高等代数北大版教案-第5章二次型

合集下载

北京大学出版社-5

北京大学出版社-5
其中 1 , 2 , , n是 f 旳矩阵 A a ij 旳特征值 .
用正交变换化二次型为原则形旳详细环节
1. 将二次型表成矩阵形式 f xT Ax,求出A;
2. 求出A的所有特征值1 ,2 ,,n; 3. 求出对应于特征值的特 征向量1 ,2 ,,n;
4. 将特征向量1 , 2 ,,n正交化,单位化,得
记C=PK,即知可逆变换x=Cz,把二次型变成规范二次型。
f (Cz)
1 1
z12
r r
zr2
将二次型化为规范形旳环节
(1)先经过正交变换P将二次型化为原则形。
(2)再取可逆阵K,即可求得将二次型化为规范二次型旳可逆变换 阵C=PK
k1
k
0
0
,
ki
1
i ,
ir
k
n
1,i>r
例3 将二次型
第五章 相同矩阵及二次型
§5 二次型及其原则型
二次型及其原则形旳概念:矩阵对角化应用
定义 1 具有 n个变量 x1 , x2 , , xn旳二次齐次函数
f x1 , x2 ,, xn a11 x12 a22 x22 ann xn2
2a12 x1 x2 2a13 x1 x3 2an1,n xn1 xn 称为二次型.
x1(a11x1 a12 x2
x2 (a21x1 a22 x2
a1n xn )
a2n xn )
a11
a21
a12 a22
a1n
a2n
xn (an1x1 an2 x2
ann xn )
an1
an2
ann
x1, x2,
a11x1 a12 x2
, xn

高等代数课件(北大版)第五章二次型§5.4

高等代数课件(北大版)第五章二次型§5.4

从而 A CC C 2 0.
注意
反之不然. 即实对称矩阵A,且 A 0, A未必正定.

A
1 0
0 1
,
A 10
但X AX x12 x22不是正定二次型.
2020/9/20§5. 4 正定二次型
4、顺序主子式、主子式 、
设矩阵 A (aij ) Rnn
a11 1) A(1,2, ,k)
因此有 X (kA)X kX AX 0. 故,kA正定.
2020/9/20§5. 4 正定二次型
(3)A正定,则存在可逆矩阵C,使 A CC ,于是 A CC C 2 0
又A* A A,1 由(1)(2)即得 A* 正定.
(4)由于 A 正定,知 Am为 n 阶可逆对称矩阵 , 当 m=2k 时, Am A2k Ak Ak ( Ak )EAk , 即,Am 与单位矩阵E合同,所以 Am正定.
一组不全为零的实数 c1,c2 , ,cn 都有
f (c1,c2 , ,cn ) 0
则称f 为正定二次型.
n
如,二次型 f ( x1, x2, , xn ) xi2 是正定的;
i 1 n1
f ( x1, x2, , xn ) xi2
i 1
2020/9/20§5. 4 正定二次型
2、正定性的判定
2 1
解: f ( x1, x2 ,
, xn )的矩阵
A
2
1
2
1
1
1
2 2
A的第k阶顺序主子式Pk
2020/9/20§5. 4 正定二次型
11
1
11 1
2 1 Pk 2 1
2 1 2
1 k1 2
2

高等代数课件(北大版)第五章二次型§5.2

高等代数课件(北大版)第五章二次型§5.2

2020/9/20§5.2 标准形
数学与计算科学学院再令Fra bibliotekz1 z2
y1 y2
y3

y1 y2
z1 z2
z3
z3 y3
y3 z3
即,
y1 1
y2 y3
0 0
0 1 0
1 z1
0 1
z2 z3
则 f ( x1, x2 , , xn ) 2z12 2z22 2z32 8z2z3
1 0
1 0
0 1
2 0 2 情形1)
2020/9/20§5.2
0 2 标2准形4
04 数学与计算科学学院
1 0 1

C2
0 0
1 0
0 1
,
1 0 0 2 0 2 1 0 1
A2
C2 A1C2
0 1
1 0
0 1
0 2
2 4
4 0
0 0
1 0
0 1
2 0 0
0 0
2 4
4 2
情形1)
1 0 0
2020/9/20§5.2 标准形
数学与计算科学学院
二、合同的变换法
1. 定义:合同变换是指下列三种变换
(1)互换矩阵的 i, j 两行,再互 换矩阵的 i, j 两列; i (2)以数 k(k 0 ) 乘矩阵的第 i 行;再以数 k 乘
z3
c32
y2
c33
y3
zn
cn2 y2
cn3 y3
c2n yn c3n yn cnn yn
使它变成平方和 d2z22 d3z32
dnzn2
于是,非退化线性替换
z1 y1

教案--第五章二次型

教案--第五章二次型
定理6秩为 的 元实二次型 ,设其规范形为

(1) 负定的充分必要条件是 且 (即负定二次型,其规范形为 )
(2) 半正定的充分必要条件是 (即半正定二次型的规范形为 )
(3) 半负定的充分必要条件是 (即 )
(4) 不定的充分必要条件是 (即 )
定义2 阶矩阵 的 个行标和列标相同的子式
称为 的一个 阶主子式.而子式
作业与
课外训练
P1423
课外阅读
资料或自主学习体系安排
1.《经济应用数学基础》编写组编,线性代数与线性规划学习指导,同心出版社,1995
2.张天德,线性代数习题精选精解,山东科学技术出版社,2009
3./special/opencourse/daishu.html,麻省理工公开课:线性代数
提问:实二次型f(x1,x2,…,xn)为正定的定义是什么?
作业与
课外训练
1.设二次型 试确定当 取何值时, 为正定二次型.
2.判别二次型 是否正定.
课外阅读资料或自主学习体系安排
1.《经济应用数学基础》编写组编,线性代数与线性规划学习指导,同心出版社,1995
2.张天德,线性代数习题精选精解,山东科学技术出版社,2009
把方程化为标准形式
.
这类问题具有普遍性,在许多理论问题和实际问题中常会遇到,本章将把这类问题一般化,讨论 个变量的二次多项式的化简问题.
内容要点
一、二次型的概念
定义1含有 个变量 的二次齐次函数
称为二次型.当 为复数时, 称为复二次型;当 为实数时, 称为实二次型.在本章中只讨论实二次型.
二、二次型的矩阵
与难点
正定二次型的判断方法
教学方式、方法与手段
讲授与练习相结合、板书与多媒体相结合教学基Βιβλιοθήκη 内容及过程内容要点

(完整word版)最新高等代数北大版教案-第5章二次型

(完整word版)最新高等代数北大版教案-第5章二次型

第五章二次型§ 1二次型的矩阵表示授课内§ 1二次型的矩阵表示二 教学目的:通过本节的学习,掌握二次型的定义,矩阵表示,线性 替换和矩阵的合同.三教学重点:矩阵表示二次型四教学难点:二次型在非退化下的线性替换下的变化情况• 五教学过程:定义:设P 是一数域,一个系数在数域P 中的x 1,x 2, ,x n 的二次齐次多项式称为数域P 上的一个n 元二次型,或者,简称为 二次型.例如: 2X1NX 2 3X 1X 3 2x 2 4X 2X 3 3X3就是有理数域上的一个3元二次型.定义1 设 X 1,X 2,x n, y 1, y 2,,y n 是两组文字,系数在数域P 中的一组关系式X1C 11 y 1 C 12 y 2Gn*X2C 21 y 1 C 22 y 2C 2n y n⑷XnC n1 y 1C n2 y 2C nn y n称为X 1,X 2 ,,X n到y 1,y 2, ,yn的一个线性替换,或则,简称为线性替换.如果系数行列式C j 0,那么线性替换 ⑷ 就称为非退化的. 二次型的矩阵表示:f(X i ,X ,\ 2,Xn ) ai1X1 2a 12x 1x 22a 1n x 1x2 822X22a 2n X 2X n2a nn X n令 a ij a ji ,i j 由于 x i x j x j x i ,那么二次型(3) 就可以写为A A.我们把这样的矩阵称为对称矩阵,因此,二次型 (5) 的矩阵都是对称的 .x 1x 2 2, 于是,二次型可以用矩阵的乘积表示出来,x na 11 a 12 a 1n x 1 X AXx 1 x 2a 21 a 22a 2nx 2x na n1a n2a nn x na 11x 1 a 12 x 2a 1n x na 21x 1 a 22x 2 a 2n x nx 1 x 2x na n1x 1 a n2x 2a nn x nnna 21x 2x 1 f (x 1,x 2,a 22 x 22,x n )a 11x 1a 2n x 2x n a 12x 1x 2a 1n x 1 x n…+an1X n X1a n2x n x 2a nn x nna ij x i x j(5)j1把 (5) 的系数排成一个n 矩阵a 11 a 21 a 12 a 22a 1n a 2na n1 a n2a nn 它称为二次型(5)的矩阵.因为a jija ji, i,j1,2, ,n ,所以a ij x i x j.i 1 j 1f(x1,x2, ,x n) X AX .显然,二次型和它的矩阵是相互唯一决定的. 由此还能得到,若二次型f(x1,x2,,x n)X AX X BX且 A A,BB,则, A B线性替换的矩阵表示c11 c12c1n y1令C c21 c22c2n2n, Y y2,J那么,线性替换(4) 可以写成,c n1 c n2c nn y nx1 c11c12c1n y1x2 c21c22c2n y2x n c n1c n2c nn y n或者X CY.显然,一个非退化的线性替换把二次型还是变成二次型,现在就来看一下替换后的二次型与原二次型之间有什么关系.设f(x1,x2, ,x n) XAX , A A,(7)是一个二次型,作非退化的线性替换X CY (8)得到一个y i, y2, , y n的二次型Y BY .现在来看矩阵B与矩阵A的关系把(8) 代入(7) 有f(x1,x2, ,x n) XAX (CY)A(CY) YCACY Y(CAC)Y YBY.容易看出,矩阵CAC也是对称的,事实上,(CAC) C AC C AC.由此,即得B CAC.定义2数域P上n n矩阵代B称为合同的,如果有数域P上可逆的n n矩阵C,使B CAC.合同是矩阵之间的一个关系,不难看出,合同关系具有(1) 反身性A EAE.(2) 对称性由B C AC ,即得A (C 1) B(C 1).(3) 传递性由A1 C1 AC1,A2 C2 A1C2 ,即得A2 (C1C2) A(C1C2). 因之,经过非退化的线性替换,替换后的二次型的矩阵与原二次型矩阵是合同的.§ 2 标准形一授课内容:§ 2 标准形二教学目的:通过定理的证明掌握二次型化为标准形的配方法.三教学重点:化普通的二次型为标准形.四教学难点:化普通的二次形为标准形的相应矩阵表示.五教学过程:I 导入可以认为,在二次型中最简单的一种是只含有平方项的二次型2 2 2d1x12d2x22d n x n2(1)II 讲授新课定理 1 二次型都可以经过非退化的线性替换变为平方和(1) 的形式. 不难看出,二次型(1) 的.d100X1d20X22 2 2 0d1X1 d2X2 d n X n= X1 X2 X n00d n X n 反过来,矩阵是对角形的二次型就只含有平方项定理2 在数域P 上,任意一个对称矩阵都合同于一对角矩阵. 定义二次型f (x1,x2, , x n )经过非退化的线性替换所变成的平方和称为f (x1,x2, ,X n)的一个标准形.f (x 1,x 2,x 3)而这几次线性替换的结果相当于作一个总的线性替换,X 1 1 1 0 1 0 1 1 0 0w 11 13w 1X 21 1 0 0 1 0 0 12 w 2 0 1 1 w2 X 30 0 1 0 0 1 0 0 1 w 30 0 1 w 3用矩阵的方法来解例 化二次型 为标准形 . 0 1 1解:fdvX z ’X s )的矩阵为A 10 313 0f (X 1,X 2,X 3)2X 1X 2 6X 2X 3 2X 1X 3为标准形 .解: 作非退化的线性替换X 1y 1 y 2X 2y 1 y 2X 3y则 f(X 1,X 2,X 3) 2(y 1 y 2)(y 1 y 2 ) 6(y 1 y 2)y 3 2(y 1 y 2)y 3 2y 122y 224y 1 y 3 8y 2y 3 2(y1y 3)22y 322y 228y 2y 3z 1 y 1y 3y 1z 1z 3再令z 2 y 2 或y 2 z 2z 3y 3y 3z 3则 f (X 1,X 2 ,X 3) 2z 122z 228z 2 z 32z 322z 122(z 2 2z 3)26z 32.w 1z 11 w 1最后令w 2 z 22z 3 或 z 2 w 2 2w 3例 化二次型w3 z 3z 3 w 3 2w 122w 226w 32是平方和,f (x 1,x 2,x 3)2x 1x 2 6x 2x 32x 1x 3110100C C 1C 2C 3001就有200C AC 02 0006作非退化的线性替换X CY 即得f(x 1,x 2,x 3) 2y 122y 226y 32.取 C 1 11 0 ,则 A 1 C 1 AC 11 1 0 0 1 11 10 11 0 1 031 10 0 01 1300011 0 1再取 C 2 0 1 0, 则 A 2C 2 A 1C 20 0 1101 2 4 0 0 0 1100再取 C 3 0 1 2 ,则 A 300110 01 02A 是对角矩阵,因此令0 2 0 0 1 0 0 0 0 2 4 0 1 21 04 20 0 1012 0011 0 02 0 2 1 0 1C 3A 2C 3§ 3 唯一性一授课内容:§ 3唯一性二教学目的:通过本节的学习,让学生掌握复二次型,实二次型的规范形,正(负)惯性指数,符号差•三教学重点:复二次型,实二次型的规范形的区别及唯一性的区别四教学难点:实二次型的唯一性五教学过程:在一个二次型的标准形中,系数不为零的平方项个数是唯一确定的,与所作的非退化的线性替换无关•二次型的矩阵的秩有时候就称为二次型的秩.至于标准形的系数就不是唯一的•例二次型 f (X i, X2, X3)2X1X26X2X3 2 X1X3经过非退化的线性替换X i113w1X 2011w2X3001W3得到标准形2w:2w;6W3.而经过非退化的线性替换111X i2y1111X——y223X1y3003就得到另一个标准形约222y22 2 尹这就说明,在一般的数域内,二次型的标准形不是唯一的,而与所作的非退化的线性替换有关下面只就复数域与实数域的情形来进一步讨论唯一性的问题 .对于复数域的情形设f(X i ,X 2, ,X n )是一个复系数的二次型,则经过一个适当的非退化 的线性替换后,f ( X 1, X 2 , ,X n )变为标准形,不妨设标准形为2 2d i y id 2『2d r Y r 2,d i0,i 1,2, ,r(易知,r 就是f (X i , X 2, ,X n )的矩阵的秩.‘因为复数总可以开平方,们再作一非退化的线性替换y i1「d 1z1Y r1 —drZr(2)y r 1Z r 1Y nZ n(1)就变为2Z12 Z2Z ; ⑶⑶称为复二次型f(X 1,X 2, ,Xn )的规范形 .显然,规范形完全被原二次型的矩阵的秩所决定.定理3任意一个复系数的二次型,经过一个适当的非退化的线性替 换可以变为规范形,规范形是唯一的•定理3换个说法就是,任意一个复的对称矩阵合同于一个形式为1的对角矩阵•从而有,两个复对称矩阵合同的充分必要条件是它们的秩相对于实数域的情形设f(X i,X2, ,X n)是一个实系数的二次型,则经过一个适当的非退化的线性替换,再适当排列文字的次序,可使f(%,X2,,X n)变为标准形,dy2d p y:d pi y:i d「y;⑷d i 0 i 1,2, ,r ,r就是f(x「X2, x)的矩阵的秩•因为在实数域中,正实数总可以开平方,所以,再作一非退化的线性替换y ii --------- z i d iy ri—d「(5) y r i Z r iy n Z n(4)就变为2Z i 2 2Z p Z p2i Z r⑹⑹称为实二次型f(X i,X2, ,X n)的规范形•显然,规范形完全被r, p 这两个数所决定•定理4(惯性定理)任意一个实数域上的二次型,经过一个适当的非退化的线性替换可以变为规范形,规范形是唯一的.定义3在实二次型f(X i,X2, ,X n)的规范形中,正平方项的个数p称为f (X i,X2,,X n)的正惯性指数,负平方项的个数r p称为f (X i ,X2, , X n)的负惯性指数,它们的差p (r p) 2 p r称为f ( X i ,X2 , , X n)的符号差.惯性定理也可以叙述为,实二次型的标准形中系数为正的平方项个数是唯一的,它等于正惯性指数,而系数为负的平方项个数也是唯一的,它等于负惯性指数•§ 4 正定二次型一 授课内容: § 4 正定二次型二 教学目的: 通过本节的学习,让学生掌握正定 ( 负定,半正定,半负 定,不定)二次型或矩阵 .( 顺序)主子式的定义,掌握各种类型的判别法 . 三 教学重点: 正定二次型 . 四 教学难点: 判别方法 五 教学过程:定义4实二次型f (X 「X 2, ,X n )称为正定的,如果对于任意一组不 全为零的实数C i ,C 2, ,C n 都有f (C i ,C 2, ,C n ) 0 .显然,二次型22f(X 1,X 2, ,X n ) X 1X n 是正定的,因为只有在 C 1 C 2C n时, C 12般的,实二次型f(X 1,X 2, ,X n ) d 1X 12d 2X 22是正定的,当且仅当 d i 0 i 1,2, ,n . 可以证明,非退化的实线性替换保持正定性不变 .定理5 n 元实二次型f (x i ,x 2, ,X n )是正定的充分必要条件是它的 正惯性指数等于 n .定理5说明,正定二次型f (x 1,x 2,, x n )的规范形为22 y 1y n (5)定义5实对称矩阵A 称为正定的,如果二次型 XAX 正定. 因为二次型 (5)的矩阵是单位矩阵 E ,所以一个实对称矩阵是正定的,d n X n 2C2才为零.负定的;如果都有f (C 1, C 2 ,,C n ) 0,那么f (X 1, X 2,,X n )称为半正定的;当且仅当它与单位矩阵合同. 推论正定矩阵的行列式大于零 定义6是否正定.解:f (X i , X 2 , X 3 )的矩阵为它的顺序主子式因之,f(X i ,X 2,X 3)正定.与正定性平行,还有下面的概念5245 20 ,2 1 22 142 55 0 ,子式称为矩阵A 定理6a 11 a 21a i1a 12 a 22a i2(a j )nn 的顺序主子式.实二次型 a 1ia 2i a(i 1,2, ,n)f (X 1 , X 2 , ,X n ) na j X j X j X AXj 1是正定的充分必要条件为矩阵 例判断二次型A 的顺序主子式全大于零.f(X 1,X 2,X 3) 5x 12X 22X 34X 1X 2 8x 1x 3 4X 2X 3定义 7 设 f (X 1, X 2 ,, x n )是实二次型, 对于任意一组不全为零的实数C1,C2, ,C n,如果都有f(G,C2, ,C n) 0,那么f区兀,,冷)称为负定的;如果都有f (C1, C2 , ,C n) 0,那么f (X1, X2, ,X n )称为半正定的;如果都有 f(c 1,c 2, ,c n ) 0,那么 f (x 1,x 2, , x n )称为半负定的;如果它既不是半正定又不是半负定,那么 f (x 1,x 2, , x n )就称为不定的.对于半正定,我们有定理7对于实二次型f(X i ,X 2, ,X n ) X AX ,其中A 是实对称的, 面条件等价:(1) f (x 1,x 2, , x n )是半正定的. (2) 它的正惯性指数与秩相等(3) 有可逆实矩阵 C ,使d n(4) 有实矩阵C 使A CC.(5) A 的所有主子式皆大于或等于零.注意:在(5) 中,仅有顺序主子式大于或等于零是不能保证半正定性 的.比如, f (x 1,x 2) x 22x 1 x 2 0 0 x1就是一个反例 .0 1 x 2CACd 1d 2,其中, d i 0 i 1,2, ,n .。

高等代数讲义ppt第五章二次型

高等代数讲义ppt第五章二次型
顺序主子式全大于零。
二次型
§4 正定二次型
例题 1、 判别二次型
f (x1, x2 , x3 ) 5x12 x22 5x32 4x1x2 8x1x3 4x2 x3
是否正定。
2、 当 t 取什么值时,二次型
f (x1, x2 , x3 ) x12 x22 5x32 2t x1x2 2x1x3 4x2 x3
z12 z22 zr2
而且这个规范型是唯一的。
二次型
推论:任意一个复对称矩阵 A 都合同于对角矩阵:
1
1
0
0
其中对角线上 1 的个数 r 等于矩阵 A 的秩。
§3 唯一性
推论:两个复对称矩阵合同的充要条件是它们的秩相等。
ቤተ መጻሕፍቲ ባይዱ次型
§3 唯一性
实数域上的二次型
定理:任意一个秩为 r 的实系数的 n 元二次型,可经过适当的非退化线性
行列式
§1 n阶行列式的定义
例题 1、 化下列二次型为标准型
(1) f (x1, x2 , x3 ) x12 2x1x2 2x1x3 2x22 8x2 x3 5x32 (2) f (x1, x2 , x3 ) 2x1x2 6x2 x3 2x1x3
2、 化二次型
n
f (x1, x2 ,, xn ) xi2 xi x j
1
1
1
1
0
0
其中对角线上 1 和 -1 的个数都是唯一确定的,且其和 r 等于矩阵 A 的秩。
问题:试给出两个实对称矩阵合同的充要条件。
二次型
§4 正定二次型
§4 正定二次型
正定二次型的定义和判定
定义:实二次型 f (x1, x2 ,, xn ) 是正定的,如果对任意一组不全为零的 的实数 c1, c2 ,, cn 都有 f (c1, c2 ,, cn ) 0 。 定理:实二次型 f (x1, x2 ,, xn ) d1x12 d2 x22 dn xn2 是正定二次型 的充要条件是 di 0, i 1, 2,, n 。

第五章 二次型

第五章 二次型

= ∑∑ aij xi x j
i =1 j = 1
n
n

第五章 二次型
高等代数
东北大学秦皇岛分校
a11 a21 令 A= L a n1
a12 a22 L an 2
... ... L ...
a1n a2 n ( A ∈ p n×n ) L ann
则矩阵A称为二次型 f ( x1 , x2 ,L , xn ) 的矩阵. 定义4 因为aij=aji,i,j =1,2,…,n,所以 A′ = A , 这样的矩阵称为对称矩阵。
第五章 二次型
高等代数
东北大学秦皇岛分校
例1 化二次型
2 2 2 f = x1 + 2 x 2 + 5 x 3 + 2 x1 x 2 + 2 x1 x 3 + 6 x 2 x 3
为标准形 , 并求所用的变换矩阵 .

含有x1的项配方 含有平方项 2 2 2 f = x1 + 2 x2 + 5 x3 + 2 x1 x2 + 2 x1 x3 + 6 x2 x3
写成 2aij . 2) 式① 也可写成
f ( x1 , x2 ,L , xn ) = ∑ aii xi2 + 2
i =1
n
1≤ i < j ≤ n

aij xi x j
第五章 二次型
高等代数
东北大学秦皇岛分校
定义2 定义 x1 , x2 ,L , xn ; y1 , y2 ,L , yn 是两组文字,系数在P 中的一组关系式
第五章 二次型
高等代数
东北大学秦皇岛分校
例3
证明:矩阵A与B合同,其中 λi1 λ1 λ i2 λ2 A= , , B = O O λn λ in

扬大高等代数北大三版-第五章二次型

扬大高等代数北大三版-第五章二次型
扬大高等代数北大三 版-第五章二次型
目录
CONTENTS
• 引言 • 二次型的定义与性质 • 二次型的分类与判别式 • 二次型与矩阵的等价关系 • 二次型与线性变换的关系 • 特殊二次型与正定二次型
01
引言
背景介绍
二次型是代数学的一个重要分支,它在几何、物理和工程等领域有广泛的应用。
二次型的研究起源于二次方程的求解问题,后来逐渐发展成为一个独立的数学领域。
正定二次型的定义与性质
正定二次型的定义
正定二次型是指对于任意非零向量x,都有f(x)>0的二次型,其中f(x)是x的二次齐次函 数。
正定二次型的性质
正定二次型具有一些重要的性质,如正定性、对称性、可微性等,这些性质在解决数学 问题时具有重要的作用。
正定二次型的应用
在数学物理中的应用
正定二次型在数学物理中有广泛的应用 ,如在量子力学、统计力学等领域中, 正定二次型可以用来描述粒子的能量和 动量等物理量。
线性变换与二次型的关系
二次型:一个多项式函数,可以表示为向量空间中向量的内积的线性组合, 其中每个内积项都是两个向量的二次方。
二次型可以通过线性变换转换为标准形式,即一个只包含平方项的多项式。
线性变换可以将二次型转换为标准形式,从而简化二次型的计算和分析。
线性变换的应用
01
02
03
在几何学中,线性变换可以用来 研究几何图形的形状和大小的变 化。
实对称矩阵是满足$A^T = A$的矩阵,其中 $A^T$是矩阵A的转置。
二次型可以通过线性变换转换为矩 阵形式,即$f(x_1, x_2, ..., x_n) = X^T A X$,其中$X$是列向量, $A$是实对称矩阵。
03

高等代数 第5章二次型 5.3 二次型的惯性定理

高等代数 第5章二次型 5.3 二次型的惯性定理

n sij x j , i 1,2, , p j 1 ( 6) n t x , i p 1, , n ij j j 1 因为 p p , 所以 p n p n, 因此,方程组 (6)在R内有非零解. 令 (c1 , c2 ,, cn ) 是(6)的 一个非零解. 把这一组值代入 yi 和 zi 的表示式
个. 对于每一个 C r , p ,就有一个典范形式
2 x1

2 xp

2 x p 1

2 xr
与它相当. 把与同一个典范形式等价的二次型放在 一类,于是 R 上的一切 n 元二次型恰可以分成
1 ( n 1)( n 2) 类,属于同一类的二次彼此等价, 2
属于不同类的二次互不等价.
sij x j ,
t ij x j ,
j 1
n
i 1,2, , n
i 1,2, , n
( 5) z i
j 1 n
化为所给的二次型
妨设 p p , 考虑 方程组
aij xi x j , 如果 p p , 不
i 1 j 1
n
n
p n p 个方程的齐次线性
合同. 由此推出 A2和 A1合同,从而 q2与 q1等价. 推论 9.2.6 实数域 R 上一切n元二次型可以分成 1 ( n 1)( n 2) 类,属于同一类的二次型彼此等价, 2 属于不同类的二次型互不等价.
证 给定 0 r n和0 p r . 令
Cr , p
Ip O O
c1 P AP 0
c2 cr
0 0 0 d1 d2 QBQ dr 0

高等代数第5章二次型

高等代数第5章二次型
则2 a ij x i x j a ij x i x j a ji x j x i ,
于是
f a11 x a12 x1 x 2 a1n x1 x n
2 1
a 21 x 2 x1 a 22 x a 2 n x 2 x n
2 2
... an1 xn x1 an 2 xn x2 ann x
5.1.
二次型及其矩阵表示
5.1.1 二次型的定义及表示
系数在数域P中,含有n个未知量的二次齐次多项式
f x1 , x2 , , xn
2 a11 x1 2a12 x1 x2 2a13 x1 x3 2a1n x1 x n 2 a22 x2 2a23 x2 x3 2a2 n x2 xn
拉格朗日配方法若二次型含有的平方项则先把含有的乘积项集中然后配方再对其余的变量同样进行直到都配成平方项为止经过非退化线若二次型中不含有平方项但是则先作可逆线性替换化二次型为含有平方项的二次型然后再按1中方法配方
第5章
二次型
5.1 5.2 5.3 5.4
二次型及其矩阵表示 二次型的标准形 惯性定理和规范形 实二次型的正定性
拉格朗日配方法的步骤
1. 若二次型含有 x i 的平方项,则先把含有 x i 的乘积项集中,然后配方,再对其余的变量同 样进行,直到都配成平方项为止,经过非退化线 性 替换,就得到标准形; 2. 若二次型中不含有平方项,但是 a ij 0 ( i j ),则先作可逆线性替换 x i yi y j k 1,2,, n且k i , j x j yi y j x y k k 化二次型为含有平方项的二次型,然后再按1中方 法配方。
0 1 2 A 2 2 3 . 0 3 3

高等代数北大版二次型5

高等代数北大版二次型5

x2 ,...,
xn )
j1 n
a2 j x j
j1
n
anj x j
j1
10/10/2023§5.1 二次型旳矩阵表数学达与计算科学学院
n
n
x1 a1 j x j x2 a2 j x j
j1
j1
n
xn anj x j
j1
n
n
nn
( xi aij x j )
注 1)③或④为非退化旳
C=
cij
为可逆矩阵 .
nn
2)若X=CY为非退化线性替代,则有非退化
线性替代 Y C 1X .
10/10/2023§5.1 二次型旳矩阵表数学达与计算科学学院
3、二次型经过非退化线性替代仍为二次型
实际上,
f ( x1, x2 ,..., xn ) X AX
X CY
若系数行列式|cij|≠0,则称③为非退化线性替代.
10/10/2023§5.1 二次型旳矩阵表数学达与计算科学学院
例2 解析几何中旳坐标轴按逆时针方向旋转解角度
y
.
y
x
0
x
即变换
x
y
x cos y sin x sin y cos
它是非退化旳.
∵系数行列式
cos sin
sin cos
1.
aij xixj
i1 j1
i1 j1
于是有 f ( x 1 , x 2 ,..., xn ) X AX .
10/10/2023§5.1 二次型旳矩阵表数学达与计算科学学院
注意: 1)二次型旳矩阵总是对称矩阵,即 A A. 2)二次型与它旳矩阵相互唯一拟定,即
若 X AX X BX 且 A A, B B,则 A B. (这表白在选定文字 x1, x2 ,..., xn下,二次型

第五章二次型--精品PPT课件

第五章二次型--精品PPT课件
设 f (x1…xn) = X’AX是K上n元二次型, 做非退 化线性替换X=CY, 其中C是K上的n阶可逆 阵. 则 f ( x1…xn ) = Y’C’YCY = g( y1…yn ).
定义: A , B∈Kn×n , A与B称为合同的,如果存 在n阶可逆阵C, 使B = C’AC.
注 1: K上n阶方阵的合同关系是等价关系. 注 2: 若A与B合同, A’= A, 则B’=B.
p=n.
f (x1 … xn)是半正定型
f (x1 … xn)的正惯性指数
p=r ≤ n.
f (x1 … xn)是负定型
f (x1 … xn)的负惯性指数q=n.
f (x1 … xn)是半负定型
f (x1 … xn)的负惯性指数
q=r ≤ n.
正定二次型与正定矩阵_3
定理: A’ =A∈Rn×n, 则下列条件等价: (1).A是正定阵. (2).对任意0≠X∈Rn×1, 有X’AX > 0. (3).存在可逆阵P∈Rn×n, 使得P’AP = In. (4).存在可逆阵P∈Rn×n, 使得A = P’P. (5).A的正惯性指数p = n. (6).A的所有主子式 > 0. (7).A的所有顺序主子式 > 0. (8).A的所有特征值 > 0.
注 2 : R上n阶对称阵,按合同关系分类共有
(n+1)(n+2)/2类
正定二次型与正定矩阵_1
设f (x1 … xn)是R上n元二次型,如果对
(a1,a2,…,an)≠0,恒有:
(1).f (a1 … an) > 0, 则称 f (x1 … xn)是正定二次型. (2).f (a1 … an)≥0,则称 f (x1 … xn)是半正定二次型. (3) .f (a1 … an) < 0,则称 f (x1 … xn)是负定二次型. (4) . f (a1 … an)≤0, 则称 f (x1 … xn)是半负定二次型.

北京大学数学系《高等代数》(第3版)笔记和课后习题(含考研真题)详解-第五章至第六章【圣才出品】

北京大学数学系《高等代数》(第3版)笔记和课后习题(含考研真题)详解-第五章至第六章【圣才出品】

第5章二次型5.1复习笔记一、二次型及其矩阵表示1.二次型定义设P是一数域,一个系数在数域P中的x1,x2,…,x n的二次齐次多项式称为数域P上的一个n元二次型,或简称二次型.2.线性替换与二次型矩阵(1)线性替换定义设x1,…,x n;y1,…,y n是两组文字,系数在数域P中的一组关系式称为由x1,…,x n到y1,…,y n的一个线性代替,或简称线性替换.如果系数行列式,那么线性替换就称为非退化的.(2)二次型的矩阵令由于所以二次型可以写成其中的系数排成一个n×n 矩阵它就称为二次型的矩阵,因为a ij =a ji ,i,j=1,…,n,所以A=A'二次型的矩阵都是对称的.3.合同矩阵(1)定义数域P 上n×n 矩阵A ,B 称为合同的,如果有数域P 上可逆的n×n 矩阵C ,使B C AC¢=(2)性质①反身性:A=E'AE ;②对称性:由B=C'AC 即得A=(C -1)'BC -1;③传递性:由A 1=C 1'AC 1和A 2=C 2'A 1C 2即得经过非退化的线性替换,新二次型的矩阵与原二次型的矩阵是合同的.二、标准形1.定义数域P 上任意一个二次型都可以经过非退化的线性替换变成平方和2221122n nd x d x d x +++ 的形式,该形式就称为的一个标准形.注意:二次型的标准型不是唯一的,而与所作的非退化线性替换有关.2.定理在数域P 上,任意一个对称矩阵都合同于一对角矩阵.即对于任意一个对称矩阵A 都可以找到一个可逆矩阵C,使C AC ¢成对角矩阵,并且该对角矩阵的值就是对应的标准形式的系数.三、唯一性1.基本概念(1)二次型的秩在一个二次型的标准形中,系数不为零的平方项的个数是唯一确定的,与所作的非退化线性替换无关,二次型矩阵的秩有时就称为二次型的秩.(2)复二次型的规范性设f(x1,x2,…,x n)是一个复系数的二次型.经过一适当的非退化线性替换后,f(x1,x2,…,x n)变成标准形,不妨假定它的标准形是易知r就是f(x1,x2,…,x n)的矩阵的秩.因为复数总可以开平方,我们再作一非退化线性替换(1)就变成称为复二次型f(x1,x2,…,x n)的规范形.结论:任意一个复系数的二次型,经过一适当的非退化线性替换可以变成规范形,且规范形是唯一的.即任一复数的对称矩阵合同于一个形式为的对角矩阵.从而有,两个复数对称矩阵合同的充分必要条件是它们的秩相等.(3)实二次型的规范形设f(x1,x2,…,x n)是一实系数的二次型,经过某一个非退化线性替换,再适当排列文字的次序,可使f(x1,x2,…,x n)变成标准形其中d i>0,i=1,…,r;r是f(x1,x2,…,x n)的矩阵的秩.因为在实数域中,正实数总可以开平方,所以再作一非退化线性替换(4)就变成(6)称为实二次型f(x1,x2,…,x n)的规范形.结论:任意一个实数域上的二次型,经过一适当的非退化线性替换可以变成规范形,且规范形是唯一的.2.惯性定理设实二次型f(x1,x2,…,x n)经过非退化线性替换X=BY化成规范形而经过非退化线性替换X=CZ也化成规范形则p=q.另一种表述:实二次型的标准形中系数为正的平方项的个数是唯一确定的,它等于正惯性指数,而系数为负的平方项的个数就等于负惯性指数.3.惯性指数在实二次型f(x1,x2,…,x n)的规范形中,(1)正惯性指数:正平方项的个数p;(2)负惯性指数:负平方项的个数r-p;(3)符号差:p-(r-p)=2p-r.该定义对于矩阵也是适合的.四、正定二次型1.定义实二次型,f(x1,x2,…,x n)称为正定的,如果对于任意一组不全为零的实数c1,c2,…,c n都有f(c1,c2,…,c n)>0.2.常用的判别条件(1)n元实二次型f(x1,x2,…,x n)是正定的充分必要条件是它的正惯性指数等于。

扬大高等代数北大三版--第五章二次型

扬大高等代数北大三版--第五章二次型

代 逆时针旋转θ0 (例:450),即有坐标旋转公式
y

y/
x/
x x/ cos y/ sin
y
x/
sin
y/
cos
x x/ cos 45 y/ sin 45
5
(
y
x/ sin 45
y/ cos 45
)
x
代入原方程,将其化成标准方程
(4x/2 +9y/2 =36)

→ 称如上旋转公式为线性替换.
次 故: X = CY为可逆线性替换时,二次型 X/AX 与 Y/BY的矩阵合同; → 为用矩阵来研究这类二次型的变换奠定了基础,提供了思路;

2021/2/2
10
高 等
9) 合同的矩阵具有相同的秩; 10) 与对称矩阵合同的矩阵仍是对称矩阵.
代 证明:
数 9) 设A, B合同,即B = C/AC, 且C可逆,故A, B同秩.

+ ann xn2
次 称为P上n元二次型,简称二次型;当P = R时,为实二次型、
型 当P = C时,为复二次型.
2021/2/2
4
高等**12 代
f (x1, x2, …, xn) 是 Pn→P 的n元函数; f (x1, x2, …, xn) = a11x1x1 + a12x1x2 + … + a1nx1xn


2021/2/2
7
定义2
高 等 代 数
将变量 x1, x2, …, xn 用 y1, y2, …, yn 线性表示的变换
x1 c11 y1 c12 y2
x2
c21 y1
c22 y2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等代数北大版教案-第5章二次型-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN48第五章 二次型§1 二次型的矩阵表示一 授课内容:§1 二次型的矩阵表示二 教学目的:通过本节的学习,掌握二次型的定义,矩阵表示,线性替换和矩阵的合同.三 教学重点:矩阵表示二次型四 教学难点:二次型在非退化下的线性替换下的变化情况. 五 教学过程:定义:设P 是一数域,一个系数在数域P 中的n x x x ,,,21 的二次齐次多项式++++=n n n x x a x x a x a x x x f 11211221112122),,,(+++n n x x a x a 2222222 (2)n nn x a + (3)称为数域P 上的一个n 元二次型,或者,简称为二次型.例如:2332223121213423x x x x x x x x x +++++ 就是有理数域上的一个3元二次型.定义1 设n x x x ,,,21 ,n y y y ,,,21 是两组文字,系数在数域P 中的一组关系式⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=n nn n n n nn nn y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 (4)称为n x x x ,,,21 到n y y y ,,,21 的一个线性替换,或则,简称为线性替换.如果系数行列式 0≠ij c ,那么线性替换(4)就称为非退化的.二次型的矩阵表示:49令 ji ij a a = ,j i < 由于 i j j i x x x x =,那么二次型(3)就可以写为++++=n n n x x a x x a x a x x x f 112112211121),,,(++++n n x x a x a x x a 2222221221 …+22211n nn n n n n x a x x a x x a +++∑∑===n i nj j i ij x x a 11(5)把(5)的系数排成一个n n ⨯矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a a a a a a a a A 212222111211它称为二次型(5)的矩阵.因为ji ij a a =,n j i ,,2,1, =,所以A A ='.我们把这样的矩阵称为对称矩阵,因此,二次型(5)的矩阵都是对称的.令⎪⎪⎪⎪⎪⎭⎫⎝⎛=n x x x X 21,于是,二次型可以用矩阵的乘积表示出来,()n x x x AX X 21='⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n n n n a a a a a a a a a 212222111211⎪⎪⎪⎪⎪⎭⎫⎝⎛n x x x 21()⎪⎪⎪⎪⎪⎭⎫⎝⎛+++++++++=n nn n n n n n n n x a x a x a x a x a x a x a x a x a x x x 22112222121121211121∑∑===ni nj j i ij x x a 11.50故 AX X x x x f n '=),,,(21 .显然,二次型和它的矩阵是相互唯一决定的.由此还能得到,若二次型BX X AX X x x x f n '='=),,,(21且 B B A A ='=',,则,B A = 线性替换的矩阵表示令⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n c c cc c cc c c C 212222111211,⎪⎪⎪⎪⎪⎭⎫⎝⎛=n y y y Y 21,那么,线性替换(4)可以写成, ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n x x x 21⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n c c cc c c c c c212222111211⎪⎪⎪⎪⎪⎭⎫⎝⎛n y y y 21 或者CY X =.显然,一个非退化的线性替换把二次型还是变成二次型,现在就来看一下替换后的二次型与原二次型之间有什么关系.设 AX X x x x f n '=),,,(21 ,A A =', (7) 是一个二次型,作非退化的线性替换CY X = (8) 得到一个n y y y ,,,21 的二次型BY Y '.现在来看矩阵B 与矩阵A 的关系 把(8)代入(7)有AX X x x x f n '=),,,(21 ACY C Y CY A CY ''='=)()(BY Y Y AC C Y '=''=)(.51容易看出,矩阵AC C '也是对称的,事实上,AC C C A C AC C '=''''='')(.由此,即得AC C B '=.定义2 数域P 上n n ⨯矩阵B A ,称为合同的,如果有数域P 上可逆的n n ⨯矩阵C ,使AC C B '=.合同是矩阵之间的一个关系,不难看出,合同关系具有 (1)反身性 AE E A '=.(2)对称性 由 AC C B '=,即得)()(11--'=C B C A .(3)传递性 由111AC C A '=,2122C A C A '=,即得)()(21212C C A C C A '=.因之,经过非退化的线性替换,替换后的二次型的矩阵与原二次型矩阵是合同的.§2 标准形一 授课内容:§2 标准形二 教学目的:通过定理的证明掌握二次型化为标准形的配方法. 三 教学重点:化普通的二次型为标准形.四 教学难点:化普通的二次形为标准形的相应矩阵表示.52五 教学过程:I 导入可以认为,在二次型中最简单的一种是只含有平方项的二次型2222211n n x d x d x d +++ (1)II 讲授新课定理1 二次型都可以经过非退化的线性替换变为平方和(1)的形式. 不难看出,二次型(1)的.2222211n n x d x d x d +++ =()n x x x 21⎪⎪⎪⎪⎪⎭⎫⎝⎛n d d d00000021⎪⎪⎪⎪⎪⎭⎫⎝⎛n x x x 21. 反过来,矩阵是对角形的二次型就只含有平方项.定理2 在数域P 上,任意一个对称矩阵都合同于一对角矩阵. 定义 二次型),,,(21n x x x f 经过非退化的线性替换所变成的平方和称为),,,(21n x x x f 的一个标准形.例 化二次型313221321262),,(x x x x x x x x x f +-=为标准形.解:作非退化的线性替换⎪⎩⎪⎨⎧=-=+=33212211yx y y x y y x53则3213212121321)(2)(6))((2),,(y y y y y y y y y y x x x f ++---+=323122218422y y y y y y +--=322223231822)(2y y y y y y +---=再令 ⎪⎩⎪⎨⎧==-=3322311y z y z y y z 或⎪⎩⎪⎨⎧==+=3322311zy z y z z y则),,(321x x x f 233222212822z z z z z -+-=23232216)2(22z z z z +--=.最后令 ⎪⎩⎪⎨⎧=-==33322112z w z z w z w 或⎪⎩⎪⎨⎧=+==33322112wz w w z w z则 ),,(321x x x f 232221622w w w +-=是平方和,而这几次线性替换的结果相当于作一个总的线性替换,⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛100011011321x x x ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321100210001100010101w w w ⎪⎪⎪⎭⎫ ⎝⎛--=100110311⎪⎪⎪⎭⎫ ⎝⎛321w w w . 用矩阵的方法来解 例 化二次型313221321262),,(x x x x x x x x x f +-=为标准形.解:),,(321x x x f 的矩阵为⎪⎪⎪⎭⎫ ⎝⎛--=031301110A .取⎪⎪⎪⎭⎫⎝⎛-=1000110111C ,则111AC C A '=54⎪⎪⎪⎭⎫ ⎝⎛-=100011011⎪⎪⎪⎭⎫ ⎝⎛--031301110⎪⎪⎪⎭⎫ ⎝⎛-100011011⎪⎪⎪⎭⎫ ⎝⎛---=042420202. 再取⎪⎪⎪⎭⎫ ⎝⎛=1000101012C ,则2122C A C A '=⎪⎪⎪⎭⎫ ⎝⎛=101010001⎪⎪⎪⎭⎫ ⎝⎛---042420202⎪⎪⎪⎭⎫ ⎝⎛100010101⎪⎪⎪⎭⎫ ⎝⎛--=240420002. 再取⎪⎪⎪⎭⎫ ⎝⎛=1002100013C ,则3233C A C A '=⎪⎪⎪⎭⎫ ⎝⎛=120010001⎪⎪⎪⎭⎫ ⎝⎛--240420002⎪⎪⎪⎭⎫ ⎝⎛100210001 3A 是对角矩阵,因此令321C C C C =⎪⎪⎪⎭⎫ ⎝⎛-=100011011⎪⎪⎪⎭⎫ ⎝⎛100010101⎪⎪⎪⎭⎫ ⎝⎛100210001⎪⎪⎪⎭⎫ ⎝⎛--=100111311,就有AC C '⎪⎪⎪⎭⎫⎝⎛-=600020002.作非退化的线性替换CY X =即得),,(321x x x f 232221622y y y +-=.55§3 唯一性一 授课内容:§3 唯一性二 教学目的: 通过本节的学习,让学生掌握复二次型,实二次型的规范形,正(负)惯性指数,符号差.三 教学重点:复二次型,实二次型的规范形的区别及唯一性的区别. 四 教学难点:实二次型的唯一性 五 教学过程:在一个二次型的标准形中,系数不为零的平方项个数是唯一确定的,与所作的非退化的线性替换无关.二次型的矩阵的秩有时候就称为二次型的秩.至于标准形的系数就不是唯一的.例 二次型313221321262),,(x x x x x x x x x f +-=经过非退化的线性替换⎪⎪⎪⎭⎫ ⎝⎛321x x x ⎪⎪⎪⎭⎫⎝⎛--=100110311⎪⎪⎪⎭⎫ ⎝⎛321w w w 得到标准形232221622w w w +-.而经过非退化的线性替换56⎪⎪⎪⎭⎫ ⎝⎛321x x x ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=3100312111211⎪⎪⎪⎭⎫ ⎝⎛321y y y 就得到另一个标准形23222132212y y y +-. 这就说明,在一般的数域内,二次型的标准形不是唯一的,而与所作的非退化的线性替换有关.下面只就复数域与实数域的情形来进一步讨论唯一性的问题. 对于复数域的情形设),,,(21n x x x f 是一个复系数的二次型,则经过一个适当的非退化的线性替换后,),,,(21n x x x f 变为标准形,不妨设标准形为2222211r r y d y d y d +++ ,0≠i d ,r i ,,2,1 = (1)易知,r 就是),,,(21n x x x f 的矩阵的秩.因为复数总可以开平方,我们再作一非退化的线性替换⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧====++nn r r rrr z y z y z d y z d y 1111111 (2) (1)就变为22221r z z z +++ (3) (3)称为复二次型),,,(21n x x x f 的规范形.显然,规范形完全被原二次型的矩阵的秩所决定.定理3 任意一个复系数的二次型,经过一个适当的非退化的线性替换可以变为规范形,规范形是唯一的.定理3换个说法就是,任意一个复的对称矩阵合同于一个形式为⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛0011的对角矩阵.从而有,两个复对称矩阵合同的充分必要条件是它们的秩相等.对于实数域的情形设),,,(21n x x x f 是一个实系数的二次型,则经过一个适当的非退化的线性替换,再适当排列文字的次序,可使),,,(21n x x x f 变为标准形,2211p p y d y d ++ 2211r r p p y d y d ---++ (4)0>i d r i ,,2,1 = ,r 就是),,,(21n x x x f 的矩阵的秩.因为在实数域中,正实数总可以开平方,所以,再作一非退化的线性替换⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧====++n n r r rrr z y z y z d y z d y 1111111 (5) (4)就变为221p z z ++ 221r p z z ---+ (6)(6)称为实二次型),,,(21n x x x f 的规范形.显然,规范形完全被p r ,这两个数所决定.定理4(惯性定理) 任意一个实数域上的二次型,经过一个适当的非退化的线性替换可以变为规范形,规范形是唯一的.定义3 在实二次型),,,(21n x x x f 的规范形中,正平方项的个数p 称为),,,(21n x x x f 的正惯性指数,负平方项的个数p r -称为),,,(21n x x x f 的负惯性指数,它们的差r p p r p -=--2)(称为),,,(21n x x x f 的符号差.惯性定理也可以叙述为,实二次型的标准形中系数为正的平方项个数是唯一的,它等于正惯性指数,而系数为负的平方项个数也是唯一的,它等于负惯性指数.§4 正定二次型一 授课内容:§4 正定二次型二 教学目的:通过本节的学习,让学生掌握正定(负定,半正定,半负定,不定)二次型或矩阵.(顺序)主子式的定义,掌握各种类型的判别法.三 教学重点:正定二次型. 四 教学难点:判别方法 五 教学过程:定义4 实二次型),,,(21n x x x f 称为正定的,如果对于任意一组不全为零的实数n c c c ,,,21 都有0),,,(21>n c c c f .显然,二次型),,,(21n x x x f 221n x x ++=是正定的,因为只有在021====n c c c 时,221n c c ++ 才为零.一般的,实二次型),,,(21n x x x f 2222211n n x d x d x d +++=是正定的,当且仅当0>i d n i ,,2,1 =.可以证明,非退化的实线性替换保持正定性不变.定理5 n 元实二次型),,,(21n x x x f 是正定的充分必要条件是它的正惯性指数等于n .定理5说明,正定二次型),,,(21n x x x f 的规范形为221n y y ++ (5)定义5 实对称矩阵A 称为正定的,如果二次型AX X '正定. 因为二次型(5)的矩阵是单位矩阵E ,所以一个实对称矩阵是正定的,当且仅当它与单位矩阵合同.推论 正定矩阵的行列式大于零. 定义6 子式iii i iii a a a a a a a a a P 212222111211=),,2,1(n i =称为矩阵nn ij a A )(=的顺序主子式.定理6 实二次型),,,(21n x x x f ∑∑===ni nj j i ij x x a 11AX X '=是正定的充分必要条件为矩阵A 的顺序主子式全大于零.例 判断二次型3231212322213214845),,(x x x x x x x x x x x x f +-+++=是否正定.解:),,(321x x x f 的矩阵为⎪⎪⎪⎭⎫ ⎝⎛----524212425它的顺序主子式05> ,01225> , 0524212425>---- 因之,),,(321x x x f 正定. 与正定性平行,还有下面的概念.定义7 设),,,(21n x x x f 是一实二次型,对于任意一组不全为零的实数n c c c ,,,21 ,如果都有0),,,(21<n c c c f ,那么),,,(21n x x x f 称为负定的;如果都有0),,,(21≥n c c c f ,那么),,,(21n x x x f 称为半正定的;如果都有0),,,(21≤n c c c f ,那么),,,(21n x x x f 称为半负定的;如果它既不是半正定又不是半负定,那么),,,(21n x x x f 就称为不定的.对于半正定,我们有定理7 对于实二次型),,,(21n x x x f AX X '=,其中A 是实对称的,下面条件等价:(1)),,,(21n x x x f 是半正定的. (2)它的正惯性指数与秩相等. (3)有可逆实矩阵C ,使⎪⎪⎪⎪⎪⎭⎫⎝⎛='n d d d AC C21,其中,0≥i d n i ,,2,1 =. (4)有实矩阵C 使C C A '=.(5)A 的所有主子式皆大于或等于零.注意:在(5)中,仅有顺序主子式大于或等于零是不能保证半正定性的.比如,()⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-=-=212122211000),(x x x x x x x f 就是一个反例.。

相关文档
最新文档