数学思想方法及其教学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学思想方法及其教学
数学思想是指现实世界的空间形式和数量关系,反映到人民的意识中,经过思维活动而产生的结果。它是对数学事实与理论经过概括后产生的本质认识。数学思想方法是对数学的知识、内容和所使用的方法的本质的认识。它是从某些具体数学认识过程中提炼出来的观点,在后继研究和实践中被反复证实其正确性并带有一般意义和相对稳定的特征。数学思想方法是对数学规律的理性认识,它是以数学为工具进行科学研究的方法,中学数学教学中数学思想方法主要有代换、类比、分析、综合、抽象、概括等方法。
数学思想与思想方法是数学知识中的“基石”,是学生获得数学能力不可或缺的重要思想,数学思想方法的训练,是把知识型转化为能力型数学的关键。学生通过数学学习,形成一定的数学思想方法是教学的重要目标之一。
新课程改革的研究和实践表明:学生的数学学习不只是简单被动的“复制”活动,而是学生认识结构主动建立的过程;不仅是知识传授的过程,更应该是数学思想方法形成的过程。因此,在数学教学中注重分析数学思想方法发展的脉络,促进数学思想方法的形成,便成为构建学生数学认知结构的重要环节。对学生来说,具体的数学知识,可能地随时间的推移而遗忘,但思想方法却能长存,使其受用终生,所以数学思想方法是数学中的精髓。
学生数学思想方法的形成是一个循序渐进的过程,是一个多次孕育、适时渗透的过程,在数学教学中应重视将抽象的思想方法逐渐融入具体的实在的数学知识之中,使学生对这些思想方法具有初步的感知。数学新课程的内容是由数学知识与思想方法组成的有机整体,其是知识体系是纵向展开的,而蕴含在知识之中的思想方法是纵横交错、前后联系的。在教学中不能急功近利,略去教学知识发生和发展的过程,而应适时把握好进行数学思想方法渗透的契机。如:概念的形成过程、问题被发现的过程、解题思想探求的过程,均为渗透数学思想方法的大好时机,教师应有“润物细无声”的境界,在知识生长与发展中,让数学思想方法着地、生根、发芽。
渗透数学思想方法只是让学生对数学思想方法有初步的理解,而引进数学思想方法,就要求学生知道它的要素、特征及用途。由于同一内容可表示为不同的数学思想方法,而同一数学思想方法又常常分布于许多不同的知识点。因此,在单元小结复习时,就应该整理出数学思想方法系统。也可根据数学思想方法的形成过程,适时开设专题讲座,讲清知识的来龙去脉、内涵外延、作用功能等,这也是数学思想教学方法化隐为显的有效途径。
有些基本的数学思想方法,如数形结合、化归、函数与方程等数学思想方法贯穿于整个中学数学,对这些应经常强调并通过“问题解决”使学生灵活运用。要重视提供含有数学思想方法的问题或情景,调动学生积极参与,在会解决问题的情况下,要求能揭示问题中蕴含的数学思想方法和使用价值。对同一问题从不同的角度去审视,根据不同的特征,用不同的数学思想方法解决。
数学问题的解决,实质上是问题不断转化和数学思想反复运用的过程,数学思想方法存在于问题解决的各个环节之中。数学问题的转化,无不遵循数学思想方法的指向。在教学中应充分重视开放性问题在培养学生数学思想方法中的作用,教师要不断研究、提炼出反映数学思想方法的问题,通过问题的解决,展现数学思想方法的应用过程,使学生领会数学的本质、领略数学的美,从而提升学生学习数学的兴趣。