动量方程及其应用分析
力学中的动量定理应用
力学中的动量定理应用动量是物体运动的重要物理量之一,在力学中,动量定理是运动定律之一,研究物体受力后的运动情况。
本文将探讨动量定理在不同场景下的应用及其重要性。
一、汽车碰撞实例考虑两辆汽车A和B发生碰撞的情况。
假设汽车A的质量为m1,速度为v1,汽车B的质量为m2,速度为v2。
根据动量定理,动量守恒的原理,碰撞前后的总动量保持不变。
碰撞前的总动量为m1v1 + m2v2,碰撞后的总动量为(m1+m2)V。
根据动量守恒定理,可以得到下面的方程:m1v1 + m2v2 = (m1+m2)V通过这个方程我们可以计算出碰撞后的速度V。
这个实例展示了动量定理在汽车碰撞中的应用,使我们能够更好地理解碰撞后车辆的速度变化。
二、火箭推进原理火箭的推进原理是基于动量定理而实现的。
火箭在发射时喷射出燃料和气体,根据动量守恒定理,火箭向反方向获得一个相反的动量,使得整个系统的总动量保持不变。
根据动量定理,燃料和气体的动量之和等于火箭的动量。
当燃料喷射出去时,动量向反方向增加,火箭就会获得一个反向的推力。
火箭推进过程中,动量定理的应用使我们能够理解火箭是如何在无外部力的情况下向前运动的。
三、子弹射击子弹射击是另一个动量定理的应用实例。
假设一个质量为m的子弹以速度v射击一个静止的物体,物体的质量为M。
根据动量定理,子弹的动量等于物体的动量。
因此,可以得到下面的方程:mv = MV根据这个方程,可以计算出物体受到的冲量。
此应用示例展示了动量定理在射击过程中的重要性,使我们能够计算出子弹对物体的冲量大小。
四、运动中的人体保护力学中的动量定理还与人体保护密切相关。
当人体受到外力作用时,身体内的器官和组织会受到动量的传递影响。
根据动量定理,人体的动量会随着外力的作用而改变。
因此,为了保护人体免受伤害,可以通过增加物体的密度或采用防护装备等方法减少动量的变化。
这一应用实例突显了动量定理在人体保护中的重要性,使我们能够更加全面地了解身体受到外力时的影响。
流体力学第三章(7)动量方程及其应用及动量矩方程
对于方程右侧的动量变化率:只要知道两截面上的平均速度和流量就可以 计算出来。
2、外力和速度的方向问题。与坐标相同时为正,与坐标相反时为负。公 式右边的减号是固定的。
ቤተ መጻሕፍቲ ባይዱ
三 、动量方程式的应用(重点)
1、流体对管道的作用力问题 2、自由射流的冲击力问题
1、流体对管道的作用力问题—动量方程式的应用之
要求密度为
V
vdV
A
v(v
dA)
这就是用欧拉方法表示的动量方程式,这个方程式既适用于控制体固定的情况, 也适用于控制体运动的情况。在运动时需将速度v换成相对速度,并在控制体 上加上虚构的惯性力。
动量方程式中,需注意
1. F 是作用在控制体内质点系上的所有外力的矢量和,既包括控制体外
部流体及固体对控制体内流体的作用力(压力、摩擦力),也包括控制体
(I)部分通过A1面非 原质点系的流入动量
制体的总动量。
(II)部分通过A2 面流出的动量
对于控制体的全部控制面A:
末动量
初动量
F
d( mv)
dt
lim
t 0
1 t
{[
V
v dV ]t t
t A
v(v dA)
[
V
v dV ]t }
t
2vz z 2
]
dvz dt
作用在质点系上的总外力就不必通过分布压强的积分,而是通过求质点系动量变 化率的办法计算出来,开辟了求解流体动力学问题的新途径。
F
d ( mv)
dt
由于各个质点速度不尽相同,似乎要计算质点系的动量变化 率采用拉格朗日法比较适宜,由于运动的复杂性,很困难。
恒定总流的动量方程
恒定总流的动量方程利用前面介绍的连续性方程和能量方程,已经能够解决许多实际水力学问题,但对于某些较复杂的水流运动问题,尤其是涉及到计算水流与固体边界间的相互作用力问题,如水流作用于闸门的动水总压力,以及水流经过弯管时,对管壁产生的作用力等计算问题,用连续性方程和能量方程则无法求解,而必须建立动量方程来解决这些问题。
动量方程实际上就是物理学中的动量定理在水力学中的具体体现,它反映了水流运动时动量变化与作用力间的相互关系,其特点是可避开计算急变流范围内水头损失这一复杂的问题,使急变流中的水流与边界面之间的相互作用力问题较方便地得以解决。
一、动量方程式的推导及适用条件(一)动量方程式的推导由物理学可知,物体的质量m 与速度υ的乘积称为物体的动量。
动量是矢量,其方向与流速方向相同。
物体在外力作用下,速度会发生改变,同时动量也随之变化。
动量定理可表述为:运动物体单位时间内动量的变化等于物体所受外力的合力。
现将动量定理用于恒定流中,推导恒定流的动量方程。
图3-29在不可压缩的恒定流中,任取一渐变流微小流束段1—2(图3-29)。
设1—1断面和2—2断面的过水断面面积和流速分别为21、dA dA 和1u 、2u ,经过dt 时段后,微小流束由原来的1—2位置运动到了新的位置21'-'处,从而发生了变化。
设其动量的变化为dk ,它应等于流段21'-'与流段1—2内的动量之差。
因为水流为不可压缩的恒定流,所以对于公共部分21-'段来讲,虽存在着质点的流动的替换现象,但它的形状、位置以衣液体的质量、流速等均不随时间发生变化,故动量也不随时间发生改变。
这样,在dt 时段内,21'-'段的水流动量与1—2段的动量之差实际上即为22'-段的动量与11'-段的动量之差。
在dt 时段内,通过11'-段的水体质量为11dtdA u ρ,通过22'-段的水体质量为22dtdA u ρ,对于不可压缩液体,根据连续性方程,可知dQdt dtdA u dtdA u ρρρ==2211,则微小流束段的动量变化为)(12u u dQdt k d -=ρ设总流两个过水断面的面积分别为21A A 与,将上述微小流束的动量变化k d 沿相应的总流过水断面进行积分,即可得到总流在dt 时段内动量的变化量为)()()(121112221212a dA u u dA u u dt u dQdt u dQdt u u dQdt k d A A QQ Q ⎰⎰⎰∑⎰⎰-=-=-=ρρρρ 由于实际液体过水断面上的流速分布均匀,且不易求得,故考虑用断面平均流速υ来代替断面上不均匀分布的流速u ,以便计算总流的动量。
流体的连续性方程和动量方程
流体的连续性方程和动量方程流体力学是研究流体运动和流体力学性质的学科。
在流体力学中,连续性方程和动量方程是两个重要的基本方程。
本文将详细介绍流体的连续性方程和动量方程的定义和应用。
一、流体的连续性方程连续性方程描述了流体的质量守恒原理,表达了流体在空间和时间上的连续性。
连续性方程的数学表达形式为:∂ρ/∂t + ∇·(ρv) = 0其中,ρ是流体的密度,t是时间,v是流体的速度矢量,∇·(ρv)表示速度矢量的散度。
该方程表示,流体的密度在一个闭合曲面上的变化率等于通过该曲面的质量流量。
连续性方程是基于质量守恒原理推导得出的。
它表明,在稳定流动条件下,流体在通道中的截面积变化时,速度会发生相应的变化,以保持质量的守恒。
根据连续性方程,我们可以推导出管道中的速度分布。
在管道的收缩段,速度增加,截面积减小,密度保持不变,从而保证质量守恒。
这也是为什么水管收缩后出水流速增加的原因。
二、流体的动量方程动量方程描述了流体运动的力学性质,表达了流体在空间和时间上的动量守恒。
动量方程的数学表达形式为:ρ(dv/dt) = -∇p + μ∇^2v + F其中,ρ是流体的密度,t是时间,v是流体的速度矢量,p是压强,μ是流体的粘度,∇p表示压强的梯度,∇^2v表示速度的拉普拉斯算子,F是外力的合力。
动量方程由牛顿第二定律推导而来。
它表示,在流体中,流体质点的动量变化等于合外力对质点的作用力。
动量方程用于描述流体在受力作用下的运动状态,通过求解动量方程,可以得到流体的速度分布。
根据动量方程,我们可以推导出流体中的压力分布。
在水管中,如果水流速度增大,则根据动量方程中的负梯度项,压力会降低。
这是因为速度增大会导致动能的增加,压力会减少以保持动量守恒。
综上所述,流体的连续性方程和动量方程是流体力学中的两个基本方程。
连续性方程描述了质量守恒原理,动量方程描述了动量守恒原理。
通过求解这两个方程,我们可以获得流体在空间和时间上的运动状态和力学性质。
流体力学第三章动量方程及其应用及动量矩方程
.
8
1、流体对管道的作用力问题—动量方程式的应用之
要求密, 度流 为量 qv的 为流体对弯管 FR, x的 FRy作用力
假定管道在水平平面内或者重力可以不加考虑,动量修正系数为1 取1-1、2-2断面及弯管内表面为流管控制体,作用在流体质点系的总外力包括
F R y p 2 A 2 c o s2 p 1 A 1 s in1 q V(v 2 c o s2 ) (v 1 s in1 )
【特例6】突然扩大管
10,2 90
FRx(p1 v12)A 1(p2 v22)A2
FRy0
(1)
突然扩大处流线不能折转,在“死角”处产生涡旋,涡旋区中的流体没有主流 方向的运动,因而流体对突然扩大管的作用力不是作用在大管管壁上的摩擦力, 而是作用在突然扩大台肩圆环断面A2—A1上的静压力,方向向左。
得: F R x P 1 A 1 q v v 1 P 1 A 1 v 1 A 1 v 1 ( P 1 v 1 2 ) A 1
F R y P 2 A 2 q v v 2 P 2 A 2 v 2 A 2 v 2 ( P 2 v 2 2 ) A 2
.
12
【特例2】直角等径弯管 12 0 ,A 1 A 2 A ,q V v A F R x p 1 A 1 c o s1 p 2 A 2 s in2q V(v 1 c o s1 ) (v 2 s in2 )
F R y p 2 A 2 c o s2 p 1 A 1 s in1 q V( v 2 c o s2 ) ( v 1 s in1 )
这是流体对任意变径弯管的作用力的计算公式,对其求合力得到
FR FR2x FR2y
arctanFRy
动量方程公式
动量方程公式一、概述动量方程是物理学中的一个基本公式,它描述了物体的动量和力的关系。
在经典力学中,动量方程是一个基本的守恒定律,它表明一个孤立系统的总动量不会随着时间的推移而改变。
动量方程的公式是:P = mv,其中P是动量,m 是质量,v是速度。
这个公式表示物体的动量与其质量和速度成正比。
二、动量方程的应用动量方程在物理学中有广泛的应用。
它可以用于分析物体的运动规律,解决各种动力学问题。
例如,在碰撞过程中,动量方程可以用于计算碰撞后的速度和方向。
此外,动量方程也可以用于分析力学系统的平衡状态和稳定性。
三、动量方程的发展历程动量方程的公式是牛顿第二定律的特例。
牛顿第二定律指出,力等于质量乘以加速度,即F = ma。
当物体保持匀速直线运动时,加速度为零,因此力F 也为零,此时动量方程可以简化为P = mv。
动量方程的发展历程可以追溯到17世纪,当时科学家们开始使用数学模型描述自然现象。
牛顿在他的著作《自然哲学的数学原理》中提出了三个基本的运动定律,其中第三个定律就是动量守恒定律的表述。
自那时以来,动量方程一直是物理学中的基本公式之一,广泛应用于各个领域。
四、动量方程的扩展形式除了基本的动量方程公式P = mv之外,还有许多扩展形式。
例如,角动量方程描述了物体绕固定点旋转时的动量和力的关系,形式为L = mvr。
此外,在相对论中,动量方程的形式也会发生变化。
在相对论中,物体的质量不再是常数,而是与速度有关,因此动量方程也需要考虑物体的质量和速度的相对论效应。
五、总结动量方程公式是物理学中的基本公式之一,它描述了物体的动量和力的关系。
这个公式在各个领域都有广泛的应用,可以帮助我们更好地理解物体的运动规律和解决各种动力学问题。
尽管现代物理学的发展已经超出了经典力学的范畴,但动量方程作为经典力学的基本原理之一,仍然具有重要意义和应用价值。
由于篇幅限制,我无法提供超过2000字的文章。
但我可以继续为您撰写下文以满足您的要求:六、动量方程在各领域的应用1.航空航天:在航空航天领域中,飞行器的设计和操作都需要考虑到动量方程的影响。
动量定理及其应用
动量定理及其应用动量定理是物理学中的重要概念之一,它描述了物体运动的性质和变化。
本文将介绍动量定理的基本原理、公式推导以及其在实际应用中的意义和重要性。
一、动量定理的基本原理动量定理是由牛顿提出的,它描述了质点的运动状态和所受外力之间的关系。
根据动量定理的表述,一个质点的动量的变化量等于作用于质点的力的时间积分。
换句话说,当一个物体受到外力作用时,它的动量会发生改变。
动量定理可以表述为以下公式:F = Δp/Δt其中,F代表物体所受的力,Δp为物体的动量变化量,Δt为时间的变化量。
该公式表示力等于物体动量的变化率。
二、动量定理的公式推导动量是物体的运动状态的衡量,它的大小与物体的质量和速度有关。
根据定义,动量p等于物体质量m与速度v的乘积:p = m * v。
当一个物体受到外力F作用时,根据牛顿第二定律F = ma(a为物体的加速度),可得:F = m * a根据运动学公式v = u + at(u为初速度,t为时间),可以将加速度a表示为:a = (v - u) / t将上述两个公式代入牛顿第二定律中得:F = m * (v - u) / t进一步整理可以得到:F * t = m * (v - u)F * t = m * Δv根据动量的定义p = m * v,将上述公式代入可得:F * t = Δp经过推导,我们得到了动量定理的基本公式F = Δp/Δt。
三、动量定理的应用动量定理在物理学和工程学中有着广泛的应用,以下是一些常见的应用场景:1. 交通事故分析:动量定理可以帮助我们分析交通事故中车辆的碰撞情况,准确计算撞击力的大小以及车辆运动状态的变化。
2. 火箭推进原理:在航天工程中,动量定理被用来解释火箭如何通过燃料的喷射产生反作用力,从而达到推进的效果。
3. 球类运动:动量定理可以解释球类运动中击球和接球的力学过程。
例如,乒乓球运动中击球员可以通过控制球的反冲力使得球的速度和方向发生改变。
4. 器械运动分析:动量定理可以用来解析各种器械运动的特点和规律,例如击球运动、举重等。
流体力学中的动量方程
流体力学中的动量方程动量方程是流体力学中描述流体运动的基本方程之一。
它描述了流体在运动过程中动量的变化,通过掌握动量方程,可以深入理解和分析流体的运动特性。
一、动量的定义与表达式根据牛顿第二定律,一个物体的动量等于其质量与速度的乘积。
对于流体来说,动量可以用密度、速度和体积来表达。
根据这个定义,流体的动量可以表示为:M = ρ * V其中,M为动量,ρ为流体的密度,V为流体的速度。
二、流体的动量守恒流体的动量守恒是指在一个封闭系统中,动量的总量在时刻保持不变。
这可以通过动量方程来表示。
对于流体的动量守恒方程,有两个基本形式:1.欧拉动量方程欧拉动量方程适用于描述非粘性流体的动量守恒。
其表达式为:∂(ρV)/∂t + ∇(ρV*V) = -∇P + ρg其中,ρ为流体的密度,V为流体的速度,t为时间,P为压力,g 为重力加速度。
2.纳维-斯托克斯动量方程纳维-斯托克斯动量方程适用于描述粘性流体的动量守恒。
其表达式为:∂(ρV)/∂t + ∇(ρV*V) = -∇P + μ∇²V + ρg其中,ρ为流体的密度,V为流体的速度,t为时间,P为压力,μ为流体的动力黏度,g为重力加速度。
三、动量方程的应用动量方程在流体力学的研究中有广泛的应用。
它可以用来解释和预测流体的运动特性,如流体的速度分布、流体中的压力和力的作用等。
1.速度分布根据动量方程,可以推导出流体在不同速度条件下的速度分布规律。
通过研究流体的速度分布,可以了解到流体的流动状态,从而更好地控制和管理流体运动。
2.压力分布动量方程中的压力项描述了流体中压力的变化规律。
通过分析动量方程中的压力项,可以获得流体的压力分布情况。
这对于设计和优化流体系统具有重要意义。
3.流体之间的相互作用在实际应用中,流体通常与其他物体或流体相互作用。
通过动量方程,可以分析流体与其他物体的相互作用力,并进行力学计算和设计。
四、总结动量方程是流体力学中重要的基本方程之一,通过它可以深入研究和理解流体的运动特性。
流体力学3_动量方程应用举例
动量方程应用举例:例:水在直径为cm 10的 60水平弯管中,以s m 5的速度流动。
弯管前端的压强为at 1.0。
不计损失,也不考虑重力作用,求水流对弯管1-2的作用力。
解:1、确定控制体。
取控制体为1-2断面间弯管占有的空间。
这样把受流体作用的弯管整个内表面包括在控制体内,又没有其他多余的固壁。
2、选择坐标系。
坐标系选择如图所示。
x 轴为弯管进口前管道的轴线,z 轴为垂直方向,y x -平面为水平面。
3、流出和流进控制体的动量差。
流出:2v Q ρ;流进:1v Q ρ。
动量差:()12v v Q -ρ。
由于断面积不变,s m v v v 521===。
若断面积变化,求未知流速时,通常要运用连续性方程。
4、控制体内流体受力分析。
由于不考虑重力作用,质量力为零。
表面力包括: 断面1上:111A p P =,方向沿x 轴正向;断面2上:222A p P =,方向垂直于断面2,且指向控制体内; 其余表面:R ——弯管内表面对流体的作用力。
由于R 的方向未知,应任意假设某方向。
不妨设R 在y x -平面上的投影方向与x 轴的夹角为α。
未知压强2p 应根据能量方程g v p Z g v p Z 2222222111++=++γγ求出。
由于21Z Z =,v v v ==21,故2219807m N p p p ===。
一般地,求某一未知压强总要用到能量方程。
5、联立动量方程并求解。
()()()()160cos 60cos cos 60cos 1cos 60cos 21211122211-=-=-=--=--=∑ Av v v A v v v Q R pA R A p A p F x x x ρρραα()() 60sin 060sin sin 60sin sin 60sin 221222Av v vA v v Q R pA R A p F y y y ρρραα=-=-=+-=+-=∑()z z z z v v Q R F 12-==∑ρ也即:()()()⎪⎩⎪⎨⎧-==+--=--z z zv v Q R Av R pA Av R pA 122260sin sin 60sin 160cos cos 60cos 1ρραρα 代入数据:()N pA 1.771.0498072=⨯⨯=π()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧=⨯⨯⨯⨯=+--⨯⨯⨯⨯=--⨯060sin 51.041000sin 60sin 1.77160cos 51.041000cos 60cos 11.772222z R R R παπα 联立求解,得:N R 272= 60=α6、分析。
动量定理及其应用
小结
1.动量定理的理解
2.动量定理的应用 (1)用动量定理解释现象
P 一定, t 越短,则F越大。
F P
t t 一定, P越大,则F越大。
(2)用动量定理解题
V0=10m/s:1)沿水平方向抛出。求该物体在 抛出两秒内动量的变化
(g值取10m/s2)
利用动量定理解题
4. 质量为m的物体以速率v沿半径为R 的圆在光滑水平面上做匀速圆周运动。 求物体受的合力的及物体运动半周所受 的合力的冲量。
解:
合外力
F
m
v2 R
以小球运动半周的初速度方向为正方向
初动量:P=mv 末动量:P mv
5. 根据动量定理列方程求解。
练习
3.如图,用0.5kg的铁锤钉钉子,打击时 铁锤的速度为4m/s,打击后铁锤的速 度变为零,设打击时间为0.01s
a.不计铁锤的重量,铁锤钉钉子的平均 作用力是多大?
b.考虑铁锤的重量,铁锤钉钉子的平均 作用力是多大?
C.你分析一下,在计算铁锤钉钉子的 平均作用力时在什么情况下可以不计 铁锤的重量.
观察鸡并蛋从思一考米多高的地方落到地板上,肯
定会被打破,现在,在地板上放一块泡沫 塑料垫,让鸡蛋落到泡沫塑料上,会看到 什么现象?你能解释这种现象吗?
上述体育项目中的海绵垫、沙子、接球时手的回收 都有些什么物理原理呢?
v
F 作用了时间 t v′
F
F
分析: 结论:
F合t mvt mv0
这就是动量定理
mv
F F 作用了时间 t
mv′
F
动量定理: 物体受到的合力的冲量 等于物体动量的变化
表达式:Ft mv mv 或 I p
动量守恒的方程
动量守恒的方程动量守恒的方程是物理学中非常重要的一条基本定律,它可以描述物体在运动过程中的动量变化情况。
动量守恒的方程可以运用于各种不同的物理场景,包括机械力学、流体力学和电磁学等领域。
在物理学中,动量(Momentum)是描述物体运动状态的物理量,它与物体的质量和速度有关。
动量的大小等于物体质量与速度的乘积,即M=mv,其中M为动量,m为质量,v为速度。
根据牛顿第二定律F=ma,可以将动量的变化量表示为ΔM=Δ(mv)=mΔv+vΔm。
在一个封闭系统内,动量守恒的方程可以用数学表达为ΣΔM=0,即系统内所有物体的动量变化量之和为0。
这意味着在没有外部力作用的情况下,系统内的总动量保持不变。
这个方程揭示了物体在运动过程中具有的惯性特性。
动量守恒的方程在机械力学中的应用非常广泛。
例如,当两个物体发生碰撞时,它们之间存在着动量的转移和交换。
根据动量守恒定律,即ΔM1+ΔM2=0,其中ΔM1和ΔM2分别表示碰撞前后两个物体的动量变化量。
根据这个方程,可以计算出碰撞过程中物体的速度和动量。
在实际应用中,可以利用动量守恒的方程来解决一些实际问题。
例如,在交通事故中,可以根据车辆碰撞前后的动量变化量来估计碰撞的瞬间力和速度变化。
另外,动量守恒的方程也可以应用于火箭发射和飞船着陆等航天工程中,用来计算火箭或飞船的质量和速度。
动量守恒的方程还可以应用于流体力学中。
当流体在管道中流动或发生涡流时,液体颗粒或气体分子产生的碰撞和冲击会导致动量的转移和交换。
根据动量守恒的方程,可以描述流体在流动过程中的物理规律,如爆炸波的传播和水流的波动。
在电磁学中,电荷在电场和磁场中的运动也符合动量守恒的定律。
例如,当电子在电场中加速运动时,它会获得动量,并且在碰撞物体时将动量传递给物体。
在这种情况下,动量守恒的方程可以用来描述电子的运动轨迹和动量变化。
总之,动量守恒的方程是物理学中的一条重要定律,它可以描述系统内物体在运动过程中的动量变化情况。
高中物理-动量定理的六种应用
高中物理-动量定理的六种应用动量定理的内容是物体所受合外力的冲量等于物体动量的变化,即I = △p。
动量定理表明冲量是物体动量发生变化的原因,冲量是物体动量变化的量度。
这里所说的冲量必须是物体所受的合外力的冲量。
动量定理是力对时间的积累效应,使物体的动量发生改变,适用的范围很广,它的研究对象可以是单个物体,也可以是物体系;它不仅适用于恒力情形,而且也适用于变力情形,尤其在解决作用时间短、作用力大小随时间变化的打击、碰撞等问题时,动量定理要比牛顿定律方便得多。
一、用动量定理解释生活中的现象动量定理在实际生活中有着广泛的应用,实际生活中的许多现象都可用动量定理加以解释,用动量定理解释现象可分为下列三中情况:1. △p 一定,t短则F大,t 长则F小2. F 一定,t短则△p 小,t 长则△p 大3. t 一定,F短则△p 小,F 长则△p 大【典例1】钉钉子时为什么要用铁锤而不用橡皮锤,而铺地砖时却用橡皮锤而不用铁锤?【答案】见解析【名师点拨】根据动量定理,利用对作用时间的调整来控制作用力的大小。
【典例2】竖立放置的粉笔压在纸条的一端.要想把纸条从粉笔下抽出,又要保证粉笔不倒,应该缓缓、小心地将纸条抽出,还是快速将纸条抽出?说明理由。
如果缓慢抽出纸条,纸条对粉笔的作用时间比较长,粉笔受到纸条对它摩擦力的冲量就比较大,粉笔动量的改变也比较大,粉笔的底端就获得了一定的速度.由于惯性,粉笔上端还没有来得及运动,粉笔就倒了。
如果在极短的时间内把纸条抽出,纸条对粉笔的摩擦力冲量极小,粉笔的动量几乎不变.粉笔的动量改变得极小,粉笔几乎不动,粉笔也不会倒下。
【答案】见解析【学霸总结】1. 体育比赛中的一系列保护措施都可概括为通过延长相互作用的时间来达到减小相互作用力,从而达到保护人体不受伤害的目的,如篮球运动员接迎面飞来的篮球,手接触到球以后,两臂随球后引至胸前把球接住,以延长篮球与手的接触时间,减小篮球对手的作用力。
流体的动量定理及应用
流体的动量定理及应用流体力学是研究流体运动和力学性质的一门学科,其中动量定理是流体力学中重要的基本原理之一。
本文将深入探讨流体的动量定理的原理及其在实际应用中的重要性。
一、流体的动量定理原理流体的动量定理基于牛顿第二定律,即力等于物体的质量乘以加速度。
对于流体,其力可以通过流体压力和流体体积力的合力来表示。
动量定理可以表达为:在不受外力或体积力作用的情况下,流体中某一控制体的动量改变率等于该控制体上合力的作用力,即直接与作用在该控制体上的力相关。
根据动量定理,我们可以推导出流体力学中的两个重要方程:欧拉动量方程和伯努利方程。
欧拉动量方程描述了流体静止状态下力的均衡性,而伯努利方程则用于描述流体在相对运动状态下的动能和压力之间的关系。
二、流体的动量定理的应用1. 流体力学实验流体的动量定理在流体力学实验中具有广泛应用。
通过建立合适的实验装置,我们可以观察流体在不同条件下的运动状态,并利用动量定理分析流体的受力情况。
例如,在研究水泵的性能时,通过测量流体的入口和出口速度,我们可以利用动量定理计算出泵的流量和扬程,从而评估其性能。
2. 水力工程在水力工程中,动量定理被广泛应用于流体的管道、水闸和水泵等设备的设计和优化。
通过研究流体在管道中的流动状态,并利用动量定理分析各个部分的力平衡,我们可以确定管道的尺寸、选择合适的水泵和优化系统设计。
3. 飞行器设计动量定理在飞行器设计中也扮演着关键的角色。
例如,在飞机设计中,通过分析流体在飞机翼上的流动状态,利用动量定理可以计算出升力和阻力。
这对于飞机的气动性能分析和设计改进至关重要。
4. 污水处理在污水处理中,利用动量定理可以评估污水流动过程中的阻力和压力损失,为污水处理设备的运行和设计提供重要依据。
通过优化流体的流动状态,可以提高处理效率并减少能源消耗。
5. 流体力学研究动量定理在流体力学研究中也具有重要应用价值。
通过分析流体运动中的力平衡和动量变化,可以深入研究流体的运动规律、湍流现象和流体与固体的相互作用等问题,为解决实际工程和自然现象提供理论支持。
高中物理-动量定理的六种应用
高中物理-动量定理的六种应用动量定理的内容是物体所受合外力的冲量等于物体动量的变化,即I = △p。
动量定理表明冲量是物体动量发生变化的原因,冲量是物体动量变化的量度。
这里所说的冲量必须是物体所受的合外力的冲量。
动量定理是力对时间的积累效应,使物体的动量发生改变,适用的范围很广,它的研究对象可以是单个物体,也可以是物体系;它不仅适用于恒力情形,而且也适用于变力情形,尤其在解决作用时间短、作用力大小随时间变化的打击、碰撞等问题时,动量定理要比牛顿定律方便得多。
一、用动量定理解释生活中的现象动量定理在实际生活中有着广泛的应用,实际生活中的许多现象都可用动量定理加以解释, 用动量定理解释现象可分为下列三中情况:1. △p 一定,t短则F大,t 长则F小2. F 一定,t短则△p 小,t 长则△p 大3. t 一定,F短则△p 小,F 长则△p 大【典例1】钉钉子时为什么要用铁锤而不用橡皮锤,而铺地砖时却用橡皮锤而不用铁锤?【答案】见解析【名师点拨】根据动量定理,利用对作用时间的调整来控制作用力的大小。
【典例2】竖立放置的粉笔压在纸条的一端.要想把纸条从粉笔下抽出,又要保证粉笔不倒,应该缓缓、小心地将纸条抽出,还是快速将纸条抽出?说明理由。
如果缓慢抽出纸条,纸条对粉笔的作用时间比较长,粉笔受到纸条对它摩擦力的冲量就比较大,粉笔动量的改变也比较大,粉笔的底端就获得了一定的速度.由于惯性,粉笔上端还没有来得及运动,粉笔就倒了。
如果在极短的时间内把纸条抽出,纸条对粉笔的摩擦力冲量极小,粉笔的动量几乎不变.粉笔的动量改变得极小,粉笔几乎不动,粉笔也不会倒下。
【答案】见解析【学霸总结】1. 体育比赛中的一系列保护措施都可概括为通过延长相互作用的时间来达到减小相互作用力,从而达到保护人体不受伤害的目的,如篮球运动员接迎面飞来的篮球,手接触到球以后,两臂随球后引至胸前把球接住,以延长篮球与手的接触时间,减小篮球对手的作用力。
高等动力学
高等动力学引言高等动力学是物理学中的一个重要分支,研究物体在外加力的作用下的运动规律。
它建立在牛顿力学的基础上,通过引入更复杂的数学和物理概念,使得对运动的分析更加准确和深入。
本文将介绍高等动力学的基本概念、运动方程和一些常见的应用。
基本概念动量动量是物体运动的一个重要量描述,它定义为物体质量与速度的乘积。
用数学公式表示为:动量(p)= 质量(m) × 速度(v)动量的单位是千克·米/秒(kg·m/s),是一个矢量量。
动量的大小和方向分别由质量和速度决定。
当物体速度改变时,动量也会随之改变。
动能动能是物体运动的能量形式,它定义为物体的动量与速度的平方之比的一半。
用数学公式表示为:动能(K)= 1/2 × 质量(m) × 速度的平方(v²)动能的单位是焦耳(J),也是一个标量量。
动能与物体的质量和速度成正比,速度越大,动能越大。
动力学定律在高等动力学中,有三条基本的运动定律,分别是:•第一定律(惯性定律):物体在不受外力作用时,保持静止或匀速直线运动。
•第二定律(运动定律):物体所受合力等于其质量乘以加速度。
•第三定律(作用-反作用定律):任何两个物体之间的相互作用力大小相等、方向相反。
这些定律描述了物体在外界作用下的运动行为,为高等动力学的研究提供了基础。
运动方程直线运动方程对于物体在直线上的运动,高等动力学提出了一些运动方程,使得能够更加精确地描述和预测物体的运动。
•位移-时间关系:位移(x)= 初速度(v₀) × 时间(t) + 1/2 × 加速度(a) × 时间的平方(t²)•速度-时间关系:速度(v)= 初速度(v₀) + 加速度(a) × 时间(t)•速度-位移关系:速度的平方(v²)= 初速度的平方(v₀²) + 2 × 加速度(a) × 位移(x)曲线运动方程对于物体在曲线上的运动,运动方程的形式会有所变化。
流体力学7动量方程及其应用及动量矩方程
FRx p1A1 cos1 p2 A2 sin2 qV (v1 cos1) (v2 sin2 )
F
d ( mv)
dt
fx
1
p x
[
2vx x 2
2vx y 2
2vx z 2
]
dvx dt
fy
1
p y
[
2vy x 2
2vy y 2
2vy z 2
]
dvபைடு நூலகம் dt
fz
1
p z
[
2vz x 2
2vz y 2
2vz z 2
]
dvz dt
作用在质点系上的总外力就不必通过分布压强的积分,而是通过求质点系动量变 化率的办法计算出来,开辟了求解流体动力学问题的新途径。
,流量为
q
的流体对弯管的作用力
v
FRx,FRy
假定管道在水平平面内或者重力可以不加考虑,动量修正系数为1
取1-1、2-2断面及弯管内表面为流管控制体,作用在流体质点系的总外力包括
弯管对控制体内流体的作用力 FRx和 FRy , 过流断面上外界流体对控制体内流体的作用力P1A1, P2 A2
Fx qv (v2x v1x ) Fy qv (v2 y v1y ) Fz qv (v2z v1z )
p1A1 sin1 p2 A2 sin cos2 FRy qV v2 cos2 v1 sin1
p1A1 cos1 p2 A2 sin2 FRx qV v2 sin2 v1 cos1
p1A1 sin1 p2 A2 sin cos2 FRy qV v2 cos2 v1 sin1
本次课主要内容 动量方程式及其应用
一、动量方程能解决运动流体中的什么问题
流体力学动量方程
流体力学动量方程
流体力学动量方程指的是:质量方程、动量方程(对于不可压缩牛顿流体来说是N-S方程)、能量方程。
方程式的写法有很多,微分形式的和积分形式的,用分量表示(工程类的教材居多)的或者张量形式(侧重于力学理论)的。
流体力学的动量方程中,为什么力和动量可以做加减法
力的量纲是N,动量是N*s,一般是不能做加减的。
但是流体力学里面有一种情况,在说动量的时候不使用质量去计算,而是用质量流量去计算,这样,动量的量纲就是N了,所以这个时候什么力都可以和动量加减。
至于系统动量改变等于受力,这个就是牛顿第二定律,牛顿最早表达他的第二定律的时候是这样写的F = d(m*v)/dt;而不是我们常说的F = m*a。
流体力学动量方程的实际应用
气象、水利的研究,船舶、飞行器、叶轮机械和核电站的设计及其运行,可燃气体或炸药的爆炸,汽车制造(联众集群),以及天体物理的若干问题等等,都广泛地用到流体力学知识。
许多现代科学技术所关心的问题既受流体力学的指导,同时也促进了它不断地发展。
动量传输的基本方程与应用
动量传输的基本⽅程与应⽤动量传输的基本⽅程与应⽤提要:以动量传输理论为基础, 将流体的动量传输分为黏性传输与紊流传输, 并对运动流体进⾏动量传输规律的研究, 得到了⼀系列动量传输的基本⽅程, 并简要介绍了其应⽤.关键词:动量, 传输, 拈性, 紊流, 应⽤1 前⾔传输现象为流体动⼒、传热及传质过程的统称, 也称传输理论, 它是⾃然界和⼯程技术中普遍存在的现象, 在传输过程中所传递的物质量⼀般为质量、能量和动量等.. 动量传输流体流动即动量传输现象是⾃然界及⼯程技术中普遍存在的现象,与⼤多数⾦属的提取和精炼过程有着密切的联系:冶⾦中的化学反应,往往也同时伴随着热量的传输和质量的传输,⽽这些现象都是在物质的流动过程中发⽜的,也就是说,传热与传质过程与流体流动特性密切相关。
例如,冶⾦中⾼温炉的供风与⽔冷装置,炉内⽓体流动规律、贮槽中液位⾼度的确定、烟道中烟⽓的流动阻⼒及烟道设计、管路的设汁计算、流态化反应器床层阻⼒的计算等等,都与流体的流动有关;⽽流体流动过程中流速的变化即反映动墩的变化,因此,研究流体流动及动址传输,掌握其有关规律性,对冶⾦设备的设计勺改进以及冶⾦过程的优化与控制具有重要意义。
动量传输是研究流体在外界作⽤下运动规律的科学,即流体⼒学,它的研究对象是流体(即液体和⽓体)。
之所以称之为动量传输.是因为从传输的观点来看,它与热量传输和质量传输在传输的机理、过程、物理数学模型等⽅⾯具有类⽐性和统⼀性。
⽤动量传输的观点讨论流体的流动问题,不仅有利于传输理论的和谐,⽽且可以揭⽰三传现象类似的本质与内涵。
动量传输理论属于流体动⼒学范畴, 是以流体在流动条件下的动量传递过程为主要研究对象, 由于物系内部存在速度梯度, 从⽽导致了实际流体内部动量的传输.根据动量传输过程的起因和进⾏的条件, 可把它分为两类: 粘性传输和紊流传输.粘性动量传输是由流体分⼦的微观运动所产⽣的粘性作⽤. 是在流体运动或变形条件下进⾏的, 传输的结果在流体中产⽣切应⼒, 故它⼜称为分⼦传输; 紊流动量传输是宏观流体微团的由旋涡混合造成的紊流混掺运动引起的动量传输, 故⼜称对流动量传输.紊流传输的结果使得在流体中产⽣了雷诺切应⼒. 显然, 对于粘性流体的紊流运动, 在其内部则同时存在着粘性动量传输和紊流动量传输过程.2 动量传输的基本⽅程2.1 动量传输基本⽅程的⼀般形式流体作为⼀类物质的形态, 它必须遵循⾃然界关于物质运动的普遍原理. 现在对运动流体进⾏动量传输规律的研究, 因此它必然要遵循动量守恒原理, 即动量定理.所以动量传输基本⽅程的⼀般形式就是以动量定理为依据并由此⽽针对控制体导出的, 通常称为动量⽅程.2.1.1 积分形式在流场中任取⼀个体积为v , 控制⾯⾯积为A 的控制体. 如图1 所⽰. 则根据动量定理:控制体内流体动量对时间的变化率等于作⽤在控制体上所有外⼒(包括质量⼒和表⾯⼒)的⽮量和, 写成数学表达式为对于定常流动,上式则可改写为:上述两式就是以积分形式表⽰的惯性坐标系中流体动量传输基本⽅程的⼀般形式, 应⽤它可以研究流体与固体之间相互作⽤⼒的间题, 例如测量物型阻⼒, 计算冲击⼒等.2.1.2 微分形式通过对动量守恒的微分运算, 可以进⼀步探讨流动系统内部动量传输规律. 解决传输过程中的机理间题, 从⽽导出流体运动所遵循的基本⽅程.把⽤应⼒张量形式表⽰为. 并根据推⼴的⾼斯定理.( l) 式可改写为运⽤微分理论和连续性⽅程, 则上式⼜可改写为:则其意义更加明确了, 实际上它就是⽜顿第⼆定律在流体⼒学中的具体应⽤.式( 4) 就是以微分形式表⽰的惯性坐标系中流体动量传输基本⽅程的⼀般形式.2.2 粘性流体动量传输基本⽅程对粘性流体进⾏动量守恒的运算, 可以得到其动量传输的基本⽅程, 即纳维—斯托克司⽅程, 它表述了流体流动条件下的动量与作⽤⼒之间的平衡与转换关系.式(4)是以应⼒形式表⽰的动量通量式, 假定流体满⾜粘性动量传输基本定律即⼴义⽜顿内摩擦定律把上式代⼊式( 4 ), 可得⼀般枯性流体动量传输基本⽅程, 即纳维—斯托克司⽅程为它是在动量传输过程中导出⼤量具有实⽤意义结果的基础⽅程.对于不可压缩流体, 式( 6) ⼜可简化为应⽤上述⽅程并根据具体的定解条件使之进⼀步简化后, 可以解决层流、势流、缝隙流、地下⽔渗流、动压润滑等间题, 并且计算结果与实验结果基本吻合.2.3 理想流体动量传输基本⽅程理想流体是指忽略粘性的流体, 虽然实际流体均具有⼀定粘性, 但在处理某些流动问题时, 可以近似视为理想流体.通过对粘性流体动量传输基本⽅程在理想条件下进⾏简化和变换, 可以得到理想流体动量传输基本⽅程.2 .3 1 欧拉运动微分⽅程对于式( 7 ), 因故简化后可得理想流体的动量平衡⽅程. 即欧拉运动微分⽅程它建⽴了作⽤在理想流体上的⼒与加速度之间的关系, 是研究理想流体各种运动规律的基础.如果认为流体正压. 且质量⼒有势. 则运⽤⽮量分析的基本关系可把式( 8) 改写为这便是理想正压流体在有势⼒场作⽤下的运动⽅程, 应⽤它可以求解有关流体动⼒学问题.2 .3 2 柯西—拉格朗⽇积分对于理想流体的欧拉运动微分⽅程, 存在着⼀个初积分. 利甩它可以得到运动的思想流体的压⼒分布规律, 但是不可能在普遍的情况下, ⽽仅能在特殊的条件下求解.本节的柯西—拉格朗⽇积分和下节的伯努利积分便是其中的两个特殊解.对于有势流动, 把式( 9) 再简化可得运动⽅程的柯西—拉格朗⽇积分为应⽤它可以求解某些⾮定常流动问题, 如流管放⽔、⽔下球⾯胀缩运动、管道中液体振动等.2 .3 .3伯努利积分以流线微元点乘式(9 ) 的各项, 并根据⽮量运算法则积分后, 可以得到.如果认为流体作定常流动, 则把上式再简化后即得运动⽅程的伯努利积分为根据不同的条件,P和U 这两个函数有不同的表达形式, 从⽽也可以得到伯努利积分的不同的具体形式, 这些公式统称为伯努利⽅程.如果把沿流线的伯努利⽅程向实际流体总流推⼴的话, 则可以得到实际流体总流的伯努利⽅程, 应⽤它可以研究⼤量的流体内流和出流问题, 并进⾏流动阻⼒和能量损失的计算等.上述诸⽅程在分析理想流体的运动和解决实际间题中具有⼗分重要的作⽤和⼴泛的应⽤.2.4 紊流动盘传输基本⽅程在紊流条件下, 考虑到其动量传输由粘性传输和由于紊流流体质点脉动⽽引起的附加动量传输所组成的, 于是根据紊流动量传输基本定律和粘性流体动量传输基本⽅程, 可得紊流动量传输的基本⽅程, 即雷诺⽅程为对于流体的紊流运动, 我们实际上考虑的是紊流的时均特性.因此, 式( 1 3 ) 中的各物理量均表⽰在紊流运动中所取的时均值, 只是为了⽅便起见, ⽽把表⽰时均参数的符号“⼀”省略掉了.上式在直⾓坐标系中的形式为把式〔1 3 ) 与式( ”⽐较, 可知增加了附加的动量传输即雷诺应⼒项此时⽅程不再封闭, 因此很难⽤简化的或近似的解析⽅法对实际的紊流运动进⾏研究和定量的描述, 因为雷诺应⼒与速度梯度的关系还不甚明了.常⽤的⽅法是对描述紊流流动的动量传输基本⽅程中的雷诺应⼒项. 提出各种半径验的假设作为使之封闭的补充偏微分⽅程. 然后利⽤初始和边界条件求解, 这种⽅法是由雷诺于1 9 7 0年提出的, 称为模式理论.⽽⽬前对于研究紊流动量传输规律常⽤的是普朗特的混合长理论, 实际上也就是O⼀1⽅程模式.根据这⼀理论,雷诺应⼒可表⽰为于是⽆须补充附加的偏微分⽅程就可使雷诺⽅程达到封闭, 尽管该⽅程模式有⼀定的缺点, 但仍能解决⼤量的流体⼒学问题.由于紊流运动的复杂性, 所以研究紊流动量传输的基本⽅程还是有待商讨的, 不过应⽤式( 14 )、( 1 5 ) 对于研究射流、边界层类型等间题还是可⾏的, 并且能得到⼀定程度的近似结⾥.3 结束语动量传输过程所涉及的内容与许多⼯程领域有着密切的联系, 它们不仅在机械、动⼒、化⼯等⼯程技术领域中出现, ⽽且也在⽣物医学⼯程、航空航天⼯程等领域中经常遇到.从上⾯的分析讨论可知, 有相当部分内容已经成功地应⽤于⼯程⽣产实际中.备注:通过⽼师的悉⼼教导,强化加深了同学们对于传输理论的理解,了解了许多有关动量传输,质量传输,热量传输的问题和⽅案。
风力机空气动力学2.7 动量方程及其应用
第七节 动量方程及其应用 三、动量方程式应用举例
1.弯管内流体对管壁的作用力
管轴竖直放置 1 1
FP1=p1A1 z
V1 FRz FR FRx
FG V2
22
x
FP2=p2A·2
y
当管轴竖直放置时,选控制体,在其上画出受力图如右 图所示。
第七节 动量方程及其应用
沿x方向列动量方程为:
p1A1 FRx qv (0 1V1)
F qv0 (0 v0 sin ) qv0v0 sin
y方向动量方程:
F qv0v0 sin
(qv2v0 qv1v0 ) qv0v0 cos 0
由连续性方程有: qv0 qv1 qv2
代入y方向动量方程解得:
qv1
qv0 2
(1
cos )
arctg FRy
FRx
第七节 动量方程及其应用
2.流体对建筑物的作用力
FP
FR
FP1=ρgbh12/2
x
沿x方向列动量方程为: FP1 FP2 FR qv (2V2 1V1)
FR FP1 FP2 qv (2V2 1V1)
1 2
gbh12
【解】
取断面0、1、2及它们之 间流股的表面为控制面。
平板对水流的作用力F,因 忽略摩擦阻力,故F与板面
0 v0
01
2 v2 θ2
F
垂直。控制面上其余部分
受大气压力Pa。
v1
1
x
第七节 程,并考虑到p0= p1 = p2 = pa,且不计重力和摩擦阻力,列x方向动量方程有:
第七节 动量方程及其应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辽宁工程技术大学力学与工程学院
流体力学综合训练(二)
题目动量方程式及其应用
班级工力13-3班
赵永振吕周翔顾鹏
姓名
李壮张敬尧陈锦学
指导教师吴迪
成绩
辽宁工程技术大学
力学与工程学院制
1
目录
1动量方程能解决流体中的问题 (1)
1.1用欧拉方法推导动量方程式 (1)
1.2特殊情况下的动量方程 (2)
2动量方程式在实际中的应用 (2)
2.1水力真空喷射泵 (2)
2.2轮船、火箭 (4)
参考文献 (6)
引言:动量方程式是根据牛顿第二定律及N-S 方程推导出来的,是以微分形式
表示的质点运动方程。
动量方程式是通过质点系动量变化率的办法计算求解,是求解流体力学问题的又一条途径。
该方程式在水利、航天、工业等工程方面都有应用。
一、用欧拉方法表示的动量方程式 1.1用欧拉方法推导动量方程式
在流场中,选择控制体(固定)如图中虚线所示,一部分与固体边界重合,在某一瞬时t,控制体内包含的流体是我们要讨论的质点系,设控制体内任一质点的速度为v, 密度为ρ。
在t 瞬时的初动量为t
V
vdV ][⎰⎰⎰ρ经过△t ,质点系运动到实线位置,这个质点系在t+△t 瞬时的末动量为:
原来质点系尚留在控制 图1 动量方程式 体中的部分及新流入控 (I )部分通过A1面非 (II )部分通过A2 制体的总动量。
原质点系的流入动量 面流出的动量 ↓ ↓ ↓
⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰∑∑⋅+
∂∂=-⋅∆+∆==∆+→∆A V
V
t A V
t t t dA v
v vdV t
vdV dA v v t vdV t dt mv d F )
(}][)(]{[1lim )(0ρρρρρ对于控制体的全部控制面:
⎰⎰
⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰∑∑⋅+∂∂
=-⋅∆+∆==
∆+→∆A
V
V
t A V t t t dA v v vdV t
vdV dA v v t vdV t
dt
m v d F )
(}
][)(]{[1
lim
)
(0ρρρρρ 这就是用欧拉方法表示的动量方程式,这个方程式既适用于控制体固定的情况,也适用于控制体运动的情况。
在运动时需将速度v 换成相对速度,
并在控制
体上加上虚构的惯性力。
1.2特殊情况下的动量方程
特例:常见的定常、不可压缩、一元流动时,方程式可以简化的很简单。
如图所示,把流线方向取为自然坐标s ,取如图控制体,则总控制面上只有A1,A2上有动量流入流出,假设断面上平均速度为v1,v2,则在定常不可压缩
)
()()(121211221
2
v v q v v q dA
v v dA v v dA v v F v v A A A
s
-≈-=-=⋅=⎰⎰⎰⎰
∑ρβρρρρ⎰⎰⎰⎰⎰∑⋅+∂∂=
A
V
dA v v vdV t
F )
(ρρ
式中β为用平均速度计算动量而引起的动量修正系数,β取1
在三个坐标轴上的投影式:
)
()()(121212z z v z
y y v y x x v x v v q F v v q F v v q F -=-=-=∑∑∑ρρρ 二、动量方程式的应用
2.1水力真空喷射泵 图2 一元流流管
按水在水力真空喷射泵系统申前派动状态, 属于非理想流体。
喷嘴流量和流速取决于水泵的轴功率、骨路特性和汽室真空度等因素。
喷射水流在汽室将绝大部分蒸汽凝结成水, 同时把不凝气体和微量未被冷凝的蒸汽滋合压缩, 一井通过文丘里管的喉部, 经由尾管落入冷凝水池。
尾管直径一般是文氏管喉部直径的1.1至1.3倍。
低位安装的尾管直径较高位安装的略小。
尾管里的下落水流有气体, 若与大气相通,可能发生气体被倒吸入汽室, 降低真空度或破坏真空的现象。
安装时, 一般将尾管插入冷凝水池的水面以下, 形成水封。
设低位安装总高2 m ,尾管高1m ; 高位安装总高12m 和22m 。
尾管高分别为11 m 和 21m 。
使用局一型号的离心水泵和与之配套的电动时,不同的管路特性,其轴功率以及流量、流速各不相同。
不同的安装高度要求的喷嘴直径也有差
异,一般低位安装喷嘴直径较小,以获得较高的水贡射速度。
高位安装时喷嘴直径相应增大,以保证必要的流量。
喷射器安装得越高,需求的喷嘴直经越大,流速和流量则比低位安装的相应减少。
同一台离心水泵和配套电机,在汽室压力均为660mm 汞柱真空度的情况下,不同的安装高度,其喷嘴直径、喷嘴出口处的水喷射速度、流量如下表所示:
喷射器安装高度
(m)尾管高度
(cm)
喷嘴流速
(m/s)
流量
(m3/h )
2 1 24.8
55
12 11 21.35
50
22 21 15.84 46
尾管末端喷射水流速度 (1)
可以认为下落水流速度必然是越落越快,这样便产生良好的抽吸作用。
尾管越高水流速度越快,抽吸作用越良好,水力真空喷射泵的抽吸作用主要取决于汽室中喷嘴喷出的射流速度。
由于汽室真空引力的存在,当其数值大于地球引力时,喷射水流的下落过程就变成为匀减速运动。
所以,按垂直下落物体的运动方程 (1) 式及其重力加速度g=9.8,计算得出的尾管末端水流的终了速度,必然不是正确的结果。
为了方便计算,水流的速度,仍须按能量守恒的柏努利方程来计算。
当尾管高度分别为1m 、11 m、21 m 时, 冷却水温取30,汽室压力在660 mm汞柱真空度下; 按柏努利方程进行计算,其相对应的尾管末端喷射水流的速度分别为:
显而显见,尾管越高,下落水流速度不是越快,而是越慢,对抽吸作用自然也不会产生什么影响。
根据以上得出的流速,根据动量方程计算,不同安装高度尾管出口处下落水流的动量分别为:
假定尾管直径均为 3. 7c m , 不同安装高度尾管末端下落水流的冲击压强分别为:
用喷射水流末端的冲击压强P与尾管水柱静压强R 之和,同汽室真空形成的负压f进行比较,便能判断回水与否,即能不能发生冷却水倒流入罐的现象。
水力真空喷射泵的工作状态,不发生回水的必要条件是 :P + R + f >0
当汽室真空度为660mm汞柱时,负压; 达到最高真空度760mm 汞柱时,负压在300水温的相同条件下,不同尾管高度水柱的静压强分别为:
显然,水力真空喷射泵系统在正常工作状态,无论低位安装还是高位安装,其喷射水流末端的冲击压强P与尾管水柱静压强R之和,均大于汽室真空形成的负压的绝对值,不可能发生冷却水倒流入罐的情况。
水力真空喷射泵喷嘴喷射水流的速度和尾管下落水流的速度,不是越高越快, 而是越高越慢。
其根本原因,在于管路摩擦损失的增加和能量转换导致的水室压力的降低。
低位安装比高位安装还有节省钢材. 安装、维修方便等优点。
至于可能因停电停水出现的冷却水倒流入罐间题,可以从汽室和蒸汽管路的结构等方面加以解决。
[2] 2.2.轮船、火箭
2.2.1. 轮船:
船的叶轮作用在水上,水的反作用力使船前进。
发动机本身不能引起运动,它仅是个能源,若船上有发动机而没有叶轮,那么,发动机的功率再大,船也是不能运动的。
因此,除了发动机(能源)外,有着一个介于发动机和外界某物体(如本例中的水)之间的中间机构,它与外界某物体相互作用,井承受由此产生的反作用力。
这种中间机构,通常称为推进器。
2.2.2 火箭:
利用动量定理,可求得火箭垂直向上的飞行加速度。
火箭发动机所达到的推力和速度远远超过了一般的推进方法。
这种发动机不依赖周围介质条件,在空间环境也能工作,这一特点,保证了在不同飞行速度下,发动机产生的推力不受空气接受能力的影响,而是恒定的,这也使得火箭(发动机)所能达到的飞行速度比其它任何类型发动机要高得多;其次,由于是直接反作用运动,没有中间机构,在主要的喷射通道中不存在限制工作温度的运动机构,这就决定了火箭发动机的结构简单,而所产生的推力却很大。
参考文献
[1]张也影.动量方程式及其应用.流体力学(第二版).1999(6),180-184
[2]程润达、金淑芳.《柏努利方程在水力真空喷射泵中的应用》.1989第八期。