负反馈放大电路报告

合集下载

负反馈放大电路 实验报告

负反馈放大电路 实验报告

负反馈放大电路实验报告负反馈放大电路实验报告引言:在电子学中,负反馈放大电路是一种常见且重要的电路配置。

通过引入负反馈,可以提高放大电路的稳定性、线性度和频率响应。

本实验旨在通过实际搭建负反馈放大电路并测量其性能参数,验证负反馈的作用和效果。

一、实验原理负反馈是指将放大电路的一部分输出信号与输入信号进行比较,并将差值反馈到放大电路的输入端,从而调节放大倍数和频率响应。

负反馈放大电路可以分为电压负反馈和电流负反馈两种类型。

二、实验过程1. 实验器材准备:准备好放大电路所需的电阻、电容等元件,以及信号发生器、示波器等测量设备。

2. 搭建电路:按照实验要求,搭建负反馈放大电路。

3. 测试输入输出特性:将信号发生器连接到放大电路的输入端,通过改变输入信号的幅值和频率,测量输出信号的幅值和相位。

4. 测试频率响应:保持输入信号的幅值不变,改变输入信号的频率,测量输出信号的幅值和相位随频率变化的情况。

5. 测试稳定性:通过改变负反馈电阻的值,观察输出信号的变化情况,验证负反馈对放大电路稳定性的影响。

三、实验结果与分析在实验中,我们搭建了一个基本的电压负反馈放大电路,并进行了一系列测试。

以下是实验结果的总结和分析:1. 输入输出特性:通过测量输入输出信号的幅值和相位,我们可以得到放大电路的增益和相位差。

实验结果显示,随着输入信号幅值的增加,输出信号的幅值也相应增加,但增益逐渐减小,这是负反馈的作用。

相位差也随着频率的变化而变化,但变化较为平缓,说明负反馈对相位稳定性的改善。

2. 频率响应:我们改变输入信号的频率,测量输出信号的幅值和相位随频率变化的情况。

实验结果显示,随着频率的增加,输出信号的幅值逐渐减小,相位差也有所变化。

这是因为负反馈对高频信号有一定的衰减作用,从而改善了放大电路的频率响应。

3. 稳定性:通过改变负反馈电阻的值,我们观察到输出信号的变化情况。

实验结果显示,当负反馈电阻增大时,输出信号的幅值减小,但增益变得更加稳定。

负反馈放大电路实验报告

负反馈放大电路实验报告

一、实验目的加深理解放大电路中引入负反馈的方法和负反馈对放大器各项性能指标的影响。

二、实验设备与器件1、+12V 直流电源2、函数信号发生器3、双踪示波器4、万用表5、晶体三极管3DG6×2(β=50~100)或9011×2 电阻器、电容器若干。

三、实验原理负反馈放大器有四种组态,即电压串联、电压并联、电流串联、电流并联。

本实验以电压串联负反馈为例,分析负反馈对放大器各项性能指标的影响。

1、图3-1为带有负反馈的两级阻容耦合放大电路,在电路中通过f R 把输出电压O U 引回到输入端,加在晶体管T1的发射极上,在发射极电阻1F R 上形成反馈电压f U 。

根据反馈的判断法可知,它属于电压串联负反馈。

带有电压串联负反馈的两级阻容耦合放大器主要性能指标如下①闭环电压放大倍数:u u uuf F A 1A A +=其中I O u U U A /=——基本放大器(无反馈)的电压放大倍数,即开环电压放大倍数。

u u F A +1——反馈深度,它的大小决定了负反馈对放大器性能改善的程度。

②反馈系数:F1f F1u R R R F +=③输入电阻:i u u if R F A R )1(+=,i R ——基本放大器的输入电阻④输出电阻:uuO Oof F A 1R R +=,of R :基本放大器的输出电阻 uo A :基本放大器∞=L R 时的电压放大倍数 ①在画基本放大器的输入回路时,因为是电压负反馈,所以可将负反馈放大器的输出端交流短路,即令0=O U ,此时f R 相当于并联在1F R 上。

②在画基本放大器的输出回路时,由于输入端是串联负反馈,因此需将反馈放大器的输入端(T1管的射极)开路,此时)1F f R R +(相当于并接在输出端。

可近似认为f R 并接在输出端。

根据上述规律,就可得到所要求的如图3-2所示的基本放大器。

四、实验步骤1、测量静态工作点数模实验箱按图3-3连接实验电路,模拟电子技术实验箱按图3-4连接实验电 路,首先取 适量,频率为1KHz 左右,调节电位器使放大器的输出不出现失真,然后使 (即断开信号源的输出连接线),用万用表直流电压档分别测量第一级、第二级的静态工作点,记入表3-1。

负反馈放大电路实验报告

负反馈放大电路实验报告

一、实验目的1.了解N 沟道结型场效应管的特性和工作原理;2.熟悉两级放大电路的设计和调试方法;3.理解负反馈对放大电路性能的影响。

二,理论估计电压并联负反馈放大电路方框图如图1 所示,R 模拟信号源的内阻;R f 为反馈电阻,取值为100 kΩ 。

两级放大电路的参考电路如图2 所示。

图中R g3 选择910kΩ ,R g1、R g2 应大于100k Ω ;C1~C3 容量为10μ F,C e 容量为47μ F。

考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R f,见图2,理由详见“五附录-2”。

b. 静态工作点的调试第一级电路:调整电阻参数,使得静态工作点满足:I DQ 约为2mA,U GDQ < - 4V。

记录并计算电路参数及静态工作点的相关数据(I DQ,U GSQ,U A,U S、U GDQ)。

第二级电路:通过调节R b2,使得静态工作点满足:I CQ 约为2mA,U CEQ = 2~3V。

记录电路参数及静态工作点的相关数据(I CQ,U CEQ)。

设场效应管栅极电位为,则,即同时,,又因为由此得到.其中,应该尽量大,参考器件盒中的电阻值,故取取, 要让I DQ 为2mA,对JEFF管进行直流扫描分析,得对表格进行放大由游标数值读出当时,此时,根据器件盒内的电阻阻值可取.此时,A点电位(即两端电压)两端电压.对于第二级电路,当时,由于故根据器件盒子里的电阻阻值,可以选择开环动态参数的估算由JFET 2N5486的转移特性曲线可知,可得时第一级输入电阻90.90.,第二级输入电阻 2.22.第一级输出电阻第一级电压放大倍数第二级输出电阻.第二级电压放大倍数 1电路的电压放大倍数输入电阻.输出电阻闭环参数的估算.又因为,所以三、实验内容1. 基本要求:利用两级放大电路构成电压并联负反馈放大电路。

(1)静态和动态参数要求✓ 放大电路的静态电流I DQ 和I CQ 均约为2mA ;结型场效应管的管压降U GDQ < - 4V , 晶体管的管压降U CEQ = 2~3V ;✓ 开环时,两级放大电路的输入电阻约为100k Ω ,以反馈电阻作为负载时的电压放大倍数的数值 ≥ 100;✓ 闭环电压放大倍数为 10so sf -≈=U U A u 。

负反馈放大电路的实验报告

负反馈放大电路的实验报告

负反馈放大电路的实验报告负反馈放大电路的实验报告引言负反馈放大电路是电子工程领域中常见的一种电路结构,它通过将一部分输出信号反馈到输入端,以达到提高电路性能的目的。

本实验旨在通过搭建负反馈放大电路并进行实验验证,深入理解负反馈放大电路的原理和应用。

实验原理负反馈放大电路是通过将一部分输出信号反馈到输入端,形成一个反馈回路,从而改变电路的输入-输出关系。

其中最常见的一种负反馈方式是电压负反馈,它通过将输出电压与输入电压之间的差异进行放大,从而实现对电路增益的调节。

实验步骤1. 准备实验所需的电路元件和仪器设备,包括放大器、电阻、电容等。

2. 根据实验要求,搭建负反馈放大电路。

3. 连接信号源和示波器,确保电路正常工作。

4. 调节放大器的参数,如增益和带宽,观察输出信号的变化。

5. 测量并记录实验数据,包括输入信号的幅值、输出信号的幅值、增益等。

6. 对实验结果进行分析和总结,验证负反馈放大电路的性能。

实验结果与分析通过实验我们得到了一系列实验数据,并进行了分析和总结。

首先,我们观察到在负反馈放大电路中,输出信号的幅值相对于输入信号的幅值有所减小。

这是因为负反馈放大电路通过将一部分输出信号反馈到输入端,降低了电路的增益,从而实现了对信号的调节。

其次,我们还观察到在负反馈放大电路中,输出信号的频率响应更加平坦。

这是因为负反馈放大电路通过反馈回路,降低了电路的频率响应,使其更加稳定。

这对于一些需要稳定输出信号的应用场景非常重要。

此外,我们还发现负反馈放大电路可以提高电路的线性度。

通过调节反馈回路的参数,我们可以使输出信号更加接近输入信号,从而减小非线性失真。

这对于音频放大器等需要高保真度的应用非常重要。

结论通过本次实验,我们深入理解了负反馈放大电路的原理和应用。

负反馈放大电路通过将一部分输出信号反馈到输入端,实现了对电路增益、频率响应和线性度的调节。

这种电路结构在电子工程领域中具有广泛的应用,如音频放大器、运算放大器等。

负反馈放大电路实验报告

负反馈放大电路实验报告

负反馈放大电路实验报告一、实验目的。

本实验旨在通过搭建和测试负反馈放大电路,加深对负反馈原理的理解,掌握负反馈放大电路的基本特性和工作原理。

二、实验原理。

负反馈放大电路是在放大器的输出端和输入端之间加入反馈电路,使得输出信号的一部分反馈到输入端,从而抑制放大器的增益,降低失真,提高稳定性和线性度。

三、实验器材。

1. 信号发生器。

2. 示波器。

3. 电阻、电容。

4. 电压表。

5. 万用表。

6. 负反馈放大电路实验箱。

四、实验步骤。

1. 按照实验箱上的示意图连接负反馈放大电路。

2. 调节信号发生器的频率和幅度,观察输出端的波形变化,并用示波器观察输入输出波形的相位差。

3. 测量输入端和输出端的电压、电流,计算增益和带宽。

4. 调节反馈电路的参数,观察输出波形的变化。

五、实验结果与分析。

通过实验我们观察到,在负反馈放大电路中,输出波形的失真明显降低,相位差减小,增益稳定性提高。

当调节反馈电路的参数时,输出波形的变化也相对灵活,这说明负反馈放大电路具有较好的调节性能。

六、实验结论。

负反馈放大电路可以有效地降低失真,提高稳定性和线性度,是一种常用的放大电路结构。

掌握负反馈放大电路的基本特性和工作原理,对于电子工程技术人员来说具有重要的意义。

七、实验总结。

通过本次实验,我们深入了解了负反馈放大电路的工作原理和特性,并通过实际操作加深了对其的理解。

在今后的学习和工作中,我们将更加熟练地运用负反馈放大电路,为电子技术的发展贡献自己的力量。

八、参考文献。

1. 《电子技术基础》,XXX,XXX出版社,200X年。

2. 《电子电路设计与仿真》,XXX,XXX出版社,200X年。

以上为负反馈放大电路实验报告的内容,希望对大家有所帮助。

实验报告(负反馈电路)

实验报告(负反馈电路)

实验四负反馈放大电路一、实验目的1.研究负反馈对放大电路性能的影响。

2.掌握负反馈放大电路性能的测试方法。

二、实验仪器1.双踪示波器。

2.音频信号发生器。

3.数字万用表。

三、实验电路原理图 4.11.工作原理(电路的功能、电路中各个元器件的作用):1).电路的功能:该电路是电压串联负反馈电路。

除了可以放大电压之外, 当接入负反馈电路时, 还可以稳定放大倍数, 又由于该电路是电压串联负反馈电路, 可以增大输出电阻, 减小输入电阻。

同时拓宽通频带, 减小非线性失真。

2).电路中各个元器件的作用:两个三极管起放大作用;CF,Rf构成反馈电路;R3用以消除交越失真;四、实验内容及结果分析1.负反馈放大电路开环和闭环放大倍数的测试:表4.1R L(KΩ)V i(mV) V0(mV) A V(A vf)开环∞ 2 1840 9201.5k 2 616 308闭环∞ 2 59.2 29.61.5k 2 59.2 29.62.负反馈对失真的改善作用(1)将图4.1电路开环, 逐步加大Vi的幅度, 使输出信号出现失真(注意不要过份失真)记录失真波形幅度。

(2)将电路闭环, 观察输出情况, 并适当增加Vi幅度, 使输出幅度接近开环时失真波形幅度。

若RF=3K不变, 但RF接入1V1的基极。

3.测放大电路频率特性表4.2f H(Hz) f L(Hz)开环140HZ 1.2KHZ闭环 2.88MHZ 400HZ五、小结思考题1.分析电路的负反馈组态。

该电路是电压串联负反馈电路2.根据实验内容总结负反馈对放大电路的影响。

稳定放大倍数, 又由于该电路是电压串联负反馈电路, 可以增大输出电阻, 减小输入电阻。

同时拓宽通频带, 减小非线性失真。

负反馈放大电路实验报告

负反馈放大电路实验报告

负反馈放大电路实验报告3)闭环电压放大倍数为10so sf-≈=U U Au 。

(2)参考电路1)电压并联负反馈放大电路方框图如图1所示,R 模拟信号源的内阻;R f 为反馈电阻,取值为100 kΩ。

图1 电压并联负反馈放大电路方框图2)两级放大电路的参考电路如图2所示。

图中R g3选择910kΩ,R g1、R g2应大于100kΩ;C 1~C 3容量为10μF ,C e 容量为47μF 。

考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R f ,见图2,理由详见“五 附录-2”。

图2 两级放大电路实验时也可以采用其它电路形式构成两级放大电路。

3.3k Ω(3)实验方法与步骤1)两级放大电路的调试a. 电路图:(具体参数已标明)¸b. 静态工作点的调试实验方法:用数字万用表进行测量相应的静态工作点,基本的直流电路原理。

第一级电路:调整电阻参数, 4.2sR k≈Ω,使得静态工作点满足:I DQ约为2mA,U GDQ < - 4V。

记录并计算电路参数及静态工作点的相关数据(I DQ,U GSQ,U A,U S、U GDQ)。

实验中,静态工作点调整,实际4sR k=Ω第二级电路:通过调节R b2,240b R k ≈Ω,使得静态工作点满足:I CQ 约为2mA ,U CEQ = 2~3V 。

记录电路参数及静态工作点的相关数据(I CQ ,U CEQ )。

实验中,静态工作点调整,实际241b R k =Ωc. 动态参数的调试输入正弦信号U s ,幅度为10mV ,频率为10kHz ,测量并记录电路的电压放大倍数so11U U A u =、so U U Au=、输入电阻R i 和输出电阻R o 。

电压放大倍数:(直接用示波器测量输入输出电压幅值)o1UsUoU1u A输入电阻: 测试电路:¸开关闭合、打开,分别测输出电压1oV和2oV,代入表达式:2112oio oVR RV V=-输出电阻:测试电路:¸记录此时的输出:0.79V olV=1.57(1)=32.960.79o o L o V R R k V '=-⨯Ω=Ω(-1)k2)两级放大电路闭环测试在上述两级放大电路中,引入电压并联负反馈。

实验七-负反馈放大电路实验报告

实验七-负反馈放大电路实验报告

实验.七负反馈放大电路班级:自动化一班学号:15350027姓名:李振昌2016.11.30一、实验目的1. 加深对负反馈放大电路的认识。

2.加深理解放大电路中引入负反馈的方法。

3. 加深理解负反馈对放大电路各项性能指标的影响。

二、实验仪器及器件三、 实验原理图7-1为带有负反馈的两级阻容耦合放大电路。

图7-1 负反馈放大电路1、闭环电压增益iOV V V A =——基本放大器(无反馈)的电压增益,即开环电压增益。

1+A V F V ——反馈深度,它的大小决定了负反馈对放大电路性能改善的程度。

2、反馈系数 3、输入电阻 R if = (1+A V F V )R iR i ——基本放大器的输入电阻 4、输出电阻R o ——基本放大器的输出电阻A vo ——基本放大器∞=L R 时的电压增益图7-2四、 实验内容及实验步骤1、测量静态工作点按图7-1连接实验电路,取V CC =+12V ,V i 0,用直流电压表分别测量第一级、第二级的静态工作点,记入表7-1。

表7-12、测试基本放大电路的各项性能指标将实验电路图按图7-2改接开环状态,即把R f断开后分别并在R F1和R L上,其它连线不动。

1) 测量中频电压增益A V,输入电阻R i和输出电阻R o。

①以f=1KHz,V S约5mV正弦信号输入放大器,用示波器监视输出波形v o,在v o不失真的情况下,用交流毫伏表测量V S,V i,V L,记入表7-2。

表7-2②保持V S不变,断开负载电阻R L (注意,R f不要断开),测量空载时的输出电压V o,记入表7-2。

2)测量通频带接上R L,保持1)中的V S不变,然后增加和减小输入信号的频率,找出上、下限频率f H和f L,记入表7-3。

3、测试负反馈放大器的各项性能指标将实验电路恢复为图7-1的负反馈放大电路。

适当加大V S(约10mV),在输出波形不失真的条件下,测量负反馈放大器的A Vf、R if和R of,记入表7-2;测量f Hf和f Lf,记入表7-3。

负反馈放大电路实验报告

负反馈放大电路实验报告

模拟电路实验实验报告负反馈放大电路负反馈放大器一、实验目得K进一步了解负反愦放大器性能得影响。

2、进一步掌握放大器性能指标得测量方法。

实验设备1•示波器2・函数信号发生器3 •交流毫伏表4 •直流稳压电源一只5.万用表6.实验箱二、实验原理放大器中采用负反馈,在降低放大倍数得同时,可以使放大器得某些性能大大改善。

所谓负反馈,就就是以某种方式从输出端取出信号,再以一定方式加到输入回路中。

若所加入得信号极性与原输入倍号极性相反,则就是负反馈。

根据取岀信号极性与加入到输入回路得方式不同,反馈可分为四类:串联电压反馈、串联电流反馈、并联电圧反馈与并联电流反馈。

如图3 7所示。

从网络方框图来瞧,反馈得这四种分类使得基本放大网络与反馈网络得联接在输入、输从实际电路来瞧,反馈信号若直接加到输入端,就是并联反惯,否则就是串联反馈,反馈信号若直接取自输出电压,就是电压反馈,否则就是电流反馈。

1、负反馈时输入、输出阻抗得影响负反馈对输入、输出阻抗得影响比较复杂,不同得反馈形式,对阻抗得影响也不一样,一般而言■凡就是并联负反馈,其输入阻抗降低:凡就是串联负反馈,其输入阻抗升高;设主网络得输入电阻为Ri,则串联负反惯得输入电阻为R^={1+FA V)Ri设主网络得输入电阻为R。

,电压负反馈放大器得输出电阻为R O F可见,电压串联负反馈放大器得输入电阻增大(1+AvF)倍,而输出电阻则下降到V(l+AvF)2、负反馈放大倍数与稳定度负反馈使放大器得净输入信号有所减小,因而使放大器增益下降,但却改善了放大性能. 提髙了它得稳定性。

反惯放大倍数为A沪(Ay为开环放大倍数)反馈放大倍数稳崔度与无反馈放大器放大倍数稳定度有如下关系:式中Avf /Avf称负反馈放大器放大倍数得稳世度。

称无反馈时得放大器放大倍数得稳定度。

可见,负反惯放大器比无反馈放大器放大倍数提高了(1+ A V F)倍。

3、负反馈可扩展放大器得通频带。

4、负反馈可减小输出信号得非线性失真三.实验内容、步骤及结果:K调整静态工作点,按图3—2接线。

模电负反馈放大电路实验报告

模电负反馈放大电路实验报告

模电负反馈放大电路实验报告模拟电子技术作为电子学的重要分支,对于电子工程师的培养具有重要意义。

在模拟电子技术中,负反馈放大电路是一种常见且重要的电路。

本文将对负反馈放大电路进行实验报告,探讨其原理、实验过程以及实验结果。

一、实验目的负反馈放大电路是一种通过在放大器输出端与输入端之间引入负反馈电压,以改善放大器性能的电路。

本次实验的目的是通过搭建负反馈放大电路,了解其工作原理以及对电路性能的影响。

二、实验原理负反馈放大电路是通过将放大器输出信号与输入信号进行比较,并将差异信号进行反馈,从而抑制放大器的非线性失真、增加电路的稳定性和线性度。

在负反馈放大电路中,反馈网络的作用是将一部分输出信号引入到输入端,与输入信号相比较,产生差异信号进行反馈。

三、实验材料本次实验所需材料包括:运放、电阻、电容、示波器等。

四、实验步骤1. 按照实验电路图搭建负反馈放大电路,确保电路连接正确。

2. 将输入信号接入到放大器的非反相输入端,输出信号接入到示波器进行观测。

3. 调节电源电压,使其达到所需的工作电压。

4. 输入不同的信号幅值,观察输出信号的变化。

5. 测量输入信号幅值与输出信号幅值之间的关系,记录实验数据。

五、实验结果与分析通过实验观察和数据记录,我们可以得到输入信号幅值与输出信号幅值之间的关系曲线。

在负反馈放大电路中,输入信号经过放大后,输出信号的幅值相对于输入信号进行了衰减。

这是因为负反馈电路引入的反馈信号与输入信号相位相反,通过相位差的叠加,使得输出信号的幅值减小。

在实验中,我们还可以观察到负反馈放大电路对输入信号波形的改变。

通过引入反馈信号,负反馈放大电路可以抑制放大器的非线性失真,使得输出信号更加接近输入信号的波形。

这对于一些对波形要求较高的应用场景非常重要。

六、实验总结通过本次实验,我们对负反馈放大电路的原理、实验过程以及实验结果有了更深入的了解。

负反馈放大电路作为一种常见的电路结构,在电子工程中具有广泛的应用。

负反馈放大电路 实验报告

负反馈放大电路 实验报告

负反馈放大电路实验报告
本实验室使用的负反馈放大电路是LM741。

该IC可用于几乎所有的负反馈放大电路类型,从基本的非线性放大电路到模拟加法器,从积分电路到高电平门控放大器。

实验中使用一台型号为DS2202的示波器,并配备了实验适配器板及常见元器电路,
引入实验台。

同时,示波器上连接着实验板上的LM741电路。

实验运行电路图(忽略电源部分)可见下图:
实验的实质是测量LM741的功率放大特性,在实验之前我们应该熟悉LM741的模拟特性,也就是电路的元件如何产生多义性的电压变化特性。

实验中,数字三端口开关上调节振荡电压,改变输入信号,重复经过LM741的放大过程。

在实验过程中,同时观察和测量示波器上的输出Voltage Voltage电压波形。

操作完成后,由实验台上的数字表可看出,在实验中,示波器上的输出Voltage电压
可以随振荡电压的大小而发生变化,并能够通过增加调节电压去改变电路的功率放大系数,由此可以确定LM741的功率放大特性。

总而言之,本实验证明了LM741的功率放大特性,可以通过增加调节电压,改变电路
的功率放大系数,从而达到调节电路功率放大器的效果。

负反馈放大电路实验报告

负反馈放大电路实验报告

负反馈放大电路实验报告负反馈放大电路实验报告引言:负反馈放大电路是电子工程中常见的一种电路结构,通过引入负反馈,可以改善放大电路的性能,提高稳定性和线性度。

本实验旨在通过搭建负反馈放大电路并进行实际测量,验证其性能改善效果。

一、实验装置与原理本实验采用了基本的共射放大电路作为负反馈放大电路的实验对象。

该电路由三极管、电阻、电容等元件组成,其原理是通过负反馈将放大电路的输出信号与输入信号进行比较,并通过调节反馈电路的增益来实现性能的改善。

二、实验步骤1. 搭建电路:根据实验指导书上的电路图,依次连接三极管、电阻和电容等元件,确保电路连接正确无误。

2. 调整电路参数:通过调节电阻的值,使得电路的工作点达到最佳状态,以确保三极管能够正常工作。

3. 连接信号源:将信号源与输入端相连,确保输入信号正常输入。

4. 连接示波器:将示波器与输出端相连,以便观察输出信号的波形和幅度。

5. 测量输出信号:通过示波器观察输出信号的波形和幅度,并记录下相应的数值。

三、实验结果与分析在实验中,我们通过调节电阻的值,使得电路的工作点达到最佳状态。

在这个状态下,我们观察到输出信号的波形明显改善,失真减小,幅度更加稳定。

这说明负反馈放大电路能够有效地改善放大电路的性能。

此外,我们还通过改变输入信号的频率,观察输出信号的变化。

实验结果显示,随着频率的增加,输出信号的幅度有所下降,但波形仍然保持较好的线性度。

这说明负反馈放大电路对于不同频率的信号都能够进行有效放大,并保持较好的线性度。

四、实验总结通过本次实验,我们成功搭建了负反馈放大电路,并通过实际测量验证了其性能改善效果。

负反馈放大电路能够有效地改善放大电路的线性度和稳定性,使得输出信号更加稳定、准确。

在实际应用中,负反馈放大电路被广泛应用于音频放大器、功放等电子设备中,以提高音质和信号质量。

然而,负反馈放大电路也存在一些限制,如增加了电路的复杂性、引入了噪声等。

因此,在实际设计中需要综合考虑各种因素,选择合适的负反馈放大电路结构以及合适的参数。

模电负反馈放大电路实验报告

模电负反馈放大电路实验报告

模电负反馈放大电路实验报告实验目的:为了深入理解负反馈放大电路的工作原理,通过实验掌握负反馈参数的计算方法以及负反馈放大电路的设计方法。

实验器材:集成电路LM741、电阻、电容、连线板等。

实验原理:在模拟电路中,负反馈放大器是一个重要的电路,在放大器的应用中具有极其广泛的应用。

本实验主要是通过实验学习负反馈放大电路的基本工作原理、参数的计算方法以及负反馈放大电路的设计方法。

实验步骤:1. 连接集成电路LM741和电路板上的电阻、电容。

按照连线图连接后注意检查是否正确连接。

2. 确认电压源为±15V,开机。

3. 利用函数发生器向输入端输入一定的正弦波作为输入信号,检测输出波形。

4. 检测输出波形的包络线,进行测量,计算增益。

5. 对电路进行负反馈处理,调整反馈电阻大小,通过计算得到反馈放大器的增益。

6. 比较带负反馈和不带负反馈的放大电路增益、输入电阻、输出电阻,分析和总结。

实验结果:在本实验中,我们应用了直接放大、电压跟随、电流跟随以及反相等多种负反馈放大电路。

通过实验,我们得到了一些基本的结果:1. 利用实验得到的数据计算增益,在不同的工作环境下,增益数值的大小也是不同的。

2. 对比不同的负反馈放大电路可见,带负反馈的电路系统具有较高的稳定性和抗干扰能力,同时其输出电阻和输入电阻大大提高,符合实际应用的需求。

3. 在电压跟随式负反馈放大电路中,反馈电阻Rf和输入电阻Rin之比即是增益倍数。

4. 在电流跟随式负反馈放大电路中,反馈电阻Rf可以影响输出电流变化,而输入电阻Rin对于电路操作几乎没有影响。

5. 在反向式负反馈放大电路中,反馈电压为反向反馈,具有削弱输出电压对于输入电压反应的效果。

实验结论:通过本实验,我们深入学习了负反馈放大电路的原理和设计方法,掌握了负反馈参数的计算方法以及负反馈放大电路的基本工作原理。

我们还了解到不同负反馈放大电路的优缺点,为今后实际应用提供了理论依据。

负反馈放大电路实验报告

负反馈放大电路实验报告

负反馈放大电路实验报告班级姓名学号一、实验目的1.了解N沟道结型场效应管的特性和工作原理。

2.熟悉两级放大电路的设计和调试方法。

3.理解负反馈对放大电路性能的影响。

4.学习使用M ultisim分析、测量负反馈放大电路的方法。

二、实验内容(一)必做内容设计和实现一个由共漏放大电路和共射放大电路组成的两级电压并联负反馈放大电路。

1. 测试N沟道结型场效应管2N5486 的特性曲线(只做仿真测试)在Multisim设计环境下搭接结型场效应管特性曲线测试电路,利用“直流扫描分析(DC Sweep Analysis)”得到场效应管的输出特性和转移特性曲线。

测出I DSS和使i D等于某一很小电流(如5μA)时的u GS(off)。

2N5486 的主要参数见附录。

2. 两级放大电路静态和动态参数要求(1)放大电路的静态电流I DQ和I CQ均约为2mA;结型场效应管的管压降U GDQ < - 4V,晶体管的管压降U CEQ = 2~3V。

(2)开环时,两级放大电路的输入电阻R i要大于90kΩ;以反馈电阻作为负载时的电压放大倍数A u≥120。

(3)闭环时,电压放大倍数A usf = U O/U S≈ -10。

3.参考电路(1)电压并联负反馈放大电路方框图如图1所示,R模拟信号源的内阻;R f为反馈电阻。

(2)两级放大电路的参考电路如图2所示。

R g1、R g2取值应大于100kΩ。

考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入和输出端分别并联反馈电阻R f,理由详见附录。

4.实验方法与步骤(1)两级放大电路的测试(a)调整放大电路静态工作点第一级电路:设计与调节电阻R g1、R g2、R s参数,使I DQ约为2mA、U GDQ < - 4V,记录U GSQ、U A、U S、U GDQ。

第二级电路:调节R b2,使I CQ约为2mA,U CEQ = 2~3V。

记录U CEQ。

(b)测试放大电路的主要性能指标输入信号的有效值U s ≈ 5mV,频率f 为10kHz,测量A u1=U O1/U S、A u=U O/U S、R i、R o和幅频特性。

负反馈电路实验报告

负反馈电路实验报告

实验六负反馈放大电路一、实验要求(1)建立负反馈放大电路;(2)分析负反馈放大电路的性能。

3.实验内容过程及数据分析(1)建立如图6-1所示的电压串联负反馈放大电路。

晶体管为QNL,用信号发生器产生频率为lkHz、幅值为5mV的正弦交流小信号作为输入信号。

示波器分别接到输入端和输出端观察波形。

根据电路图,两级电压串联负反馈放大电路。

负反馈虽然使放大电路的增益下降,但是能改善放大电路的性能。

比如说,能够提高电路放大倍数的稳定性、能够扩展通频带等。

如果负反馈放大电路属于深度负反馈,则放大电路闭环放大倍数等于反馈系数的倒数。

如果电路满足深度负反馈条件,闭环电压放大倍数为11e f V R R A +=(2)打开仿真开关,双击示波器,进行适当调节后,观察输入波形和输出波形。

测量输入波形和输出波形的幅值,计算电路闭环电压放大倍数并与理论计算值相比较。

计算值:11e fV R R A +==1+10000/100=101实验值:A=vout/vin=476.469/4.998=95.332实验误差:w=Av-A/Av(3)对于电路反馈电阻Rf 进行参数扫描分析,以观察反馈电阻变化对闭环增益及通频带的影响。

具体步骤是:选择Analysis /ParameterSweep 命令,弹出ParameterSweep 对话框,选取扫描元件为Rf (即图中的R6)、扫描起始值为5k ,扫描终止值为20k 、扫描型态为Linear 、步进值为5k 、输出节点为3,再选择暂态分析或AC 频率分析,然后单击Simulate 按钮进行分析。

三、实验总结由实验数据分析知(2)对于电路反馈电阻Rf进行参数扫描分析结果,并分析结果。

负反馈实验报告负反馈放大器实验报告

负反馈实验报告负反馈放大器实验报告

负反馈实验报告负反馈放大器实验报告实验四负反馈放大电路一、实验目的(1)加深理解负反馈对放大电路各性能参数的影响(2)掌握反馈放大电路性能指标的测试方法二、实验仪器双综示波器、信号发生器、3位半数字万用表、AC毫伏表,直流电源三、实验内容及步骤1、按图搭接电路,连接开环原理实验线路,即不接反馈电容C6和电阻Rf线路。

接线应尽可能短,接通+12直流工作电源。

电路图:2、调整静态工作点①阻容耦合多级放大器各级的静态工作点相互独立,互不影响。

所以静态工作点的调整与测量与实验三一样。

先将RP2调到最小或者1KΩ左右,然后调节RP1使Uce1约为5~6V,再调RP2使Uce2约为6~7V。

断开第一级晶体管的连线,串入数字多用表(电流档)测量IC1,断开第二级电极连线,测量IC2,将测量结果填入下表中②输入端US加入1KHz幅度100~300mV的交流信号。

微调电位器RP1和RP2,用示波器两个通道同时观察UO1和UO2输出波形,使UO1不失真,UO2输出波形为最大不失真。

将数据填入下表中。

仿真后的波形图:3、负反馈放大器开环和闭环放大倍数的测试(1)开环电路,把以上调好的数据Ui、UO1和U02用交流毫伏表进行测量,读书填入表4-3中,根据社测值计算开环放大倍数和输第一文库网出电阻R0。

(2)闭环电路①按图接通Rf,调整Rf按要求调整电路。

②调节Rf=3KΩ,按要求测量并填表,计算AUf和输出电阻RO改变Rf的大小,重复上述实验。

③④根据实测结果,验证AUf≈1÷F。

讨论负反馈电路的带负载能力。

仿真图表5-34、观察负反馈对非线性失真的改善作用①将图5-1电路中的RF 断开,形成开环,调节信号源的输出幅值,逐步加大Ui,示波器观察放大电路的输出信号波形,使出现适当失真为之(注意失真不要过大),记录此时的输入信号幅值。

Ui=3.697mV ②再将电路中的RF接上,有形成闭环,观察示波器中输出信号波形的变化,并适当的继续加大输入信号幅值Ui,使放大电路输出信号接近开环时输出失真的程度,在记录此时输入信号的幅值,并和步骤①开环进行比较,是否验证了负反馈改善了电路的失真。

负反馈放大电路的设计与仿真实验报告

负反馈放大电路的设计与仿真实验报告

负反馈放大电路的设计与仿真实验报告一.实验报告1.掌握两种耦合方式的多级放大电路的静态工作点的调试方法。

2.掌握多级放大电路的电压放大倍数, 输入电阻, 输出电阻的测试方法。

3.掌握负反馈对放大电路动态参数的影响。

二.实验原理三.实际放大电路由多级组成, 构成多级放大电路。

多级放大电路级联而成时, 会互相产生影响。

故需要逐级调整, 使其发挥发挥放大功能。

四.实验步骤1.两级阻容耦合放大电路(无反馈)两级阻容耦合放大电路图(1)测输入电阻及放大倍数由图可得输入电流Ii=107.323nA输入电压Ui=1mA输出电压Uo=107.306mV.则由输入电阻Ri=Ui/Ii=9.318kOhm.放大倍数Au=Uo/Ui=107.306(2)测输出电阻输出电阻测试电路由图可得输出电流Io=330.635nA.则输出电阻Ro=Uo/Io=3.024kOhm.(3)频率响应幅频响应与相频响应由左图可知当放大倍数下降到中频的0.707倍对应的频率为上限频率或下限频率。

由下表可知, 中频对应的放大倍数是601.1943则上限频率或下限频率对应的放大倍数应为425.044左右。

故下限频率为f L=50.6330kHZ上限频率为f H=489.3901kHZ则频带宽度为438.7517kHZ(4)非线性失真当输入为10mA时开始出现明显失真, 输出波形如下图所示2.有串联电压负反馈的两级阻容耦合放大电路有串联电压负反馈的两级阻容耦合放大电路图(1)测输入电阻及放大倍数由图可得输入电流Ii=91.581nA.输入电压Ui=1mA.输出电压Uo=61.125mV. 则由输入电阻Ri=Ui/Ii=10.919kOhm.放大倍数Au=Uo/Ui=61.125(2)测输出电阻由图可得输出电流Io=1.636uA.则输出电阻Ro=Uo/Io=611.247Ohm(3)频率响应幅频相应与相频相应由图可知当放大倍数下降到中频的0.707倍对应的频率为上限频率或下限频率。

模电负反馈放大电路实验报告

模电负反馈放大电路实验报告

模电负反馈放大电路实验报告模电负反馈放大电路实验报告引言模拟电子技术是电子工程学科中的重要组成部分,而负反馈放大电路是模拟电子技术中的重要内容之一。

负反馈放大电路具有稳定性好、增益可控等优点,在实际应用中得到广泛应用。

本实验旨在通过搭建负反馈放大电路并进行实验验证,深入了解负反馈放大电路的原理和特性。

实验目的1. 了解负反馈放大电路的基本原理;2. 掌握搭建负反馈放大电路的方法;3. 研究负反馈放大电路的特性,如增益、频率响应等。

实验原理负反馈放大电路是通过将放大电路的一部分输出信号反馈到输入端,以减小放大电路的非线性失真、提高频率响应和稳定性。

常见的负反馈电路有电压串联负反馈、电流串联负反馈和电压并联负反馈等。

实验步骤1. 搭建基本的负反馈放大电路,包括放大器、反馈电阻等元件;2. 连接信号源和示波器,调节信号源的频率和幅度;3. 测量输入电压、输出电压以及反馈电压,计算电压增益和反馈系数;4. 根据测量结果,绘制电压增益和频率响应曲线。

实验结果与分析通过实验测量,我们得到了负反馈放大电路的输入电压、输出电压以及反馈电压的数据。

根据这些数据,我们可以计算出电压增益和反馈系数,并绘制出相应的曲线。

首先,我们观察到随着输入信号的增加,输出信号也随之增加,但增加的幅度较小。

这是因为负反馈电路通过反馈电阻将一部分输出信号反馈到输入端,减小了放大电路的增益,从而实现了对输出信号的控制。

其次,我们可以通过计算得到电压增益和反馈系数的数值。

电压增益可以通过输出电压除以输入电压得到,而反馈系数可以通过反馈电压除以输出电压得到。

通过观察计算结果,我们可以发现电压增益随着频率的增加而减小,而反馈系数则相反。

这说明负反馈放大电路对不同频率的信号有不同的响应特性。

最后,我们绘制了电压增益和频率响应曲线。

从曲线上可以清晰地看出电压增益随着频率的增加而减小的趋势,而反馈系数则随着频率的增加而增大。

这与我们的实验结果相符,进一步验证了负反馈放大电路的特性。

模电实验报告负反馈放大电路

模电实验报告负反馈放大电路

模电实验报告负反馈放⼤电路实验三负反馈放⼤电路⼀、实验⽬的1、研究负反馈对放⼤器放⼤倍数的影响。

2、了解负反馈对放⼤器通频带和⾮线性失真的改善。

3、进⼀步掌握多级放⼤电路静态⼯作点的调试⽅法。

⼆、实验仪器1、双踪⽰波器2、信号发⽣器3、万⽤表三、预习要求1、认真阅读实验内容要求,估计待测量内容的变化趋势。

2、图3-1电路中晶体管β值为120.计算该放⼤器开环和闭环电压放⼤倍数。

3、放⼤器频率特性测量⽅法。

说明:计算开环电压放⼤倍数时,要考虑反馈⽹络对放⼤器的负载效应。

对于第⼀级电路,该负载效应相当于C F、R F与1R6并联,由于1R6≤Rf,所以C F、R F 的作⽤可以略去。

对于第⼆季电路,该负载效应相当于C F、R F与1R6串联后作⽤在输出端,由于1R6≤Rf,所以近似看成第⼆级内部负载C F、R F。

4、在图3-1电路中,计算级间反馈系数F。

四、实验内容1、连接实验线路如图3-1所⽰,将线连好。

放⼤电路输出端接Rp4,1C6(后⾯称为R F)两端,构成负反馈电路。

2、调整静态⼯作点⽅法同实验⼆。

将实验数据填⼊表3-1中。

表3-13、负反馈放⼤器开环和闭环放⼤倍数的测试(1)开环电路○1按图接线,R F先不接⼊。

○2输⼊端接如Ui=1mV,f=1kHZ的正弦波。

调整接线和参数使输出不是真且⽆震荡。

○3按表3-2要求进⾏测量并填表。

○4根据实测值计算开环放⼤倍数和输出电阻R0。

(2)闭环电路○1接通R F,按(1)的要求调整电路。

○2调节Rp4=3KΩ,按表3-2要求测量并填表,计算A uf和输出电阻R0。

○3改变Rp4⼤⼩,重复上述实验步骤。

○4根据实测值验证A uf≈1/F。

讨论负反馈电路的带负载能⼒。

表3-2由LOLOORUUR?-=)1(计算有:开环:Ro=5.586 KΩ。

闭环:Ro=0.629 KΩ。

4、观察负反馈对⾮线性失真的改善(1)将图3-1电路中的R F断开,形成开环,逐步加⼤Ui的幅度,使输出信号出现失真(注意不要过分失真)记录失真波形幅度及此事的出⼊信号值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

负反馈放大电路报告
09电信3班
组员:36 陈伟 38 黄淀钧 57 张德卿
指导老师:王海峰
课程实训内容:
1、熟悉常用电子测量仪表
(1)直流稳压电源、信号发生器
(2)万用表、示波器、交流毫伏表
(3)频谱分析仪
2、以两个典型电路作为载体,锻炼电路调试技巧
3、实验要求与目的:
(1)构建负反馈放大器,掌握电路引入负反馈的方法。

(2)研究负反馈对放大电路性能的影响。

原理图:
图(1)
4、实验电路:
观察负反馈对非线性失真的改善。

当按space键断开J1,不接负反馈,打开仿真开关,用示波器观察输入输出信号波形,如图(2)所示,由图可见输出波形出现严重失真。

当按space键闭合J1,引入负反馈,打开仿真开关,观察到的输入输出的波形如图(3)所示,由图可见非线性失真有明显的改善。

图(2)
负反馈放大电路
上图为无负反馈电路输入、输出波形图(3)无反馈时的放大倍数:
Au=Uo/Ui=384.8mV/1.1mV=350
上图为引入负反馈电路输入、输出(图707)
有反馈时的放大倍数:
Au=Uo/Ui=2.4V/40mV=60
无反馈上下截止频率析图: BW=f2-f1=23.396M-93Hz=23.39MHz
有反馈上下截止频率析图:
BW=f2-f1=158.489M-112Hz=158.48MHz
无反馈电路波特频谱分析图:
5实验应用元件清单:
名称大小数量
电阻51K1
电阻20K3
电阻10K1
电阻8.2K1
电阻3K1
电阻2K1
电阻1K2
电阻0.1K2
可调电阻100K1
电容10uF/33uF5/1
报告心得,
我们小组在做的过程中,也遇到一些问题,刚做的时候,我们用显波器去测两级放大电路,但输出的倍数很小,首先,我们怀疑是电路有问题,因此,我们就按着原电路图去查看,哪会出错了,最后,我们查出来了,就是一级的偶合电容接反了,而导致出现的问题,再经过示波器的检测,输出的放大倍数正常了,于是,我们就得到了以上的那些数据,,在这次实训中,我们也学到了许多东西,,在以后做更多的电路中,我们就更有经验了。

Au=Uo/Ui=1.35V/25mV=54
Uc=8.07V Ub=2.74V Ue=2.12V f2=1.51MHz f1=190.8Hz
25mV 1.37V 10.3KHz
25mV 1.15V 1.05MHz
25mV 1.30V 197.5KHz
25mV 1.36V 19KHz
25mV 968mV 197Hz
25mV 13.5V 1.9KHz
25mV 1.31V 185KHz。

相关文档
最新文档