行程问题五年级奥数题及答案

合集下载

五年级奥数行程问题(一)、(二)、(三)、(四)

五年级奥数行程问题(一)、(二)、(三)、(四)

行程问题(一)邹玉芳例1:甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

两车在距中点32千米处相遇。

东西两地相距多少千米?思路导航:两车在距中点32千米处相遇,由于甲车的速度大于乙车的速度,所以相遇时,甲车应行了全程的一半多32千米,乙车行了全程的一半少32千米,因此,两车相遇时,甲车比乙车共多行了32=64(千米)。

两车同时出发,又相遇了,两车所行的时间是一样的,为什么甲车会比乙车多行64千米?因为甲车每小时比乙车多行56-48=8(千米)。

64=8(时),所以两车各行了8小时,求东西两地的路程只要用(56+48)8=832(千米)练习:1.甲、乙两汽车同时从两地出发,相向而行。

甲汽车每小时行50千米,乙汽车每小时行55千米,两车在距中点15千米相遇。

求两地之间的路程是多少千米?2、一辆汽车和一辆摩托车同时从A、B两城相对开出,汽车每小时行60千米,摩托车每小时行70千米,当摩托车行到两城中点处时,与汽车还相距30千米,求A、B两城之间的距离?3、下午放学时,小红从学校回家,每分钟走100米,同时,妈发也从家里出发到学校去接小红,每分钟走120米,两人在距中点100米的地方相遇,小红家到学校有多少米?例2:快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时快车已驶过中点25千米,这时快车与慢车还相距7千米。

慢车每小时行多少千米?思路导航:快车3小时行驶403=120(千米),这时快车已驶过中点25千米,说明甲乙两地间路程的一半是120-25=95(千米)。

此时,慢车行了95-25-7=63(千米),因此慢车每小时行633=21(千米)练习:1、兄弟二人同时从学校和家中出发,相向而行。

哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。

弟弟每分钟行多少米?2、汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?3、学校运来一批树苗,五(1)班的40个同学都去参加植树活动,如果每人植3棵,全班同学能植这批树苗的一半还多20棵。

【奥数专题】精编人教版小学数学五年级上册 行程问题(试题)含答案与解析

【奥数专题】精编人教版小学数学五年级上册 行程问题(试题)含答案与解析

经典奥数:行程问题(专项试题)一.选择题(共6小题)1.汽车3.5分钟可行驶7千米,照这样的速度,汽车1小时可行驶多少千米?下面算式中,错误的是()A.7÷3.5×60B.3.5÷7×60C.60÷3.5×7D.60÷(3.5÷7)2.李叔叔骑电动车上班,每小时行18km,0.35小时到达。

如果他骑自行车上班,每小时行10.5km,半小时能到吗?()A.能B.不能C.无法确定3.两辆汽车同时从两地相对开出,一辆车的速度是85千米/时,另一辆车的速度是75千米/时,出发后4.8小时相遇。

两地之间的公路长多少千米,计算错误的是()A.85+75×4.8B.85×4.8+75×4.8C.(85+75)×4.84.两人同时从相距10.5千米的两地相对而行,小明每小时行3.8千米,小军每小时行3.2千米,算式:3.2×[10.5÷(3.8+3.2)]求的是()A.经过几小时相遇B.相遇时小明行的路程C.相遇时小军行的路程D.小明和小军的平均速度5.一辆汽车1.5小时行驶90km,照这样计算,行驶652km要多少小时?下面正确的算式是()A.652÷(90÷1.5)B.652÷90÷1.5C.652÷(90×1.5)6.两地相距S千米,甲、乙两车同时分别从两地相向而行,甲车每小时行a千米,乙车每小时行b千米,经过()小时两车相遇。

A.(a+b)÷S B.(a+b)×S C.S÷(a+b)二.填空题(共6小题)7.小冬从甲地向乙地走,小青同时从乙地向甲地走,当各自到达终点后,又迅速返回,两人第一次相遇在距甲地400米处,第二次相遇在距乙地150米.甲、乙两地的距离是米.8.小明从家到学校上课,开始时以每分钟50米的速度走了2分钟,这时他想:若根据以往上学的经验,再按这个速度走下去,肯定要迟到8分钟.于是他立即加快速度,每分钟多走10米,结果小明早到了5分钟.小明家到学校的路程是米.9.有两列火车,一车长130m,速度为23m/s;另一列火车长250m,速度为15m/s.现在两车相向而行,从相遇到离开需要s.10.小明和小红同时从相距5千米的甲、乙两地相对而行,小明到达乙地后立刻返回继续跑,小红到达甲地后也立刻返回继续跑,已知小明每分跑320米,小红每分跑305米,从出发到第二次相遇共用分钟.11.小明和爸爸在同一圆形跑道上跑步,小明每15分跑一圈,爸爸每10分跑一圈.他们早上7:00从同一地点起跑,那么他们第二次在起点相遇时是.如跑道一圈为400m,相遇时,小明跑了m.12.甲、乙两人分别从边长为21米的正方形围墙对角顶点(如图)同时出发按逆时针方向跑,甲每秒跑7米,乙每秒跑5米,经过秒,甲可以看见乙.三.应用题(共9小题)13.两地相距540千米,甲、乙两列火车同时从两地相对开出,经过4时相遇,已知甲车的速度是乙车的1.5倍,甲、乙两列火车每时各行多少千米?14.同样时间里,兔子能跑3步,狗能跑2步,兔子一步跑1米,狗一步跑1.5米,若兔子和狗在50米长的跑道上进行往返跑,它们同时出发,求兔子折返几次后刚好比狗快6米?15.某市出租车收费标准是:3千米以内起步价9元,超过3千米的部分每千米2.4元。

行程问题奥数题

行程问题奥数题

行程问题奥数题(共5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。

一般知道AC和AD的距离,主要抓住第二次相遇时走的路程是第一次相遇时走的路程的两倍。

例题:1.甲乙两车同时从A、B两地相向而行,在距B地54千米处相遇,它们各自到达对方车站后立即返回,在距A地42千米处相遇。

请问A、B两地相距多少千米2.两汽车同时从A、B两地相向而行,在离A城52千米处相遇,到达对方城市后立即以原速沿原路返回,在离A城44千米处相遇。

两城市相距()千米绕圈问题:3.在一个圆形跑道上,甲从A点、乙从B点同时出发反向而行,8分钟后两人相遇,再过6分钟甲到B点,又过10分钟两人再次相遇,则甲环行一周需要()A.24分钟B.26分钟C.28分钟D.30分钟有甲,乙同时行走,一个走得快,一个走得慢,当走的慢的走在前,走得快的过一段时间就能追上。

这就产生了“追及问题”。

实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人都的速度差。

如果假设甲走得快,乙走得慢,在相同时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间=速度差×追及时间核心就是“速度差”的问题。

1.一列快车长170米,每秒行23米,一列慢车长130米,每秒行18米。

快车从后面追上慢车到超过慢车,共需()秒钟2.甲、乙两地相距100千米,一辆汽车和一台拖拉机都从甲开往乙地,汽车出发时,拖拉机已开出15千米;当汽车到达乙地时,拖拉机距乙地还有10千米。

那么汽车是在距乙地多少千米处追上拖拉机的千米千米千米千米3.环形跑道周长是500米,甲、乙两人按顺时针沿环形跑道同时、同地起跑,甲每分钟跑50米,乙每分钟跑40米,甲、乙两人每跑200米均要停下来休息1分钟,那么甲首次追上乙需要多少分钟甲乙二人分别从A、B两地同时出发,并在两地间往返行走。

五年级行程问题试题及答案

五年级行程问题试题及答案

五年级行程问题试题及答案五年级行程问题试题及答案(一)一、相遇问题1、一列快车和一列慢车,同时从甲、乙两站出发,相向而行,经过6小时相遇,相遇后快车继续行驶3小时后到达乙站。

已知慢车每小时行45千米,甲、乙两站相距多少千米?答案810千米2、甲、乙二人分别以每小时3千米和5千米的速度从A、B两地相向而行.相遇后二人继续往前走,如果甲从相遇点到达B地共行4小时,那么A、B两地相距多少千米?答案19.2千米3.一列快车从甲城开往乙城,每小时行65千米,一列客车同时从乙城开往甲城,每小时行60千米,两列火车在距中点20千米处相遇,相遇时两车各行了多少千米?答案500千米4、兄弟两人同时从家里出发到学校,路程是1400米。

哥哥骑自行车每分钟行200米,弟弟步行每分钟行80米,在行进中弟弟与刚到学校就立即返回来的哥哥相遇。

从出发到相遇,弟弟走了多少米?相遇处距学校有多少米?答案800米。

600米。

5、有两只蜗牛同时从一个等腰三角形的顶点A出发(如图),分别沿着两腰爬行。

一只蜗牛每分钟行2.5米,另一只蜗牛每分钟行2米,8分钟后在离C点6米处的P点相遇,BP的长度是多少米?6、甲、乙两人同时从A、B两地相向而行,相遇时距A地120米,相遇后,他们继续前进,到达目的地后立即返回,在距A地150米处再次相遇,AB两地的距离是多少米?7、A、B两地相距38千米,甲、乙两人分别从两地同时出发,相向而行,甲每小时行8千米,乙每小时行11千米,甲到达B地后立即返回A地,乙到达A地后立即返回B地,几小时后两人在途中相遇?相遇时距A地多远?8、如图,A、B是圆的直径的两端,小张在A点,小王在B点同时出发,相向行走,他们在距A点80米处的C点第一次相遇,接着又在距B点60米处的D点第二次相遇。

求这个圆的周长。

9.如图,两只小爬虫从A点出发,沿长方形ABCD的边,按箭头方向爬行,在距C点32厘米的E点它们第一次相遇,在距D点16厘米的F点第二次相遇,在距A点16厘米的G点第三次相遇,求长方形的边AB的长。

行程问题的奥数题及答案

行程问题的奥数题及答案

行程问题的奥数题及答案
2016关于行程问题的奥数题及答案
导语:下面是小编为大家整理的五年级关于行程问题的奥数题,希望对大家有所帮助,欢迎阅读,仅供参考,更多相关的知识,请关注CNFLA学习网!
小学五年级奥数题:
甲、乙两人练习跑步,若甲让乙先跑10米,则甲跑5秒可追上乙;若乙比甲先跑2秒,则甲跑4秒能追上乙.问:两人每秒各跑多少米?
答案与解析:
10÷5=2(米/秒)(甲比乙每秒多跑2米)
2+4=6(秒)(第二种情况下甲追上乙时,乙跑的.时间)
6÷4=1.5(甲的速度是乙的1.5倍)
2相当于0.5倍
2÷0.5=4(米/秒)(1倍)乙的速度
4+2=6(米/秒)甲的速度
小学五年级奥数题:
甲、乙两班进行越野行军比赛,甲班以4.5千米/时的速度走了路程的一半,又以5.5千米/时的速度走完了另一半;乙班在比赛过程中,一半时间以4.5千米/时的速度行进,另一半时间以5.5千米/时的速度行进。

问:甲、乙两班谁将获胜?
答案与解析:
快速行走的路程越长,所用时间越短。

甲班快、慢速行走的路程相同,乙班快速行走的路程比慢速行走的路程长,所以乙班获胜。

(完整)五年级奥数行程问题五大专题

(完整)五年级奥数行程问题五大专题

行程问题---多人相遇问题及练习板块一多人从两端出发——相遇问题【例1】有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇.那么,东、西两村之间的距离是多少米?【例2】(2009年四中入学测试题)在公路上,汽车A、B、C分别以80km/h,70km/h,50km/h的速度匀速行驶,若汽车A从甲站开往乙站的同时,汽车B、C从乙站开往甲站,并且在途中,汽车A在与汽车B相遇后的两小时又与汽车C相遇,求甲、乙两站相距多少km?【巩固】甲、乙、丙三人每分分别行60米、50米和40米,甲从B地、乙和丙从A地同时出发相向而行,途中甲遇到乙后15分又遇到丙.求A,B两地的距离.【巩固】小王的步行速度是5千米/小时,小张的步行速度是6千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后30分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?【巩固】甲、乙两车的速度分别为52千米/时和40千米/时,它们同时从A地出发到B地去,出发后6时,甲车遇到一辆迎面开来的卡车,1时后乙车也遇到了这辆卡车。

求这辆卡车的速度。

【巩固】甲、乙、丙三人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.甲从东村,乙、丙从西村同时出发相向而行,途中甲、乙相遇后3分钟又与丙相遇.求东西两村的距离.【例3】甲、乙、丙三人,甲每分钟走40米,丙每分钟走60米,甲、乙两人从A、B地同时出发相向而行,他们出发15分钟后,丙从B地出发追赶乙。

此后甲、乙在途中相遇,过了7分钟甲又和丙相遇,又过了63分钟丙才追上乙,那么A、B 两地相距多少米?【例4】甲乙丙三人沿环形林荫道行走,同时从同一地点出发,甲、乙按顺时针方向行走,丙按逆时针方向行走。

已知甲每小时行7千米,乙每小时行5千米,1小时后甲、丙二人相遇,又过了10分钟,丙与乙相遇,问甲、丙相遇时丙行了多少千米?【例5】一列长110米的火车以每小时30千米的速度向北缓缓驶去,铁路旁一条小路上,一位工人也正向北步行。

五年级奥数——行程问题练习题

五年级奥数——行程问题练习题

五年级数学兴趣小组练习题——行程问题(2013.10)班别___________ 姓名___________ 评分____________1. 快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。

慢车每小时行多少千米?分析与解答快车3小时行驶40×3=120(千米),这时快车已驶过中点25千米,说明甲、乙两地间路程的一半是120-25=95(千米)。

此时,慢车行了95-25-7=63(千米),因此慢车每小时行63÷3=21(千米)。

(40×3-25×2-7)÷3=21(千米)答:慢车每小时行21千米。

2. 甲、乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。

中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。

求东、西两村相距多少千米?分析与解答二人相遇时,甲比乙多行15×2=30(千米),说明二人已行30÷6=5(小时),上午8时至中午12时是4小时,所以甲的速度是15÷(5-4)=15(千米)。

因此,东西两村的距离是15×(5-1)=60(千米)上午8时至中午12时是4小时。

15×2÷6=5(小时)15÷(5-4)=15(千米)15×(5-1)=60(千米)3. 甲、乙两车早上8时分别从A、B两地同时相向出发,到10时两车相距112.5千米。

两车继续行驶到下午1时,两车相距还是112.5千米。

A、B两地间的距离是多少千米?分析从10时到下午1时共经过3小时,3小时里,甲、乙两车从相距112.5千米到又相距112.5千米,共行112.5×2=225千米。

两车的速度和是225÷3=75千米。

从早上8时到10时共经过2小时,2小时共行75×2=150千米,因此,A、B两间的距离是150+112.5=262.5千米。

五年级奥数:行程问题

五年级奥数:行程问题

1.某商场一二层有一个自动扶梯。

1)一共有60级台阶,电梯的速度是2级/秒.若小明在扶梯上匀速的每秒走1级,那么多久能到达地面?2)一共60级台阶,电梯每秒向上走2级,若小明逆着扶梯走,走了1分钟才走下扶梯,求小明的速度是多少?3)在乘电动扶梯的同时小明继续向上走需12秒到达楼上,如果小明站着不动乘电动扶梯向上走需15秒到达楼上,那么电动扶梯不动时,小明徒步沿扶梯上楼等多少秒?2.在地铁车站中,从站台到地面架设有向上的自动扶梯,小强从下到上,如果每秒向上迈两级台阶,那么50秒后到达站台:如果每秒向上迈三级台阶,那么走过40秒到达站台。

自动扶梯有多少级台阶?3.从A地到B地的公交站,每10分钟发一趟公交车,每辆公交车的速度是600米/分。

1)小明在某车站5点10分看见一辆公交经过,那么他看到下一辆公交经过会是几点?2)在A地B地之间,相同方向行驶的两车之间的距离是客少?3) 小明在途中跑步,速度是200米/分,那么,他每隔客久会迎面通到- -辆公交车?4.某人以匀速行走在一条公路上,公路的前后两端每隔相同的时间发一辆公共汽车,他发现每隔15分钟有一辆公共汽车追上他,每隔10分钟有一辆公共汽车迎面驶来擦身而过,问公共汽车每隔多少分钟发车一辆?小刚以每分钟50米的速度离家上学,走了2分钟后,他发现这样走下去就要迟到8分钟;于是改为每分钟60米的速度前进,结果提早5分钟到校.问小刚家到学校的路程()米.答案:如果在准时到达的时间内,用每分钟50米的速度将会少行50×8=400米;如果前2分钟也按每小时60米的速度行走,将会多行(60-50)×2+60×5=320米,两次相差320+400=720米;速度差为:60-50=10米;那么原来准时到达的时间为:720÷10=72(分钟);小刚从家到学校要走:50×(72+8)=4000(米);据此解答.解:(60-50)×2+60×5=320(米),(50×8+320)÷(60-50),=720÷10,=72(分钟);50×(72+8)=4000(米);答:小刚家到学校的路程4000米.故答案为:4000.相遇问题(1)艾迪和薇儿两人分别以每小时6千米和每小时4千米的速度行走,若他们从A、B两地同时出发,相向而行,5小时后相遇,则A. B两地相距多少千米?(2)甲车和乙车分别以每小时70千米,每小时50千米的速度从相距480干米的两地向对方的出发地前进,多久后他们会相遇?(3)八戒和悟空两家相距255干米,两人同时骑车,从家出发相对而行,3小时后相遇。

行程问题五年级奥数题及答案

行程问题五年级奥数题及答案

行程问题
甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇
解:要求过几分钟甲、乙二人相遇,就必须求出甲、乙二人这时的距离与他们速度的关系,而与此相关联的是火车的运动,只有通过火车的运动才能求出甲、乙二人的距离.火车的运行时间是已知的,因此必须求出其速度,至少应求出它和甲、乙二人的速度的比例关系.由于本问题较难,故分步详解如下:
①求出火车速度V车与甲、乙二人速度V人的关系,设火车车长为l,则:
(i)火车开过甲身边用8秒钟,这个过程为追及问题:故l=(V车-V人)×8;(1)
(ii)火车开过乙身边用7秒钟,这个过程为相遇问题:故l=(V车+V人)×7.(2)
由(1)、(2)可得:8(V车-V人)=7(V车+V 人),
所以,V车=l5V人。

②火车头遇到甲处与火车头遇到乙处之间的距离是:
(8+5×6O)×(V车+V人)=308×16V人=4928V人。

③求火车头遇到乙时甲、乙二人之间的距离。

火车头遇甲后,又经过(8+5×60)秒后,火车头才遇乙,所以,火车头遇到乙时,甲、乙二人之间的距离为:4928V人-2(8+5×60)V人=4312V人。

④求甲、乙二人过几分钟相遇。

小学五年级奥数行程问题练习题及答案

小学五年级奥数行程问题练习题及答案

小学五年级奥数行程问题练习题及答案1.小学五年级奥数行程问题练习题及答案篇一张工程师每天早上8点准时被司机从家接到厂里。

一天,张工程师早上7点就出了门,开始步行去厂里,在路上遇到了接他的汽车,于是,他就上车行完了剩下的路程,到厂时提前20分钟。

这天,张工程师还是早上7点出门,但15分钟后他发现有东西没有带,于是回家去取,再出门后在路上遇到了接他的汽车,那么这次他比平常要提前分钟。

答案解析:第一次提前20分钟是因为张工程师自己走了一段路,从而导致汽车不需要走那段路的来回,所以汽车开那段路的来回应该是20分钟,走一个单程是10分钟,而汽车每天8点到张工程师家里,所以那天早上汽车是7点50接到工程师的,张工程师走了50分钟,这段路如果是汽车开需要10分钟,所以汽车速度和张工程师步行速度比为5:1,第二次,实际上相当于张工程师提前半小时出发,时间按5:1的比例分配,则张工程师走了25分钟时遇到司机,此时提前(30-25)x2=10(分钟)o这道题重要是要求出汽车速度与工程师的速度之比。

2.小学五年级奥数行程问题练习题及答案篇二1、小熊骑自行车出去玩,经过三段长度分别为IOOO米,200米,800米的平路,上坡路和下坡路,包包在这三段路上的速度分别为200米/分,50米/分,400米/分,问小熊走完这三段路程需要多少时间?【分析】简单分段行程平路所需时间:1000÷200=5(分钟)上坡路所需时间:200÷50=4(分钟)下坡路所需时间:800÷400=2(分钟)所以总共需要时间为5+4+2=Π(分钟)2、A、B两地之间是山路,相距60千米,其中一部分是上坡路,其余是下坡路,某人骑电动车从A地到B地,再沿原路返回,去时用了4.5小时,返回时用了3.5小时。

已知下坡路每小时行20千米,那么上坡路每小时行多少千米?【解析】由题意知,去的上坡时间+去的下坡时间二4.5小时回的上坡时间+回的下坡时间二3.5小时则:来回的上坡时间十来回的下坡时间二8小时所以来回的下坡时间=60÷20=3(小时)则:来回的上坡时间二8—3二5(小时)故:上坡速度为60÷5=12(千米/时)3.小学五年级奥数行程问题练习题及答案篇三1、甲放学回家需走10分钟,乙放学回家需走14分钟。

五年级上册奥数行程问题 (例题含答案)

五年级上册奥数行程问题 (例题含答案)

第七讲行程问题这一讲中,我们将要研究的是行程问题中一些综合性较强的题目.为此,我们需要先回顾一下已学过的基本数量关系:路程=速度×时间;总路程=速度和×时间;路程差=速度差×追及时间。

例1 小华在8点到9点之间开始解一道题,当时时针、分针正好成一直线,解完题时两针正好第一次重合.问:小明解这道题用了多长时间?分析这道题实际上是一个行程问题.开始时两针成一直线,最后两针第一次重合.因此,在我们所考察的这段时间内,两针的路程差为30分格,又因分格/分钟,所以,当它们第一次重合时,一定是分针从后面追上时针.这是一个追及问题,追及时间就是小明的解题时间。

例2 甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米.甲从A地,乙和丙从B地同时出发相向而行,甲和乙相遇后,过了15分钟又与丙相遇,求A、B两地间的距离。

画图如下:分析结合上图,如果我们设甲、乙在点C相遇时,丙在D点,则因为过15分钟后甲、丙在点E相遇,所以C、D之间的距离就等于(40+60)×15=1500(米)。

又因为乙和丙是同时从点B出发的,在相同的时间内,乙走到C点,丙才走到D点,即在相同的时间内乙比丙多走了1500米,而乙与丙的速度差为50-40=10(米/分),这样就可求出乙从B到C的时间为1500÷10=150(分钟),也就是甲、乙二人分别从A、B出发到C点相遇的时间是150分钟,因此,可求出A、B的距离。

解:①甲和丙15分钟的相遇路程:(40+60)×15=1500(米)。

②乙和丙的速度差:50-40=10(米/分钟)。

③甲和乙的相遇时间:1500÷10=150(分钟)。

④A、B两地间的距离:(50+60)×150=16500(米)=16.5千米。

答:A、B两地间的距离是16.5千米.例3 甲、乙、丙是一条路上的三个车站,乙站到甲、丙两站的距离相等,小强和小明同时分别从甲、丙两站出发相向而行,小强经过乙站100米时与小明相遇,然后两人又继续前进,小强走到丙站立即返回,经过乙站300米时又追上小明,问:甲、乙两站的距离是多少米?先画图如下:分析结合上图,我们可以把上述运动分为两个阶段来考察:①第一阶段——从出发到二人相遇:小强走的路程=一个甲、乙距离+100米,小明走的路程=一个甲、乙距离-100米。

小学奥数行程专题经典练习50道详解解答版

小学奥数行程专题经典练习50道详解解答版

经典行程专题50道详解1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解答:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。

2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差,所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。

3、A,B两地相距540千米。

甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。

设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。

那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。

所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。

第二次相遇,乙正好走了1份到B地,又返回走了1份。

这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。

4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。

小学五年级奥数第7课行程问题试题附答案-精品

小学五年级奥数第7课行程问题试题附答案-精品

小学五年级上册数学奥数知识点讲解第7课《行程问题》试题附答案笫七讲行程问题这一讲中,我们将要研究的是行程问题中一些综合性较强的题目.为此,我们需要先回顾一下已学过的基本数量关系:路程二速度X时间;总路程二速度和义时间;路程差二速度差X追及时间。

例1小华在8点到9点之间开始解一道题,当时时针、分针正好成一直线,解完题时两针正好第一次重合.问:小明解这道题用了多长时间?例2甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米.甲从A1也乙和丙从B地同时出发相向而行,甲和乙相遇后,过了15分钟又与丙相遇,求A、B两地间的距离。

画图如下:甲、乙用遇于C点.此时丙在D点甲、丙相遇于E例3甲、乙、丙是一条路上的三个车站,乙站到甲、丙两站的距离相等,小强和小明同时分别从甲、丙两站出发相向而行,小强经过乙站100米时与小明相遇,然后两人又继续前进,小强走到丙站立即返回,经过乙站300米时又追上小明,问:甲、乙两站的距离是多少米?例4甲、乙、丙三人进行200米赛跑,当甲到终点时,乙离终点还有20米,丙离终点还有25米,如果甲、乙、丙赛跑的速度都不变,那么当乙到达终点时,丙离终点还有多少米?例5甲、乙二人分别从A、B两地同时出发,如果两人同向而行,甲26分钟赶上乙;如果两人相向而行,6分钟可相遇,又己知乙每分钟行50米,求A、B两地的距离。

例6一条公路上,有一个骑车人和一个步行人,骑车人速度是步行人速度的 3 倍,每隔6分钟有一辆公共汽车超过步行人,每隔10分钟有一辆公共汽车超过骑车人,如果公共汽车始发站发车的时间间隔保持不变,那么间隔几分钟发一辆公共汽车?例7甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇?答案第七讲行程问题这一讲中,我们将要研究的是行程问题中一些综合性较强的题目.为此,我们需要先回顾一下己学过的基本数量关系:路程二速度X时间;总路程二速度和X时间;路程差二速度差X追及时间。

五年级奥数:行程问题

五年级奥数:行程问题

五年级奥数:行程问题例1 小明每天早晨按时从家出发上学,李大爷每天早晨也定时出门散步,两人相向而行,小明每分钟行60米,李大爷每分钟行40米,他们每天都在同一时刻相遇。

有一天小明提前出门,因此比平时早9分钟与李大爷相遇,这天小明比平时提前多少分钟出门?分析与解:因为提前9分钟相遇,说明李大爷出门时,小明已经比平时多走了两人9分钟合走的路,即多走了(60+40)×9=900(米),所以小明比平时早出门900÷60=15(分)。

例2 一个车队以4米/秒的速度缓缓通过一座长200米的大桥,共用115秒。

已知每辆车长5米,两车间隔10米。

问:这个车队共有多少辆车?分析与解:求车队有多少辆车,需要先求出车队的长度,而车队的长度等于车队115秒行的路程减去大桥的长度。

由“路程=时间×速度”可求出车队115秒行的路程为4×115=460(米)。

故车队长度为460-200=260(米)。

再由植树问题可得车队共有车(260-5÷(5+10)+1=18(辆)。

例3 骑自行车从甲地到乙地,以10千米/时的速度行进,下午1点到;以15千米/时的速度行进,上午11点到。

如果希望中午12点到,那么应以怎样的速度行进?分析与解:这道题没有出发时间,没有甲、乙两地的距离,也就是说既没有时间又没有路程,似乎无法求速度。

这就需要通过已知条件,求出时间和路程。

假设A,B两人同时从甲地出发到乙地,A每小时行10千米,下午1点到;B每小时行15千米,上午11点到。

B到乙地时,A距乙地还有10×2=20(千米),这20千米是B从甲地到乙地这段时间B 比A多行的路程。

因为B比A每小时多行15-10=5(千米),所以B 从甲地到乙地所用的时间是20÷(15-10)=4(时)。

由此知,A,B是上午7点出发的,甲、乙两地的距离是15×4=60(千米)。

要想中午12点到,即想(12-7=)5时行60千米,速度应为60÷(12-7)=12(千米/时)。

五年级奥数行程问题(一)、(二)、(三)、(四)

五年级奥数行程问题(一)、(二)、(三)、(四)

行程问题〔一〕邹玉芳例1:甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

两车在距中点32千米处相遇。

东西两地相距多少千米?思路导航:两车在距中点32千米处相遇,由于甲车的速度大于乙车的速度,所以相遇时,甲车应行了全程的一半多32千米,乙车行了全程的一半少32千米,因此,两车相遇时,甲车比乙车共多行了32×2=64〔千米〕。

两车同时出发,又相遇了,两车所行的时间是一样的,为什么甲车会比乙车多行64千米?因为甲车每小时比乙车多行56-48=8〔千米〕。

64÷8=8〔时〕,所以两车各行了8小时,求东西两地的路程只要用〔56+48〕×8=832〔千米〕练习:1.甲、乙两汽车同时从两地出发,相向而行。

甲汽车每小时行50千米,乙汽车每小时行55千米,两车在距中点15千米相遇。

求两地之间的路程是多少千米?2、一辆汽车和一辆摩托车同时从A、B两城相对开出,汽车每小时行60千米,摩托车每小时行70千米,当摩托车行到两城中点处时,与汽车还相距30千米,求A、B两城之间的距离?3、下午放学时,小红从学校回家,每分钟走100米,同时,妈发也从家里出发到学校去接小红,每分钟走120米,两人在距中点100米的地方相遇,小红家到学校有多少米?例2:快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时快车已驶过中点25千米,这时快车与慢车还相距7千米。

慢车每小时行多少千米?思路导航:快车3小时行驶40×3=120〔千米〕,这时快车已驶过中点25千米,说明甲乙两地间路程的一半是120-25=95〔千米〕。

此时,慢车行了95-25-7=63〔千米〕,因此慢车每小时行63÷3=21〔千米〕练习:1、兄弟二人同时从学校和家中出发,相向而行。

哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距 30米。

弟弟每分钟行多少米?2、汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?3、学校运来一批树苗,五〔1〕班的40个同学都去参加植树活动,如果每人植3棵,全班同学能植这批树苗的一半还多20棵。

行程问题五年级奥数题及

行程问题五年级奥数题及

行程问题
甲、乙二人沿铁路相向而行,速度同样,一列火车从甲身旁开过用了 8 秒钟,离甲后 5 分钟又遇乙,从乙身旁开过,只用了 7 秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇
解:要求过几分钟甲、乙二人相遇,就一定求出甲、
乙二人这时的距离与他们速度的关系,而与此有关系的是
火车的运动,只有经过分车的运动才能求出甲、乙二人的
距离 .火车的运转时间是已知的,所以一定求出其速度,至
少应求出它和甲、乙二人的速度的比率关系.因为本问题较难,故分步详解以下:
①求出火车速度 V 车与甲、乙二人速度 V 人的关
系,设火车车长为 l,则:
(i)火车开过甲身旁用 8 秒钟,这个过程为追及问
题:故 l=( V 车 -V 人)×8;( 1)
(i i)火车开过乙身旁用 7 秒钟,这个过程为相遇问
题:故 l=(V 车+V 人)×7(. 2)
由( 1)、( 2)可得: 8(V 车-V 人)= 7( V 车
+V 人),
所以, V 车 =l5V 人。

②火车头碰到甲处与火车头碰到乙处之间的距离是:
(8+5×6O)×(V 车 +V 人) =308×16V人=4928V 人。

③ 求火车头碰到乙时甲、乙二人之间的距离。

火车头遇甲后,又经过( 8+5×60)秒后,火车头才遇乙,所以,火车头碰到乙时,甲、乙二人之间的距离为:4928V 人-2(8+ 5× 60) V 人=4312V 人。

④ 求甲、乙二人过几分钟相遇。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

銆€銆€琛岀▼闂
銆€銆€鐢层€佷箼浜屼汉娌块搧璺浉鍚戣€岃锛岄€熷害鐩稿悓锛屼竴鍒楃伀杞︿粠鐢茶韩杈瑰紑杩囩敤浜?绉掗挓锛岀鐢插悗5鍒嗛挓鍙堥亣涔欙紝浠庝箼韬竟寮€杩囷紝鍙敤浜?绉掗挓锛岄棶浠庝箼涓庣伀杞︾浉閬囧紑濮嬪啀杩囧嚑鍒嗛挓鐢蹭箼浜屼汉鐩搁亣锛?br />
銆€銆€瑙o細瑕佹眰杩囧嚑鍒嗛挓鐢层€佷箼浜屼汉鐩搁亣锛屽氨蹇呴』姹傚嚭鐢层€佷箼浜屼汉杩欐椂鐨勮窛绂讳笌浠栦滑閫熷害鐨勫叧绯伙紝鑰屼笌姝ょ浉鍏宠仈鐨勬槸鐏溅鐨勮繍鍔紝鍙湁閫氳繃鐏溅鐨勮繍鍔ㄦ墠鑳芥眰鍑虹敳銆佷箼浜屼汉鐨勮窛绂?鐏溅鐨勮繍琛屾椂闂存槸宸茬煡鐨勶紝鍥犳蹇呴』姹傚嚭鍏堕€熷害锛岃嚦灏戝簲姹傚嚭瀹冨拰鐢层€佷箼浜屼汉鐨勯€熷害鐨勬瘮渚嬪叧绯?鐢变簬鏈棶棰樿緝闅撅紝鏁呭垎姝ヨ瑙e涓嬶細
銆€銆€鈶犳眰鍑虹伀杞﹂€熷害V杞︿笌鐢层€佷箼浜屼汉閫熷害V浜虹殑鍏崇郴锛岃鐏溅杞﹂暱涓簂锛屽垯锛?br />
銆€銆€锛坕锛夌伀杞﹀紑杩囩敳韬竟鐢?绉掗挓锛岃繖涓繃绋嬩负杩藉強闂锛氭晠l锛濓紙V杞?V 浜猴級×8锛涳紙1锛?br />
銆€銆€锛坕i锛夌伀杞﹀紑杩囦箼韬竟鐢?绉掗挓锛岃繖涓繃绋嬩负鐩搁亣闂锛氭晠l=锛圴杞?V 浜猴級×7.锛?锛?br />
銆€銆€鐢憋紙1锛夈€侊紙2锛夊彲寰楋細8锛圴杞?V浜猴級锛?锛圴杞?V浜猴級锛?br />
銆€銆€鎵€浠ワ紝V杞?l5V浜恒€?br />
銆€銆€鈶$伀杞﹀ご閬囧埌鐢插涓庣伀杞﹀ご閬囧
埌涔欏涔嬮棿鐨勮窛绂绘槸锛?br />
銆€銆€锛?+5×6O锛?times;锛圴杞?V浜猴級
=308×16V浜?4928V浜恒€?br />
銆€銆€鈶㈡眰鐏溅澶撮亣鍒颁箼鏃剁敳銆佷箼浜屼汉涔嬮棿鐨勮窛绂汇€?br />
銆€銆€鐏溅澶撮亣鐢插悗锛屽張缁忚繃锛?+5×60锛夌鍚庯紝鐏溅澶存墠閬囦箼锛屾墍浠ワ紝鐏溅澶撮亣鍒颁箼鏃讹紝鐢层€佷箼浜屼汉涔嬮棿鐨勮窛绂讳负锛?928V浜?2锛?锛?×60锛塚浜?4312V浜恒€?br />
銆€銆€鈶f眰鐢层€佷箼浜屼汉杩囧嚑鍒嗛挓鐩搁亣锛?/p>。

相关文档
最新文档