复合材料结构分析总结

合集下载

复合材料结构分析总结

复合材料结构分析总结

复合材料结构分析总结文章来源:目录1# 复合材料结构分析总结(一)——概述篇5# 复合材料结构分析总结(二)——建模篇10# 复合材料结构分析总结(三)——分析篇13# 复合材料结构分析总结(四)——优化篇做了一年多的复合材料压力容器的分析工作,也积累了一些分析经验,到了总结的时候了,回想起来,总最初采用I-deas,到MSC.Patran、Nastran,到最后选定Ansys为自己的分析工具,确实有一些东西值得和大家分享,与从事复合材料结构分析的朋友门共同探讨。

(一)概述篇复合材料是由一种以上具有不同性质的材料构成,其主要优点是具有优异的材料性能,在工程应用中典型的一种复合材料为纤维增强复合材料,这种材料的特性表现为正交各向异性,对于这种材料的模拟,很多的程序都提供了一些处理方法,在I-Deas、Nastran、Ansys中都有相应的处理方法。

笔者最初是用I-Deas下建立各项异性材料结合三维实体结构单元来模拟(由于研究对象是厚壁容器,不宜采用壳单元),分析结果还是非常好的,而且I-Deas强大的建模功能,但由于课题要求要进行压力容器的优化分析,而且必须要自己写优化程序,I-Deas的二次开发功能开放性不是很强,所以改为MSC.Patran,Patran 提供了一种非常好的二次开发编程语言PCL(以后在MSC的版中专门给大家贴出这部分内容),采用Patran结合Nastran的分析环境,建立了基于正交各项异性和各项异性两种分析模型,但最终发现,在得到的最后结果中,复合材料层之间的应力结果始终不合理,而模型是没有问题的(因为在I-Deas中,相同的模型结果是合理的),于是最后转向Ansys,刚开始接触Ansys,真有相见恨晚的感觉,丰富的单元库,开放的二次开发环境(APDL 语言),下面就重点写Ansys的内容。

在ANSYS程序中,可以通过各项异性单元(Solid 64)来模拟,另外还专门提供了一类层合单元(Layer Elements)来模拟层合结构(Shell 99, Shell 91, Shell 181, Solid 46 和Solid 191)的复合材料。

复合材料结构力学分析

复合材料结构力学分析

复合材料结构力学分析随着科技不断发展和进步,人们将越来越多的材料运用到各种领域中去,例如建筑、交通、海洋等,而复合材料作为一种性能优异的材料,其应用也越来越广泛。

然而,复合材料结构力学分析也成为了解决其应用问题的重要方法之一。

一、复合材料结构力学分析的概念复合材料是由两个或两个以上不同成分的材料组成,其重要特点是由各成分的各自优点组合成材料的无与伦比的性能。

而结构力学分析是指,对于复杂结构体,在了解其静力学性能的基础上,确定各部件的应变状态,并依据力学原理或有关理论计算得到结构体的内应力分布和变形情况的工程分析方法。

因此,复合材料结构力学分析是如何对复合材料的组成和结构进行研究,了解其力学性能,并根据其力学原理和相关理论进行力学计算。

这种方法对于指导材料的选取和结构的设计具有重要意义。

二、复合材料结构力学分析的步骤复合材料结构力学分析的过程较为复杂,需要经过以下几个步骤:1.基础分析:包括材料的力学性能参数,如弹性模量,剪切模量,泊松比等;以及材料组成和微观结构的分析,是整个分析的基础。

2.力学分析:在基础分析的基础上,进行应力和应变的计算,了解材料承受载荷的情况。

3.结构分析:根据结构的几何形态,进行杆件等的应力分析,确定各部位的应力分布规律。

4.材料疲劳分析:了解材料在循环载荷下的疲劳性能,以预测材料的寿命。

5.工程设计:依据分析的结果,对材料的选择和设计进行综合分析,确定合理的结构和制造参数。

三、复合材料结构力学分析存在的问题及解决方案虽然复合材料具有优异的力学性能和广泛的应用前景,但是在结构力学分析中也存在一些问题,这些问题包括:1.材料性能不均匀:由于复杂结构体中材料的组成和微观结构的不同,会导致材料的力学性能存在一定的差异,给计算带来了一定的难度。

2.结构复杂性:复杂结构体的几何形态存在变化,例如曲率半径的变化,杆件的斜角和弯曲等。

这些变化使得分析过程变得复杂。

3.工艺难度和成本高:制造复合材料结构需要经过复杂的工艺过程,这些过程存在成本高和时间长等问题。

复合材料的微观结构特征与分析

复合材料的微观结构特征与分析

复合材料的微观结构特征与分析在材料科学的领域中,复合材料因其独特的性能和广泛的应用而备受关注。

要深入理解复合材料的性能,就必须对其微观结构特征进行细致的研究和分析。

复合材料是由两种或两种以上具有不同物理和化学性质的组分材料通过特定的工艺组合而成的。

这些不同的组分在微观尺度上相互作用,形成了复杂而独特的微观结构。

从微观结构的角度来看,复合材料通常可以分为两类:颗粒增强复合材料和纤维增强复合材料。

颗粒增强复合材料中,增强颗粒均匀或不均匀地分布在基体材料中。

这些颗粒的大小、形状、分布密度以及与基体的结合强度等因素,对复合材料的性能有着重要的影响。

比如,小颗粒通常能够提供更均匀的强化效果,但如果颗粒分布不均匀,可能会导致局部应力集中,从而影响材料的整体性能。

纤维增强复合材料中的纤维,其形态和排列方式对性能起着关键作用。

纤维可以是连续的,也可以是短切的;可以是单向排列,也可以是多向交织。

连续纤维增强复合材料在纤维方向上具有极高的强度和刚度,但在垂直纤维方向上的性能则相对较弱。

而多向交织的纤维增强复合材料在各个方向上的性能相对较为均衡。

在分析复合材料的微观结构时,我们常常借助各种先进的表征技术。

电子显微镜是其中非常重要的工具之一。

扫描电子显微镜(SEM)能够提供材料表面的微观形貌信息,让我们清晰地看到增强相和基体之间的界面结合情况、颗粒的分布状态以及可能存在的缺陷。

而透射电子显微镜(TEM)则能够揭示材料内部的晶体结构、位错等更细微的结构特征。

除了电子显微镜,X 射线衍射技术也被广泛应用。

通过测量 X 射线在材料中的衍射图谱,我们可以确定材料的相组成、晶体结构以及晶体的取向等信息。

此外,能谱分析(EDS)可以帮助我们了解材料中不同元素的分布情况,从而进一步揭示微观结构的特征。

复合材料的微观结构特征还与其制备工艺密切相关。

例如,在热压成型过程中,温度、压力和时间等参数会影响增强相在基体中的分布和界面结合强度。

水泥基复合材料的力学与结构性能分析

水泥基复合材料的力学与结构性能分析

水泥基复合材料的力学与结构性能分析随着科技的不断发展,新材料的出现不断挑战着传统材料的地位。

在建筑行业中,水泥基复合材料因其优异的力学和结构性能得到不少关注。

本文将从不同角度来分析水泥基复合材料的力学和结构性能。

一、水泥基复合材料的种类和成分水泥基复合材料是一种由无机材料和有机材料,包括水泥、纤维、钢筋、高分子材料等构成的新型复合材料。

水泥基复合材料的成分和种类十分复杂,以下是一些常见的水泥基复合材料及其组成:1. 钢筋混凝土:由水泥砂浆和钢筋构成,钢筋是主要受力构件,水泥砂浆是钢筋保护层和传递荷载的介质。

2. 玻璃纤维增强水泥基复合材料:由水泥、玻璃纤维、添加剂等构成。

这种材料具有较好的抗拉强度和耐久性。

3. 碳纤维增强水泥基复合材料:由水泥、碳纤维、添加剂等组成,具有优异的抗拉性能和高温稳定性。

二、水泥基复合材料的力学性能分析在建筑行业中,材料的力学性能至关重要。

水泥基复合材料具有一些卓越的力学性能,如抗拉强度、抗压强度、弹性模量等。

1. 抗拉强度水泥基复合材料的抗拉强度一般较低,但加入纤维增强剂可以有效提高材料的抗拉性能。

碳纤维增强剂是目前较为常用的增强材料,研究表明,使用碳纤维增强剂可以有效提高水泥基复合材料的抗拉强度,提高其耐久性。

2. 抗压强度水泥基复合材料的抗压强度是其重要的力学性能之一,它主要取决于水泥的品种、浆料的掺合比和固化方式等因素。

钢筋混凝土具有很高的抗压强度,大约为50~100MPa,而纤维增强水泥基复合材料的抗压强度一般在20~40MPa之间。

3. 弹性模量弹性模量是评价材料强度和刚度的指标之一,它反映了材料受力时的变形能力。

水泥基复合材料的弹性模量一般在30~50GPa之间,而高性能纤维增强水泥基复合材料的弹性模量一般可达到100GPa。

三、水泥基复合材料的结构性能分析在建筑行业中,材料的结构性能是十分关键的。

水泥基复合材料的结构性能需考虑其耐久性、抗冻性、耐久性和防水性。

复合材料的微观结构与性能分析

复合材料的微观结构与性能分析

复合材料的微观结构与性能分析在当今科技高速发展的时代,复合材料凭借其优异的性能在众多领域中得到了广泛的应用,从航空航天到汽车制造,从电子设备到生物医学,几乎无处不在。

而要深入理解复合材料的性能优势,就必须从其微观结构入手进行分析。

复合材料是由两种或两种以上具有不同物理和化学性质的材料组合而成的多相材料。

其微观结构的复杂性和多样性决定了其性能的独特性。

从微观角度来看,复合材料通常由增强相、基体相以及两者之间的界面相组成。

增强相是赋予复合材料高强度、高刚度等优良性能的关键成分。

常见的增强相包括纤维(如碳纤维、玻璃纤维等)、晶须和颗粒。

以碳纤维为例,其具有极高的强度和模量,这是由于碳纤维的原子结构排列规整,碳原子之间的共价键结合力强。

当碳纤维作为增强相分布在基体中时,能够有效地承担外部载荷,从而显著提高复合材料的整体强度和刚度。

基体相则起到将增强相连接在一起,并传递和分散载荷的作用。

常见的基体材料有聚合物(如环氧树脂、聚酯树脂等)、金属(如铝、钛等)和陶瓷(如氧化铝、氮化硅等)。

基体相的性能不仅影响复合材料的加工性能,还对其耐腐蚀性、耐热性等方面有着重要影响。

例如,聚合物基体通常具有良好的成型性能和韧性,但耐热性相对较差;而陶瓷基体则具有优异的耐高温性能,但脆性较大。

界面相是增强相与基体相之间的过渡区域,其性能对复合材料的整体性能起着至关重要的作用。

一个良好的界面能够有效地传递载荷,防止在界面处产生应力集中,从而提高复合材料的强度和韧性。

界面的结合强度、化学相容性和物理相容性等因素都会影响界面性能。

如果界面结合过弱,在受到载荷时容易发生脱粘,导致复合材料过早失效;而界面结合过强,则可能限制了复合材料的韧性。

复合材料的微观结构特征对其力学性能有着显著的影响。

例如,增强相的含量、分布和取向会直接影响复合材料的强度和刚度。

当增强相含量增加时,复合材料的强度和刚度通常会相应提高,但同时也可能会导致其韧性下降。

复合材料结构的力学性能分析与优化设计

复合材料结构的力学性能分析与优化设计

复合材料结构的力学性能分析与优化设计复合材料在现代工程领域中得到广泛应用,其独特的力学性能使其成为许多领域的首选材料。

为了确保使用复合材料结构的稳定性和安全性,对其力学性能进行准确的分析与优化设计是必不可少的。

复合材料的力学性能分析需要考虑以下几个方面:材料属性、构件设计和力学行为。

首先,复合材料的力学性能是由其材料属性决定的。

复合材料由纤维和基体组成,纤维负责承载载荷,而基体则起到连接纤维的作用。

在分析复合材料的力学性能时,需要了解纤维的类型、方向和体积分数,以及基体的特性。

这些信息可以通过材料测试和实验获得,例如拉伸测试、弯曲测试和压缩测试等。

通过这些测试可以获得复合材料的弹性模量、屈服强度和断裂韧性等力学特性。

其次,构件设计是影响复合材料力学性能的关键因素。

复合材料可以通过不同的构件设计来适应不同的工程要求。

构件的几何形状、层数、层序和连接方式等都会对复合材料的力学性能产生影响。

在进行力学性能分析时,需要根据构件的实际情况建立有限元模型。

有限元分析是一种常用的数值模拟方法,通过将复合材料结构划分为小块进行离散建模,然后通过求解有限元方程得到应力、应变和变形等信息。

通过有限元分析,可以评估不同构件设计对复合材料力学性能的影响,为优化设计提供依据。

最后,力学行为是评价复合材料力学性能的关键。

复合材料的力学行为通常包括线弹性、非线性、破坏和疲劳等。

线弹性是指在小应变范围内,复合材料的应力和应变呈线性关系。

非线性行为包括塑性变形、集中变形和层间剪切等,这些行为会导致驰豫和刚度退化。

破坏行为是复合材料在超出其极限时发生的,通常包括纤维断裂、基体剥离和界面开裂。

疲劳行为是复合材料在长期受到循环载荷作用下发生的。

优化设计是通过改变材料和结构参数来增强复合材料的力学性能。

在复合材料结构的力学性能分析中,通过在有限元模型中改变材料的属性和构件的设计来优化设计。

优化设计的目标可以是最小化构件的重量、最大化构件的刚度、最大化构件的承载能力等。

复合材料结构的力学性能测试与分析

复合材料结构的力学性能测试与分析

复合材料结构的力学性能测试与分析引言复合材料是由不同材料组合而成的一种新型材料,具有很多优异的机械性能,因此在航空、航天、汽车等领域得到广泛应用。

然而,复合材料的力学性能与其结构密切相关,因此对其进行力学性能测试与分析是十分关键的。

一、复合材料结构的力学性能测试方法1. 拉伸试验拉伸试验是评估复合材料材料强度和刚度的常用方法之一。

通过在拉伸机上施加一定的拉力,测量拉伸试样的应变和应力来分析材料的拉伸性能。

该方法能够得到材料的拉伸强度、弹性模量、屈服强度等参数。

2. 压缩试验压缩试验用于评估复合材料在受压状态下的抗压性能。

在压力机上施加一定的压力,测量压缩试样的应变和应力来分析材料的抗压性能。

该方法能够得到材料的压缩强度、弹性模量、破坏形态等参数。

3. 剪切试验剪切试验用于评估复合材料在受剪切状态下的抗剪性能。

通过施加剪切力,测量试样剪切区域的切应变和切应力来分析材料的抗剪切性能。

该方法能够得到材料的剪切强度、剪切模量等参数。

4. 冲击试验冲击试验用于评估复合材料在受冲击载荷下的性能表现。

通过施加冲击载荷,测量试样的冲击吸收能力和冲击强度来分析材料的抗冲击性能。

该方法能够得到材料的冲击韧性、断裂能量等参数。

二、复合材料结构力学性能分析1. 有限元分析有限元分析是一种常用的力学性能分析方法,通过将结构离散化为有限个单元,在每个单元内建立方程组,最终求解整个结构的力学行为。

通过有限元分析,可以得到复合材料结构在不同载荷条件下的应力和应变分布,并可以进行累积疲劳分析、刚度分析等。

2. 弹性力学分析弹性力学分析可以用来研究复合材料的静力响应。

通过应变-应力关系和材料的力学参数,可以计算出复合材料在受力作用下的应变和应力分布。

弹性力学分析可用于优化设计和评估复合材料结构的强度。

3. 疲劳寿命评估复合材料结构在长期受到变化载荷作用下会发生疲劳破坏。

通过进行疲劳寿命评估,可以预测结构在特定载荷下的寿命。

疲劳寿命评估可以使用实验方法和数值模拟方法,如基于有限元分析的疲劳分析。

复合材料夹层结构分析

复合材料夹层结构分析

复合材料夹层结构分析复合材料夹层结构是指由两个或多个不同材料组成的结构,每个材料在夹层结构中的分布和相互作用对整个结构的性能起着重要的影响。

本文将从夹层结构的组成、分析方法和应用领域三个方面进行介绍,并重点探讨夹层结构的应力分析、强度计算和疲劳寿命预测等方面的问题。

夹层结构的组成可以有很多种形式,例如纤维增强复合材料夹层结构、金属-复合材料夹层结构、复合材料-塑料夹层结构等。

其中,纤维增强复合材料夹层结构是最常见的一种形式。

在纤维增强复合材料夹层结构中,一般由多层纤维增强复合材料板材和粘接剂层组成。

其中,板材是由纤维和基体材料复合而成的,粘接剂层用于将不同板材连接在一起。

夹层结构的分析方法可以通过有限元分析、理论分析和试验分析等途径进行。

其中,有限元分析是最常用的分析方法之一、有限元分析可以通过将夹层结构离散化成有限个小单元,然后利用数值方法求解得到夹层结构的应力、应变和变形等信息。

在进行有限元分析时,需要考虑夹层结构的几何形状、材料特性和加载方式等因素,并选择合适的有限元模型和边界条件。

夹层结构的应力分析是夹层结构分析的关键一步。

应力分析可以通过解析方法、数值方法和试验方法进行。

在解析方法中,常用的有层合板理论、三维理论和剥离理论等。

层合板理论是最常见和简化的一种方法,它假设夹层结构是一个薄板,在板厚方向上应力变化不大。

三维理论则考虑了夹层结构的厚度效应,可以更准确地描述夹层结构的应力分布。

而剥离理论则主要用于描述夹层结构在受剪力作用下的剥离破坏。

夹层结构的强度计算是夹层结构分析中的另一个重要内容。

强度计算可以通过解析方法和试验方法进行。

在解析方法中,常用的有杠杆平衡法、层合板理论和损伤力学等。

杠杆平衡法可以用于计算夹层结构的最大弯曲应力和最大剪应力等。

层合板理论可以用于计算夹层结构的最大应力和最大应变等。

而损伤力学则可以用于描述夹层结构的疲劳寿命和损伤演化过程等。

夹层结构的疲劳寿命预测是夹层结构分析的重要内容之一、疲劳寿命预测可以通过数值模拟和试验验证相结合的方法进行。

Al2O3-Al复合材料的微观结构分析

Al2O3-Al复合材料的微观结构分析

熔铝氧化渗透合成SiCp/al203-al复合材料的微观结构分析崔岩,宋颍刚,张少卿(北京航空材料研究院,北京l00095)摘要:以低成本的熔铝氧化渗透合成新方法制备了SiCp/al203-al复合材料。

借助X光电子谱(XPS)、光学金相显微镜、透射电镜(TEM)、X射线衍射(XRD)等手段研究了该种复合材料的微观结构,并分析了影响微观结构的主要因素及其影响规律。

结果表明,al203和al作为复合材料基体呈双连续分布,它们各自的含量可在较大范围内受SiC颗粒的粒度所控制。

在熔铝氧化渗透合成的SiCp/al203-al复合材料中,各组成相之间无界面反应,也无晶间相,al203在SiC颗粒表面二次形核并直接生长的现象普遍存在,并由此形成了具有良好物理冶金结合的al203-SiC一体化陶瓷骨架。

关键词:SiC颗粒;熔铝;氧化渗透;复合材料;微观结构中图分类号:TB333文献标识码:a文章编号:l005-5053(200l)04-0023-05与热压烧结等传统的陶瓷复合材料制备工艺相比,熔铝氧化渗透合成新技术具有极为显著的低成本优势:工艺温度低,适于在空气中进行,无需压力,构件致密化过程中基本不发生收缩;以廉价的铝合金锭为母材,无需超细、高纯氧化铝粉。

此外,还易于实现制品大型化及其近无余量制备,因此更具产业化潜力。

SiCp/al203-al复合材料则是熔铝氧化渗透合成新方法的成功典范[l~3]。

已有研究工作表明[4,5],熔铝氧化反应渗透合成的SiCp/al203-al复合材料微观结构复杂、独特。

其相组成、相分布方式及相间界面特征等在很大程度上受工艺条件、工艺参数的控制,同时又都会对复合材料的性能产生显著影响。

但到目前为止,对该种材料微观结构的定量表征及系统的分析工作还很缺乏。

本文的目的则是深入揭示该种材料微观结构特征及其控制因素与控制规律,为实现其微观结构乃至性能的优化设计进而使之在某些应用背景下成为性能价格比最优的选材提供必要的依据。

复合材料结构分析

复合材料结构分析

复合材料结构分析引言复合材料是由两个或两个以上成分组成的材料,通过它们的界面结合形成一种新的材料。

它具有比传统材料更好的性能,如高强度、高刚度、低密度、抗腐蚀等。

因此,复合材料在航空航天、汽车、建筑和体育设备等领域得到了广泛应用。

在复合材料设计和使用过程中,结构分析是一项重要的任务,它可以预测和评估复合材料的性能和行为。

复合材料的基本结构复合材料的基本结构由两个主要组成部分组成:增强相和基体相。

增强相是复合材料中的主要负荷转移部分,它提供了材料的强度和刚度。

常见的增强相包括碳纤维、玻璃纤维和芳纶纤维等。

基体相是增强相的支撑结构,常用的基体材料包括树脂、金属和陶瓷等。

增强相和基体相的合理组合是实现复合材料优异性能的关键。

复合材料结构分析的方法宏观力学模型宏观力学模型是复合材料结构分析的一种常用方法。

它假设复合材料是均匀各向同性的连续介质,可以通过弹性力学理论进行分析。

应力和应变的关系可以使用胡克定律来描述。

另外,通过定义复合材料的刚度矩阵,可以计算材料的弹性常数。

宏观有限元模型宏观有限元模型是一种基于有限元方法的数值模拟技术,在复合材料结构分析中得到了广泛应用。

有限元模型可以通过将复合材料划分为多个小单元来近似描述复合材料的力学行为。

根据材料的几何形状、边界条件和力加载情况,可以建立复材料的有限元模型并进行分析。

细观力学模型细观力学模型考虑了复合材料的基本组成部分,将其建模为多层纤维和基体的非均匀三维结构。

通过考虑界面效应、纤维排列方式和材料微结构的变化等因素,细观力学模型可以更精确地预测复合材料的性能和行为。

然而,由于模型的复杂性和计算量的增加,细观力学模型较少在实际工程中应用。

复合材料结构分析的关键问题材料的强度和刚度复合材料的强度和刚度是评估其性能的重要指标。

通过结构分析,可以预测材料在不同加载条件下的强度和刚度,并根据需求进行优化设计。

疲劳和失效复合材料在长时间使用过程中,容易受到疲劳和失效现象的影响。

典型复合材料制件力学结构有限元仿真过程总结分析报告

典型复合材料制件力学结构有限元仿真过程总结分析报告

典型复合材料制件力学结构有限元仿真过程总结分析报告复合材料是由两种或更多种不同材料组成的材料,具有优异的力学性能。

在制件的设计和优化过程中,有限元仿真是一种常用的方法。

下面是典型复合材料制件力学结构有限元仿真过程的总结分析报告:1. 定义模型:首先,根据实际制件的几何形状和材料信息,在有限元软件中进行几何建模。

确定模型的尺寸、几何形状以及材料属性等。

2. 离散化网格:将模型离散化为有限数量的小单元,通常是三角形或四边形网格。

根据制件的复杂程度,调整网格的密度和精度,以确保模型准确性和计算效率。

3. 设置边界条件:根据实际情况,为模型设置边界条件。

边界条件包括约束条件和加载条件。

约束条件定义模型中的固定点或固定面,加载条件定义施加在模型上的外部力或位移。

4. 材料属性定义:根据实际材料的力学性能,将材料属性输入模型。

包括弹性模量、泊松比、屈服强度、断裂韧性等。

对于复合材料,还需要输入层间剪切模量和层间剪切刚度等特殊性质。

5. 求解模型:通过有限元软件的求解功能,对离散化的模型进行求解。

该过程将根据边界条件和材料属性计算出模型的应力、应变和位移等结果。

6. 结果分析:根据求解结果,进行力学性能的评估和分析。

可以对模型的应力分布、变形情况、破坏机制等进行分析和评估。

比如应力集中区域、最大变形量、破坏位置等。

7. 优化设计:根据分析结果,对制件的设计进行优化。

可以调整几何形状、材料选择等,以改善制件的力学性能。

综上所述,典型复合材料制件力学结构有限元仿真过程包括定义模型、离散化网格、设置边界条件、材料属性定义、求解模型、结果分析和优化设计。

通过仿真分析,可以更好地理解制件的力学性能,为设计和优化提供指导和支持。

复合材料的微观结构与力学性能关系分析

复合材料的微观结构与力学性能关系分析

复合材料的微观结构与力学性能关系分析复合材料是由两种或两种以上的材料组成的复合材料,通过不同材料的组合,可以实现材料性能的优化。

在复合材料中,微观结构起着关键作用,对力学性能产生重要影响。

本文将从微观结构与力学性能的关系、复合材料的微观结构特征以及力学性能改善的途径等方面进行探讨。

一、微观结构与力学性能的关系复合材料的微观结构包括纤维/颗粒的分布、界面特性以及微观缺陷等。

这些微观结构的变化会直接影响到复合材料的力学性能。

首先,纤维/颗粒的分布对复合材料的性能有着重要影响。

当纤维/颗粒均匀分布时,可以增强复合材料的强度和刚度,提高其抗拉、抗压和抗弯等力学性能。

相反,如果分布不均匀,将导致应力集中和界面剪切等问题,降低复合材料的力学性能。

其次,界面特性也是影响复合材料性能的重要因素。

复合材料中的界面是纤维/颗粒与基体之间的交界面,其结合强度和界面能量对复合材料的性能起着决定性作用。

良好的界面结合能够有效地传递应力,提高复合材料的强度和刚度。

而界面结合弱化或存在界面剥离等问题会削弱复合材料的力学性能。

最后,微观缺陷也会对复合材料的性能产生不利影响。

微观缺陷包括孔洞、裂纹等,它们会导致应力集中,从而引发材料的破坏。

因此,减少和控制微观缺陷对于提高复合材料的力学性能至关重要。

二、复合材料的微观结构特征复合材料的微观结构特征主要包括纤维/颗粒的形状、尺寸、分布以及界面特性等。

纤维/颗粒的形状和尺寸对复合材料的性能有着重要影响。

一般来说,纤维/颗粒的直径越小,界面面积越大,能够提高界面结合强度,从而提高复合材料的力学性能。

此外,纤维/颗粒的形状也会影响力学性能。

例如,纤维的形状可以是直纹、弯曲或交织等,这些形状会对复合材料的强度和刚度产生不同的影响。

纤维/颗粒的分布是影响复合材料性能的另一个重要因素。

均匀分布的纤维/颗粒能够有效地抵抗外部载荷,提高复合材料的强度和刚度。

而不均匀分布会导致应力集中,降低复合材料的力学性能。

复合材料的多层结构设计与分析

复合材料的多层结构设计与分析

复合材料的多层结构设计与分析在当今的材料科学领域,复合材料以其优异的性能和广泛的应用而备受关注。

其中,复合材料的多层结构设计更是为满足各种复杂工程需求提供了创新的解决方案。

复合材料的多层结构,简单来说,就是将不同材料、不同性能的层按照特定的顺序和方式组合在一起,以实现单一材料无法达到的综合性能。

这种设计理念的出现,源于对材料性能多样化和高性能化的追求。

多层结构设计的优势众多。

首先,它能够实现性能的优化组合。

例如,一层可以提供高强度,另一层可以提供良好的耐腐蚀性,还有一层可以具备出色的隔热性能。

通过合理的层间设计和排列,使复合材料在不同的环境和工况下都能发挥出最佳性能。

其次,多层结构有助于提高材料的可靠性和稳定性。

当一层出现局部损伤时,其他层可以起到支撑和补偿的作用,从而延长材料的使用寿命。

再者,多层结构还能实现功能的集成。

比如,在航空航天领域,既需要结构材料具备高强度,又需要具备电磁屏蔽等功能,多层结构的设计就能很好地满足这些需求。

在多层结构的设计中,材料的选择至关重要。

常用的复合材料包括纤维增强复合材料、聚合物基复合材料、金属基复合材料等。

纤维增强复合材料,如碳纤维增强复合材料和玻璃纤维增强复合材料,因其高强度和高模量而广泛应用。

聚合物基复合材料具有良好的耐腐蚀性和成型性能。

金属基复合材料则在高温和高强度应用中表现出色。

层间结合方式也是多层结构设计的关键因素之一。

常见的结合方式有胶接、焊接、机械连接等。

胶接具有操作简便、成本低的优点,但结合强度相对较低。

焊接能够实现较高的结合强度,但对工艺要求较高。

机械连接则在可拆卸和维修方便方面具有优势,但会增加结构的重量和复杂性。

设计多层结构时,还需要考虑层厚和层数的选择。

层厚过薄可能导致制造难度增加和性能不稳定;层厚过厚则可能影响层间的协同作用。

层数的多少则取决于具体的性能需求和制造工艺的可行性。

此外,环境因素也对多层结构的设计产生重要影响。

不同的工作环境,如高温、低温、潮湿、腐蚀等,要求材料具备相应的耐受能力。

复合材料夹层结构分析

复合材料夹层结构分析

复合材料夹层结构分析复合材料夹层结构是一种由两层或多层材料组成的结构,其中不同材料层通过层间粘接或焊接等工艺相连。

它的结构设计旨在充分发挥各种材料的优势,使夹层结构具有较高的性能和应用价值。

在实际应用中,夹层结构广泛用于航空航天、汽车、建筑等领域。

夹层结构的优势主要体现在以下几个方面:1.强度和刚度优势:夹层结构中的不同层材料可以互相补充,使整个结构具有更高的强度和刚度。

例如,夹层结构可以利用高强度纤维增强聚合物复合材料作为外层,在保证较高强度的同时,通过内层材料的增韧作用提高结构的韧性。

2.轻量化优势:夹层结构可以有效减轻整体结构的重量。

由于复合材料的密度较小且具有较高的强度,可以使用薄而轻的复合材料构成夹层结构,从而达到减轻结构重量的目的。

这对于提高载重能力、降低能耗和提高运行效率具有重要意义。

3.抗疲劳和耐久性优势:夹层结构在使用过程中具有较好的抗疲劳和耐久性能。

由于夹层结构中的不同材料层具有不同的性能,使整个结构具有更好的抗疲劳和耐久性能。

例如,夹层结构可以利用耐磨材料作为外层,使结构表面具有更好的耐磨性,提高结构的使用寿命。

4.导热和绝缘性优势:夹层结构中的不同层材料可以起到隔热和隔热的作用。

例如,夹层结构可以利用导热性能较好的材料作为内层,阻止热量向外传导;同时利用导热性能较差的材料作为外层,防止外界热量传入结构中,从而达到保温的目的。

5.吸音和隔音优势:夹层结构中的不同层材料可以起到吸音和隔音的作用。

例如,在建筑领域中,夹层结构可以利用吸音性能较好的材料作为内层,增加结构对声音的吸收;同时利用密度较大的材料作为外层,阻止声音的传播,提高结构的隔音效果。

然而,夹层结构也存在一些挑战和问题。

首先,夹层结构的设计和制造要求较高,需要考虑不同材料层之间的界面粘接强度、尺寸匹配等问题;其次,夹层结构在使用过程中可能存在层间剥离、破裂等问题,需要进行结构损伤评估和修复;最后,夹层结构的成本较高,需要考虑材料选择、制造工艺等问题,以提高经济性。

复合材料的结构设计与力学性能分析

复合材料的结构设计与力学性能分析

复合材料的结构设计与力学性能分析复合材料是由两个或多个不同性质的材料通过物理或化学方法结合而成的一种新型材料。

它具有独特的性能,广泛应用于航空航天、汽车工业、建筑材料等领域。

本文将通过对复合材料的结构设计与力学性能分析来探讨其重要性以及相关领域的应用。

首先,复合材料的结构设计非常重要。

合理的结构设计可以提高复合材料的力学性能,使其能够承受更大的载荷。

在复合材料的结构设计中,首先需要考虑的是材料的选择。

不同的应用领域对材料的性能要求不同,因此需要选择适合的材料进行组合。

例如,在航空航天领域中,需要材料具有轻量化、高强度和高温抗氧化性能。

因此,可以选择碳纤维和环氧树脂作为主要材料。

其次,结构设计中需要考虑纤维的取向和层压方式。

纤维的取向可以影响复合材料的强度和刚度,而层压方式则决定了复合材料的层间剪切性能。

因此,在结构设计中需要通过优化取向和层压方式来提高复合材料的性能。

其次,复合材料的力学性能分析对于确定其应用范围和使用条件非常重要。

力学性能分析可以通过试验和数值模拟两种方法来进行。

试验是最直接的方法,可以通过加载试样并测量其变形和应力来评估复合材料的性能。

常用的试验方法包括拉伸试验、压缩试验和剪切试验等。

数值模拟则通过建立复合材料的数学模型,采用有限元方法或其他数值计算方法来模拟复合材料的力学行为。

数值模拟可以在更短的时间内得到复合材料的应力分布和变形信息,具有较高的效率和可靠性。

通过分析复合材料的力学性能,可以确定其在不同载荷下的性能表现,为实际工程应用提供指导。

除了结构设计和力学性能分析,复合材料的制备和加工方法也对其性能具有重要影响。

制备复合材料的方法包括手工层压、自动化层压和预浸料成型等。

不同的制备方法会对复合材料的纤维取向、树脂浸润和纤维体积含量等性能参数产生影响。

加工方法则包括切割、钻孔、粘接等。

合适的制备和加工方法可以提高复合材料的制造效率和质量。

综上所述,复合材料的结构设计与力学性能分析是实现优化性能的关键。

复合材料结构的力学分析及优化设计

复合材料结构的力学分析及优化设计

复合材料结构的力学分析及优化设计随着科技的不断进步,复合材料在工业和制造业中的应用也越来越广泛。

因为复合材料具有高强度、低重量、耐腐蚀、耐热、绝缘、隔音等优点,因此它们经常被用于汽车、飞机、船舶、建筑、体育用品、电子设备等领域。

本篇文章将讨论复合材料结构的力学分析及优化设计,探讨如何获得最佳的力学性能。

一、复合材料结构的力学分析1. 弹性模量和刚度矩阵弹性模量是材料刚度的量度,是材料受力后弹性形变程度与应力之比。

对于复合材料,弹性模量通常是用刚度矩阵来表示的。

刚度矩阵是由弹性模量、泊松比和剪切模量等参数组成的矩阵。

它描述了受力应变状况下材料的刚度,是进行力学性能分析的基础。

2. 屈服强度和失效准则在分析复合材料的力学性能时,屈服强度和失效准则是值得关注的。

复合材料的屈服强度通常达到材料的极限值,因此设计师必须在开发过程中尽可能减小屈服强度的影响。

同时,失效准则是指定材料在受到外力下发生很小裂纹或者变形等等“屈服”现象的判定标准。

不同的失效准则可适用于不同的复合材料。

3. 热膨胀系数热膨胀系数是材料在温度变化时长度扩张或收缩程度的物理量度。

由于复合材料与基材之间通过生产过程形成的热影响,这种材料在高温环境下的性质对于设计师来说至关重要。

因此,通过热膨胀系数的分析,设计师可以有效地规划出材料和系统的温度变化范围。

二、复合材料结构的优化设计为了获得最佳的力学性能,设计师需要进行优化设计。

以下是实现这一目标的几种方法。

1. 材料选择对于复合材料来说,选择正确的材料是至关重要的。

在选择时,需要考虑到强度、耐热性、耐腐蚀性、热膨胀系数等因素。

最优的材料选择会相应减小系统的质量,提高强度,并降低成本和维修费用。

2. 结构设计对于复合材料来说,结构设计也是非常重要的一环。

结构设计旨在实现最大的刚度和强度,并减小材料的使用量和重量。

同时还要考虑到系统的性能,例如热传导性、减振性等。

最佳的设计方案将经过力学分析和优化模拟测试来确认。

复合材料夹层结构分析

复合材料夹层结构分析
1
2
1、 重量轻、强度高、刚性好 2、 寿命长 耐久型蜂窝的铝箔经化学处理后具有很高的耐腐蚀性能,使用时间可达20年以上,长期使用温度可达150摄氏度。 3、 突出的综合功能 减振抗冲击性好(能量吸收能力为150-350KJ/M3); 良好的隔音降噪功能(对100-3200Hz的声源降噪可达20-33dB); 隔热保温(导热系数为); 防火阻燃性好,可根据使用要求达到不同的防火等级。 4、 极高的外观平直度,不易变形 5、 材料的加工适应性好结构安装方便、快捷。

铝蜂窝材料还有一个缺陷就是没有“力学记忆”。
铝蜂窝
EX蜂窝夹心材料是由芳纶纸浸酚醛树脂制成,在航天、航空结构、船舶制造中具有广泛的应用领域。
和铝蜂窝相比,发生局部屈曲的几率要小得多,因为蜂窝的壁相对的要厚一些。
另外,因为NOMEX材料不导电,不存在接触腐蚀的问题。但是和其它芳纶产品一样,不能抵抗紫外线的侵蚀,使用时外部通常覆有面板,起到一定的防护作用。
219.0
2.51
63.4
1.58
41.0
4.0-32
0.85
65.8
0.61
21.8
0.42
15.5
4.0-48
1.74
117.7
1.53
44.5
0.74
21.8
4.0-64
3.01
137.0
1.91
45.1
1.11
29.1
5.0-24
0.49
木材
端面巴萨木是最常用的木材芯材。巴萨木最先是在19世纪40年代,在飞艇的船体中使用铝面板和巴萨木芯材,抵抗在水面着陆时受到的重复的冲击荷载。随后,开始在海洋结构中使用端面巴萨木作为FRP结构的芯材。巴萨木除了具有高的压缩性能,还有很好的隔热性能和隔音性能。在加热以后,材料不会发生变形,在遇火时,用作隔热层和烧蚀层,芯层慢慢烧焦,使未遇火的面材保持结构性能。同时,巴萨木还能提供向上的浮力,其加工工具和设备简单。巴萨木芯材产品一般有织物背村,3—50mm厚,具有一定轮廓。刚性端面巴萨木板材的厚度可以达到100mm。针对真空袋、预浸料工艺或压力基础上的制造工艺艺过程,例如 RTMI艺,这种板材可以预先采用树脂涂覆。 巴萨木的一个缺点是最小密度偏大,通常最小密度值大约是100kg/m3。但在层会的过程中,巴萨木还要吸收大量的树脂。为了减少树脂的吸收增加重量,可以预先用泡沫密封。巴萨木的应用通常限制在那些重量不是要求很高或局部承载力要求很高的地方。

轻质复合材料结构力学分析与优化设计

轻质复合材料结构力学分析与优化设计

轻质复合材料结构力学分析与优化设计随着科技的飞速发展,轻质复合材料的应用越来越广泛,尤其是在航空、航天、汽车等领域。

相比传统材料,轻质复合材料具有重量轻、强度高、耐腐蚀、防雷击等特点,因此备受青睐。

轻质复合材料的结构力学分析是保证其安全性和可靠性的重要手段之一。

在设计轻质复合材料结构时,常常需要采用结构力学分析来确定其受力状态、变形和破坏机理。

本文将从轻质复合材料结构力学分析方法入手,阐述其基本原理和应用。

一、轻质复合材料结构力学分析方法1. 总体分析法总体分析法是轻质复合材料结构力学分析的基础方法。

该方法通过对结构整体进行计算,得到其受力状态和变形情况,为后续结构强度和破坏的计算提供基础数据。

总体分析法可分为静力学和动力学两种。

静力学总体分析法是一种静态分析方法,适用于轻质复合材料结构的正常工作条件下的受力分析。

其基本原理是根据结构力学原理,建立结构的受力方程,求解出结构的受力状态和变形情况。

动力学总体分析法则是一种动态分析方法,适用于轻质复合材料结构在受到冲击、震动等外界干扰下的受力分析。

其基本原理是通过建立结构的动力学方程,求解出结构的动态响应。

2. 局部分析法局部分析法是针对轻质复合材料结构中的局部受力分析的方法。

它不考虑结构整体的受力状态和变形情况,而是将结构拆分成一个个局部单元进行研究。

局部分析法主要分为有限元方法和边界元方法两种。

有限元方法是一种重要的计算力学方法,它将结构分割成若干个小单元进行力学分析,通过计算每个小单元的受力和变形情况来确定整个结构的受力状态和变形情况。

有限元方法适用于各种不规则结构的受力分析,在轻质复合材料结构优化设计中,是一种常用的方法。

边界元方法则是另一种局部分析法。

它将结构表面分割成若干个小面元进行研究,通过计算每个小面元的受力和变形情况来确定整个结构的受力状态和变形情况。

边界元方法适用于流动与结构耦合问题的数值计算,常用于轻质复合材料结构的空气动力学分析。

复合材料结构抗冲击性能分析与优化设计

复合材料结构抗冲击性能分析与优化设计

复合材料结构抗冲击性能分析与优化设计一、引言随着科学技术的不断发展,材料科学领域的研究也取得了重大突破。

复合材料作为一种新型材料,具有优异的物理、力学性能,被广泛应用于航空航天、汽车制造、建筑工程等领域。

在这些领域中,复合材料结构的抗冲击性能尤为重要,因为它直接关系到材料的安全性和使用寿命。

二、复合材料的抗冲击性能复合材料的抗冲击性能是指在外界冲击力作用下,材料能够承受的冲击能量和承载能力。

复合材料通常由纤维增强基体与基质相结合而成,这种结构赋予了复合材料较高的强度和韧性。

纤维增强基体起到了增加材料强度和刚度的作用,而基质则能够吸收和分散冲击能量。

因此,纤维增强基体和基质的选择及配比对复合材料的抗冲击性能具有重要影响。

三、抗冲击性能的测试方法为了评估复合材料的抗冲击性能,常用的测试方法包括冲击试验和拉伸试验。

冲击试验主要用于测量材料在高速冲击下的断裂行为和破坏机制,通过计算冲击吸收能量和冲击强度来评估材料的抗冲击性能。

而拉伸试验则用于测量材料在拉伸过程中的力学性能,如弹性模量、屈服强度和断裂韧性,从而间接反映了材料的抗冲击性能。

四、优化设计原则为了优化复合材料结构的抗冲击性能,以下原则应被遵循:1.纤维增强基体的选择:选择具有较高强度和韧性的纤维增强基体,如碳纤维、玻璃纤维等。

同时,纤维的分布应均匀且与基质充分结合,以增加材料的强度和刚度。

2.基质的选择与设计:选择具有良好吸能性能的基质,如热塑性弹性体、聚合物等。

基质应具有较高的韧性和能够吸收和分散冲击能量的能力。

3.合理设计复合材料结构:通过优化复合材料的层数、厚度和层间界面的聚合度,以提高复合材料的整体强度和抗冲击性能。

4.考虑材料的应用环境:根据材料的应用环境和工作条件,调整复合材料的配比和结构,以增加其使用寿命和抗冲击性能。

五、案例分析以航空航天领域为例,航天器在进入大气层重新入轨时会受到巨大的冲击力和热载荷,因此其外壳材料需要具备优异的抗冲击性能。

复合材料的界面结构与粘接强度分析

复合材料的界面结构与粘接强度分析

复合材料的界面结构与粘接强度分析复合材料具有轻质、高强度和良好的化学稳定性等特点,因此在航空航天、汽车和建筑等领域得到广泛应用。

而复合材料的界面结构和粘接强度则是决定其整体性能的关键因素之一。

本文将从界面微观结构和粘接强度两个方面进行分析与讨论。

1. 界面微观结构分析复合材料的界面是指两个或多个不同成分的材料之间的交界面。

界面微观结构的特征对于复合材料的力学性能和化学性能起着重要影响。

首先,界面的化学成分及形态对粘接强度具有显著影响。

例如,界面存在活性基团可以与复合材料基体进行化学键的形成,从而提高粘接强度。

另外,界面的疏水性或亲水性也会影响界面结合状态,进而影响粘接强度。

其次,界面的形貌结构也是影响粘接强度的重要因素。

常见的界面形貌结构包括光滑界面、粗糙界面和锯齿状界面等。

这些不同形貌的界面会对界面接触面积和应力分布产生影响,进而影响粘接强度。

最后,界面的微观结构对复合材料的界面附着力和界面扩散等也有一定影响。

微观结构的差异可能导致界面的附着力不同,从而影响粘接强度。

2. 粘接强度分析粘接强度是指复合材料中不同材料之间的粘接性能,是评估其界面粘接质量的重要指标。

首先,界面的粘接强度与材料选择和预处理有关。

在复合材料的制备过程中,材料的选择和预处理会直接影响界面的粘接强度。

例如,选择适合的粘接剂或表面处理剂可以提高界面的粘接强度。

其次,界面的粘接强度与界面的结构相互作用有关。

界面结构的差异可能导致界面应力分布不均匀,从而降低粘接强度。

因此,通过优化界面微观结构,可以提高复合材料的粘接强度。

最后,界面的粘接强度与界面的力学性能和化学性能密切相关。

界面的特定化学键和相互作用可以增强界面的粘接强度,进而提高复合材料的整体性能。

综上所述,复合材料的界面结构与粘接强度是紧密联系的。

界面微观结构的特征对于复合材料的力学性能和化学稳定性产生重要影响。

粘接强度是评估界面粘接质量的指标,其受材料选择、预处理和界面结构相互作用等多个因素的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复合材料结构分析总结说明:整理自Simwe论坛,复合材料版块,原创fea_stud,大家要感谢他呀目录1# 复合材料结构分析总结(一)——概述篇5# 复合材料结构分析总结(二)——建模篇10# 复合材料结构分析总结(三)——分析篇13# 复合材料结构分析总结(四)——优化篇做了一年多的复合材料压力容器的分析工作,也积累了一些分析经验,到了总结的时候了,回想起来,总最初采用I-deas,到MSC.Patran、Nastran,到最后选定Ansys为自己的分析工具,确实有一些东西值得和大家分享,与从事复合材料结构分析的朋友门共同探讨。

(一)概述篇复合材料是由一种以上具有不同性质的材料构成,其主要优点是具有优异的材料性能,在工程应用中典型的一种复合材料为纤维增强复合材料,这种材料的特性表现为正交各向异性,对于这种材料的模拟,很多的程序都提供了一些处理方法,在I-Deas、Nastran、Ansys中都有相应的处理方法。

笔者最初是用I-Deas下建立各项异性材料结合三维实体结构单元来模拟(由于研究对象是厚壁容器,不宜采用壳单元),分析结果还是非常好的,而且I-Deas强大的建模功能,但由于课题要求要进行压力容器的优化分析,而且必须要自己写优化程序,I-Deas的二次开发功能开放性不是很强,所以改为MSC.Patran,Patran 提供了一种非常好的二次开发编程语言PCL(以后在MSC的版中专门给大家贴出这部分内容),采用Patran结合Nastran的分析环境,建立了基于正交各项异性和各项异性两种分析模型,但最终发现,在得到的最后结果中,复合材料层之间的应力结果始终不合理,而模型是没有问题的(因为在I-Deas中,相同的模型结果是合理的),于是最后转向Ansys,刚开始接触Ansys,真有相见恨晚的感觉,丰富的单元库,开放的二次开发环境(APDL 语言),下面就重点写Ansys的内容。

在ANSYS程序中,可以通过各项异性单元(Solid 64)来模拟,另外还专门提供了一类层合单元(Layer Elements)来模拟层合结构(Shell 99, Shell 91, Shell 181, Solid 46 和Solid 191)的复合材料。

采用ANSYS程序对复合材料结构进行处理的主要问题如下:(1)选择单元类型针对不同的结构和输出结果的要求,选用不同的单元类型。

Shell 99 ——线性结构壳单元,用于较小或中等厚度复合材料板或壳结构,一般长度方向和厚度方向的比值大于10;Shell 91 ——非线性结构壳单元,这种单元支持材料的塑性和大应变行为;Shell 181——有限应变壳单元,这种单元支持几乎所有的包括大应变在内的材料的非线性行为;Solid 46 ——三维实体结构单元,用于厚度较大的复合材料层合壳或实体结构;Solid 191——三维实体结构单元,高精度单元,不支持材料的非线性和大变形。

(2)定义层属性配置主要是定义单层的层属性,对于纤维增强复合材料,在这里可以定义单层厚度、纤维方向等。

(3)定义失效准则支持多种失效准则,不过我还是没有用他,而是自己写了通过应力结果采用二次蔡胡准则程序来判断的。

(4)其他的一些建模技巧和后处理指导在我的分析工作中,主要采用了三维实体结构单元。

关于Solid 46单元(1) Solid 46是用于模拟复合材料厚壳或实体的8节点三维层合结构单元,单元节点有x,y和z方向三个结构自由度,单元允许最多250层不同的材料;(2)这种单元的定义包括:8个节点、各层厚度、各层材料方向角和正交各项异性材料属性,其中每层可以为面内两个方向双线性的不等厚层;(3)在材料定义时,只需定义材料主方向和材料坐标系(单元坐标系)一致的材料参数,不一致的复合材料层通过定义材料方向角(该层材料主方向和材料坐标系所成的角度)由程序自动转换;(4)通过选择不同的层直接在单元坐标下获取单元应力,包括三个方向的应力和面内剪切应力,而不需要通过应力应变的转换来获取;论坛问答:Q:ANSYS如何处理失效后的材料退化呢?A:ANSYS没有直接提供材料失效后的退化,但可以自己写程序让ANSYS执行。

ANSYS 可以用失效准则判断材料是否失效,之后刚度降低可以通过实验测得。

再将实验数据输入到ANSYS中,对失效的单元重新进行分析。

共同讨论!Ansys确实没有直接提供材料失效后的退化的处理方法。

我们在进行复合材料结构分析时,通常采用单层模量退化的估算方法,这种估算方法就是将带有裂纹层的横向、剪切模量与泊松系数全部用一组经过DF因子退化的新值替代,为了考虑压缩强度的下降,对单向复合材料的压缩强度也要DF因子退化(详细信息可以参考蔡为仑的《复合材料设计》一书),这样,我们就可以再结合Ansys的APDL来处理了。

建模篇复合材料是一种各向异性材料,对于纤维增强复合材料又是一种正交各向异性材料,因此,在进行复合材料结构建模的时候要特别注意的一个重要的问题,就是材料的方向性。

下面,就我个人的分析经验,对复合材料结构的建模作一个总结。

1.结构坐标系、单元坐标系、材料坐标系和结果坐标系建立复合材料结构模型,存在一个结构坐标系,用于确定几何元素的位置,这个坐标可以是笛卡尔坐标系、柱坐标系或者是球坐标系;单元坐标系是每个单元的局部坐标系,一般用来描述整个单元;材料坐标系是确定材料属性方向的坐标系,一般没有专门建立的材料坐标系,而是参考其他坐标系,如整体结构坐标系,或单元坐标系,在Ansys程序中,材料坐标是由单元坐标唯一确定的,要确定材料坐标,只要确定单元坐标就行了;结果坐标系是在进行结果输出时所使用的坐标系,也是一般参考其他坐标系。

在Ansys程序中,关于坐标系有人做过专门的总结。

见后。

2.用于复合材料结构分析的单元用于复合材料分析的单元主要有两类,一类是层合单元,如Shell 99, Shell 91, Shell 181, Solid 46 和Solid 191;另一类是各向异性单元,如Solid64;这些材料都有不同的处理方法,层合单元,在一个单元内可以包含多层信息,包括各层的材料、厚度和方向;各项各向异性单元,在一个单元内,只能包含一种材料信息,而且所得到的计算结果还要进行一些处理,因此有一定的局限性。

3.单元坐标的一致性问题在进行复合材料结构建模的时候,有些时候结构几何比较复杂,很难用统一的坐标来确定单元坐标系,即使对一些规则的几何(如圆桶),在用旋转方法生成几何时,不同的面法向也会带来单元坐标的不一致,这就使得材料输入的时候存在问题并使计算结果错误,因此,在几何建模时要特别注意这一问题,笔者也没有得到一些复杂几何进行单元划分时保持单元一致的合适方法。

4.一个实例5.下面的命令流显示了不同的几何生成方法会产生不同的单元坐标方向:/PREP7!******Create Material*******MPTEMP,,,,,,,,MPTEMP,1,0MPDATA,EX,1,,2.068e8MPDATA,PRXY,1,,0.29MPTEMP,,,,,,,,MPTEMP,1,0MPDATA,DENS,1,,7.82e-6!*********Create Element Type**********ET,1,SOLID95KEYOPT,1,1,1KEYOPT,1,5,0KEYOPT,1,6,0KEYOPT,1,11,0!***************************CSYS,1HS=80!**create two keypoints along axialK,101,0,0,0,K,102,0,0,400,!**create keypointsK,1,61,0,0,K,2,HS,0,0,K,5,100,0,0,K,11,61,0,178,K,12,HS,0,178,K,15,HS+10,0,178,K,111,61,0,178,K,112,HS,0,178,K,115,HS+10,0,178,K,21,61,0,2450,K,22,HS-4,0,2450,K,25,HS+6,0,2450,!*************************** !**create areas by keypoints FLST,2,4,3FITEM,2,21FITEM,2,111FITEM,2,112FITEM,2,22A,P51XFLST,2,4,3FITEM,2,22FITEM,2,112FITEM,2,115FITEM,2,25A,P51X!*************************** FLST,2,2,5,ORDE,2FITEM,2,1FITEM,2,-2FLST,8,2,3FITEM,8,101FITEM,8,102VROTAT,P51X, , , , , ,P51X, ,90,1, TYPE, 1MA T, 1REAL,ESYS, 0SECNUM,MSHAPE,0,3DMSHKEY,1FLST,5,2,6,ORDE,2FITEM,5,1FITEM,5,-2CM,_Y,VOLUVSEL, , , ,P51XCM,_Y1,VOLUCHKMSH,'VOLU'CMSEL,S,_YVMESH,_Y1CMDELE,_YCMDELE,_Y1CMDELE,_Y2 运行上述命令流,查看一下单元坐标,再把命令流中下列部分FLST,2,4,3FITEM,2,21FITEM,2,111FITEM,2,112FITEM,2,22A,P51X改为:FLST,2,4,3FITEM,2,22FITEM,2,21FITEM,2,111FITEM,2,112A,P51X再看一下单元坐标。

ANSYS坐标系总结工作平面(Working Plane)工作平面是创建几何模型的参考(X,Y)平面,在前处理器中用来建模(几何和网格)总体坐标系在每开始进行一个新的ANSYS分析时,已经有三个坐标系预先定义了。

它们位于模型的总体原点。

三种类型为:CS,0: 总体笛卡尔坐标系CS,1: 总体柱坐标系CS,2: 总体球坐标系数据库中节点坐标总是以总体笛卡尔坐标系,无论节点是在什么坐标系中创建的。

局部坐标系局部坐标系是用户定义的坐标系。

局部坐标系可以通过菜单路径Workplane>Local CS>Create LC来创建。

激活的坐标系是分析中特定时间的参考系。

缺省为总体笛卡尔坐标系。

当创建了一个新的坐标系时,新坐标系变为激活坐标系。

这表明后面的激活坐标系的命令。

菜单中激活坐标系的路径Workplane>Change active CS to>。

节点坐标系每一个节点都有一个附着的坐标系。

相关文档
最新文档