(完整版)多元线性回归模型习题及答案

合集下载

多元线性回归模型练习题及答案

多元线性回归模型练习题及答案

C.(1-R)(k-1)多元线性回归模型练习一、单项选择题1.在由n=30的一组样本估计的、包含3个解释变量的线性回归模型中,计算得可决系数为0.8500,则调整后的可决系数为(D)A.0.8603B.0.8389C.0.8655D.0.83272.用一组有30个观测值的样本估计模型y t=b0+b1x1t+b2x2t+u t后,在0.05的显著性水平上对b1的显著性作t检验,则b1显著地不等于零的条件是其统计量t大于等于(C)A.t0.05(30)B.t0.025(28)C.t0.025(27)D.F0.025(1,28)3.线性回归模型y t=b0+b1x1t+b2x2t+......+b k x kt+u t中,检验H0:b t=0(i=0,1,2,...k)时,所用的统计量服从(C)A.t(n-k+1)B.t(n-k-2)C.t(n-k-1)D.t(n-k+2)4.调整的可决系数与多元样本判定系数之间有如下关系(D)A.R2=n-1n-k-1R2B.R2=1-n-1n-k-1R2C.R2=1-n-1n-k-1(1+R2)D.R2=1-n-1n-k-1(1-R2)5.对模型Y i=β0+β1X1i+β2X2i+μi进行总体显著性F检验,检验的零假设是( A)A.β1=β2=0B.β1=0C.β2=0D.β0=0或β1=06.设k为回归模型中的参数个数,n为样本容量。

则对多元线性回归方程进行显著性检验时,所用的F统计量可表示为(B)A.RSS k-1)B.R2k(1-R2)(n-k-1)R2(n-k)2ESS/(k-1) D.TSS n-k)7.多元线性回归分析中(回归模型中的参数个数为k),调整后的可决系数R2与可决系数R2之间的关系(A)R2=1-(1-R2)n-1 n-k-1A. B.R2≥R2R 2 = 1 - (1 - R 2)C. R > 0n - 1D.8.已知五元线性回归模型估计的残差平方和为 ∑ e t =800 ,样本容量为 46, 则随机误差项 u t 的方差估计量σ ˆ 为( D ) B. R ∈[0,1]n - k2 2 2A. 33.33B. 40C. 38.09D. 209.多元线性回归分析中的 ESS 反映了( C ) A.因变量观测值总变差的大小 B.因变量回归估计值总变差的大 小C.因变量观测值与估计值之间的总变差D.Y 关于 X 的边际变化23.在古典假设成立的条件下用 OLS 方法估计线性回归模型参数,则参数估计量具有( C)的统计性质。

多元线性回归模型习题与答案

多元线性回归模型习题与答案

第三章多元线性回归模型习题与答案1、极大似然估计法的基本思想2、多元线性回归模型的基本假设是什么?试说明在证明最小二乘估计量的无偏性和有效性的过程中,哪些基本假设起了作用?3、以企业研发支出(R&D)占销售额的比重为被解释变量(Y),以企业销售额(X1)与利润占销售额的比重(X2)为解释变量,一个有32容量的样本企业的估计结果如下:099 .0)046.0()22.0()37.1(05.0)log(32.0472.022 1=++ =RX XY其中括号中为系数估计值的标准差。

(1)解释log(X1)的系数。

如果X1增加10%,估计Y会变化多少个百分点?这在经济上是一个很大的影响吗?(2)针对R&D强度随销售额的增加而提高这一备择假设,检验它不虽X1而变化的假设。

分别在5%和10%的显著性水平上进行这个检验。

(3)利润占销售额的比重X2对R&D强度Y是否在统计上有显著的影响?4、1960-1982年美国对子鸡的需求。

为了研究美国每人的子鸡消费量,我们提供如下的数据:表1 1960-1982年子鸡的消费情况年份Y X2 X3 X4 X5 X61960 27.8 397.5 42.2 50.7 78.3 65.8 1961 29.9 413.3 38.1 52.0 79.2 66.9 1962 29.8 439.2 40.3 54.0 79.2 67.8 1963 30.8 459.7 39.5 55.3 79.2 69.6 1964 31.2 92.9 37.3 54.7 77.4 68.7 1965 33.3 528.6 38.1 63.7 80.2 73.6 1966 35.6 560.3 39.3 69.8 80.4 76.3 1967 36.4 624.6 37.8 65.9 83.9 77.2 1968 36.7 666.4 38.4 64.5 85.5 78.1 1969 38.4 717.8 40.1 70.0 93.7 84.7 1970 40.4 768.2 38.6 73.2 106.1 93.3 1971 40.3 843.3 39.8 67.8 104.8 89.7 1972 41.8 911.6 39.7 79.1 114.0 100.7 1973 40.4 931.1 52.1 85.4 124.1 113.5 1974 40.7 1021.5 48.9 94.2 127.6 115.3 1975 40.1 1165.9 58.3 123.5 142.9 136.7 1976 42.7 1349.6 57.9 129.9 143.6 139.2 1977 44.1 1449.4 56.5 117.6 139.2 132.0 1978 46.7 1575.5 63.7 130.9 165.5 132.1 1979 50.6 1759.1 61.6 129.8 203.3 154.4 1980 350.1 1994.2 58.9 128.0 219.6 174.91981 51.7 2258.1 66.4 141.0 221.6 180.8 198252.92478.770.4168.2232.6189.4资料来源:Y 数据来自城市数据库;X 数据来自美国农业部。

(完整版)第三章(多元线性回归模型)3-1答案

(完整版)第三章(多元线性回归模型)3-1答案

3.1 多元线性回归模型及古典假定一、判断题1. 在实际应用中,一元回归几乎没什么用,因为因变量的行为不可能仅有一个解释变量来解释。

(T )2. 一元线性回归模型与多元线性回归模型的基本假定是相同的。

(F )二 、单项选择题1.在二元线性回归模型i i i i u X X Y +++=22110βββ中,1β表示( A )。

A .当X2不变时,X1每变动一个单位Y 的平均变动。

B .当X1不变时,X2每变动一个单位Y 的平均变动。

C .当X1和X2都保持不变时,Y 的平均变动。

D .当X1和X2都变动一个单位时,Y 的平均变动。

2.如果两个经济变量X 与Y 间的关系近似地表现为当X 发生一个绝对量变动(ΔX ) 时, Y 有一个固定地相对量(ΔY/Y )变动,则适宜配合的回归模型是( B )。

A .i i 21i u X Y ++=ββB .i i 21i u X Y ++=ββlnC .i i21i u X 1Y ++=ββ D .i i 21i u X Y ++=ln ln ββ3.在多元线性回归模型中对样本容量的基本要求是(k 为解释变量个数):( C )。

A. n ≥k+1 B .n<k+1C. n ≥30 或n ≥3(k+1)D. n ≥304、模型i i 21i u X Y ++=ln ln ββ中 ,2β的实际含义是( B )。

A. X 关于Y 的弹性B. Y 关于X 的弹性C. X 关于Y 的边际倾向D. Y 关于X 的边际倾向三、多项选择题1.下列哪些非线性模型可以通过变量替换转化为线性模型( ABC )A. i 2i 10i u X Y ++=ββB. i i10i u X 1Y ++=ββC. i i 10i u X Y ++=ln ln ββD. i i 210i u X Y ++=ββE. i i 10i u X Y ++=ββ四、简答题1.多元线性回归模型与一元线性回归模型有哪些区别?答:多元线性回归模型与一元线性回归模型的区别表现在如下几个方面:一是解释变量的个数不同;二是模型的经典假设不同,多元线性回归模型比一元线性回归模型多了个“解释变量之间不存在线性相关关系”的假定;三是多元线性回归模型的参数估计式的表达更为复杂。

多元线性回归模型练习题及答案

多元线性回归模型练习题及答案

多元线性回归模型练习一、单项选择题1.1.在由在由30n =的一组样本估计的、包含3个解释变量的线性回归模型中,计算得可决系数为,则调整后的可决系数为(得可决系数为,则调整后的可决系数为( D D) A. B. C. 用一组有30个观测值的样本估计模型01122t t t t y b b x b x u =+++后,在的显著性水平上对1b 的显著性作t 检验,则1b 显著地不等于零的条件是其统计量t 大于等于(大于等于( C C )A. )30(05.0tB. )28(025.0tC. )27(025.0tD. )28,1(025.0F3.3.线性回归模型线性回归模型01122......t t t k kt ty b b x b x b x u =+++++ 中,检验0:0(0,1,2,...)t H b i k ==时,所用的统计量 服从服从( C ) ( C )(n-k+1) (n-k-2) (n-k-1) (n-k4. 调整的可决系数 与多元样本判定系数 之间有如下关系之间有如下关系( D ) ( D )A.2211n R R n k -=--B. 22111n R R n k -=---C. 2211(1)1n R R n k -=-+--D. 2211(1)1n R R n k -=----5.5.对模型对模型Y i =β0+β1X 1i +β2X 2i +μi 进行总体显著性F 检验,检验的零假设是( A )A. β1=β2=0B. β1=0C. β2=0D. β0=0或β1=06.设k 为回归模型中的参数个数,为回归模型中的参数个数,n n 为样本容量。

则对多元线性回归方程进行显著性检验时,所用的F 统计量可表示为(统计量可表示为( B )A. )1()(--k RSS k n ESS B .C .)1()1()(22---k R k n RD .)()1/(k n TSS k ESS --7.多元线性回归分析中(回归模型中的参数个数为k ),调整后的可决系数2R 与可决系数2R 之间的关系(之间的关系( A )A. B. 2R ≥2RC. 02>R D. 1)1(122----=n kn R Rk -1n nR R - - - - = 1 ) 1 ( 1 ) 1 ( ) 1 ( - - k R kR - n8.已知五元线性回归模型估计的残差平方和为8002=∑t e ,样本容量为4646,则,则随机误差项t u 的方差估计量2ˆσ为( D) A. B. 40 C. D. 209.多元线性回归分析中的.多元线性回归分析中的 ESS ESS 反映了(反映了( C) A.A.因变量观测值总变差的大小因变量观测值总变差的大小因变量观测值总变差的大小 B. B.因变量回归估计值总变差的大小C.C.因变量观测值与估计值之间的总变差因变量观测值与估计值之间的总变差因变量观测值与估计值之间的总变差 关于X 的边际变化的边际变化2323..在古典假设成立的条件下用OLS 方法估计线性回归模型参数,方法估计线性回归模型参数,则参数估计则参数估计量具有(量具有( C)的统计性质。

多元线性回归(习题答案)

多元线性回归(习题答案)

第3章练习题参考解答3.1为研究中国各地区入境旅游状况,建立了各省市旅游外汇收入(Y ,百万美元)、旅行社职工人数(X1,人)、国际旅游人数(X2,万人次)的模型,用某年31个省市的截面数据估计结果如下:ii i X X Y 215452.11179.00263.151ˆ++-= t=(-3.066806) (6.652983) (3.378064)(1) 从经济意义上考察估计模型的合理性。

(2) 在5%显著性水平上,分别检验参数21,ββ的显著性。

(3) 在5%显著性水平上,检验模型的整体显著性。

3.1参考解答:由模型估计结果可看出:旅行社职工人数和国际旅游人数均与旅游外汇收入正相关。

平 均说来,旅行社职工人数增加1人,旅游外汇收入将增加0.1179百万美元;国际旅游人数增加1万人次,旅游外汇收入增加1.5452百万美元。

取0.05α=,查表得0.025t (313) 2.048-=因为3个参数t 统计量的绝对值均大于048.2)331(025.0=-t ,说明经t 检验3个参数均显著不为0,即旅行社职工人数和国际旅游人数分别对旅游外汇收入都有显著影响。

取0.05α=,查表得0.05(1,)(2,28) 3.34F k n k F α--==由于34.3)28,2(1894.19905.0=>=F F ,说明旅行社职工人数和国际旅游人数联合起来对旅游外汇收入有显著影响,线性回归方程显著成立。

3.2根据下列数据试估计偏回归系数、标准误差,以及可决系数与修正的可决系数:3.2参考解答:由已知,偏回归系数21221222221212ˆ()i iii ii i iii iy x x y x x xx x x x β-=-∑∑∑∑∑∑∑274778.346280.0004250.9004796.00084855.096280.0004796.000⨯-⨯=⨯- 0.726594= 22111232221212ˆ()i iii ii i iii iy x x y x x xx x x x β-=-∑∑∑∑∑∑∑24250.90084855.09674778.3464796.00084855.096280.0004796.000⨯-⨯=⨯- 2.73628=12132ˆˆˆY X X βββ=-+ 367.6930.726594402.760 2.736288.0=-⨯-⨯ 53.1598=可决系数 213222ˆˆi i i iiy x y x R yββ+=∑∑∑0.72659474778.346 2.736284250.966042.269⨯+⨯=0.998832=修正的可决系数2211(1)n R R n k-=--- 1511(10.998832)153-=--- 0.998637=标准误差 由于 2∑i e =21RSSR TSS=- 即22(1)ieR TSS =-∑(10.998832)66042.269=-⨯ 77.1374= F 统计量2211n k R F k R -=--=1530.9988323110.998832---=5130.986标准误差22ˆie n kσ=-∑77.1374153=-6.4281=所以标准误差ˆ 2.5354σ=3.3参考解答:(1)建立家庭书刊消费的计量经济模型: i i i i u T X Y +++=321βββ其中:Y 为家庭书刊年消费支出、X 为家庭月平均收入、T 为户主受教育年数 (2)估计模型参数,结果为Dependent Variable: Y Method: Least Squares Date: 10/20/13 Time: 18:32 Sample: 1 18Included observations: 18Variable Coefficient Std. Error t-Statistic Prob. C -50.01638 49.46026 -1.011244 0.3279 X 0.086450 0.029363 2.944186 0.0101 T52.370315.202167 10.067020.0000 R-squared0.951235 Mean dependent var 755.1222 Adjusted R-squared 0.944732 S.D. dependent var 258.7206 S.E. of regression60.82273 Akaike info criterion11.20482Sum squared resid 55491.07 Schwarz criterion 11.35321 Log likelihood -97.84334 Hannan-Quinn criter. 11.22528 F-statistic 146.2974 Durbin-Watson stat 2.605783 Prob(F-statistic)0.000000即 ˆ50.01640.086552.3703i i iY X T =-++ (49.46026)(0.02936) (5.20217)t= (-1.011244) (2.944186) (10.06702) R 2=0.951235 944732.02=R F=146.2974(3)检验户主受教育年数对家庭书刊消费是否有显著影响:由估计检验结果, 户主受教育年数参数对应的t 统计量为10.06702, 明显大于t 的临界值131.2)318(025.0=-t ,(户主受教育年数参数所对应的P 值为0.0000,明显小于05.0=α)可判断户主受教育年数对家庭书刊消费支出确实有显著影响;同理可以判断,家庭月平均收入对家庭书刊消费支出的影响也是显著的。

多元线性回归模型习题及答案(word文档良心出品)

多元线性回归模型习题及答案(word文档良心出品)

多元线性回归模型一、单项选择题1.在由30n =的一组样本估计的、包含3个解释变量的线性回归模型中,计算得多重决定系数为0.8500,则调整后的多重决定系数为( D )A. 0.8603B. 0.8389C. 0.8655D.0.8327 2.下列样本模型中,哪一个模型通常是无效的(B ) A.iC (消费)=500+0.8iI (收入)B. di Q (商品需求)=10+0.8i I (收入)+0.9i P (价格)C. si Q (商品供给)=20+0.75i P (价格)D. iY (产出量)=0.650.6i L (劳动)0.4i K (资本)3.用一组有30个观测值的样本估计模型01122t t t ty b b x b x u =+++后,在0.05的显著性水平上对1b 的显著性作t 检验,则1b 显著地不等于零的条件是其统计量t 大于等于( C )A.)30(05.0t B.)28(025.0t C.)27(025.0t D.)28,1(025.0F4.模型tt t u x b b y ++=ln ln ln 10中,1b 的实际含义是( B )A.x 关于y 的弹性B. y 关于x 的弹性C. x 关于y 的边际倾向D. y 关于x 的边际倾向5、在多元线性回归模型中,若某个解释变量对其余解释变量的判定系数接近于1,则表明模型中存在( C )A.异方差性B.序列相关C.多重共线性D.高拟合优度6.线性回归模型01122......t t t k kt t y b b x b x b x u =+++++ 中,检验0:0(0,1,2,...)t H b i k ==时,所用的统计量 服从( C ) A.t(n-k+1) B.t(n-k-2) C.t(n-k-1) D.t(n-k+2) 7. 调整的判定系数 与多重判定系数 之间有如下关系( D )A.2211n R R n k -=-- B. 22111n R R n k -=---C. 2211(1)1n R R n k -=-+-- D. 2211(1)1n R R n k -=----8.关于经济计量模型进行预测出现误差的原因,正确的说法是( C )。

多元线性回归模型(习题与解答)

多元线性回归模型(习题与解答)

多元线性回归模型(习题与解答)第三章多元线性回归模型一、习题(一)基本知识类题型3-1.解释下列概念:1)多元线性回归2)虚变量3)正规方程组4)无偏性5)一致性6)参数估计量的置信区间7)被解释变量预测值的置信区间8)受约束回归9)无约束回归10)参数稳定性检验3-2.观察下列方程并判断其变量是否呈线性?系数是否呈线性?或都是?或都不是?1)i i i X Yεββ++=3102)i i i X Yεββ++=log103)i i i X Yεββ++=log log104)i i i X Yεβββ++=)(2105)i ii X Yεββ+=106)i i i X Yεββ+−+=)1(1107)i i i i X X Yεβββ+++=10221103-3.多元线性回归模型与一元线性回归模型有哪些区别?3-4.为什么说最小二乘估计量是最优的线性无偏估计量?多元线性回归最小二乘估计的正规方程组,能解出唯一的参数估计的条件是什么?3-5.多元线性回归模型的基本假设是什么?试说明在证明最小二乘估计量的无偏性和有效性的过程中,哪些基本假设起了作用?3-6.请说明区间估计的含义。

(二)基本证明与问答类题型3-7.什么是正规方程组?分别用非矩阵形式和矩阵形式写出模型:i ki k i i i u x x x y+++++=ββββL22110,n i,,2,1L =的正规方程组,及其推导过程。

3-8.对于多元线性回归模型,证明:(1)∑=0i e(2)0)ˆˆˆ(ˆ110=+++=∑∑iki k i i i e x x e yβββL3-9.为什么从计量经济学模型得到的预测值不是一个确定的值?预测值的置信区间和置信度的含义是什么?在相同的置信度下如何才能缩小置信区间?为什么?3-10.在多元线性回归分析中,t检验与F检验有何不同?在一元线性回归分析中二者是否有等价的作用?3-11.设有模型:u x x y+++=22110βββ,试在下列条件下:(1)121=+ββ(2)21ββ=分别求出1β和2β的最小二乘估计量。

计量经济学第三章多元线性回归模型习题

计量经济学第三章多元线性回归模型习题

第三章练习题及参考解答3.1为研究中国各地区入境旅游状况,建立了各省市旅游外汇收入(Y ,百万美元)、旅行社职工人数(X1,人)、国际旅游人数(X2,万人次)的模型,用某年31个省市的截面数据估计结果如下:ii i X X Y 215452.11179.00263.151ˆ++-= t=(-3.066806) (6.652983) (3.378064)R 2=0.934331 92964.02=R F=191.1894 n=311)从经济意义上考察估计模型的合理性。

2)在5%显著性水平上,分别检验参数21,ββ的显著性。

3)在5%显著性水平上,检验模型的整体显著性。

练习题3.1参考解答:(1)由模型估计结果可看出:从经济意义上说明,旅行社职工人数和国际旅游人数均与旅游外汇收入正相关。

平均说来,旅行社职工人数增加1人,旅游外汇收入将增加0.1179百万美元;国际旅游人数增加1万人次,旅游外汇收入增加1.5452百万美元。

这与经济理论及经验符合,是合理的。

(2)取05.0=α,查表得048.2)331(025.0=-t 因为3个参数t 统计量的绝对值均大于048.2)331(025.0=-t ,说明经t 检验3个参数均显著不为0,即旅行社职工人数和国际旅游人数分别对旅游外汇收入都有显著影响。

(3)取05.0=α,查表得34.3)28,2(05.0=F ,由于34.3)28,2(1894.19905.0=>=F F ,说明旅行社职工人数和国际旅游人数联合起来对旅游外汇收入有显著影响,线性回归方程显著成立。

3.2 表3.6给出了有两个解释变量2X 和.3X 的回归模型方差分析的部分结果:表3.6 方差分析表RSS 的自由度各为多少?2)此模型的可决系数和调整的可决系数为多少?3)利用此结果能对模型的检验得出什么结论?能否确定两个解释变量2X 和.3X 各自对Y 都有显著影响?练习题3.2参考解答:(1) 因为总变差的自由度为14=n-1,所以样本容量:n=14+1=15因为 TSS=RSS+ESS 残差平方和RSS=TSS-ESS=66042-65965=77回归平方和的自由度为:k-1=3-1=2残差平方和RSS 的自由度为:n-k=15-3=12(2)可决系数为:2659650.99883466042ES R TSS S === 修正的可决系数:222115177110.998615366042i ie n R n ky--=-=-=ᄡ--¥¥(3)这说明两个解释变量2X 和.3X 联合起来对被解释变量有很显著的影响,但是还不能确定两个解释变量2X 和.3X 各自对Y 都有显著影响。

多元线性回归模型练习题及答案

多元线性回归模型练习题及答案

多元线性回归模型练习一、单项选择题1.在由30n =的一组样本估计的、包含3个解释变量的线性回归模型中,计算得可决系数为0.8500,则调整后的可决系数为( D )A. 0.8603B. 0.8389C. 0.8655D.0.8327 2.用一组有30个观测值的样本估计模型01122t t t t y b b x b x u =+++后,在0.05的显著性水平上对1b 的显著性作t 检验,则1b 显著地不等于零的条件是其统计量t 大于等于( C )A. )30(05.0tB. )28(025.0tC. )27(025.0tD. )28,1(025.0F 3.线性回归模型01122......t t t k kt t y b b x b x b x u =+++++ 中,检验0:0(0,1,2,...)t H b i k ==时,所用的统计量 服从( C )A.t(n-k+1)B.t(n-k-2)C.t(n-k-1)D.t(n-k+2) 4. 调整的可决系数 与多元样本判定系数 之间有如下关系( D )A.2211n R R n k -=-- B. 22111n R R n k -=---C.2211(1)1n R R n k -=-+-- D. 2211(1)1n R R n k -=----5.对模型Y i =β0+β1X 1i +β2X 2i +μi 进行总体显著性F 检验,检验的零假设是( A ) A. β1=β2=0B. β1=0C. β2=0D. β0=0或β1=06.设k 为回归模型中的参数个数,n 为样本容量。

则对多元线性回归方程进行显著性检验时,所用的F 统计量可表示为( B )A. )1()(--k RSS k n ESS B .C .)1()1()(22---k R k n R D .)()1/(k n TSS k ESS -- 7.多元线性回归分析中(回归模型中的参数个数为k ),调整后的可决系数2R 与可决系数2R 之间的关系( A )) 1 ( ) 1 ( 2 2 - - k R k R - nA.B. 2R ≥2RC. 02>R D.1)1(122----=n k n R R8.已知五元线性回归模型估计的残差平方和为8002=∑t e,样本容量为46,则随机误差项t u 的方差估计量2ˆσ为( D ) A. 33.33 B. 40 C. 38.09 D. 209.多元线性回归分析中的 ESS 反映了( C )A.因变量观测值总变差的大小B.因变量回归估计值总变差的大小C.因变量观测值与估计值之间的总变差D.Y 关于X 的边际变化23.在古典假设成立的条件下用OLS 方法估计线性回归模型参数,则参数估计量具有( C )的统计性质。

多元线性回归模型(习题与解答)

多元线性回归模型(习题与解答)

(1) β1 + β 2 = 1
(2) β1 = β 2
分别求出 β1 和 β 2 的最小二乘估计量。
3-12.多元线性计量经济学模型
yi = β0 + β1x1i + β2 x2i + ⋅ ⋅ ⋅ + βk xki + μi
i = 1,2,…,n
(2.11.1)
的矩阵形式是什么?其中每个矩阵的含义是什么?熟练地写出用矩阵表示的该模型的普通
(2)证明:残差的最小二乘估计量相同,即: uˆi = uˆi′
(3)在何种情况下,模型Ⅱ的拟合优度 R22 会小于模型Ⅰ拟合优度 R12 。
3-17.假设要求你建立一个计量经济模型来说明在学校跑道上慢跑一英里或一英里以上的人 数,以便决定是否修建第二条跑道以满足所有的锻炼者。你通过整个学年收集数据,得到两 个可能的解释性方程:
)
+
ε
i
7) Yi = β 0 + β1 X 1i + β 2 X 2i 10 + ε i
3-3.多元线性回归模型与一元线性回归模型有哪些区别? 3-4.为什么说最小二乘估计量是最优的线性无偏估计量?多元线性回归最小二乘估计的正 规方程组,能解出唯一的参数估计的条件是什么? 3-5.多元线性回归模型的基本假设是什么?试说明在证明最小二乘估计量的无偏性和有效 性的过程中,哪些基本假设起了作用? 3-6.请说明区间估计的含义。 (二)基本证明与问答类题型
(1)产出量的资本弹性和劳动弹性是等同的;
(2)存在不变规模收益,即α + β = 1 。
3-14.对模型 yi = β0 + β1x1i + β 2 x2i + L + β k xki + ui 应用 OLS 法,得到回归方程如下: yˆi = βˆ0 + βˆ1x1i + βˆ2 x2i + L + βˆk xki

多元线性回归模型练习题及答案

多元线性回归模型练习题及答案

多元线性回归模型练习一、单项选择题1.在由30n =的一组样本估计的、包含3个解释变量的线性回归模型中,计算得可决系数为0.8500,则调整后的可决系数为( D )A. 0.8603B. 0.8389C. 0.8655D.0.83272.用一组有30个观测值的样本估计模型01122t t t t y b b x b x u =+++后,在0.05的显著性水平上对1b 的显著性作t 检验,则1b 显著地不等于零的条件是其统计量t大于等于( C )A. )30(05.0tB. )28(025.0tC. )27(025.0tD. )28,1(025.0F3.线性回归模型01122......t t t k kt t y b b x b x b x u =+++++ 中,检验0:0(0,1,2,...)t H b i k ==时,所用的统计量 服从( C )A.t(n-k+1)B.t(n-k-2)C.t(n-k-1)D.t(n-k+2)4. 调整的可决系数与多元样本判定系数 之间有如下关系( D ) A.2211n R R n k -=-- B. 22111n R R n k -=--- C. 2211(1)1n R R n k -=-+-- D. 2211(1)1n R R n k -=----5.对模型Y i =β0+β1X 1i +β2X 2i +μi 进行总体显著性F 检验,检验的零假设是( A )A. β1=β2=0B. β1=0C. β2=0 D . β0=0或β1=06.设k 为回归模型中的参数个数,n 为样本容量。

则对多元线性回归方程进行显著性检验时,所用的F 统计量可表示为( B ) A. )1()(--k RSS k n ESS B .C .)1()1()(22---k R k n R D .)()1/(k n TSS k ESS -- ) 1 ( ) 1 ( 2 2 - - k R k R - n7.多元线性回归分析中(回归模型中的参数个数为k ),调整后的可决系数2R 与可决系数2R 之间的关系( A )A. B. 2R ≥2R C. 02>R D. 1)1(122----=n k n R R 8.已知五元线性回归模型估计的残差平方和为8002=∑t e,样本容量为46,则随机误差项t u 的方差估计量2ˆσ为( D ) A. 33.33 B. 40 C. 38.09 D. 209.多元线性回归分析中的 ESS 反映了( C )A.因变量观测值总变差的大小B.因变量回归估计值总变差的大小C.因变量观测值与估计值之间的总变差D.Y 关于X 的边际变化23.在古典假设成立的条件下用OLS 方法估计线性回归模型参数,则参数估计量具有( C )的统计性质。

(完整版)多元线性回归模型习题及答案

(完整版)多元线性回归模型习题及答案

、单项选择题1.在由n 30的一组样本估计的、包含3 个解释变量的线性回归模型中,计算得多重决定系数为0.8500 ,则调整后的多重决定系数为(D )A. 0.8603B. 0.8389C. 0.8655D.0.83272.下列样本模型中,哪一个模型通常是无效的(B)A. Ci(消费)=500+0.8 Ii(收入)B. Q i (商品需求)=10+0.8 Ii(收入)+0.9 Pi(价格)3.用一组有30个观测值的样本估计模型y t b o blXlt dX2t U t后,在0.05的显著性水平上对bl的显著性作t检验,则bl显著地不等于零的条件是其统计量t大于等于(C)A.t0.05 (30)B. t0.025 (28)C. t0.025 (27)D. F 0.025 (1,28)4.模型ln yt lnbo bl 1 nXt Ut中,b i的实际含义是(B)A. x关于y的弹性B. y关于x的弹性C.x关于y的边际倾向D.y关于x的边际倾向5.在多元线性回归模型中,若某个解释变量对其余解释变量的判定系数接近于1,则表明模型中存在( C )A. 异方差性B.序列相关C.多重共线性D.高拟合优度6.线性回归模型y t b0 b i x it b2x2t ................... b k x kt U t 中,检验H0 :b t 0(i 0,i,2,...k)时,所用的统计量A. t(n-k+i)B.t(n-k-2)C. t(n-k-i)D.t(n-k+2)多元线性回归模型C.D. Qi(商品供给)=20+0.75 Pi(价格)Yi(产出量)=0.65 L i(劳动)K i0.4资本)服从( C )7.调整的判定系数 &关于经济计量模型进行预测出现误差的原因,正确的说法是( A. 只有随机因素 B. 只有系统因素 C.既有随机因素,又有系统因素 D.A 、B 、C 都不对 9•在多元线性回归模型中对样本容量的基本要求是 (k 为解释变量个数):(C )A n > k+1B *k+1C n > 30 或 n > 3 ( k+1)D n > 30 10、下列说法中正确的是: (D )2A 如果模型的R 很高,我们可以认为此模型的质量较好2B 如果模型的R 较低,我们可以认为此模型的质量较差C 如果某一参数不能通过显著性检验,我们应该剔除该解释变量D 如果某一参数不能通过显著性检验,我们不应该随便剔除该解释变量 11.半对数模型丫 011nX 中,参数 1的含义是(与多重判定系数A.R 2C. R 2 丄丄R 2n k 11 n 1 (1 R 2) D.n k 1B.R 21R 2 1之间有如下关系丄丄R 2 n k 1 丄^(1 n k 1R 2)C )。

第三章多元线性回归模型习题答案

第三章多元线性回归模型习题答案

设是 0012:0H βββ=== C 、相关系数较大意味着两个变量存在较强的因果关系 D 、当随机误差项的方差估计量等于零时,说明被解释变量与解 释变量之间为函数关系 9、对于 01122????i i i k ki i Y X X X e ββββ=+++++…,如果原模型满足线性模型的基本 假设则 在零假设 0j β=下,统计量??()j j s ββ(其中?()j s β是 j β的标 准误差)服从 ( B ) A 、()t n k B 、(1)t n k -C 、(1,)F k n k -D 、(,1)F k n k -10、下列说法中正确的是 ( D ) A 、如果模型的 R 2 很高,我们可以认为此模型的质量较好 B 、如果模型的 R 2 很低,我们可以认为此模型的质量较差 C 、如果某一参数不能通过显著性检验,我们应该剔除该解释变 量 D 、如果某一参数不能通过显著性检验,我们不应该随便剔除该 解释变量 二、判断题 四、判断题、
B 、对回归模型的总体显著性检验没有必要 C 、总体回归方程与样本回归方程是有区别的 D 、决定系数 2 R 不可以用于衡量拟合优度 6、根据调整的可决系数 2R 与 F 统计量的关系可知,当 21R = 时,有 ( C ) A 、F=0 B 、F=-1 C 、F →+∞ D 、F=-∞ 7、线性回归模型的参数估计量?β是随机向量 Y 的 函数,即 1?()X X X Y β-''=。?β 是 (A) A 、随机向量 B 、非随机向量 C 、确定性向量 D 、常量 8、下面哪一表述是正确的 ( D ) A 、线性回归模型 01i i i Y X ββμ=++的零均值假设是指 1 10n i i n μ==∑ B 、对模型 01122i i i i Y X X βββμ=+++ 进行方程显著性检验(即 F 检验),检验的零假
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多元线性回归模型一、单项选择题1.在由30n =的一组样本估计的、包含3个解释变量的线性回归模型中,计算得多重决定系数为0.8500,则调整后的多重决定系数为( D )A. 0.8603B. 0.8389C. 0.8655D.0.8327 2.下列样本模型中,哪一个模型通常是无效的(B ) A.iC (消费)=500+0.8iI (收入)B. di Q (商品需求)=10+0.8i I (收入)+0.9i P (价格) C. si Q (商品供给)=20+0.75i P (价格)D. iY (产出量)=0.650.6i L (劳动)0.4i K (资本)3.用一组有30个观测值的样本估计模型01122t t t ty b b x b x u =+++后,在0.05的显著性水平上对1b 的显著性作t 检验,则1b 显著地不等于零的条件是其统计量t 大于等于( C )A.)30(05.0t B.)28(025.0t C.)27(025.0t D.)28,1(025.0F4.模型tt t u x b b y ++=ln ln ln 10中,1b 的实际含义是( B )A.x 关于y 的弹性B. y 关于x 的弹性C. x 关于y 的边际倾向D. y 关于x 的边际倾向5、在多元线性回归模型中,若某个解释变量对其余解释变量的判定系数接近于1,则表明模型中存在( C )A.异方差性B.序列相关C.多重共线性D.高拟合优度6.线性回归模型01122......t t t k kt t y b b x b x b x u =+++++ 中,检验0:0(0,1,2,...)t H b i k ==时,所用的统计量服从( C )A.t(n-k+1)B.t(n-k-2)C.t(n-k-1)D.t(n-k+2)7. 调整的判定系数 与多重判定系数之间有如下关系( D )A.2211n R R n k -=-- B. 22111n R R n k -=---C. 2211(1)1n R R n k -=-+-- D. 2211(1)1n R R n k -=----8.关于经济计量模型进行预测出现误差的原因,正确的说法是( C )。

A.只有随机因素B.只有系统因素C.既有随机因素,又有系统因素D.A 、B 、C 都不对9.在多元线性回归模型中对样本容量的基本要求是(k 为解释变量个数):( C ) A n ≥k+1 B n<k+1 C n ≥30 或n ≥3(k+1) D n ≥30 10、下列说法中正确的是:( D ) A 如果模型的2R 很高,我们可以认为此模型的质量较好B 如果模型的2R 较低,我们可以认为此模型的质量较差C 如果某一参数不能通过显著性检验,我们应该剔除该解释变量D 如果某一参数不能通过显著性检验,我们不应该随便剔除该解释变量11.半对数模型μββ++=X Y ln 10中,参数1β的含义是( C )。

A .X 的绝对量变化,引起Y 的绝对量变化B .Y 关于X 的边际变化C .X 的相对变化,引起Y 的期望值绝对量变化D .Y 关于X 的弹性12.半对数模型μββ++=X Y 10ln 中,参数1β的含义是( A )。

A.X 的绝对量发生一定变动时,引起因变量Y 的相对变化率B.Y 关于X 的弹性C.X 的相对变化,引起Y 的期望值绝对量变化D.Y 关于X 的边际变化13.双对数模型μββ++=X Y ln ln 10中,参数1β的含义是( D )。

A.X 的相对变化,引起Y 的期望值绝对量变化B.Y 关于X 的边际变化C.X 的绝对量发生一定变动时,引起因变量Y 的相对变化率D.Y 关于X 的弹性 二、多项选择题1.将非线性回归模型转换为线性回归模型,常用的数学处理方法有( ? )A.直接置换法B.对数变换法C.级数展开法D.广义最小二乘法E.加权最小二乘法2.在模型ii i X Y μββ++=ln ln ln 10中( ABCD )A. Y 与X 是非线性的B. Y 与1β是非线性的C. Y ln 与1β是线性的D. Y ln 与X ln 是线性的E. Y 与X ln 是线性的3.对模型01122tt t ty b b x b x u =+++进行总体显著性检验,如果检验结果总体线性关系显著,则有( BCD )A.120b b == B.120,0b b ≠= C.120,0b b =≠D. 120,0b b ≠≠ E. 120b b =≠4. 剩余变差是指( ACDE )A.随机因素影响所引起的被解释变量的变差B.解释变量变动所引起的被解释变量的变差C.被解释变量的变差中,回归方程不能做出解释的部分D.被解释变量的总变差与回归平方和之差E.被解释变量的实际值与回归值的离差平方和 5.回归变差(或回归平方和)是指( BCD ) A. 被解释变量的实际值与平均值的离差平方和 B. 被解释变量的回归值与平均值的离差平方和 C. 被解释变量的总变差与剩余变差之差 D. 解释变量变动所引起的被解释变量的变差 E. 随机因素影响所引起的被解释变量的变差3.设k 为回归模型中的参数个数(包括截距项),则总体线性回归模型进行显著性检验时所用的F 统计量可表示为()。

A.)1()()ˆ(22-∑--∑k e k n Y Y i iB.)()1()ˆ(22k n e k Y Y i i-∑--∑ C.)()1()1(22k n R k R --- D.)1()(122---k R k n R )(E.)1()1()(22---k R k n R 7.在多元线性回归分析中,修正的可决系数2R 与可决系数2R 之间()。

A.2R <2RB.2R ≥2R C.2R 只能大于零 D.2R 可能为负值三、名词解释偏回归系数;回归变差、剩余变差;多重决定系数、调整后的决定系数、偏相关系数 名词解释答案 1.偏回归系数:2.回归变差:简称ESS,表示由回归直线(即解释变量)所解释的部分,表示x 对y 的线性影响。

3.剩余变差:简称RSS ,是未被回归直线解释的部分,是由解释变量以外的因素造成的影响。

4.多重决定系数:在多元线性回归模型中,回归平方和与总离差平方和的比值,也就是在被解释变量的总变差中能由解释变量所解释的那部分变差的比重,我们称之为多重决定系数,仍用R 2表示。

5.调整后的决定系数:又称修正后的决定系数,记为2R ,是为了克服多重决定系数会随着解释变量的增加而增大的缺陷提出来的, 其公式为:22/(1)1()/(1)t te n k Ry y n --=---∑∑。

6.偏相关系数:在Y 、X 1、X 2三个变量中,当X 1 既定时(即不受X 1的影响),表示Y 与X 2之间相关关系的指标,称为偏相关系数,记做 2.1Y R 。

四、简答1.给定二元回归模型:01122tt t t y b b x b x u=+++,请叙述模型的古典假定。

解答:(1)随机误差项的期望为零,即()0t E u =。

(2)不同的随机误差项之间相互独立,即cov(,)[(())(()]()0t s t t s s t s u u E u E u u E u E u u =--==。

(3)随机误差项的方差与t 无关,为一个常数,即2var()t u σ=。

即同方差假设。

(4)随机误差项与解释变量不相关,即cov(,)0(1,2,...,)jt t x u j k = =。

通常假定jt x 为非随机变量,这个假设自动成立。

(5)随机误差项t u 为服从正态分布的随机变量,即2(0,)t u N σ:。

(6)解释变量之间不存在多重共线性,即假定各解释变量之间不存在线性关系,即不存在多重共线性。

2.在多元线性回归分析中,为什么用修正的决定系数衡量估计模型对样本观测值的拟合优度?解答:因为人们发现随着模型中解释变量的增多,多重决定系数2R 的值往往会变大,从而增加了模型的解释功能。

这样就使得人们认为要使模型拟合得好,就必须增加解释变量。

但是,在样本容量一定的情况下,增加解释变量必定使得待估参数的个数增加,从而损失自由度,而实际中如果引入的解释变量并非必要的话可能会产生很多问题,比如,降低预测精确度、引起多重共线性等等。

为此用修正的决定系数来估计模型对样本观测值的拟合优度。

3.修正的决定系数2R 及其作用。

解答:222/11()/1tte n k Ry y n --=---∑∑,其作用有:(1)用自由度调整后,可以消除拟合优度评价中解释变量多少对决定系数计算的影响;(2)对于包含解释变量个数不同的模型,可以用调整后的决定系数直接比较它们的拟合优度的高低,但不能用原来未调整的决定系数来比较。

4.常见的非线性回归模型有几种情况? 解答:常见的非线性回归模型主要有: (1) 对数模型01ln ln t t t y b b x u =++(2) 半对数模型01ln t t t y b b x u =++或01ln t t t y b b x u =++(3) 倒数模型0101111y b b u b b u x y x=++=++或 (4) 多项式模型2012...kk y b b x b x b x u =+++++(5) 成长曲线模型包括逻辑成长曲线模型101t b tKy b e -=+和Gompertz 成长曲线模型01tK b b t y e+=5.观察下列方程并判断其变量是否呈线性,系数是否呈线性,或都是或都不是。

①t t t u x b b y ++=310 ②t t t u x b b y ++=log 10③ t t t u x b b y ++=log log 10 ④t t t u x b b y +=)/(10解答:①系数呈线性,变量非线性;②系数呈线性,变量非呈线性;③系数和变量均为非线性;④系数和变量均为非线性。

6. 观察下列方程并判断其变量是否呈线性,系数是否呈线性,或都是或都不是。

①t t t u x b b y ++=log 10 ②t t t u x b b b y ++=)(210 ③ t t t u x b b y +=)/(10 ④t bt t u x b y +-+=)1(110解答:①系数呈线性,变量非呈线性;②系数非线性,变量呈线性③系数和变量均为非线性;④系数和变量均为非线性。

五、计算和分析题1.根据某地1961—1999年共39年的总产出Y 、劳动投入L 和资本投入K 的年度数据,运用普通最小二乘法估计得出了下列回归方程:(0.237) (0.083) (0.048),DW=0.858 式下括号中的数字为相应估计量的标准误。

相关文档
最新文档