最新模式识别练习题

合集下载

模式识别练习题

模式识别练习题

模式识别练习(1)主题:1.“基于最小错误率的贝叶斯决策”模式识别练习2.“基于最小风险的贝叶斯决策”模式识别练习3.基于“主成分分析”的贝叶斯决策模式识别练习已知训练样本集由“”、“”组成:={(0,0),(0,1),(1,0)};={(4,4),(4,5),(5,4),(5,5)},而测试样本集为C={(2,2),(2.2,2.2),(3,3)}。

(1)利用“基于最小错误率的贝叶斯决策”判别测试集为C中的样本的归类;(2)利用“基于最小风险的贝叶斯决策”判别测试集为C中的样本的归类;(3)在进行“主成分分析”的基础上,采用90%的主成分完成前面的(1)、(2),比较结果的异同。

模式识别练习(2)主题:很多情况下,希望样本维数(特征数)越少越好,降维是解决问题的一个有效的方法。

主成分分析希望得到较少的特征数,而Fisher准则方法则将维数直接降到1维。

一、已知训练样本集由“”、“”组成:={(0,0),(0,1),(1,0)};={(4,4),(4,5),(5,4),(5,5)},而测试样本集为C={(i,i)|i=0:0.005:5}。

分别利用基于最小错误率的贝叶斯决策、基于最小风险的贝叶斯决策、仅使用第一主成分、使用Fisher准则等四种方法(自编函数文件或用书上的函数文件)计算出测试集C中线段(0,0)-(5,5)的临界点;要求:将计算结果自动写入数据文件中二、已知训练样本集为教材上的10类手写数字集。

分别利用基于最小错误率的贝叶斯决策、基于最小风险的贝叶斯决策、仅使用第一主成分、使用Fisher准则等四种方法,统计出各大类的错误率和计算机cpu的计算时间,采用的测试集C依旧是10类手写数字集(虽然分类已知,但用不同的方法实际判别时可能有误判情况!)要求:使用书上的函数文件,并将计算结果自动写入数据文件中模式识别练习(3)一、已知训练样本集由“”、“”组成:={(0,0),(0,1),(1,0)};={(4,4),(4,5),(5,4),(5,5)},而测试样本集为C={(i,i)|i=0:0.01:5}。

模式识别试卷及答案

模式识别试卷及答案

模式识别试卷及答案一、选择题(每题5分,共30分)1. 以下哪一项不是模式识别的主要任务?A. 分类B. 回归C. 聚类D. 预测答案:B2. 以下哪种算法不属于监督学习?A. 支持向量机(SVM)B. 决策树C. K最近邻(K-NN)D. K均值聚类答案:D3. 在模式识别中,以下哪一项是特征选择的目的是?A. 减少特征维度B. 增强模型泛化能力C. 提高模型计算效率D. 所有上述选项答案:D4. 以下哪种模式识别方法适用于非线性问题?A. 线性判别分析(LDA)B. 主成分分析(PCA)C. 支持向量机(SVM)D. 线性回归答案:C5. 在神经网络中,以下哪种激活函数常用于输出层?A. SigmoidB. TanhC. ReLUD. Softmax答案:D6. 以下哪种聚类算法是基于密度的?A. K均值聚类B. 层次聚类C. DBSCAND. 高斯混合模型答案:C二、填空题(每题5分,共30分)1. 模式识别的主要任务包括______、______、______。

答案:分类、回归、聚类2. 在监督学习中,训练集通常分为______和______两部分。

答案:训练集、测试集3. 支持向量机(SVM)的基本思想是找到一个______,使得不同类别的数据点被最大化地______。

答案:最优分割超平面、间隔4. 主成分分析(PCA)是一种______方法,用于降维和特征提取。

答案:线性变换5. 神经网络的反向传播算法用于______。

答案:梯度下降6. 在聚类算法中,DBSCAN算法的核心思想是找到______。

答案:密度相连的点三、简答题(每题10分,共30分)1. 简述模式识别的基本流程。

答案:模式识别的基本流程包括以下几个步骤:(1)数据预处理:对原始数据进行清洗、标准化和特征提取。

(2)模型选择:根据问题类型选择合适的模式识别算法。

(3)模型训练:使用训练集对模型进行训练,学习数据特征和规律。

大学模式识别考试题及答案详解

大学模式识别考试题及答案详解

大学模式识别考试题及答案详解Document number:PBGCG-0857-BTDO-0089-PTT1998一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。

2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。

3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。

(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。

(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。

(1)(2) (3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。

(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。

(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。

(1)({A, B}, {0, 1}, {A?01, A? 0A1 , A? 1A0 , B?BA , B? 0}, A)(2)({A}, {0, 1}, {A?0, A? 0A}, A)(3)({S}, {a, b}, {S ? 00S, S ? 11S, S ? 00, S ? 11}, S)(4)({A}, {0, 1}, {A?01, A? 0A1, A? 1A0}, A)二、(15分)简答及证明题(1)影响聚类结果的主要因素有那些?(2)证明马氏距离是平移不变的、非奇异线性变换不变的。

答:(1)分类准则,模式相似性测度,特征量的选择,量纲。

(2)证明:(2分)(2分)(1分)设,有非奇异线性变换:(1分)(4分)三、(8分)说明线性判别函数的正负和数值大小在分类中的意义并证明之。

模式识别期末试题及答案

模式识别期末试题及答案

模式识别期末试题及答案正文:模式识别期末试题及答案1. 选择题1.1 下列关于机器学习的说法中,正确的是:A. 机器学习是一种人工智能的应用领域B. 机器学习只能应用于结构化数据C. 机器学习不需要预先定义规则D. 机器学习只能处理监督学习问题答案:A1.2 在监督学习中,以下哪个选项描述了正确的训练过程?A. 通过输入特征和预期输出,训练一个模型来进行预测B. 通过输入特征和可能的输出,训练一个模型来进行预测C. 通过输入特征和无标签的数据,训练一个模型来进行预测D. 通过输入特征和已有标签的数据,训练一个模型来进行分类答案:D2. 简答题2.1 请解释什么是模式识别?模式识别是指在给定一组输入数据的情况下,通过学习和建模,识别和分类输入数据中的模式或规律。

通过模式识别算法,我们可以从数据中提取重要的特征,并根据这些特征进行分类、聚类或预测等任务。

2.2 请解释监督学习和无监督学习的区别。

监督学习是一种机器学习方法,其中训练数据包含了输入特征和对应的标签或输出。

通过给算法提供已知输入和输出的训练样本,监督学习的目标是学习一个函数,将新的输入映射到正确的输出。

而无监督学习则没有标签或输出信息。

无监督学习的目标是从未标记的数据中找到模式和结构。

这种学习方法通常用于聚类、降维和异常检测等任务。

3. 计算题3.1 请计算以下数据集的平均值:[2, 4, 6, 8, 10]答案:63.2 请计算以下数据集的标准差:[1, 3, 5, 7, 9]答案:2.834. 综合题4.1 对于一个二分类问题,我们可以使用逻辑回归模型进行预测。

请简要解释逻辑回归模型的原理,并说明它适用的场景。

逻辑回归模型是一种用于解决二分类问题的监督学习算法。

其基本原理是通过将特征的线性组合传递给一个非线性函数(称为sigmoid函数),将实数值映射到[0,1]之间的概率。

这个映射的概率可以被解释为某个样本属于正类的概率。

逻辑回归适用于需要估计二分类问题的概率的场景,例如垃圾邮件分类、欺诈检测等。

大学模式识别考试题及答案详解

大学模式识别考试题及答案详解

大学模式识别考试题及答案详解Last revision on 21 December 2020一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。

2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。

3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。

(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。

(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。

(1)(2) (3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。

(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。

(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。

(1)({A, B}, {0, 1}, {A01, A 0A1 , A 1A0 , B BA , B 0}, A)(2)({A}, {0, 1}, {A0, A 0A}, A)(3)({S}, {a, b}, {S 00S, S 11S, S 00, S 11}, S)(4)({A}, {0, 1}, {A01, A 0A1, A 1A0}, A)二、(15分)简答及证明题(1)影响聚类结果的主要因素有那些(2)证明马氏距离是平移不变的、非奇异线性变换不变的。

答:(1)分类准则,模式相似性测度,特征量的选择,量纲。

(2)证明:(2分)(2分)(1分)设,有非奇异线性变换:(1分)(4分)三、(8分)说明线性判别函数的正负和数值大小在分类中的意义并证明之。

模式识别习题集

模式识别习题集

2.6 简述最小张树算法的优点。
2.7 证明马氏距离是平移不变的、非奇异线性变换不变的。 2.8 设,类 有
p 、 q 的重心分别为 x p 、 xq ,它们分别有样本 n p 、 n q 个。将和 q 合并为 l ,则 l
个样本。另一类
2 Dkl


nl n p nq
k 的重心为 x k 。试证明 k 与 l 的距离平方是
,JH 越(
),说明模式的

)(i=1,2,…,c)时,JH 取极大值。
1.20 Kn 近邻元法较之于 Parzen 窗法的优势在于 ( 上述两种算法的共同弱点主要是( )。 )。
1.21 已知有限状态自动机 Af=(,Q,,q0,F),={0,1};Q={q0,q1}; :(q0,0)= q1,(q0,1)= q1,(q1,0)=q0,(q1,1)=q0;q0=q0;F={q0}。现有输入字符串:(a) 00011101011,(b) 1100110011,(c) 101100111000,(d)0010011,试问,用 Af 对上述字符串进行分类 的结果为( 1.22 句法模式识别中模式描述方法有: (1)符号串 (2)树 (3)图 (4)特征向量 )。 。
《模式识别》习题集
一、基本概念题 1.1 是: 1.2、模式分布为团状时,选用 1.3 欧式距离具有 。 马式距离具有 模 式 识 、 别 的 三 大 、 聚类算法较好。 。 核 心 问 。 题
(1)平移不变性 (2)旋转不变性 (3)尺度缩放不变性 (4)不受量纲影响的特性 1.4 描述模式相似的测度有: (1)距离测度 (2)模糊测度 (3)相似测度 (4)匹配测度 ;(2) 个技术途径。 ; 。
(1)

计算机视觉与模式识别考试试题

计算机视觉与模式识别考试试题

计算机视觉与模式识别考试试题一、选择题1.下列哪个是计算机视觉的核心任务?A. 图像去噪B. 物体分类C. 文字识别D. 光流估计2.在计算机视觉中,以下哪种方法可以用于目标检测?A. 模板匹配B. 直方图均衡化C. 边缘检测D. 彩色空间转换3.图像分割是指将图像分割成哪些部分?A. 目标和背景B. 目标和噪声C. 前景和背景D. 前景和噪声4.在模式识别中,以下哪个是特征提取的常用方法?A. 主成分分析B. 图像增强C. 图像去噪D. 图像重建5.以下哪种方法常用于人脸识别?A. 支持向量机B. 卡方检验C. 高斯模型D. 卷积神经网络二、简答题1.请解释图像对比度是什么,并简要说明如何增加图像对比度。

图像对比度指的是图像中灰度级之间的差异程度,即图像中亮度的变化程度。

增加图像对比度可以通过以下方法实现:- 直方图均衡化:通过将图像的灰度级重新分布,使得灰度级更均匀地覆盖整个灰度范围,从而增加图像的对比度。

- 对比度拉伸:通过线性或非线性变换,将图像的灰度级重新映射到一个更大的范围,从而增强图像的对比度。

- 局部对比度增强:根据图像的局部特性,使用不同的增强方法对不同的区域进行处理,以增加图像的局部对比度。

2.请解释模板匹配算法的原理,并简要说明其在计算机视觉中的应用。

模板匹配算法是一种基于相似度的图像匹配方法,其原理是通过计算图像中不同位置与给定模板之间的相似度,找到与模板最相似的位置。

模板匹配算法的步骤如下:- 定义相似度度量标准:通常使用均方差、相关性等指标来度量图像之间的相似度。

- 将模板与图像进行滑动窗口匹配:在图像中使用一个固定大小的窗口滑动,并计算窗口内的图像与模板之间的相似度。

- 找到最相似的位置:记录每个窗口位置的相似度值,找到相似度最高的位置,即为与模板最匹配的位置。

模板匹配算法在计算机视觉中的应用广泛,例如目标检测、人脸识别、手势识别等领域。

通过与已知模板进行匹配,可以实现对图像中目标物体的识别和定位。

模式识别练习题

模式识别练习题

一、试问“模式”与“模式类”的含义。

如果一位姓王的先生是位老年人,试问“王先生”和“老头”谁是模式,谁是模式类?答:在模式识别学科中,就“模式”与“模式类”而言,模式类是一类事物的代表,概念或典型,而“模式”则是某一事物的具体体现,如“老头”是模式类,而王先生则是“模式”是“老头”的具体化。

二、试说明Mahalanobis距离平方的定义,到某点的Mahalanobis距离平方为常数的轨迹的几何意义,它与欧氏距离的区别与联系。

答:Mahalanobis距离的平方定义为:其中x,u为两个数据,是一个正定对称矩阵(一般为协方差矩阵)。

根据定义,距某一点的Mahalanobis距离相等点的轨迹是超椭球,如果是单位矩阵Σ,则Mahalanobis距离就是通常的欧氏距离。

三、试说明用监督学习与非监督学习两种方法对道路图像中道路区域的划分的基本做法,以说明这两种学习方法的定义与它们间的区别。

答:监督学习方法用来对数据实现分类,分类规则通过训练获得。

该训练集由带分类号的数据集组成,因此监督学习方法的训练过程是离线的。

非监督学习方法不需要单独的离线训练过程,也没有带分类号(标号)的训练数据集,一般用来对数据集进行分析,如聚类,确定其分布的主分量等。

就道路图像的分割而言,监督学习方法则先在训练用图像中获取道路象素与非道路象素集,进行分类器设计,然后用所设计的分类器对道路图像进行分割。

使用非监督学习方法,则依据道路路面象素与非道路象素之间的聚类分析进行聚类运算,以实现道路图像的分割。

四、试述动态聚类与分级聚类这两种方法的原理与不同。

答:动态聚类是指对当前聚类通过迭代运算改善聚类;分级聚类则是将样本个体,按相似度标准合并,随着相似度要求的降低实现合并。

五、如果观察一个时序信号时在离散时刻序列得到的观察量序列表示为,而该时序信号的内在状态序列表示成。

如果计算在给定O 条件下出现S 的概率,试问此概率是何种概率。

如果从观察序列来估计状态序列的最大似然估计,这与Bayes 决策中基于最小错误率的决策有什么关系。

人工智能与模式识别测试 选择题 59题

人工智能与模式识别测试 选择题 59题

1. 人工智能的定义是什么?A. 模拟人类智能的机器B. 仅限于计算机科学C. 只涉及数据分析D. 不包括机器学习答案:A2. 模式识别主要用于什么?A. 图像处理B. 语音识别C. 数据分类D. 所有上述选项答案:D3. 机器学习与人工智能的关系是什么?A. 机器学习是人工智能的一个子集B. 人工智能是机器学习的一个子集C. 两者完全不同D. 两者互不相关答案:A4. 深度学习是基于什么理论?A. 神经网络B. 逻辑回归C. 决策树D. 支持向量机答案:A5. 以下哪种算法不属于监督学习?A. 线性回归B. 决策树C. 聚类D. 支持向量机答案:C6. 在模式识别中,特征提取的目的是什么?A. 减少数据量B. 提高分类准确性C. 增加计算复杂度D. 所有上述选项答案:B7. 卷积神经网络(CNN)主要用于什么类型的数据?A. 文本B. 图像C. 声音D. 时间序列答案:B8. 强化学习的核心是什么?A. 反馈机制B. 监督学习C. 无监督学习D. 逻辑推理答案:A9. 自然语言处理(NLP)涉及哪些技术?A. 语音识别B. 文本分析C. 机器翻译D. 所有上述选项答案:D10. 以下哪种技术不是人工智能的应用?A. 自动驾驶B. 智能推荐系统C. 传统数据库管理D. 医疗诊断答案:C11. 人工智能系统中的“学习”是指什么?A. 系统从数据中自动改进B. 人工输入规则C. 随机搜索D. 预设程序运行答案:A12. 模式识别中的分类器是什么?A. 数据预处理工具B. 决策制定工具C. 数据存储工具D. 数据可视化工具答案:B13. 以下哪种方法不属于无监督学习?A. 聚类B. 关联规则学习C. 主成分分析D. 线性回归答案:D14. 人工智能中的“智能代理”是什么?A. 一种软件程序B. 一种硬件设备C. 一种数据存储方式D. 一种网络协议答案:A15. 在人工智能中,“知识表示”是什么?A. 数据的物理存储B. 知识的逻辑结构C. 数据的可视化D. 数据的加密方式答案:B16. 以下哪种技术不是深度学习的一部分?A. 循环神经网络B. 自编码器C. 决策树D. 卷积神经网络答案:C17. 人工智能中的“专家系统”是什么?A. 一种基于规则的系统B. 一种基于数据的系统C. 一种基于网络的系统D. 一种基于硬件的系统答案:A18. 在模式识别中,“特征选择”是什么?A. 选择最重要的特征B. 增加特征的数量C. 删除所有特征D. 随机选择特征答案:A19. 人工智能中的“遗传算法”是什么?A. 一种优化算法B. 一种分类算法C. 一种数据存储算法D. 一种网络通信算法答案:A20. 在人工智能中,“模糊逻辑”是什么?A. 一种精确的逻辑系统B. 一种不确定性的逻辑系统C. 一种二进制逻辑系统D. 一种时间序列分析系统答案:B21. 以下哪种技术不属于人工智能的感知技术?A. 图像识别B. 语音识别C. 自然语言处理D. 数据库存储答案:D22. 在人工智能中,“机器视觉”是什么?A. 一种图像处理技术B. 一种文本分析技术C. 一种声音分析技术D. 一种网络通信技术答案:A23. 人工智能中的“神经网络”是什么?A. 一种生物学模型B. 一种数学模型C. 一种物理模型D. 一种化学模型答案:B24. 在人工智能中,“强化学习”是什么?A. 一种监督学习方法B. 一种无监督学习方法C. 一种通过试错学习的方法D. 一种预设规则学习的方法答案:C25. 以下哪种技术不属于人工智能的认知技术?A. 知识表示B. 推理C. 规划D. 数据库存储答案:D26. 在人工智能中,“自然语言理解”是什么?A. 一种文本生成技术B. 一种文本分析技术C. 一种声音生成技术D. 一种图像生成技术答案:B27. 人工智能中的“决策支持系统”是什么?A. 一种数据分析系统B. 一种数据存储系统C. 一种网络通信系统D. 一种硬件设备答案:A28. 在人工智能中,“情感分析”是什么?A. 一种声音识别技术B. 一种图像识别技术C. 一种文本分析技术D. 一种网络通信技术答案:C29. 以下哪种技术不属于人工智能的交互技术?A. 语音交互B. 手势识别C. 面部识别D. 数据库存储答案:D30. 在人工智能中,“机器人学”是什么?A. 一种软件开发技术B. 一种硬件设计技术C. 一种网络通信技术D. 一种数据分析技术答案:B31. 人工智能中的“智能控制”是什么?A. 一种软件控制技术B. 一种硬件控制技术C. 一种网络控制技术D. 一种数据控制技术答案:B32. 在人工智能中,“智能优化”是什么?A. 一种数据分析技术B. 一种网络优化技术C. 一种算法优化技术D. 一种硬件优化技术答案:C33. 以下哪种技术不属于人工智能的决策技术?A. 规则引擎B. 决策树C. 遗传算法D. 数据库存储答案:D34. 在人工智能中,“智能搜索”是什么?A. 一种数据搜索技术B. 一种网络搜索技术C. 一种算法搜索技术D. 一种硬件搜索技术答案:B35. 人工智能中的“智能推荐”是什么?A. 一种数据推荐技术B. 一种网络推荐技术C. 一种算法推荐技术D. 一种硬件推荐技术答案:A36. 在人工智能中,“智能预测”是什么?A. 一种数据预测技术B. 一种网络预测技术C. 一种算法预测技术D. 一种硬件预测技术答案:A37. 以下哪种技术不属于人工智能的分析技术?A. 数据挖掘B. 文本挖掘C. 图像挖掘D. 数据库存储答案:D38. 在人工智能中,“智能诊断”是什么?A. 一种数据诊断技术B. 一种网络诊断技术C. 一种算法诊断技术D. 一种硬件诊断技术答案:A39. 人工智能中的“智能监控”是什么?A. 一种数据监控技术B. 一种网络监控技术C. 一种算法监控技术D. 一种硬件监控技术答案:B40. 在人工智能中,“智能维护”是什么?A. 一种数据维护技术B. 一种网络维护技术C. 一种算法维护技术D. 一种硬件维护技术答案:D41. 以下哪种技术不属于人工智能的管理技术?A. 智能调度B. 智能规划C. 智能控制D. 数据库存储答案:D42. 在人工智能中,“智能调度”是什么?A. 一种数据调度技术B. 一种网络调度技术C. 一种算法调度技术D. 一种硬件调度技术答案:A43. 人工智能中的“智能规划”是什么?A. 一种数据规划技术B. 一种网络规划技术C. 一种算法规划技术D. 一种硬件规划技术答案:C44. 在人工智能中,“智能控制”是什么?A. 一种数据控制技术B. 一种网络控制技术C. 一种算法控制技术D. 一种硬件控制技术答案:D45. 以下哪种技术不属于人工智能的优化技术?A. 遗传算法B. 粒子群优化C. 模拟退火D. 数据库存储答案:D46. 在人工智能中,“智能优化”是什么?A. 一种数据优化技术B. 一种网络优化技术C. 一种算法优化技术D. 一种硬件优化技术答案:C47. 人工智能中的“智能决策”是什么?A. 一种数据决策技术B. 一种网络决策技术C. 一种算法决策技术D. 一种硬件决策技术答案:A48. 在人工智能中,“智能分析”是什么?A. 一种数据分析技术B. 一种网络分析技术C. 一种算法分析技术D. 一种硬件分析技术答案:A49. 以下哪种技术不属于人工智能的预测技术?A. 时间序列分析B. 回归分析C. 分类分析D. 数据库存储答案:D50. 在人工智能中,“智能预测”是什么?A. 一种数据预测技术B. 一种网络预测技术C. 一种算法预测技术D. 一种硬件预测技术答案:A51. 人工智能中的“智能诊断”是什么?A. 一种数据诊断技术B. 一种网络诊断技术C. 一种算法诊断技术D. 一种硬件诊断技术答案:A52. 在人工智能中,“智能监控”是什么?A. 一种数据监控技术B. 一种网络监控技术C. 一种算法监控技术D. 一种硬件监控技术答案:B53. 以下哪种技术不属于人工智能的维护技术?A. 智能维护B. 智能更新C. 智能修复D. 数据库存储答案:D54. 在人工智能中,“智能维护”是什么?A. 一种数据维护技术B. 一种网络维护技术C. 一种算法维护技术D. 一种硬件维护技术答案:D55. 人工智能中的“智能更新”是什么?A. 一种数据更新技术B. 一种网络更新技术C. 一种算法更新技术D. 一种硬件更新技术答案:A56. 在人工智能中,“智能修复”是什么?A. 一种数据修复技术B. 一种网络修复技术C. 一种算法修复技术D. 一种硬件修复技术答案:D57. 以下哪种技术不属于人工智能的管理技术?A. 智能调度B. 智能规划C. 智能控制D. 数据库存储答案:D58. 在人工智能中,“智能调度”是什么?A. 一种数据调度技术B. 一种网络调度技术C. 一种算法调度技术D. 一种硬件调度技术答案:A59. 人工智能中的“智能规划”是什么?A. 一种数据规划技术B. 一种网络规划技术C. 一种算法规划技术D. 一种硬件规划技术答案:C答案列表1. A2. D3. A4. A5. C6. B7. B8. A9. D10. C11. A12. B13. D14. A15. B16. C17. A18. A19. A20. B21. D22. A23. B24. C25. D26. B27. A28. C29. D30. B31. B32. C33. D34. B35. A36. A37. D38. A39. B40. D41. D42. A43. C44. D45. D46. C47. A48. A49. D50. A51. A52. B53. D54. D55. A56. D57. D58. A59. C。

大学模式识别考试题及答案详解完整版

大学模式识别考试题及答案详解完整版

大学模式识别考试题及答案详解HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。

2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。

3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。

(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。

(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。

(1)(2) (3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。

(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。

(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。

(1)({A, B}, {0, 1}, {A01, A 0A1 , A 1A0 , B BA , B 0}, A)(2)({A}, {0, 1}, {A0, A 0A}, A)(3)({S}, {a, b}, {S 00S, S 11S, S 00, S 11}, S)(4)({A}, {0, 1}, {A01, A 0A1, A 1A0}, A)二、(15分)简答及证明题(1)影响聚类结果的主要因素有那些?(2)证明马氏距离是平移不变的、非奇异线性变换不变的。

答:(1)分类准则,模式相似性测度,特征量的选择,量纲。

(2)证明:(2分)(2分)(1分)设,有非奇异线性变换:(1分)(4分)三、(8分)说明线性判别函数的正负和数值大小在分类中的意义并证明之。

人工智能模式识别技术练习(习题卷1)

人工智能模式识别技术练习(习题卷1)

人工智能模式识别技术练习(习题卷1)第1部分:单项选择题,共45题,每题只有一个正确答案,多选或少选均不得分。

1.[单选题]可视化技术中的平行坐标又称为( )A)散点图B)脸谱图C)树形图D)轮廓图答案:D解析:2.[单选题]描述事物的基本元素,称为( )A)事元B)物元C)关系元D)信息元答案:B解析:3.[单选题]下面不属于层次聚类法的是( )A)类平均法B)最短距离法C)K均值法D)方差平方和法答案:C解析:4.[单选题]核函数方法是一系列先进( )数据处理技术的总称。

A)离散B)连续C)线性D)非线性答案:D解析:5.[单选题]下面哪个网络模型是最典型的反馈网络模型?( )A)BP神经网络B)RBF神经网络C)CPN网络D)Hopfield网络答案:D解析:6.[单选题]粗糙集所处理的数据必须是( )的。

答案:B解析:7.[单选题]模糊聚类分析是通过( )来实现的。

A)模糊相似关系B)模糊等价关系C)模糊对称关系D)模糊传递关系答案:B解析:8.[单选题]模糊系统是建立在( )基础上的。

A)程序语言B)自然语言C)汇编语言D)机器语言答案:B解析:9.[单选题]在模式识别中,被观察的每个对象称为( )A)特征B)因素C)样本D)元素答案:C解析:10.[单选题]群体智能算法提供了无组织学习、自组织学习等进化学习机制,这种体现了群体智能算法的( )A)通用性B)自调节性C)智能性D)自适应性答案:C解析:11.[单选题]下面不属于遗传算法中算法规则的主要算子的是( )A)选择B)交叉C)适应D)变异答案:C解析:12.[单选题]下面不属于蚁群算法优点的是( )。

A)高并行性B)可扩充性C)不易陷入局部最优13.[单选题]只是知道系统的一些信息,而没有完全了解该系统,这种称为( )A)白箱系统B)灰箱系统C)黑箱系统D)红箱系统答案:B解析:14.[单选题]模式分类是一种______方法,模式聚类是一种_______方法。

(完整word版)模式识别题目及答案(word文档良心出品)

(完整word版)模式识别题目及答案(word文档良心出品)

一、(15分)设有两类正态分布的样本集,第一类均值为T1μ=(2,0),方差11⎡⎤∑=⎢⎥⎣⎦11/21/2,第二类均值为T2μ=(2,2),方差21⎡⎤∑=⎢⎥⎣⎦1-1/2-1/2,先验概率12()()p p ωω=,试求基于最小错误率的贝叶斯决策分界面。

解 根据后验概率公式()()()()i i i p x p p x p x ωωω=, (2’)及正态密度函数11/21()exp[()()/2]2T i i i i nip x x x ωμμπ-=--∑-∑ ,1,2i =。

(2’) 基于最小错误率的分界面为1122()()()()p x p p x p ωωωω=, (2’) 两边去对数,并代入密度函数,得1111112222()()/2ln ()()/2ln T T x x x x μμμμ----∑--∑=--∑--∑ (1) (2’)由已知条件可得12∑=∑,114/3-⎡⎤∑=⎢⎥⎣⎦4/3-2/3-2/3,214/3-⎡⎤∑=⎢⎥⎣⎦4/32/32/3,(2’)设12(,)Tx x x =,把已知条件代入式(1),经整理得1221440x x x x --+=, (5’)二、(15分)设两类样本的类内离散矩阵分别为11S ⎡⎤=⎢⎥⎣⎦11/21/2, 21S ⎡⎤=⎢⎥⎣⎦1-1/2-1/2,各类样本均值分别为T 1μ=(1,0),T2μ=(3,2),试用fisher 准则求其决策面方程,并判断样本Tx =(2,2)的类别。

解:122S S S ⎡⎤=+=⎢⎥⎣⎦200 (2’) 投影方向为*112-2-1()211/2w S μμ-⎡⎤⎡⎤⎡⎤=-==⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦1/200 (6’)阈值为[]*0122()/2-1-131T y w μμ⎡⎤=+==-⎢⎥⎣⎦(4’)给定样本的投影为[]*0-12241T y w x y ⎡⎤===-<⎢⎥-⎣⎦, 属于第二类 (3’)三、 (15分)给定如下的训练样例实例 x0 x1 x2 t(真实输出) 1 1 1 1 1 2 1 2 0 1 3 1 0 1 -1 4 1 1 2 -1用感知器训练法则求感知器的权值,设初始化权值为0120w w w ===;1 第1次迭代(4’)2 第2次迭代(2’)3 第3和4次迭代四、 (15分)i. 推导正态分布下的最大似然估计;ii. 根据上步的结论,假设给出如下正态分布下的样本{}1,1.1,1.01,0.9,0.99,估计该部分的均值和方差两个参数。

模式识别期末考试题及答案

模式识别期末考试题及答案

模式识别期末考试题及答案一、填空题1. 模式识别是研究通过_________从观测数据中自动识别和分类模式的一种学科。

答案:计算机算法2. 在模式识别中,特征选择的主要目的是_________。

答案:降低数据的维度3. 支持向量机(SVM)的基本思想是找到一个最优的超平面,使得两类数据的_________最大化。

答案:间隔4. 主成分分析(PCA)是一种_________方法,用于降低数据的维度。

答案:线性降维5. 隐马尔可夫模型(HMM)是一种用于处理_________数据的统计模型。

答案:时序二、选择题6. 以下哪种方法不属于模式识别的监督学习方法?()A. 线性判别分析B. 支持向量机C. 神经网络D. K-means聚类答案:D7. 在以下哪种情况下,可以使用主成分分析(PCA)进行特征降维?()A. 数据维度较高,且特征之间存在线性关系B. 数据维度较高,且特征之间存在非线性关系C. 数据维度较低,且特征之间存在线性关系D. 数据维度较低,且特征之间存在非线性关系答案:A8. 以下哪个算法不属于聚类算法?()A. K-meansB. 层次聚类C. 判别分析D. 密度聚类答案:C三、判断题9. 模式识别的目的是将输入数据映射到事先定义的类别中。

()答案:正确10. 在模式识别中,特征提取和特征选择是两个不同的概念,其中特征提取是将原始特征转换为新的特征,而特征选择是从原始特征中筛选出有用的特征。

()答案:正确四、简答题11. 简述模式识别的主要任务。

答案:模式识别的主要任务包括:分类、回归、聚类、异常检测等。

其中,分类和回归任务属于监督学习,聚类和异常检测任务属于无监督学习。

12. 简述支持向量机(SVM)的基本原理。

答案:支持向量机的基本原理是找到一个最优的超平面,使得两类数据的间隔最大化。

具体来说,SVM通过求解一个凸二次规划问题来确定最优超平面,使得训练数据中的正类和负类数据点尽可能远离这个超平面。

模式识别试题

模式识别试题

一、试问“模式”与“模式类”的含义。

如果一位姓王的先生是位老年人,试问“王先生”和“老头”谁是模式,谁是模式类?二、试说明Mahalanobis距离平方的定义,到某点的Mahalanobis距离平方为常数的轨迹的几何意义,它与欧氏距离的区别与联系。

三、试说明用监督学习与非监督学习两种方法对道路图像中道路区域的划分的基本做法,以说明这两种学习方法的定义与它们间的区别。

四、试述动态聚类与分级聚类这两种方法的原理与不同。

五、如果观察一个时序信号时在离散时刻序列得到的观察量序列表示为,而该时序信号的内在状态序列表示成。

如果计算在给定O条件下出现S的概率,试问此概率是何种概率。

如果从观察序列来估计状态序列的最大似然估计,这与Bayes决策中基于最小错误率的决策有什么关系。

六、已知一组数据的协方差矩阵为,试问1.协方差矩阵中各元素的含义。

2.求该数组的两个主分量。

3.主分量分析或称K-L变换,它的最佳准则是什么?4.为什么说经主分量分析后,消除了各分量之间的相关性。

七、试说明以下问题求解是基于监督学习或是非监督学习:1. 求数据集的主分量非2. 汉字识别有3. 自组织特征映射非4. CT图像的分割非八、试列举线性分类器中最著名的三种最佳准则以及它们各自的原理。

九、在一两维特征空间,两类决策域由两条直线H1和H2分界,其中而包含H1与H2的锐角部分为第一类,其余为第二类。

试求:1.用一双层感知器构造该分类器2.用凹函数的并构造该分类器十、设有两类正态分布的样本基于最小错误率的贝叶斯决策分界面,分别为X2=0,以及X1=3,其中两类的协方差矩阵,先验概率相等,并且有,。

试求:以及。

(九题图)模式识别试题二答案1、答:在模式识别学科中,就“模式”与“模式类”而言,模式类是一类事物的代表,概念或典型,而“模式”则是某一事物的具体体现,如“老头”是模式类,而王先生则是“模式”,是“老头”的具体化。

2、答:Mahalanobis距离的平方定义为:其中x,u为两个数据,是一个正定对称矩阵(一般为协方差矩阵)。

最新模式识别复习题

最新模式识别复习题

《模式识别》试题库一、基本概念题1.1 模式识别的三大核心问题是:、、。

1.2、模式分布为团状时,选用聚类算法较好。

1.3 欧式距离具有。

马式距离具有。

(1)平移不变性(2)旋转不变性(3)尺度缩放不变性(4)不受量纲影响的特性1.4 描述模式相似的测度有:。

(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度1.5 利用两类方法处理多类问题的技术途径有:(1);(2);(3)。

其中最常用的是第个技术途径。

1.6 判别函数的正负和数值大小在分类中的意义是:,。

1.7 感知器算法。

(1)只适用于线性可分的情况;(2)线性可分、不可分都适用。

1.8 积累位势函数法的判别界面一般为。

(1)线性界面;(2)非线性界面。

1.9 基于距离的类别可分性判据有:。

(1)1[]w BTr S S-(2)BWSS(3)BW BSS S+1.10 作为统计判别问题的模式分类,在()情况下,可使用聂曼-皮尔逊判决准则。

1.11 确定性模式非线形分类的势函数法中,位势函数K(x,x k)与积累位势函数K(x)的关系为()。

1.12 用作确定性模式非线形分类的势函数法,通常,两个n维向量x和x k的函数K(x,x k)若同时满足下列三个条件,都可作为势函数。

①();②( ); ③ K(x,x k )是光滑函数,且是x 和x k 之间距离的单调下降函数。

1.13 散度J ij 越大,说明ωi 类模式与ωj 类模式的分布( )。

当ωi 类模式与ωj 类模式的分布相同时,J ij =( )。

1.14 若用Parzen 窗法估计模式的类概率密度函数,窗口尺寸h1过小可能产生的问题是( ),h1过大可能产生的问题是( )。

1.15 信息熵可以作为一种可分性判据的原因是: 。

1.16作为统计判别问题的模式分类,在( )条件下,最小损失判决规则与最小错误判决规则是等价的。

1.17 随机变量l(x )=p( x |ω1)/p( x |ω2),l( x )又称似然比,则E {l( x )|ω2}=( )。

模式识别练习题

模式识别练习题

一、试问“模式”与“模式类”的含义。

如果一位姓王的先生是位老年人,试问“王先生”和“老头”谁是模式,谁是模式类?答:在模式识别学科中,就“模式”与“模式类”而言,模式类是一类事物的代表,概念或典型,而“模式”则是某一事物的具体体现,如“老头”是模式类,而王先生则是“模式”是“老头”的具体化。

二、试说明Mahalanobis距离平方的定义,到某点的Mahalanobis距离平方为常数的轨迹的几何意义,它与欧氏距离的区别与联系。

答:Mahalanobis距离的平方定义为:其中x,u为两个数据,是一个正定对称矩阵(一般为协方差矩阵)。

根据定义,距某一点的Mahalanobis距离相等点的轨迹是超椭球,如果是单位矩阵Σ,则Mahalanobis距离就是通常的欧氏距离。

三、试说明用监督学习与非监督学习两种方法对道路图像中道路区域的划分的基本做法,以说明这两种学习方法的定义与它们间的区别。

答:监督学习方法用来对数据实现分类,分类规则通过训练获得。

该训练集由带分类号的数据集组成,因此监督学习方法的训练过程是离线的。

非监督学习方法不需要单独的离线训练过程,也没有带分类号(标号)的训练数据集,一般用来对数据集进行分析,如聚类,确定其分布的主分量等。

就道路图像的分割而言,监督学习方法则先在训练用图像中获取道路象素与非道路象素集,进行分类器设计,然后用所设计的分类器对道路图像进行分割。

使用非监督学习方法,则依据道路路面象素与非道路象素之间的聚类分析进行聚类运算,以实现道路图像的分割。

四、试述动态聚类与分级聚类这两种方法的原理与不同。

答:动态聚类是指对当前聚类通过迭代运算改善聚类;分级聚类则是将样本个体,按相似度标准合并,随着相似度要求的降低实现合并。

五、如果观察一个时序信号时在离散时刻序列得到的观察量序列表示为,而该时序信号的内在状态序列表示成。

如果计算在给定O 条件下出现S 的概率,试问此概率是何种概率。

如果从观察序列来估计状态序列的最大似然估计,这与Bayes 决策中基于最小错误率的决策有什么关系。

模式识别练习题(简答和计算)

模式识别练习题(简答和计算)

1、试说明Mahalanobis 距离平方的定义,到某点的Mahalanobis 距离平方为常数的轨迹的几何意义,它与欧氏距离的区别与联系。

答:M ahalanobis距离的平方定义为:其中x,u 为两个数据,Z- ¹是一个正定对称矩阵(一般为协方差矩阵)。

根据定义,距某一点的Mahalanobis 距离相等点的轨迹是超椭球,如果是单位矩阵Z, 则M ahalanobis距离就是通常的欧氏距离。

2、试说明用监督学习与非监督学习两种方法对道路图像中道路区域的划分的基本做法,以说明这两种学习方法的定义与它们间的区别。

答:监督学习方法用来对数据实现分类,分类规则通过训练获得。

该训练集由带分类号的数据集组成,因此监督学习方法的训练过程是离线的。

非监督学习方法不需要单独的离线训练过程,也没有带分类号(标号)的训练数据集,一般用来对数据集进行分析,如聚类,确定其分布的主分量等。

就道路图像的分割而言,监督学习方法则先在训练用图像中获取道路象素与非道路象素集,进行分类器设计,然后用所设计的分类器对道路图像进行分割。

使用非监督学习方法,则依据道路路面象素与非道路象素之间的聚类分析进行聚类运算,以实现道路图像的分割。

3、已知一组数据的协方差矩阵为, 试问(1)协方差矩阵中各元素的含义。

(2)求该数组的两个主分量。

(3)主分量分析或称K-L 变换,它的最佳准则是什么?(4)为什么说经主分量分析后,消除了各分量之间的相关性。

答:协方差矩阵为, 则(1)对角元素是各分量的方差,非对角元素是各分量之间的协方差。

(2)主分量,通过求协方差矩阵的特征值,用得(A- 1)²=1/4,则,相应地:A=3/2, 对应特征向量为,,对应0 这两个特征向量,即为主分量。

K-L 变换的最佳准则为:(3)对一组数据进行按一组正交基分解,在只取相同数量分量的条件下,以均方误差计算截尾误差最小。

(4)在经主分量分解后,协方差矩阵成为对角矩阵,因而各主分量间相关性消除。

大学模式识别考试题及答案详解

大学模式识别考试题及答案详解

一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。

2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。

3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。

(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。

(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。

(1)(2)(3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。

(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。

(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。

(1)({A, B}, {0, 1}, {A?01, A? 0A1 , A? 1A0 , B?BA , B? 0}, A)(2)({A}, {0, 1}, {A?0, A? 0A}, A)(3)({S}, {a, b}, {S ? 00S, S ? 11S, S ? 00, S ? 11}, S)(4)({A}, {0, 1}, {A?01, A? 0A1, A? 1A0}, A)二、(15分)简答及证明题(1)影响聚类结果的主要因素有那些?(2)证明马氏距离是平移不变的、非奇异线性变换不变的。

答:(1)分类准则,模式相似性测度,特征量的选择,量纲。

(2)证明:(2分)(2分)(1分)设,有非奇异线性变换:(1分)(4分)三、(8分)说明线性判别函数的正负和数值大小在分类中的意义并证明之。

答:(1)(4分)的绝对值正比于到超平面的距离平面的方程可以写成式中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013模式识别练习题一. 填空题1、模式识别系统的基本构成单元包括:模式采集、特征的选择和提取和模式分类。

2、统计模式识别中描述模式的方法一般使用特征矢量;句法模式识别中模式描述方法一般有串、树、网。

3、影响层次聚类算法结果的主要因素有计算模式距离的测度、聚类准则、类间距离阈值、预定的类别数目。

4、线性判别函数的正负和数值大小的几何意义是正负表示样本点位于判别界面法向量指向的正负半空间中,绝对值正比于样本点与判别界面的距离。

5、感知器算法1 ,H-K算法 2 。

(1)只适用于线性可分的情况;(2)线性可分、不可分都适用。

6、在统计模式分类问题中,聂曼-况;最小最大判别准则主要用于先验概率未知的情况。

7、“特征个数越多越有利于分类”这种说法正确吗?错误。

特征选择的主要目的是。

一般在可和(C n m>>n )的条件下,可以使用分支定界法以减少计算量。

8、散度J ij越大,说明ωi类模式与ωj类模式的分布差别越大;当ωi类模式与ωj类模式的分布相同时,J ij= 0。

二、选择题1、影响聚类算法结果的主要因素有(B、C、D )。

A.已知类别的样本质量;B.分类准则;C.特征选取;D.模式相似性测度2、模式识别中,马式距离较之于欧式距离的优点是(C、D)。

A.平移不变性;B.旋转不变性;C尺度不变性;D.考虑了模式的分布3、影响基本K-均值算法的主要因素有(ABD)。

A.样本输入顺序;B.模式相似性测度;C.聚类准则;D.初始类中心的选取4、位势函数法的积累势函数K(x)的作用相当于Bayes判决中的(B D)。

A. 先验概率;B. 后验概率;C. 类概率密度;D. 类概率密度与先验概率的乘积 5、在统计模式分类问题中,当先验概率未知时,可以使用(BD )。

A. 最小损失准则;B. 最小最大损失准则;C. 最小误判概率准则;D. N-P 判决 6、散度J D 是根据( C )构造的可分性判据。

A. 先验概率;B. 后验概率;C. 类概率密度;D. 信息熵;E. 几何距离 7、似然函数的概型已知且为单峰,则可用(ABCDE )估计该似然函数。

A. 矩估计;B. 最大似然估计;C. Bayes 估计;D. Bayes 学习;E. Parzen 窗法 8、KN 近邻元法较之Parzen 窗法的优点是(B )。

A. 所需样本数较少;B. 稳定性较好;C. 分辨率较高;D. 连续性较好 9、从分类的角度讲,用DKLT 做特征提取主要利用了DKLT 的性质:(A C )。

A.变换产生的新分量正交或不相关;B.以部分新的分量表示原矢量均方误差最小;C.使变换后的矢量能量更集中10、如果以特征向量的相关系数作为模式相似性测度,则影响聚类算法结果的主要因素有(BC )。

A. 已知类别样本质量;B. 分类准则;C. 特征选取;D. 量纲 11、欧式距离具有( A B );马式距离具有( A B C D )。

A. 平移不变性;B. 旋转不变性;C. 尺度缩放不变性;D. 不受量纲影响的特性 12、聚类分析算法属于(A );判别域代数界面方程法属于( C ) 。

A.无监督分类;B.有监督分类;C.统计模式识别方法;D.句法模式识别方法 13、若描述模式的特征量为0-1二值特征量,则一般采用( D )进行相似性度量。

A. 距离测度;B. 模糊测度;C. 相似测度;D. 匹配测度 14、 下列函数可以作为聚类分析中的准则函数的有(ACD ) 。

A.][1BW S S Tr J -=; B.1-=BW SS J ; C.∑∑==-=cj n i j j ijm xJ 112)( ; D.)()(1m m m m J j cj j -'-=∑=15、Fisher 线性判别函数的求解过程是将N 维特征矢量投影在( B )中进行 。

A.二维空间; B.一维空间; C. N-1维空间16、用parzen 窗法估计类概率密度函数时,窗宽过窄导致波动过大的原因是(BC )。

A.窗函数幅度过小;B.窗函数幅度过大;C. 窗口中落入的样本数过少;D.窗口中落入的样本数过多。

17、如下聚类算法中,属于静态聚类算法的是 ( AB )。

A. 最大最小距离聚类;B. 层次聚类;C. c-均值聚类。

18、 一般,k-NN 最近邻方法在( B )的情况下效果较好。

A.样本较多但典型性不好;B.样本较少但典型性好;C.样本呈团状分布;D.样本呈链状分布19、影响c 均值聚类算法效果的主要因素之一是初始类心的选取,相比较而言,( C )c 个样本作为初始类心较好。

A. 按输入顺序选前;B. 选相距最远的;C. 选分布密度最高处的;D. 随机挑选。

20、类域界面方程法中,能求线性不可分情况下分类问题近似或精确解的方法是(BCD )。

A. 感知器算法;B. 伪逆法;C. 基于二次准则的H-K 算法;D. 势函数法。

三、简答题1、试说明Mahalanobis 距离平方的定义,到某点的Mahalanobis 距离平方为常数的轨迹的几何意义,它与欧氏距离的区别与联系。

答:Mahalanobis 距离的平方定义为:∑---=12)()(),(u x u x u x r T其中x ,u 为两个数据,1-∑是一个正定对称矩阵(一般为协方差矩阵)。

根据定义,距某一点的Mahalanobis 距离相等点的轨迹是超椭球,如果是单位矩阵Σ,则Mahalanobis 距离就是通常的欧氏距离。

2、试说明用监督学习与非监督学习两种方法对道路图像中道路区域的划分的基本做法,以说明这两种学习方法的定义与它们间的区别。

答:监督学习方法用来对数据实现分类,分类规则通过训练获得。

该训练集由带分类号的数据集组成,因此监督学习方法的训练过程是离线的。

非监督学习方法不需要单独的离线训练过程,也没有带分类号(标号)的训练数据集,一般用来对数据集进行分析,如聚类,确定其分布的主分量等。

就道路图像的分割而言,监督学习方法则先在训练用图像中获取道路象素与非道路象素集,进行分类器设计,然后用所设计的分类器对道路图像进行分割。

使用非监督学习方法,则依据道路路面象素与非道路象素之间的聚类分析进行聚类运算,以实现道路图像的分割。

已知一组数据的协方差矩阵为⎪⎪⎭⎫ ⎝⎛12/12/11,试问(1) 协方差矩阵中各元素的含义。

(2) 求该数组的两个主分量。

(3) 主分量分析或称K-L 变换,它的最佳准则是什么? (4) 为什么说经主分量分析后,消除了各分量之间的相关性。

答:协方差矩阵为⎪⎪⎭⎫⎝⎛12/12/11,则(1) 对角元素是各分量的方差,非对角元素是各分量之间的协方差。

(2) 主分量,通过求协方差矩阵的特征值,用⎪⎪⎪⎪⎭⎫ ⎝⎛----121211λλ=0得4/1)1(2=-λ,则 ⎩⎨⎧=2/32/1λ,相应地:2/3=λ,对应特征向量为⎪⎪⎭⎫ ⎝⎛11,21=λ,对应⎪⎪⎭⎫ ⎝⎛-11。

这两个特征向量,即为主分量。

(3) K-L 变换的最佳准则为:对一组数据进行按一组正交基分解,在只取相同数量分量的条件下,以均方误差计算截尾误差最小。

(4) 在经主分量分解后,协方差矩阵成为对角矩阵,因而各主分量间相关性消除。

4、试说明以下问题求解是基于监督学习或是非监督学习: (1) 求数据集的主分量 (2) 汉字识别(3) 自组织特征映射(4) CT图像的分割答:(1) 求数据集的主分量是非监督学习方法;(2) 汉字识别:对待识别字符加上相应类别号—有监督学习方法;(3) 自组织特征映射—将高维数组按保留近似度向低维映射—非监督学习;(4) CT图像分割—按数据自然分布聚类—非监督学习方法;5、试列举线性分类器中最著名的三种最佳准则以及它们各自的原理。

答:线性分类器三种最优准则:Fisher准则:根据两类样本一般类内密集,类间分离的特点,寻找线性分类器最佳的法线向量方向,使两类样本在该方向上的投影满足类内尽可能密集,类间尽可能分开。

这种度量通过类内离散矩阵Sw和类间离散矩阵Sb实现。

感知准则函数:准则函数以使错分类样本到分界面距离之和最小为原则。

其优点是通过错分类样本提供的信息对分类器函数进行修正,这种准则是人工神经元网络多层感知器的基础。

支持向量机:基本思想是在两类线性可分条件下,所设计的分类器界面使两类之间的间隔为最大,它的基本出发点是使期望泛化风险尽可能小。

6、试分析五种常用决策规则思想方法的异同。

答、五种常用决策是:1. 基于最小错误率的贝叶斯决策,利用概率论中的贝叶斯公式,得出使得错误率最小的分类规则。

2. 基于最小风险的贝叶斯决策,引入了损失函数,得出使决策风险最小的分类。

当在0-1损失函数条件下,基于最小风险的贝叶斯决策变成基于最小错误率的贝叶斯决策。

3. 在限定一类错误率条件下使另一类错误率最小的两类别决策。

4.类先验概率未知,考察先验概率变化对错误率的影响,找出使最小贝叶斯奉献最大的先验概率,以这种最坏情况设计分类器。

5.除了考虑分类造成的损失外,还考虑特征获取造成的代价,先用一部分特征分类,然后逐步加入性特征以减少分类损失,同时平衡总的损失,以求得最有效益。

7、 1. 什么是特征选择?2. 什么是Fisher 线性判别?答:1. 特征选择就是从一组特征中挑选出一些最有效的特征以达到降低特征空间维数的目的。

2. Fisher 线性判别:可以考虑把d 维空间的样本投影到一条直线上,形成一维空间,即把维数压缩到一维,这在数学上容易办到,然而,即使样本在d 维空间里形成若干紧凑的互相分得开的集群,如果把它们投影到一条任意的直线上,也可能使得几类样本混在一起而变得无法识别。

但是在一般情况下,总可以找到某个方向,使得在这个方向的直线上,样本的投影能分开得最好。

问题是如何根据实际情况找到这条最好的、最易于分类的投影线,这就是Fisher 算法所要解决的基本问题。

8、写出两类和多类情况下最小风险贝叶斯决策判别函数和决策面方程。

两类问题:判别函数 )()()(2121111x w p x w p x g λλ+=)()()(2221212x w p x w p x g λλ+=决策面方程:)()(21x g x g =C 类问题:判别函数 )()(1x w p x g j ij cj i λ=∑=,c i ,......2,1= 决策面方程:)()(x g x g j i =,j i ≠,c i ,......2,1=,c j ,......2,1=信息获取:通过测量、采样和量化,可以用矩阵或向量表示二维图像或波形。

预处理:去除噪声,加强有用的信息,并对输入测量仪器或其他因素造成的退化现象进行复原。

特征选择和提取:为了有效地实现分类识别,就要对原始数据进行变换,得到最能反映分类本质的特征。

相关文档
最新文档