OHM或者3.3 OHM,会存在什么样的问题.
5. 其他.
相关文章:
集成稳压器的原理及应用
2007-04-10 22:02
集成稳压器是指将不稳定的直流电压变为稳定的直流电压的集成电路。

由于集成稳压器具有稳压精度高、工作稳定可靠、外围电路简单、体积小、重量轻等显箸优点,在各种电源电路中得到了普遍的应用。

1、固定集成稳压器
集成稳压器是指将不稳定的直流电压变为稳定的直流电压的集成电路。

由于集成稳压器具有稳压精度高、工作稳定可靠、外围电路简单、体积小、重量轻等显箸优点,在各种电源电路中得到了普遍的应用。

常用的集成稳压器有:金属圆形封装、金属菱形封装、塑料封装、带散热板塑封、扁平式封装、双列直插式封装等。

在电子制用中应用较多的是三端固定输出稳压器。

集成稳压器可分为串联调整式、并联调整式和开关式稳压器三大类。

图2所示为应用最广泛的串联式集成稳压器内部电路方框图,其工作原理是:取样电路将输出电压Uo按比例取出,送入比较放大器与基准电压进行比较,差值被放大后去控制调整管,以使输出电压Uo保持稳定。

78XX系列集成稳压器是常用的固定正输出电压的集成稳压器,输出电压有5V、6V、9V、12V、15V、18V、24V等规格,最大输出电流为1.5A。

它的内部含有限流保护、过热保护和过压保护电路,采用了噪声低、温度漂移小的基准电压源,工作稳定可靠。

78XX系列集成稳压器为三端器件:1脚为输入端,2脚为接地端,3脚为输出端,使用十分方便。

78XX系列集成稳压器的典型应用电路如下图所示,这是一个输出正5V直流电压的稳压电源电路。

IC采用集成稳压器7805,C1、C2分别为输入端和输出端滤波电容,RL为负载电阻。

当输出电较大时,7805应配上散热板。

下图为提高输出电压的应用电路。

稳压二极管VD1串接在78XX稳压器2脚与地之间,可使输出电压Uo得到一定的提高,输出电压Uo为78XX稳压器输出电压与稳压二极管VC1稳压值之和。

VD2是输出保护二极管,一旦输出电压低于VD1稳压值时,VD2导通,将输出电流旁路,保护7800稳压器输出级不被损坏。

下图为输出电压可在一定范围内调节的应用电路。

由于R1、RP电阻网络的作用,使得输出电压被提高,提高的幅度取决于RP与R1的比值。

调节电位器RP,即可一定范围内调节输出电压。

当RP=0时,输出电压Uo等于78XX稳压器输出电压;当RP逐步增大时,Uo也随之逐步提高。

下图为扩大输出电流的应用电路。

VT2为外接扩流率管,VT1为推动管,二者为达林顿连接。

R1为偏置电阻。

该电路最大输出电流取决于VT2的参数。

下图为提高输入电压的应用电路。

78XX稳压器的最大输入电压为35V(7824为40V),当输入电压高于此值时,可采用下图所示的电路。

VT、R1和VD组成一个预稳压电路,使得加在7800稳压器输入端的电压恒定在VD的稳压值上(忽略VT的b-e结压降)。

Ui端的最大输入电压仅取决于VT的耐压。

集成稳压器还可以用作恒流源。

下图为78XX稳压器构成的恒流源电路,其恒定电流Io等于78XX稳压器输出电压与R1的比值。

79XX系列集成压器是常用的固定负输出电压的三端集成稳压器,除输入电压和输出电压均为负值外,其他参数和特点与78XX系列集成稳压器相同。

79XX系列集成稳压的三个引脚为:1脚为接地端,2脚为输入端,3脚为输出端。

79XX系列集成稳压器的应用电路也很简单。

下图所示为输出-5V直流电压的稳压电源电路,IC采用集成稳压器7905,输出电流较大时应配上散热板。

同时运用78XX和79XX稳压器,可以组成正、负对称输出的稳压电路。

下图所示为±5V稳压电源电路,IC1采用固定正输出集成稳压器7805,IC2采用固定负输出集成稳压器7905,VD1、VD2为保护二极管,用以防止正或负输入电压有一路未接入时损坏集成稳压器。

相关文档
最新文档