一元一次不等式组3---含参问题

合集下载

专题03 解一元一次不等式(组)及参数问题八种模型(学生版)

专题03 解一元一次不等式(组)及参数问题八种模型(学生版)

专题03解一元一次不等式(组)及参数问题八种模型【类型一解一元一次不等式模型】例题:(2022·陕西·模拟预测)解不等式3136x x-<-,并在如图所示的数轴上表示出该不等式的解集.【变式训练1】(2022·陕西·西安市西光中学二模)解不等式7132184x x->--,并把它的解集在如图所示的数轴上表示出来.【变式训练2】(2021·上海徐汇·期中)解不等式38236x x---≤,把解集在数轴上表示出来,并求出最小整数解.【变式训练3】(2022·福建·三明一中八年级阶段练习)解不等式:(1)2(41)58x x -≥-(2)261136x x +-≤【变式训练4】(2022·河南驻马店·八年级阶段练习)解下列一元一次不等式,并把它们的解集表示在数轴上:(1)2﹣5x <8﹣6x ;(2)53-x +1≤32x .【类型二解一元一次不等式组模型】例题:(2022·福建·三明一中八年级阶段练习)解不等式组52331132x xx x -≤⎧⎪-+⎨<-⎪⎩,并把不等式组的解集在数轴上表示出来:【变式训练1】(2022·广东·汕头市龙湖实验中学九年级阶段练习)解不等式组:1011122x x -≥⎧⎪⎨--<⎪⎩,并写出它的所有整数解.【变式训练2】(浙江省温州市2020-2021学年八年级上学期3月月考数学试题)解一元一次不等式组523(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩,并把解集在数轴上表示出来.【变式训练3】(2022·广东揭阳·八年级阶段练习)解不等式组:12(1)2235xx x x ⎧+<-⎪⎪⎨+⎪>⎪⎩,并把它的解集在数轴上表示出来.【变式训练4】(2022·湖南岳阳·八年级期末)(1)解不等式121132x x+++≥;(2)解不等式组:3242(1)31x x x -<⎧⎨-≤+⎩,并把它的解集在数轴上表示出来.【类型三一元一次不等式的定义时含参数问题】例题:(2021·全国·七年级课时练习)已知不等式||1(2)20n n x --->是一元一次不等式,则n =____.【变式训练1】(2022·山东·枣庄市第十五中学八年级阶段练习)已知()3426m m x --+>是关于x 的一元一次不等式,则m 的值为______.【变式训练2】(2021·黑龙江·肇源县超等蒙古族乡学校八年级期中)若21(2)15m m x --->是关于x 的一元一次不等式,则m 的值为______________.【类型四一元一次不等式整数解中含参数问题】例题:(2022·上海·七年级期中)如果不等式2x ﹣3≤m 的正整数解有4个,则m 的取值范围是_____.【变式训练1】(2020·全国·八年级单元测试)已知不等式30x m -≤有5个正整数解,则m 的取值范围是________.【类型五一元一次方程组与不等式间含参数问题】例题:(2022·全国·八年级)关于x 的方程42158x m x -+=-的解是负数,则满足条件的m 的最小整数值是_____.【变式训练1】(2021·四川成都·八年级期末)已知关于x 的方程35x a x +=-的解是正数,则实数a 的取值范围是______.【变式训练2】(2021·全国·七年级课时练习)如果关于x 的方程2435x a x a++=的解不是负数,那么a 的取值范围是________.【变式训练3】(2021·全国·七年级课时练习)当m________时,关于x的方程222x m xx---=的解为非负数.【类型六二元一次方程组与不等式间含参数问题】例题:(2021·内蒙古呼和浩特·七年级期末)已知关于x、y的二元一次方程组231231x y kx y k+=+⎧⎨+=-⎩的解满足x+y<4,则满足条件的k的最大整数为____.【变式训练1】(2021·四川绵阳·x,y的二元一次方程组221x yx y k+=⎧⎨+=+⎩的解为正数,则k的取值范围为__.【变式训练2】(2021·江苏江苏·七年级期末)已知关于x,y的二元一次方程组231323x y mx y m+=+⎧⎨-=+⎩,且x,y满足x+y>3.则m的取值范围是___.【变式训练3】(2021·四川南充·七年级期末)已知关于x,y的方程组24223x y kx y k+=⎧⎨+=-+⎩,的解满足x﹣y>0,则k的最大整数值是______________.【变式训练4】(2021·甘肃·九年级专题练习)若关于x,y的二元一次方程组3331x yx y a+=⎧⎨+=+⎩的解满足x+y<2,则a的取值范围为_______.【类型七解一元一次不等式组中有无解集求参数问题】例题:(2021·内蒙古·包头市青山区教育教学研究中心八年级期中)关于x的不等式组352x ax a->⎧⎨-<⎩无解,则a的取值范围是_____.【变式训练1】(2022·广西贵港·八年级期末)若关于x的不等式组33235x xx m-<⎧⎨->⎩有解,则m的取值范围是______.【变式训练2】(2021·四川凉山·七年级期末)已知关于x的不等式组5122x ax x->⎧⎨->-⎩无解,则a的取值范围是_________.【变式训练3】(2021·河南南阳·三模)已知关于x的不等式组3xx m>⎧⎨≤⎩有实数解,则m的取值范围是____.【变式训练4】(2022·江苏南通·九年级阶段练习)如果关于x的不等式组232x ax a>+⎧⎨<-⎩无解,则常数a的取值范围是______________.【类型八解一元一次不等式组中有整数解求参数问题】例题:(2021·宁夏中卫·八年级期末)不等式组,3x ax>⎧⎨<⎩的整数解有三个,则a的取值范围是_________.【变式训练1】(2021·安徽·马鞍山二中实验学校七年级期中)已知不等式组211x x a-<⎧⎨-≤⎩,只有三个整数解,则a 的取值范围是_________.【变式训练2】(2021·黑龙江佳木斯·模拟预测)不等式组2312x ax -⎧⎨-≤⎩<有3个整数解,则a 的取值范围是_____.【变式训练3】(2020·内蒙古·北京八中乌兰察布分校一模)关于x 的不等式组3x ax <⎧⎨≥⎩只有两个整数解,则a 的取值范围是_____.【变式训练4】(2022·湖南湘潭·八年级期末)已知关于x 的不等式组3010x a x -≤⎧⎨-≤⎩①②,有且只有3个整数解,则a 的取值范围是______________。

(完整版)一元一次不等式组含参数经典练习题

(完整版)一元一次不等式组含参数经典练习题

一元一次不等式组练习题1、已知方程⎩⎨⎧-=++=+②①m 1y 2x m 31y x 2满足0y x <+,则( )A. 1m ->B. 1m >C. 1m -<D. 1m <2、若不等式组⎩⎨⎧+>+<+1m x 1x 59x 的解集为2x >,则m 的取值范围是( )A. 2m ≤B. 2m ≥C. 1m ≤D. 1m >3、若不等式组⎩⎨⎧>+>-01x 0x a 无解,则a 的取值范围是( )A. 1a -≤B. 1a -≥C. 1a -<D. 1a ->4、如果不等式组⎩⎨⎧<->-m x x x )2(312的解集是x <2,那么m 的取值范围是( )A 、m=2B 、m >2C 、m <2D 、m ≥25、如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .6、若不等式组0,122x a x x +⎧⎨->-⎩≥有解,则a 的取值范围是( )A .1a >-B .1a -≥C .1a ≤D .1a < 7、关于x 的不等式组12x m x m >->+⎧⎨⎩的解集是1x >-,则m = .8、已知关于x 的不等式组0521x a x -⎧⎨->⎩≥,只有四个整数解,则实数a 的取值范围是 ____9、若不等式组530,0x x m -⎧⎨-⎩≥≥有实数解,则实数m 的取值范围是( )A.m ≤53 B.m <53C.m >53 D.m ≥5310、关于x 的不等式组⎩⎨⎧x +152>x -32x +23<x +a 只有4个整数解,则a 的取值范围是 ( )A. -5≤a ≤-143B. -5≤a <-143C. -5<a ≤-143D. -5<a <-14311、已知关于x 的不等式组0321x a x -≥⎧⎨->-⎩有五个整数解,这五个整数是____________,a 的取值范围是________________。

初一数学培优专题二:含参一元不等式(组)

初一数学培优专题二:含参一元不等式(组)

专题二:含参一元不等式(组)一、不等式的基本性质:(1)如果 a>b, 那么 a+c > b+c.(2)如果 a>b, 并且 c>0, 那么 ac > bc.(3)如果 a>b, 并且 c<0, 那么 ac < bc.例1、已知关于x 不等式,2)1>-x a (,(1)当它的解集为ax ->12,则a 的取值范围是____________ (2)当它的解集为ax -<12,则a 的取值范围是____________ 变式:如果关于x 的不等式,的解集相同,的解集和(1215)2<+<-x a x a 则a 的值_______二、一元一次不等式的解集口诀同大取大,同小取小,大小小大取中间,大大小小无解例2、关于x 的不等式组2x x a>⎧⎨>⎩ (1)若它的解集是x > a,则a 的取值范围是 .(2)若它的解集是x >2,则a 的取值范围是变式 一:关于x 的不等式组2x x m≤⎧⎨<⎩(1)若它的解集为x <m , 则m 的取值范围是 .(2)若它的解集为2≤x , 则m 的取值范围是变式二:已知关于x 的不等式组2113x x m-⎧>⎪⎨⎪>⎩的解集为2x >,则( ).2.2.2.2A m B m C m D m ><=≤变式三:关于x 的一元一次不等式组x a x b >⎧⎨>⎩的解集是x>a,则a 与b 的关系为( ) 0.0A a b B a b C a b D a b ≥≤≥>≤< 变式四:若关于x 的不等式组841x x x m +-⎧⎨⎩p f 的解集是x >3,则m 的取值范围是变式五:若关于x 的不等式组()202114x a x x->⎧⎪⎨+>-⎪⎩的解集是x>2a,则a 的取值范围是 。

专题3.3一元一次不等式(组)含参问题八年级数学上册全章复习与专题突破讲与练(浙教版)[含答案]

专题3.3一元一次不等式(组)含参问题八年级数学上册全章复习与专题突破讲与练(浙教版)[含答案]

专题3.3 一元一次不等式(组)含参问题(12大类型)(全章知识梳理与考点分类讲解)第一部分【题型目录】【题型1】已知含参方程的解的正负性,求参数取值范围............................1;【题型2】已知含参一元一次不等式的解集,求参数取值范围........................2;【题型3】已知含参一元一次不等式整数解,求参数取值范围........................2;【题型4】已知含参一元一次不等式组有解,求参数取值范围........................2;【题型5】已知含参一元一次不等式组无解,求参数取值范围........................2;【题型6】已知含参一元一次不等式组有且只有几个整数解,求参数取值范围......3;【题型7】已知含参一元一次不等式组至少(多)有几个整数解,求参数取值范围......3;【题型8】已知含参一元一次不等式组解集,求参数值或取值范围.............3;【题型9】由含参一元一次不等式组解集和分式方程解的情况,求参数取值范围........4;【题型10】由含参一元一次不等式组解集和二元一次方程解的情况,求参数取值范围...4;【题型11】直通中考...........................................................5;【题型12】拓展延伸...........................................................5.第二部分【题型展示与方法点拨】【题型1】已知含参方程的解的正负性,求参数取值范围【例1】(23-24八年级下·陕西汉中·期末)1.关于x 的分式方程32211x mx x -=+++的解为负数,则m 的取值范围是( )A .0m <B .4m >-C .4m <-D .4m <-且5m ¹-【变式1】(20-21八年级下·江苏扬州·期中)2.已知关于x 的方程232x mx -=-的解是非负数,则m 的取值范围为 .【变式2】(23-24七年级下·贵州黔东南·阶段练习)3.若关于x 的方程528x a -=的解是非正数,则a 的取值范围是( )A .4a >-B .4a <-C .4a ³-D .4a £-【题型2】已知含参一元一次不等式的解集,求参数取值范围【例2】(23-24七年级下·全国·期中)4.已知关于x 的不等式 413x a +>的解都是不等式 2103x +>的解,则a 的取值范围是( )A .5a £B .<5a C .3a £D .>5a 【变式1】(23-24七年级下·黑龙江齐齐哈尔·期末)5.如果关于x 的不等式(1)1a x -³解集为11x a³-,则a 的取值范围是 .【变式2】6.如果关于x 的不等式()11a x a +>+的解集为1x <,那么a 的取值范围是 .【题型3】已知含参一元一次不等式整数解,求参数取值范围【例3】(2024七年级下·江苏·专题练习)7.若关于x 的一元一次不等式1x m +£只有1个正整数解,则m 的取值范围是 .【变式1】(23-24八年级下·陕西宝鸡·期中)8.若关于x 的不等式57x m x +³的正整数解是1234、、、.则m 的取值范围为( )A .10m <B .8m ³C .810m ££D .810m £<【变式2】(23-24六年级下·上海浦东新·期末)9.若关于x 的不等式0x m -³的最小整数解是2x =,则m 的取值范围是⋯( )A .12m £<B .12m <£C .23m <£D .23m £<【题型4】已知含参一元一次不等式组有解,求参数取值范围【例4】(23-24七年级下·河南南阳·期末)10.已知关于x 的不等式组()12432x mx x -ì<-ïíï-£-î有解,则实数m 的取值范围是( )A .3m >B .2m ≥C .1m <D .1m £-【变式1】(23-24七年级下·全国·单元测试)11.若不等式组12x x k <£ìí>î有解,则k 的取值范围是( )A .2k <B .2k ³C .1k <D .12k £<【变式2】(23-24七年级下·湖南衡阳·期中)12.关于x 的不等式组3284a x x a ->ìí+>î有解且每一个x 的值均不在26x -££的范围中,则a 的取值范围是 .【题型5】已知含参一元一次不等式组无解,求参数取值范围【例5】(23-24八年级下·陕西西安·期末)13.若关于x 的一元一次不等式组11340x xx a ì-³-ïíï->î无解,则a 的取值范围是 .【变式1】(23-24六年级下·上海杨浦·期末)14.若关于x 的不等式组62x x m m -<<ìí-<î无解,那么m 的取值范围是【变式2】(24-25八年级上·湖南长沙·开学考试)15.已知不等式组40329x a x x -<ìí-³-+î无解,则a 的取值范围是.【题型6】已知含参一元一次不等式组有且只有几个整数解,求参数取值范围【例6】(24-25八年级上·湖南衡阳·开学考试)16.若关于x 的不等式组()()324122x x x m x ì-<-í-£-î,恰好有三个整数解,则m 的取值范围是 .【变式1】(22-23八年级下·四川达州·期中)17.若关于x 的不等式组()213644x x m x +<ìí-³+î只有3个整数解,则m 的取值范围是 .【变式2】(23-24八年级下·全国·单元测试)18.关于x 的不等式组()1023544133x x k x x k +ì+>ïïí+ï+>++ïî恰有三个整数解,则k 的取值范围是( )A .112k <£B .112k £<C .312k £<D .312k <£【题型7】已知含参一元一次不等式组至少(多)有几个整数解,求参数取值范围【例7】(22-23七年级下·湖北武汉·阶段练习)19.如果关于x 的不等式组2030x m n x -³ìí-³î仅有四个整数解;1-、0、1、2,那么适合这个不等式组的整数m 、n 组成的有序实数对(),m n 最多共有( )A .4个B .6个C .8个D .9个【变式】(23-24七年级下·四川资阳·期末)20.已知关于x 的不等式组0217x a x -<ìí-³î至少有两个整数解,且存在以3,a ,6为边的三角形,则整数a 的值有个【题型8】已知含参一元一次不等式组解集,求参数值或取值范围【例8】(2024·湖北·模拟预测)21.若关于x 的一元一次不等式组63(1)51x x x m -+<-ìí->-î的解集是2x >,则m 的取值范围是( )A .3m >B .3m …C .3m <D .3m …【变式1】(23-24八年级下·全国·单元测试)22.若关于x 的不等式组220x a b x ->ìí->î的解集为11x -<<,则2019()a b +的值是( )A .1B .12C .1-D .12-【变式2】(22-23七年级下·江苏盐城·阶段练习)23.不等式组29612x x x k +>+ìí-<î的解集为2x <.则k 的取值范围为 .【题型9】由含参一元一次不等式组解集和分式方程解的情况,求参数取值范围【例9】(22-23八年级下·重庆忠县·期中)24.如果关于x 的不等式组441113(22m x x x ->ìïí-<+ïî有且仅有三个整数解,且关于x 的分式方程26122mx x x --=--有非负数解,则符合条件的所有整数m 的和为 .【变式1】(23-24七年级下·重庆北碚·期末)25.已知关于y 的分式方程52211a y y --=---解为非负整数,且关于y 的不等式组2311122y a y ->ìïí+£ïî有解且至多三个整数解,则所有满足条件的整数a 的和为( )A .6B .5C .9D .13【变式2】(22-23八年级下·江苏无锡·阶段练习)26.已知方程21144a a a +=--,且关于x 的不等式组x a x b>ìí£î只有2个整数解,那么b 的取值范围是( )A .13b -<£B .23b <£C .45b £<D .34b £<【题型10】由含参一元一次不等式组解集和二元一次方程解的情况,求参数取值范围【例10】(24-25八年级上·湖南长沙·开学考试)27.若存在一个整数m ,使得关于,x y 的方程组432173453x y m x y m +=+ìí+=-î的解满足1x y +£,且让不等式5041x m x ->ìí-<-î只有3个整数解,则满足条件的所有整数m 的和是( )A .12B .6C .—14D .—15【变式】(23-24七年级下·山东威海·期末)28.已知关于x ,y 的方程组3454331x y m x y m +=-ìí+=+î的解满足0,0x y x y +<->,求m 的取值范围.第三部分【中考链接与拓展延伸】【题型11】直通中考【例1】(2024·四川南充·中考真题)29.若关于x 的不等式组2151x x m -<ìí<+î的解集为3x <,则m 的取值范围是( )A .m>2B .2m ≥C .2m <D .2m £【例2】(2023·四川眉山·中考真题)30.关于x 的不等式组35241x m x x >+ìí-<+î的整数解仅有4个,则m 的取值范围是( )A .54m -£<-B .54m -<£-C .43m -£<-D .43m -<£-【题型12】拓展延伸【例1】(22-23七年级下·重庆江津·期中)31.已知关于x 、y 的方程组3453x y ax y a +=-ìí-=î,下列结论中正确的个数有( )① 当3a =时,41x y =ìí=î是方程组的解;② 不存在一个实数a ,使得x 、y 的值互为相反数;③ 当方程组的解是52x y =ìí=-î时,方程组()()()()391232106m n m n a m n m n a ì++-=-ïí+--=ïî的解为3272m n ì=ïïíï=ïî;④ x 、y 都为自然数的解有3对.A .1个B .2个C .3个D .4个【例2】(23-24九年级上·重庆九龙坡·阶段练习)32.关于x 的分式方程23133a x x x -+=++的解为整数,且关于y 的不等式组1313212y y a y y +ì+³ïïí+ï<-ïî有解且最多有六个整数解,则所有满足条件的整数a 的值之和为 .1.D【分析】本题考查了分式方程的解,分式方程的解为负数的条件是有解且解为负数,解题的关键是能正确解分式方程并理解分式方程的解为负数的条件为有解且解为负数.【详解】解:322,11x mx x -=+++方程两边同乘以()1x +得:()3221,x x m -=++解得:4,x m =+∵关于x 的分式方程32211x mx x -=+++的解为负数,10x \+¹且 0,x <即410m ++¹且40,m +<解得:4m <-且 5.m ¹-故选:D .2.6m £且4m ¹##4m ¹且6m £【分析】本题考查了分式方程的解,解不等式等知识,首先求出关于x 的方程232x mx -=-的解,然后根据解是非负数,再解不等式求出m 的取值范围..【详解】解:关于x 的方程232x mx -=-得6x m =-+,20x -¹Q ,2x \¹,Q 方程的解是非负数,60m \-+³且62m -+¹,解这个不等式得6m £且4m ¹.故答案为:6m £且4m ¹.3.D【分析】本题考查了解一元一次方程和解一元一次不等式,熟练掌握解方程和不等式的方法是解题的关键.先解一元一次方程,再根据题意构建一元一次不等式,最后解不等式即可.【详解】∵528x a -=,∴825ax +=,∵关于x 的方程528x a -=的解是非正数,∴8205ax +=£,解得4a £-,故选:D .4.A【分析】考查不等式的解集,掌握一元一次不等式的求法是解题的关键. 先把a 看作常数求出两个不等式的解集,再根据同大取大列出不等式求解即可.【详解】解:解不等式 413x a +>得,34ax ->,解不等式2103x +>得,12x >-,Q 关于x 的不等式 413x a +>的解都是不等式 2103x +>的解,3142a -\³-,解得:5a £,故选:A ;5.1a <【分析】本题考查了不等式的性质,根据题意可知关于x 的不等式(1)1a x -³解集为11x a³-,则x 的系数的正数,再根据这个结果求出a 的取值范围,解题的关键是正确理解不等式的两边都加(或减)同一个数,不等号的方向不变,不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.【详解】解:∵关于x 的不等式(1)1a x -³解集为11x a³-,∴10a ->,∴1a <,故答案为:1a <.6.1a <-【分析】本题考查了不等式的性质和解不等式,根据不等式的性质求解即可,解题的关键是正确理解不等式的两边都加(或减)同一个数,不等号的方向不变,不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.【详解】∵关于x 的不等式()11a x a +>+的解集为1x <,∴10a +<,解得:1a <-,故答案为:1a <-.7.2<3m £【分析】先解一元一次不等式可得x ≤m−1,然后根据题意可得11<2m £-,进行计算即可解答.本题考查了一元一次不等式的整数解,准确熟练地进行计算是解题的关键.【详解】解:1x m +£,解得x ≤m−1,∵一元一次不等式1x m +£只有1个正整数解,∴11<2m £-,∴2<3m £,故答案为:2<3m £.8.D【分析】本题考查解不等式,解57x m x +³得2m x £,再由题意可得452m£<,解这个不等数组即可得出答案.【详解】解:解57x m x +³得2mx £,∵该不等式的正整数解为1、2、3、4,∴452m £<解得810m £<.故选:D .9.B【分析】本题主要考查解一元一次不等式的基本能力,解关于x 的不等式求得x m ³,根据不等式的最小整数解是2x =即可作答.【详解】解:0x m -³,移项,得:x m ³,Q 不等式的最小整数解是2x =,12m \<£,故选:B .10.A【分析】本题考查了求不等式的解集及其参数,先求出不等式组的解集,再根据不等式组有解的情况得到关于m 的不等式,求解即可,理解题意,熟练掌握求不等式组的解集是解题的关键.【详解】解:()12432x mx x -ì<-ïíï-£-î①②,解不等式①得,2x m <-,解不等式②得,1x ³,∵关于x 的不等式组()12432x mx x -ì<-ïíï-£-î有解,∴21m ->,解得:3m >故选:A .11.A【分析】本题考查已知不等式的解集求参数,根据求不等式组解集的方法“大中取大,小中取小,大小小大中间找,大大小小找不到” 的原则求解即可.【详解】Q 不等式组有解,\两个不等式的解有公共部分,2.k \<故选:A .12.1a <【分析】本题考查了解一元一次不等式组,根据不等式组的解的情况求参数的取值范围,先求出不等式组的解集为243a x a -<<-,再结合题意得出243246a a a -<-ìí-³î或24332a a a -<-ìí-£-î,求解即可得出答案.【详解】解:3284a x x a ->ìí+>î①②,解不等式①得:3x a <-,解不等式②得:24x a >-,Q 不等式组有解,243a x a \-<<-,Q 每一个x 的值均不在26x -££的范围中,\243246a a a -<-ìí-³î或24332a a a -<-ìí-£-î,解得:1a <,故答案为:1a <.13.0a ³【分析】本题考查了解一元一次不等式组,不等式组解集的情况求参数,先对不等式进行求解,再根据关于x 的一元一次不等式组11340x x x a ì-³-ïíï->î无解即可解答,熟练掌握知识点的应用是解题的关键.【详解】解:11340x x x a ì-³-ïíï->î①②解不等式①得,0x £,解不等式②得,x a >,∵关于x 的一元一次不等式组11340x x x a ì-³-ïíï->î无解,∴0a ³,故答案为:0a ³.14.3m £-【分析】本题考查了不等式的解集,先解不等式x m m -<,然后根据不等式组无解,即可求出m 的取值范围.【详解】解:解不等式x m m -<,得2x m <,∵62x x m m -<<ìí-<î无解,∴26m £-,∴3m £-,故答案为:3m £-.15.16a £【分析】本题考查了解一元一次不等式组.熟练掌握解一元一次不等式组是解题的关键.解40x a -<得4a x <,解329x x -³-+得4x ³,由不等式组40329x a x x -<ìí-³-+î无解,可得44a £,计算求解即可.【详解】解:40329x a x x -<ìí-³-+î,40x a -<,解得,4a x <,329x x -³-+,解得,4x ³,∵不等式组40329x a x x -<ìí-³-+î无解,∴44a £,解得,16a £,故答案为:16a £.16.14m £<##41m >³【分析】本题考查不等式组的整数解问题,正确理解恰有3个整数解得意义是解题的关键.先解不等式组,写出不等式组的解集,再根据恰有三个整数解,可求出m 的范围.【详解】解:()()324122x x x m x ì-<-í-£-î①②解不等式①得:2x >-,解不等式②得:23m x +£,Q 不等式组有解,\不等式组的解集是:223m x +-<£.Q 不等式组恰好有3个整数解,则整数解是1,0,1-,\2123m +£<.14m \£<,故答案为:14m £<.17.5433m -<£-【分析】本题考查了根据一元一次不等式组解的情况求参数的取值范围,先求出不等式组的解集,再根据不等式组的解集只有3个整数解可得3322m -<+£-,解不等式即可求解,掌握解一元一次不等式组是解题的关键.【详解】解:()213644x x m x +<ìïí-³+ïî①②,由①得,x <1,由②得,32x m ³+,∴不等式组的解集为321m x +£<,∵关于x 的不等式组()213644x x m x +<ìí-³+î只有3个整数解,∴3322m -<+£-,即322323m m +£-ìí+>-î,解得5433m -<£-,故答案为:5433m -<£-.18.D【分析】本题主要考查了根据不等式组的解集情况求参数,先分别求出不等式组中两个不等式得解集,再根据原不等式组只有三个整数解建立关于k 的不等式组,解之即可得到答案.【详解】解:()1023544133x x k x x k +ì+>ïïí+ï+>++ïî①② 解不等式①得:25x >-,解不等式②得:2x k <,∵原不等式组恰有三个整数解,∴223k <£,∴312k £<,故选:D .19.B【分析】先求出不等式组的解,得出关于m 、n 的不等式组,求出整数m 、n 的值,即可得出答案.【详解】解:∵解不等式20x m -³得:2m x ³,解不等式30n x -³得:3n x £,∴不等式组的解集是23m n x ££,∵关于x 的不等式组的整数解仅有1-,0,1,2,∴212m -<-≤,233n £<,解得:4269m n -<£-£<,,即m 的值是32--,,n 的值是6,7,8,即适合这个不等式组的整数m ,n 组成的有序数对(),mn 共有6个,是()()()()()()363738262728------,,,,,,,,,,,.故选:B .【点睛】本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出m 、n 的值.20.3【分析】此题考查的是一元一次不等式组的解法和三角形的三边关系的运用,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.依据不等式组至少有两个整数解,即可得到a 5>,再根据存在以3,a ,6为边的三角形,可得39a <<,进而得出a 的取值范围是59a <<,即可得到a 的整数解有3个.【详解】解:解不等式组得:4x a £<,∵至少有两个整数解,则整数解至少为4和5,∴5a >,又∵存在以3,a ,6为边的三角形,∴39a <<,∴a 的取值范围为59a <<,∴整数a 的值为:6,7,8,有3个故答案为:3.21.D【分析】本题考查的是解一元一次不等式组,求出第一个不等式的解集,根据口诀:“同大取大、同小取小、大小小大中间找、大大小小无解”即可确定m 的范围.【详解】解:解不等式63(1)5x x -+<-得x >2,解不等式1x m ->-得1x m >-,∵解集是2x >,∴12m -£,解得3m £,故选D .22.C【分析】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.分别求出每一个不等式的解集,根据不等式组的解集得到a 、b 的值,代入计算即可.【详解】解:220x a b x ->ìí->î①②,解①得:2x a >+,解②得:2b x <,∵不等式组220x a b x ->ìí->î的解集为11x -<<,∴2112a b +=-ìïí=ïî,解得:32a b =-ìí=î,∴()20192019()321a b +=-+=-.故选:C .23.0k ³##0k £【分析】本题考查了根据不等式组的解集求参数,先分别求解两个不等式,再根据口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”得出22k £+,求解即可.【详解】解:29612x x x k +>+ìí-<î①②,由①可得:2x <,由②可得:2x k <+,∵该不等式组的解集为2x <,∴22k £+,解得:0k ³,故答案为:0k ³.24.5【分析】本题主要考查解一元一次不等式组,分式方程的综合,掌握不等式的性质,不等式组的取值方法,解分式方程的方法是解题的关键.根据不等式的性质分别求解,根据不等式组的取值方法“同大取大,同小取小,大小小大中间找,大大小小无解”及不等式组的解集的情况可得04m <£,再根据解分式方程的方法得到61x m =-,由分式方程有非负数解,可得14m <<,由此即可求解.【详解】解:441113(22m x x x ->ìïí-<+ïî,解不等式44m x ->,得:44m x -<,解不等式111322x x æö-<+ç÷èø,得:72x >-,∵不等式组有且仅有三个整数解,∴4104m --<£,解得:04m <£,解关于x 的分式方程26122mx x x --=--,得:61x m =-,∵分式方程有非负数解,∴601m ³-,且621m ¹-,10m -¹,解得:1m ³且4m ¹且1m ¹,综上,14m <<,所以所有满足条件的整数m 的值为2,3,∴符合条件的所有整数m 的和为235+=.故答案为:5.25.A【分析】本题主要考查解分式方程和一元一次不等式方程组,首先解得不等式方程组的解,根据题意找到a 的范围,再解的分式方程的解,结合分式方程的解和a 的范围求得a 的可能值即可.【详解】解:2311122y a y ->ìïí+£ïî由23y a ->,解得32a y +>,由11122y +£,解得5y £,则不等式方程组的解为,352a y +<£,∵关于y 的不等式组2311122y a y ->ìïí+£ïî有解且至多三个整数解,∴3252a +££,解得17a ££,52211a y y --=---,去分母得,()()2152y a ---=,去括号、移项得,25y a -=-,系数化为1得,52a y -=,∵1y =为分式方程的增根,∴512a -¹,解得3a ¹,∵y 的分式方程52211a y y --=---解为非负整数,∴502a y -=³,解得5a £,∴15a £<且3a ¹,∴当1a =时,2y =;当2a =时,32y =,舍去;当3a =时,1y =,舍去;当4a =时,12y =,舍去;当5a =时,0y =;则所有满足条件的整数a 的和为156+=.故选:A .26.D【分析】此题考查了解分式方程,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.先解分式方程,得到a 的值,代入不等式组确定出b 的范围即可.【详解】解:解方程21144a a a+=--,得1a =,经检验,1a =是该分式方程的解,∵关于x 的不等式组x a x b >ìí£î,即1x x b >ìí£î只有2个整数解,∴34b £<.故选:D .27.D【分析】根据方程组的解的情况,以及不等式组的解集情况,求出m 的取值范围,再进行求解即可.本题主要考查了解二元一次方程组、解不等式组,求不等式的整数解等知识点,掌握解方程组和不等式组的方法是解题的关键.【详解】解:432173453x y m x y m +=+ìí+=-î①②,+①②,得:77714x y m +=+,∴2x y m +=+,∵1x y +£,∴21m +£, 解得:1m £-,解不等式50x m ->,得:5m x >, 解不等式41x -<-,得:3x <,故不等式组的解集是:35m x <<∵不等式组只有3个整数解,∴105m -£<,解得50m -£<,∴51m -££-,∴符合条件的整数m 的值的和为5432115-----=-,故选:D .28.31m -<<【分析】本题考查根据方程组的解集的情况求参数的范围,求不等式组的解集,根据方程组的解集的情况,得到关于m 的不等式组,求解即可.【详解】解:3454331x y m x y m +=-ìí+=+î①②,+①②得:7744x y m +=-,即447m x y -+=,-②①得:26x y m -=+,∵00x y x y +-,,∴4407260m m -ì<ïíï+>î∴31m -<<,故答案为:31m -<<.29.B【分析】本题考查根据不等式组的解集求参数的范围,先解不等式组,再根据不等式组的解集,得到关于参数的不等式,进行求解即可.【详解】解:解2151x x m -<ìí<+î,得:31x x m <ìí<+î,∵不等式组的解集为:3x <,∴13m +³,∴2m ≥;故选B .30.A【分析】不等式组整理后,表示出不等式组的解集,根据整数解共有4个,确定出m 的范围即可.【详解】解:35241x m x x >+ìí-<+î①②,由②得:3x <,解集为33m x +<<,由不等式组的整数解只有4个,得到整数解为2,1,0,1-,∴231m -£+<-,∴54m -£<-;故选:A .【点睛】本题主要考查解一元一次不等式组,一元一次不等式组的整数解等知识点的理解和掌握,能根据不等式组的解集得到231m -£+<-是解此题的关键.31.B【分析】此题考查了二元一次方程组的解,一元一次不等式组,①把3a =代入方程组求出解,即可做出判断;②根据题意得到0x y +=,代入方程组求出a 的值,即可做出判断;③()()()()391232106m n m n a m n m n aì++-=-ïí+--=ïî的各项和原方程成比例,故可得方程52m n m n +=ìí-=-î,即可解答;④用a 表示,x y ,可得一元一次不等式组,再根据a 的取值范围,即可解答,熟知方程的各项成比例时,两个方程的解相同,是解题的关键.【详解】解:当3a =时,原方程为343533x y x y +=-ìí-=´î,解得41x y =ìí=-î,故①错误;x 、y 的值互为相反数时,可得0x y +=,可得方程3453y y a y y a-+=-ìí--=î,方程无解,故②正确;()()()()391232106m n m n a m n m n a ì++-=-ïí+--=ïîQ 的各项和原方程成比例,故可得52m n m n +=ìí-=-î,解得3272m n ì=ïïíï=ïî,故③正确;解3453x y a x y a +=-ìí-=î,可得5212a x a y +ì=ïïí-ï=ïî,当,x y 为自然数时,可得502102a a +ì³ïïí-ï³ïî,解得51a -££且a 为奇数,故5,3,1,1a =---,即x 、y 都为自然数的解有4对,故④错误;故选:B .32.20-【分析】本题考查了分式方程的解,一元一次不等式组的整数解,由分式方程得12a x +=,由一元一次不等式组得23a y +<£-,根据不等式组1313212y y a y y +ì+³ïïí+ï<-ïî有解且最多有六个整数解,即可得到125a -<<-,再由12a x +=为整数,即可得到a 的值,正确掌握解一元一次不等式组和解分式方程得方法是解题的关键.【详解】解:∵23133a x x x-+=++,∴12a x +=,由1313212y y a y y +ì+³ïïí+ï<-ïî得23a y +<£-,∵不等式组1313212y y a y y +ì+³ïïí+ï<-ïî有解且最多有六个整数解,∴125a -<<-,∵12a x +=为整数,∴11a =-或9-或―7,又∵30x +¹,∴1302a ++¹,∴7a ¹-,∴11a =-或9-,∴所有满足条件的整数a 的值之和()11920=-+-=-,故答案为:20-.。

9.2 一元一次不等式专题-----含参问题

9.2 一元一次不等式专题-----含参问题

9.2 一元一次不等式专题-----含参问题
1、不等式b ax >的解集是a b x <
,则a 的取值范围是 ;
拓:不等式b ax >的解集是b x a >
,则a 的取值范围是 ;
2、如果不等式()22m x m ->-的解集为1x <,那么( )
A.2m ≠
B.2m >
C.2m <
D.m 为任意有理数
拓:不等式a x a ->-1)1(的解为1->x ,则a 的取值范围是 ( )
A.1≠a
B.1>a
C.1<a
D.0≠a
3、关于x 的不等式35m x -<的解集2x >,则m 的值为__________________
拓:不等式63x m m ->-的解集为2x >,那么m 的值为________
4、已知关于x 的不等式2)1(>-x a 的解集为a x -<
12则a 的取值范围是 。

拓:不等式432+<-x mx 的解集是3
6->m x ,则m 的取值范围是 。

5、如果关于x 的不等式5)1(+>-a x a 和42<x 的解集相同,则a 的值为
6、已知关于x 的不等式a b x b a ->-2)34(的解集是94<
x ,则b ax >的解集为
7、当()10233k k --<
时,求关于x 的不等式()54k x x k ->-的解集
8、已知关于x 的不等式的所有正整数解的和为6,求a 的取值范围。

人教版初中数学七年级下册第9章一元一次不等式(组)含参专题——有、无解问题(专题课)教案

人教版初中数学七年级下册第9章一元一次不等式(组)含参专题——有、无解问题(专题课)教案

人教版初中数学七年级下册第九章一元一次不等式(组)含参专题——有、无解问题(专题课)教案核心素养:1.使学生加深对一元一次不等式组和它的解集的理解,会用数轴确定含参数的一元一次不等式组的参数范围;2.培养学生探究、独立思考的学习习惯,感受数形结合的作用,熟悉并掌握数形结合的思想方法,提高分析问题和解决的能力;3.提升学生之间合作与交流以及对问题的探讨能力,从中发现数学的乐趣.【教学重难点】重点:含参一元一次不等式组的分类解法难点:1.一元一次不等式中字母参数的讨论2.一元一次不等式中运用数轴分析参数的范围【教学过程】1.问题引导 合作交流出示问题:请同学们解下列两个不等式(1)x-2m<0,(2)x+m >3并思考m 的取值范围. 同学们不难得出不等式(1)的解为x <2m ;(2)的解为x >3-m.引导分析m 的取值范围. 师引导,生回答:任意实数.[问题1]如果将上述两个不等式联立成不等式组⎩⎨⎧>+<-302m x m x ,你能确定不等式组的解集吗? 师提示学生画数轴 ,问:能画几种情况[问题2]如果这个不等式组无解,你能确定m 的取值范围吗?(学生分组讨论)(借助数轴)师生一起分析:如果不等式组无解,则2m <3-m ,解得m <1。

确定一下“<”要不要添加“=”(这是参数取值问题中的难点)学生借助数轴讨论.师生总结:2m 和3-m 在两个不等式的解中都不包含,所以2m 可以等于3-m ,即m ≤1.2.变式拓展 强化理解变式1:若不等式组⎩⎨⎧⋅⋅⋅⋅⋅>+⋅⋅⋅≤-②①302m x m x 无解,这时m 的取值会有变化吗?解不等式①得x ≤2m 解不等式②得x >3-m(学生分组探究)引导:虽然第一个不等式“<”改成“≤”通过数轴可以看到由于和第二个不等式的解集不包含3-m ,所以2m ≤3-m ,m 的取值范围仍然是m ≤1.变式2:如果不等式组变化为⎩⎨⎧⋅⋅⋅⋅⋅≥+⋅⋅⋅≤-②①302m x m x ,这时m 的取值又会有改变吗?(学生分组探究)由于两个不等式都含有等号,这时2m 和3-m 可能是公共点,而要想使不等式组无解,2m 和3-m 不能重合,只能2m <3-m ,所以m 不能等于1,即m <1.3.问题反转[问题3]如果不等式组⎩⎨⎧⋅⋅⋅⋅⋅≥+⋅⋅⋅≤-②①302m x m x 有解,怎样确定 m 的取值范围?把两个不等式的解集在数轴上表示出,同学们观察数轴 ,不难得出要想使不等式组有解,只要2m ≥3-m ,即m ≥1这样两个不等式的解集有公共部分,不等式组有解,所以m 的取值范围m ≥14.方法小结 归纳步骤解含参一元一次不等式(组)有、无解问题时注意掌握四个步骤:一解 .解不等式组,用参数分别表示出两个不等式的解集;二画.借助数轴进行视觉观察,画出有无解的情况;三验:验证端点取舍判断等号是否可取;四:列出不等式,确定取值范围5,拓展演练 题型再变[问题4]下面这种类型的一元一次不等式组如何确定字母参数取值范围?例:已知不等式组⎩⎨⎧⋅⋅⋅-<⋅⋅⋅⋅⋅⋅⋅⋅≥-②①22-10x x a x 的解集是x >1,求a 的取值范围?学生分组解出每个不等式的解集:解①得:x ≥a 解②得:x >1因为不等式的解集是x >1,(学生分组探讨):a 的位置在数轴上应该在哪个位置? 分析得出:a 在数轴上的位置应该在1的左侧.把不等式组的解集在数轴上表示出来:即a <1,[思考3]a 可不可以等于1?因为a=1时不等式组的解集仍然是x >1.所以a 可以等于1,即a 的取值范围a ≤15.基础过关1.若不等式组⎩⎨⎧≤≥-m x x 062 无解,求m 的取值范围? 2.若不等式组⎩⎨⎧>+<--xx a x x 422)2(3有解,求a 的取值范围?3.若不等式组⎩⎨⎧+>+<+1137m x x x 的解集是x >3,求m 的取值范围?。

不等式与不等式组小结与解含参数问题题型归纳

不等式与不等式组小结与解含参数问题题型归纳

第九章 不等式与不等式知识点归纳一、不等式及其解集和不等式的性质用不等号表示大小关系的式子叫做不等式。

常见不等号有:“<” “>” “≤” “≥” “ ≠ ”。

含有未知数的不等式的所有解组成这个不等式的解集,解不等式就是求不等式的解集。

注:①在数轴上表示不等式解集时,有等号用实心点,无等号用空心圈.②方向:大于向右画,小于向左画。

不等式的三个性质:①不等式两边同时加(或减)同一数或式子,不等号不变;②不等式两边同时乘(或除)同一正数,不等号不变;③不等式两边同时乘(或除)同一负数,不等号改变。

作差法比较a 与b 的大小:若a —b >0,则a >b ;若a —b <0;则a <b ;若a —b=0, 则a=b 。

例1 、下列式子中哪些是不等式?a+b=b+a ; ②a <b -5; ③-3>-5;④x ≠1 ;⑤2x —3.例2、若a 〈b <0,m <0,用不等号填空。

① a -b 0; ②a -5 b -5; ③-2a -2b ;④31+a 21+b ;⑤22___bm am ⑥ab 0;⑦a+m b+m ;⑧a ² b ²;⑨am bm 。

例3、①由a ax <,可得1>x 可得____a ;②由a ax <,可得1x <可得____a ;③ 由122-≥-≤-x m x mx 可得,那么______m 。

例4、不等式x x 228)2(5-≤+的非负整数解是__________________。

二、一元一次不等式及其实际问题一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式(即分母中不含未知数),这样的不等式叫做一元一次不等式。

解一元一次不等式的一般步骤:(1)去分母(两边每一项同乘分母的最小公倍数)(2)去括号(括号里每一项都要乘括号前面的系数)(3)移项(变号后移项)(4)合并同类项(5)将x 项系数化为1(系数为负数要变号)。

含参数的一元一次不等式组讲课教案

含参数的一元一次不等式组讲课教案
——含参数的一元一次不等式
自主学习
1. 不等式 x ? 4 ? 2(1? x) 的解集为 x ? 2 .
2. 问题1中不等式的解集表示在数轴上为( B )
A
B
C
D
3. 问题1 中不等式非负的整数解为 0 ,1 .
类型1:系数含参数的一元一次不等式
问题1 :求关于x 的一元一次不等式 mx ? 2的解集.
不等式式 x ? a(x ? a )
分析: (1)如果 m ? 0,那么 x ? 2 m
(2)如果 m ? 0,那么 x ? 2 m
练习
1. 已知a ? 3 ,求不等式 2 xa? x ??2
0 的解集.
x
?
2 2?a
变式
1. 关于x 的不等式 (3 ? a )x ?
求a 的范围.
2
的解集为 x ?
问题3 :关于x 的不等式组
?5? 2x ? ?1
? ?
x
?
a
?
0
无解,
求a 的取值范围.

式:关于x 的不等式组
?2x ??3 x
? ?
3x a?
? 5
3
有解,
求a 的取值范围.
a? 4
类型2:已知不等式组的特殊解,确定参数取值范围
问题1 :关于x 的不等式组
?x? m ? 0
? ?7
?
2
x
?
1
?x?a ? 0 ??? 2x ? 2 ?
?6
的解集为
x
?
4
求a 的取值范围.
练习
1 :关于x 的不等式组
?x
? ?
x
? ?
2 ?m

第03讲 含参数一元一次不等式(组)(教师版)A4

第03讲 含参数一元一次不等式(组)(教师版)A4

含参数一元一次不等式(组)含参数一元一次不等式(组)一.含参一元一次不等式(组)含字母系数的一次不等式(组):未知数的系数含有字母或常数项含有字母一次不等式(组). 任何一个含有字母系数的一元一次不等式都可以化为ax b >的一般形式,在这个形式中:若0a >,那么ax b >的解为b x a >;若0a <,那么ax b >的解为b x a<;若0a =,则当0b ≥时,ax b >无解,当0b <时,ax b >的解为任何实数.一.考点:含参的一元一次方程(组).二.重难点:参数与解集之间的关系,整数解问题,不等式与方程综合.三.易错点:注意参数取值范围导致的变号问题.知识图谱知识精讲三点剖析题模精讲题模一:解含参一元一次不等式(组)例1.1.1 已知23a ≠,解关于x 的不等式()()14321a x a x ++<-- 【答案】 当23a >时,不等式的解为523x a <-;当23a <时,不等式的解为523x a >- 【解析】 原不等式化为:()()13214a x a x +--<-- ()325a x -<-,因为23a ≠,所以320a -≠,即32a -为正数或负数.(1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a >- 例1.1.2 解下列关于x 的不等式组:()23262111x a x x x +⎧->⎪⎨⎪+>-⎩;【答案】 13a >时,32x a >+;13a ≤时,3x > 【解析】 原不等式组可化为323x a x >+⎧⎨>⎩. 当323a +>,即13a >时,不等式组的解集为32x a >+. 当323a +≤,即13a ≤时,不等式组的解集为3x > 题模二:参数与解集之间的关系例1.2.1 例若关于x 的不等式组3(2)224x x a x x --<⎧⎪⎨+>⎪⎩有解,则实数a 的取值范围是__________. 【答案】 4a >【解析】 由3(2)2x x --<得2x >,由24a x x +>得12x a <,因为不等式组有解,所以122a >,解得4a >.题模三:整数解问题例1.3.1 已知关于x 的不等式40x a -≤只有四个正整数解1、2、3、4,求正数a 的取值范围.【答案】 1620a ≤<【解析】 解不等式得4a x ≥又因为有且只有4个正整数解,故45a <⨯且44a ≥⨯1620a ∴≤<例1.3.2 已知不等式组221x a x b ->⎧⎨+<⎩的整数解只有5、6,求a 和b 的范围 【答案】 23a ≤<,1315b <≤【解析】 解不等式组得212x a b x >+⎧⎪⎨-<⎪⎩,因为整数解只有5、6,所以425a ≤+<,1672b -<≤,故23a ≤<,1315b <≤.题模四:不等式与方程的综合例1.4.1 已知2310a x -+=,32160b x --=,且4a b ≤≤,求x 的取值范围.【答案】 23x -≤≤【解析】 由2310a x -+=可得312x a -=,由32160b x --=可得2163x b +=,又因为4a b ≤≤,所以31216423x x -+≤≤,解得23x -≤≤.例1.4.2 求使方程组24563x y m x y m +=+⎧⎨+=+⎩的解x 、y 都是正数的m 的取值范围. 【答案】 572m << 【解析】 解原方程组得725x m y m =-+⎧⎨=-⎩,由x 、y 都是正数可得70250m m -+>⎧⎨->⎩,解得572m <<例 1.4.3 已知非负数x 、y 、z 满足123234x y z ---==,设345w x y z =++,求w 的最大值与最小值.【答案】 最大值1063,最小值19 【解析】 设123234x y z k ---===,则21x k =+,23y k =-,43z k =+,所以1426w k =+,又因为x 、y 、z 都是非负数,所以210230430k k k +≥⎧⎪-≥⎨⎪+≥⎩,解得1223k -≤≤,当23k =时,w 取最大值1063,当12k =-时,w 取最小值19随堂练习随练1.1 已知不等式424233x x a +<-(x 是未知数)的解也是不等式12162x -<的解,求a 的取值范围.【答案】 7a ≥-【解析】 由12162x -<得1x >-,由424233x x a +<-得6x a >+,由题意得61a +≥-,故7a ≥- 随练1.2 若关于x 的不等式0mx n ->的解集是15x <,则关于x 的不等式()m n x n m +>-的解集是( ) A . 23x <- B . 23x >- C . 23x < D . 23x > 【答案】A 【解析】 该题考查的是含参的不等式.∵关于x 的不等式0mx >的解集是15x <,, ∴0m <,15n m =, ∴解关于x 的不等式()m n x n m +>-得,n m x n m -<+, ∴55253n x n n -<=-+, 故答案是A .随练1.3 已知a 、b 为常数,解关于x 的不等式22ax x b ->+ 【答案】2a >时,()212b x a +>- 2a <时,()212b x a +<-2a =时,①如果10b +≥,不等式无解;②如果10b +<,则不等式的解为任何实数【解析】 原不等式可化为()()221a x b ->+,(1)当20a ->,即2a >时,不等式的解为()212b x a +>-; (2)当20a -<,即2a <时,不等式的解为()212b x a +<-;(3)当20a -=,即2a =时,有①:如果10b +≥,不等式无解;②如果10b +<,则不等式的解为任何实数.随练1.4 当k 满足___________时,方程组24x y k x y +=⎧⎨-=⎩中x 大于1,y 小于1 【答案】 13k -<<【解析】 由24x y k x y +=⎧⎨-=⎩可得22x k y k =+⎧⎨=-⎩,所以2121k k +>⎧⎨-<⎩,解得13k -<<. 随练1.5 若关于x 的不等式423202x x x a ++⎧>⎪⎪⎨+⎪<⎪⎩的解集为x <2,则a 的取值范围是____. 【答案】 a≤-2【解析】 本题考查了不等式的性质、解一元一次不等式(组)的应用,关键是能根据不等式的解集得出关于a 的不等式,题目比较好,难度不大.根据不等式的性质求出每个不等式的解集,根据找不等式组解集的规律得出-a≥2,求出即可. 423202x x x a ++⎧>⎪⎪⎨+⎪<⎪⎩①②, 解不等式①得:x <2,解不等式①得:x <-a ,①不等式组的解集是x <2,①-a≥2,①a≤-2,故答案为:a≤-2随练1.6 已知方程组3951x y a x y a +=+⎧⎨-=+⎩的解都为正数 (1)求a 的取值范围(2)化简454a a +--【答案】 (1)544a -<<(2)51a + 【解析】 先把a 看作常数,解方程组得454x a y a =+⎧⎨=-+⎩,由方程组的解都为正数可得45040a a +>⎧⎨-+>⎩,解得544a -<<,由45040a a +>⎧⎨-+>⎩可得4545a a +=+,44a a -=-,故45451a a a +--=+随练1.7 若关于x 的不等式0721x m x ⎧-<⎨-≤⎩的整数解共有4个,则m 的取值范围是( )A . 6<m <7B . 6≤m <7C . 6≤m ≤7D . 6<m ≤7【答案】D 【解析】 本题是一道较为抽象的中考题,利用数轴就能直观的理解题意,列出关于m 的不等式组,再借助数轴做出正确的取舍.首先确定不等式组的解集,先利用含m 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于m 的不等式,从而求出m 的范围.由(1)得,x <m ,由(2)得,x≥3,故原不等式组的解集为:3≤x <m ,①不等式的正整数解有4个,①其整数解应为:3、4、5、6,①m 的取值范围是6<m≤7.故选D .随练1.8 已知关于x 的不等式组4(1)23617x x x a x -+>⎧⎪-⎨-<⎪⎩有且只有三个整数解,求a 的取值范围.【答案】 1≤a <2【解析】解不等式4(x -1)+2>3x ,得:x >2,解不等式x -1<67x a -,得:x <7-a , ①此不等式组有且只有三个整数解,①这三个整数解为3,4,5,①5<7-a≤6,解得1≤a <2.①实数a 的取值范围是1≤a <2.随练1.9 已知2310a x -+=,32160b x --=,且4a b ≤<,求x 的取值范围.【答案】 23x -<≤【解析】 由2310a x -+=可得312x a -=,由32160b x --=可得2163x b +=,又因为4a b ≤<,所以31216423x x -+≤<,解得23x -<≤自我总结拓展1 若关于x 的不等式21a x ->的解集是1x <,则a 的值是( )A . 1a =B . 1a >C . 1a <D . 1a =-【答案】A【解析】 该题考查的是含参数的不等式.∵21a x ->,∴21x a <-,∵1x <,∴211a -=,解得1a =.故答案是A .拓展2 10.(3分)(2016•江西校级模拟)已知关于x 的不等式组1x a x ⎧>⎨>⎩的解集为x >1,则a 的取值范围是_____________.【答案】 a ≤1【解析】 由关于x 的不等式组1x a x ⎧>⎨>⎩的解集为x >1,得 a ≤1,拓展3 若关于x 的不等式组232x a x a >+⎧⎨<-⎩无解,则a 的取值范围是__________.能力拓展【答案】 2a ≤【解析】 由题意可知232a a +≥-,解得2a ≤拓展4 若不等式组200x b x a -≥⎧⎨+≤⎩的解集为3≤x ≤4,则不等式ax+b <0的解集为____. 【答案】 x >32【解析】200x b x a -≥⎧⎨+≤⎩①② ①解不等式①得:x≥2b , 解不等式①得:x≤-a ,①不等式组的解集为:2b ≤x≤-a , ①不等式组200x b x a -≥⎧⎨+≤⎩的解集为3≤x≤4, ①2b =3,-a=4, b=6,a=-4, ①-4x+6<0,x >32, 故答案为:x >32拓展5 如果方程组32335x y k x y +=+⎧⎨+=⎩的解为x 、y ,且9k ≤时,求x y -的取值范围 【答案】 8x y -≤【解析】 由原方程组可得()222x y k -=-,所以1x y k -=-,由9k ≤得8x y -≤拓展6 若关于x 的不等式组430x x m -≥⎧⎨≥⎩有2个整数解,则m 的取值范围是( ) A . 1m >- B . 0m ≥ C . 10m -<≤ D . 10m -≤≤【答案】C【解析】 该题考察的是一元一次不等式组的整数解.解不等式430x -≥得43x ≤,故不等式组的解集为:43m x ≤≤, 因为不等式组只有2个整数解, 所以这两个整数解为:0,1,因此实数m 的取值范围是10m -<≤. 故选答案是C .拓展7 关于x 的不等式组232x a x a <+⎧⎨≥-⎩只有非负数解,求a 的取值范围. 【答案】 223a ≤< 【解析】 232320a a a +>-⎧⎨-≥⎩. 223a ∴≤<拓展8 适当选择a 的取值范围,使1.7x a <<的整数解:(1)x 只有一个整数解(2)x 一个整数解也没有【答案】 (1)23a <≤(2)1.72a <≤【解析】 (1)由1.7x a <<,x 只有一个整数解,即2x =,得到23a <≤;(2)由1.7x a <<,x 一个整数解也没有得到1.72a <≤.拓展9 已知关于x ,y ,z 的方程组212325x y z x y z -+=⎧⎨+-=⎩满足524x y ≥⎧⎨≤<⎩,求3S x y z =+-的取值范围. 【答案】 41115S ≤< 【解析】 解方程组得到417527z x z y -⎧=⎪⎪⎨-⎪=⎪⎩,根据题意415752247z z -⎧≥⎪⎪⎨-⎪≤<⎪⎩,解得1665z ≤<,而5S z =+.。

北师大数学八年级下册第二章-含参数一元一次不等式(组)经典讲义

北师大数学八年级下册第二章-含参数一元一次不等式(组)经典讲义

第03讲_含参数一元一次不等式(组)知识图谱含参数一元一次不等式(组)知识精讲含字母的一元一次不等式(组)未知数的系数含有字母或常数项含有字母的一元一次不等式(组) 未知数的系数含有字母若0a >,axb >的解为b x a >; 若0a <,ax b >的解为bx a<;若0a =,则当0b ≥时,ax b >无解, 当0b <时,ax b >的解为任何实数已知23a ≠,解关于x 的不等式()()14321a x a x ++<-- 原不等式化为:()()13214a x a x +--<--()325a x -<-(1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a >-参数取值范围首先把不等式的解集用含有字母的代数式表示出来,然后把它与已知解集联系起来求解,在求解过程中可以利用数轴进行分析.五.易错点1.注意参数取值范围导致的变号问题.2.分清参数和未知数,不要混淆.3.解连续不等式时要注意拆分为不等式组.三点剖析一.考点:含参的一元一次方程(组).二.重难点:参数与解集之间的关系,整数解问题,不等式与方程综合. 三.易错点:注意参数取值范围导致的变号问题.解含参一元一次不等式(组)例题1、 解关于x 的不等式:ax ﹣x ﹣2>0. 【答案】 当a ﹣1=0,则ax ﹣x ﹣2>0为空集,当a ﹣1>0,则x >21a -,当a ﹣1<0,则x <21a -【解析】 ax ﹣x ﹣2>0. (a ﹣1)x >2,当a ﹣1=0,则ax ﹣x ﹣2>0为空集,当a ﹣1>0,则x >21a -,当a ﹣1<0,则x <21a -.例题2、 已知a 、b 为常数,解关于x 的不等式22ax x b ->+ 【答案】 2a >时,()212b x a +>- 2a <时,()212b x a +<-2a =时,①如果10b +≥,不等式无解;②如果10b +<,则不等式的解为任何实数 【解析】 原不等式可化为()()221a x b ->+,(1)当20a ->,即2a >时,不等式的解为()212b x a +>-; (2)当20a -<,即2a <时,不等式的解为()212b x a +<-;(3)当20a -=,即2a =时,有 ①:如果10b +≥,不等式无解;②如果10b +<,则不等式的解为任何实数.例题3、 已知a 、b 为常数,若0ax b +>的解集为23x >,则0bx a -<的解集是( ) A.32x >B.32x <C.32x >-D.32x <-【答案】 C 【解析】 该题考查的是解不等式.0ax b +>的解集为23x >,化简得2=3b a - 且a>00bx a -<的解集为a x b >,32x >-.所以该题的答案是C .例题4、 已知23a ≠,解关于x 的不等式()()14321a x a x ++<--【答案】 当23a >时,不等式的解为523x a <-;当23a <时,不等式的解为523x a >-【解析】 原不等式化为:()()13214a x a x +--<-- ()325a x -<-,因为23a ≠,所以320a -≠,即32a -为正数或负数.(1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a>-例题5、 已知关于x 的不等式22m mx ->12x ﹣1.(1)当m=1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.【答案】 (1)x <2(2)当m≠﹣1时,不等式有解,当m >﹣1时,不等式解集为x <2;当x <﹣1时,不等式的解集为x >2【解析】 (1)当m=1时,不等式为22x ->2x﹣1,去分母得:2﹣x >x ﹣2, 解得:x <2;(2)不等式去分母得:2m ﹣mx >x ﹣2, 移项合并得:(m+1)x <2(m+1), 当m≠﹣1时,不等式有解,当m >﹣1时,不等式解集为x <2; 当m <﹣1时,不等式的解集为x >2.随练1、 解关于x 的不等式22241x x a a a-≥+.【答案】当2a >-且0a ≠时,有2x a ≤-;当2a =-时,x 为任意数不等式都成立; 当2a <-时,有2x a ≥-【解析】 因为0a ≠,所以20a >,将原不等式去分母,整理得()224a x a +≤-.当2a >-且0a ≠时,有2x a ≤-;当2a =-时,x 为任意数不等式都成立;当2a <-时,有2x a ≥-.随练2、 已知23a ≠,解关于x 的不等式()()14321a x a x ++<--.【答案】 当23a >时,不等式的解为523x a <-;当23a <时,不等式的解为523x a >-【解析】 原不等式化为:()325a x -<-,因为23a ≠,所以320a -≠,即32a -为正数或负数. (1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a >-随练3、 解下列关于x 的不等式组:()23262111x a x x x +⎧->⎪⎨⎪+>-⎩;【答案】 13a >时,32x a >+;13a ≤时,3x >【解析】 原不等式组可化为323x a x >+⎧⎨>⎩.当323a +>,即13a >时,不等式组的解集为32x a >+.当323a +≤,即13a ≤时,不等式组的解集为3x >随练4、 已知a ,b 为实数,若不等式ax +b <0的解集为12x >,则不等式b (x -1)-a <0的解集为( )A.x >-1B.x <-1C.a b x b +>D.a b x b+< 【答案】 B【解析】 暂无解析随练5、已知关于x 的不等式()2340a b x a b -+->的解集是1x >.则关于x 的不等式()4230a b x a b -+->的解集是____________.【答案】 13x <-【解析】 ()2340a b x a b -+->, 移项得:()232a b x a b ->-,由已知解集为1x >,得到20a b ->,变形得:322a bx a b ->-,可得:3212a ba b-=-,整理得:a b =, ()4230a a x a a ∴-+->,即0a >,∴不等式()4230a b x a b -+->可化为()4230a a x a a -+->. 两边同时除以a 得:31x ->,解得:13x <-.随练6、 已知实数a 是不等于3的常数,解不等式组2x 3311x 2a x 022-+-⎧⎪⎨-+⎪⎩≥()< ,并依据a 的取值情况写出其解集. 【答案】 当a >3时,不等式组的解集为x ≤3,当a <3时,不等式组的解集为x <a【解析】 2x 3311x 2a x 022-+-⎧⎪⎨-+⎪⎩≥(①②)<, 解①得:x ≤3,解①得:x <a ,∵实数a 是不等于3的常数,∴当a >3时,不等式组的解集为x ≤3, 当a <3时,不等式组的解集为x <a .随练7、 关于x 的不等式组2131x a x +>⎧⎨->⎩.(1)若不等式组的解集是1<x <2,求a 的值;(2)若不等式组无解,求a 的取值范围. 【答案】 (1)a=3;(2)a≤2【解析】 (1)解不等式2x+1>3得:x >1, 解不等式a ﹣x >1得:x <a ﹣1, ∵不等式组的解集是1<x <2,∴a ﹣1=2, 解得:a=3;(2)∵不等式组无解, ∴a ﹣1≤1, 解得:a≤2.参数与解集之间的关系例题1、 若关于x 的一元一次不等式组011x a x x ->⎧⎨->-⎩无解,则a 的取值范围是 .【答案】 a≥2.【解析】 由x ﹣a >0得,x >a ;由1﹣x >x ﹣1得,x <1, ∵此不等式组的解集是空集, ∴a≥1.例题2、 已知关于x 的不等式组301(2)342x a x x -≥⎧⎪⎨->+⎪⎩有解,求实数a 的取值范围,并写出该不等式组的解集.【答案】 a <﹣6,3a≤x <﹣2.【解析】 解不等式3x ﹣a≥0,得:x≥3a,解不等式12(x ﹣2)>3x+4,得:x <﹣2,由题意得:3a<﹣2,解得:a <﹣6,∴不等式组的解集为3a≤x <﹣2.例题3、 如果关于x 的不等式(a+1)x >a+1的解集为x <1,那么a 的取值范围是( ) A.a <﹣1 B.a <0 C.a >﹣1 D.a >0或a <﹣1 【答案】 A【解析】 (a+1)x >a+1, 当a+1>0时,x >1, 当a+1<0时,x <1, ∵解集为x <1, ∴a+1<0, a <﹣1. 故选:A .例题4、 当1≤x≤4时,mx ﹣4<0,则m 的取值范围是( ) A.m >1 B.m <1 C.m >4 D.m <4 【答案】 B【解析】 设y=mx ﹣4,由题意得,当x=1时,y <0,即m ﹣4<0, 解得m <4,当x=4时,y <0,即4m ﹣4<0, 解得,m <1,则m 的取值范围是m <1,例题5、 若不等式(a ﹣3)x >1的解集为x <13a -,则a 的取值范围是 .【答案】 a <3.【解析】 ∵(a ﹣3)x >1的解集为x <13a -, ∴不等式两边同时除以(a ﹣3)时不等号的方向改变, ∴a ﹣3<0, ∴a <3.故答案为:a <3.例题6、 如果关于x 的不等式()122a x a +>+的解集是2x <,则a 的取值范围是( ) A.0a < B.1a <-C.1a >D.1a >-【答案】 B【解析】 将原不等式与其解集进行比较,在不等式的变形过程中利用了不等式的性质三,因此有10a +<,故1a <-例题7、 若不等式组()322110b x x a -<--⎧⎨->⎩的解集为﹣2<x <4,求出a 、b 的值.【答案】 a=﹣10,b=3.【解析】 解不等式10﹣x <﹣(a ﹣2),得:x >a+8,解不等式3b ﹣2x >1,得:x <312b -,∵解集为﹣2<x <4, ∴314282a b ⎧⎪⎨-=+=-⎪⎩,解得:a=﹣10,b=3.随练1、 已知关于x 的不等式(m -2)x >2m -4的解集为x <2,则m 的取值范围是________. 【答案】 m <2【解析】 不等式(m -2)x >2m -4的解集为x <2, ∴m -2<0,m <2.随练2、 关于x 的不等式组()3141x x x m ⎧->-⎪⎨<⎪⎩的解集为x <3,那么m 的取值范围是 .【答案】 m≥3【解析】 ()3141x x x m ->-⋅⋅⋅⎧⎪⎨<⋅⋅⋅⎪⎩①②,解①得x <3,∵不等式组的解集是x <3, ∴m≥3.故答案是:m≥3.随练3、 若关于x 的一元一次不等式组202x m x m -<⎧⎨+>⎩有解,则m 的取值范围为( )A.23m >-B.23m ≤C.23m >D.23m ≤-【答案】 C【解析】 202x m x m -<⎧⎨+>⎩①②,解不等式①得,x <2m , 解不等式②得,x >2-m , ∵不等式组有解, ∴2m >2-m ,∴23m >.随练4、 若不等式组0422x a x x +⎧⎨->-⎩≥有解,则实数a 的取值范围是( )A.a≥-2B.a <-2C.a≤-2D.a >-2【答案】 D【解析】 0422x a x x +⎧⎨->-⎩≥,解不等式x +a≥0得,x≥-a ,由不等式4-2x >x -2得,x <2,∵不等式组:不等式组0422x a x x +⎧⎨->-⎩≥有解,∴a >-2,随练5、 已知不等式31(x ﹣m )>2﹣m . (1)若上面不等式的解集为x >3,求m 的值.(2)若满足x >3的每一个数都能使上面的不等式成立,求m 的取值范围. 【答案】 (1)23(2)m≥23 【解析】 (1)解不等式可得x >6﹣2m ,∵不等式的解集为x >3, ∴6﹣2m=3,解得m=23;(2)∵原不等式可化为x >6﹣2m ,满足x >3的每一个数都能使不等式成立, ∴6﹣2m≤3,解得m≥23.整数解问题例题1、 关于x 的不等式-1<x≤a 有3个正整数解,则a 的取值范围是________. 【答案】 3≤a <4【解析】 ∵不等式-1<x≤a 有3个正整数解, ∴这3个整数解为1、2、3, 则3≤a <4.例题2、 关于x 的不等式0x b ->恰有两个负整数解,则b 的取值范围是( ) A.32?b -<<- B.32?b -<≤- C.32b -≤≤- D.32b -≤<- 【答案】 D【解析】 本题主要考查一元一次不等式及其解法。

一元一次不等式知识要点及典型题目讲解-

一元一次不等式知识要点及典型题目讲解-

一元一次不等式知识要点及典型题目讲解一、全章教学内容及要求1、理解不等式的概念和基本性质2、会解一元一次不等式,并能在数轴上表示不等式的解集3、会解一元一次不等式组,并能在数轴上表示不等式组的解集二、技能要求1、会在数轴上表示不等式的解集。

2、会运用不等式的基本性质(或不等式的同解原理)解一元一次不等式。

3、掌握一元一次不等式组的解法,会运用数轴确定不等式组的解集。

三、重要的数学思想:1、通过一元一次不等式解法的学习,领会转化的数学思想。

2、通过在数轴上表示一元一次不等式的解集与运用数轴确定一元一次不等式组的解集,进一步领会数形结合的思想。

四、主要数学能力1、通过运用不等式基本性质对不等式进行变形训练,培养逻辑思维能力。

2、通过一元一次不等式解法的归纳及一元一次方程解法的类比,培养思维能力。

3、在一元一次不等式,一元一次不等式组解法的技能训练基础上,通过观察、分析、灵活运用不等式的基本性质,寻求合理、简捷的解法,培养运算能力。

五、类比思想:把两个(或两类)不同的数学对象进行比较,如果发现它们在某些方面有相同或类似之处,那么就推断它们在其他方面也可能有相同或类似之处。

这种数学思想通常称为“类比”,它体现了“不同事物之间存在内部联系”的唯物辩证观点,是发现数学真理和解题方法的重要手段之一,在数学中有着广泛的运用。

在本章中,类比思想的突出运用有:1、不等式与等式的性质类比。

对于等式(例如a=b)的性质,我们比较熟悉。

不等式(例如a>b或a<b)与等式虽然是不同的式子,表达的也是不同的数量关系,但它们在形式上显然有某些相同或类似的地方,于是可推断在性质上两者也可能有某些相同或类似之处。

这就是“类比”思想的运用之一,它也是我们探索不等式性质的基本途径。

等式有两个基本性质:1、等式两边都加上(或减去)同一个数或同一个整式,等号不变。

(即两边仍然相等)。

2、等式两边都乘以(或除以)同一个不等于0的数,符号不变(即两边仍然相等)。

专题02 方程、不等式中的含参问题-玩转压轴题,争取满分之备战中考数学选填题高端精品(解析版)

专题02 方程、不等式中的含参问题-玩转压轴题,争取满分之备战中考数学选填题高端精品(解析版)

专题二方程、不等式中的含参问题【考法综述】1.一次方程组的含参问题一是方程组与不等式的联系时,产生的未知数的正数解或解的范围,解决这类问题是把所给的参数作为常数,利用二元一次方程组的解法代入消元法、加减消元法,先求出二元一次方程组的解,再结合所给的条件转化为对应的不等式问题;二是利用整体思想,求代数式的值,结合所给的已知条件和所求问题,找到两者之间的联系,利用整体思想和转化思想加以解决.2.一元二次方程的参数问题主要是含有参数的一元二次方程的解、一元二次方程的解的情况、一元二次方程的公共解,针对一元二次方程的参数,常利用韦达定理、根的判别式来解决,同时注意二次项系数不能为零.若关于x的一元二次方程ax2+bx+c=0(a≠0)有两个根分别为x1、x2,则x1+x2=-b/a,x1x2=c/a.注意运用根与系数关系的前提条件是△≥0.已知一元二次方程,求关于方程两根的代数式的值时,先把所求代数式变形为含有x1+x2、x1x2的式子,再运用根与系数的关系求解.3.分式方程的参数问题主要是分式方程无解、有正数解或负数解、整数解的问题,解决此类问题的关键是化分式方程为整式方程.在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.4.不等式、不等式组的参数问题主要涉及不等式(组)有解问题、无解问题、解的范围问题,解决此类问题,要掌握不等式组的解法口诀以及在数轴上熟练表示出解集的范围.已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.学+科网【典例剖析】考点一、一次方程组的含参问题例1方程组的解x,y满足x>y,则m的取值范围是()A.m>B.m>C.m>D.m>【答案】﹣.【解析】试题分析:解此题时可以运用代入消元法,解出二元一次方程组中x,y关于m的式子,然后根据x>y解出m的取值范围.试题解析:由①得x=,代入②得,8×﹣3y=m,y=.∵x>y,即>,解得m>.故选D.【点评】此题考查的是二元一次方程组和不等式的性质,先解出x,y关于m的式子,再根据x>y,求出m 的范围即可.&变式训练&变式1.1已知x+2y﹣3z=0,2x+3y+5z=0,则=.【点评】此题需将三元一次方程组中的一个未知数当做已知数来处理,转化为二元一次方程组来解.变式1.2已知三个非负实数a,b,c满足:3a+2b+c=5和2a+b﹣3c=1,若m=3a+b﹣7c,则m的最小值为.【解析】试题分析:解方程组,用含m的式子表示出a,b,c的值,根据a≥0,b≥0,c≥0,求得m的取值范围而求得m的最小值.试题解析:由题意可得,解得a=﹣3,b=7﹣,c=,由于a,b,c是三个非负实数,∴a≥0,b≥0,c≥0,∴﹣≥m≥﹣.﹣.所以m最小值=故本题答案为:﹣.变式1.3已知等式(2A﹣7B)x+(3A﹣8B)=8x+10对一切实数x都成立,则A=,B=.【答案】,﹣.【解析】【点评】本题考查了二元一次方程组的解法.解决本题的关键在于转化为关于A、B的二元一次方程组;体现了转化思想的应用.学科+网考点二、一元二次方程的含参问题例2关于x的方程x2+mx﹣9=0和x2﹣3x+m2+6m=0有公共根,则m的值为.【答案】﹣3,0,﹣4.5.【解析】试题分析:设这个公共根为α,那么根据两根之和的表达式,可知方程x2+mx﹣9=0的两根为α、﹣m﹣α;方程x2﹣3x+m2+6m=0的两根为α、3﹣α.再根据两根之积的表达式,可知α(﹣m﹣α)=﹣9,α(3﹣α)=m2+6m,然后对两式整理,用α表示m,再代入其中一个方程消掉α,求解即可得到m的值.试题解析:设这个公共根为α.则方程x2+mx﹣9=0的两根为α、﹣m﹣α;方程x2﹣3x+m2+6m=0的两根为α、3﹣α,由根与系数的关系有:α(﹣m﹣α)=﹣9,α(3﹣α)=m2+6m,整理得,α2+mα=9①,α2﹣3α+m2+6m=0②,②﹣①得,m2+6m﹣3α﹣mα=﹣9,即(m+3)2﹣α(m+3)=0,(m+3)(m+3﹣α)=0,所以m+3=0或m+3﹣α=0,解得m=﹣3或α=m+3,把α=m+3代入①得,(m+3)2+m(m+3)=9,m2+6m+9+m2+3m=9,m(2m+9)=0,所以m=0或2m+9=0,解得m=0或m=﹣4.5,综上所述,m的值为﹣3,0,﹣4.5.故答案为:﹣3,0,﹣4.5.【点评】本题主要考查了公共根的定义,一元二次方程根与系数的关系及由两个二元二次方程组成的方程组的解法.高次方程组的解法在初中教材中不要求掌握,属于竞赛题型,本题有一定难度.&变式训练&变式2.1已知a是一元二次方程x2﹣2008x+1=0的一个根,则代数式的值是.【答案】2007【解析】试题分析:将一个根a代入x2﹣2008x+1=0,可得:a2﹣2008a+1=0,故有a2﹣2007a=a﹣1,和a2+1=2008a;代入要求的代数式,整理化简即可.试题解析:由题意,把根a代入x2﹣2008x+1=0,可得:a2﹣2008a+1=0,∴a2﹣2007a﹣a+1=0,a2+1=2008a;∴a2﹣2007a=a﹣1,∴=a﹣1+=a+﹣1=﹣1=﹣1=2008﹣1,=2007.【点评】本题规律为已知一元二次方程的一个解,则这个解一定满足方程,将其代入方程去推理、判断;将代数式与已知条件联系起来,从两头朝中间寻找关系.变式2.2已知关于x的方程(k2﹣1)x2+(2k﹣1)x+1=0有两个不相等的实数根,那么实数k的取值范围为.【答案】k<且k≠±1【点评】总结:1、一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.2、一元二次方程的二次项系数不为0.变式2.3已知α、β是方程x2﹣2x﹣4=0的两个实数根,则α3+8β+6的值为()A.﹣1B.2C.22D.30【答案】D【解析】试题分析:根据求根公式x=求的α、β的值,然后将其代入所求,并求值.试题解析:方法一:方程x2﹣2x﹣4=0解是x=,即x=1±,∵α、β是方程x2﹣2x﹣4=0的两个实数根,∴①当α=1+,β=1﹣时,α3+8β+6,=(1+)3+8(1﹣)+6,=16+8+8﹣8+6,=30;②当α=1﹣,β=1+时,α3+8β+6,=(1﹣)3+8(1+)+6,=16﹣8+8+8+6,=30.方法二:∵α、β是方程x2﹣2x﹣4=0的两个实数根,∴α+β=2,α2﹣2α﹣4=0,∴α2=2α+4∴α3+8β+6=α•α2+8β+6=α•(2α+4)+8β+6=2α2+4α+8β+6=2(2α+4)+4α+8β+6=8α+8β+14=8(α+β)+14=30,故选D.变式2.4对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若b=2,则方程ax2+bx+c=0一定有两个相等的实数根;②若方程ax2+bx+c=0有两个不等的实数根,则方程x2﹣bx+ac=0也一定有两个不等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则b2﹣4ac=(2ax0+b)2,其中正确的()A.只有①②③B.只有①②④C.①②③④D.只有③④【答案】B【解析】试题分析:判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.④难度较大,用到了求根公式表示x0.试题解析:①若b=2,方程两边平方得b2=4ac,即b2﹣4ac=0,所以方程ax2+bx+c=0一定有两个相等的实数根;②若方程ax2+bx+c=0有两个不等的实数根,则b2﹣4ac>0方程x2﹣bx+ac=0中根的判别式也是b2﹣4ac=0,所以也一定有两个不等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac2+bc+c=0成立,当c≠0时ac+b+1=0成立;当c=0时ac+b+1=0不成立;④若x0是一元二次方程ax2+bx+c=0的根,可得x0=,把x0的值代入(2ax0+b)2,可得b2﹣4ac=(2ax0+b)2,综上所述其中正确的①②④.故选B【点评】此题主要考查了根的判别式及其应用.尤其是④难度较大,用到了求根公式表示x0,整体代入求b2﹣4ac=(2ax0+b)2.考点三、分式方程的含参问题例3.已知方程的两根分别为a,,则方程=a+的根是()A.a,B.,a﹣1C.,a﹣1D.a,【答案】D【解析】试题分析:首先观察已知方程的特点,然后把方程=a+变形成具有已知方程的特点的形式,从而得出所求方程的根.【点评】观察出已知方程的特点是解答本题的前提,把方程=a+变形成具有已知方程的特点的形式是解答本题的关键.&变式训练&变式3.1若关于x的方程=3的解是非负数,则b的取值范围是.【答案】b≤3且b≠2【解析】试题分析:先解关于x的分式方程,求得x的值,然后再依据“解是非负数”建立不等式求b的取值范围.试题解析:去分母得,2x﹣b=3x﹣3∴x=3﹣b∵x≥0∴3﹣b≥0解得,b≤3又∵x﹣1≠0∴x≠1即3﹣b≠1,b≠2则b的取值范围是b≤3且b≠2.【点评】由于我们的目的是求b的取值范围,根据方程的解列出关于b的不等式,另外,解答本题时,易漏掉分母不等于0这个隐含的条件,这应引起足够重视.变式3.2观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于x 的方程(n为正整数)的根,你的答案是:.【答案】x=n+3或x=n+4.【解析】试题分析:首先求得分式方程①②③的解,即可得规律:方程x+=a+b的根为:x=a或x=b,然后将x+=2n+4化为(x﹣3)+=n+(n+1),利用规律求解即可求得答案.试题解析:∵由①得,方程的根为:x=1或x=2,由②得,方程的根为:x=2或x=3,由③得,方程的根为:x=3或x=4,∴方程x+=a+b的根为:x=a或x=b,∴x+=2n+4可化为(x﹣3)+=n+(n+1),∴此方程的根为:x﹣3=n或x﹣3=n+1,即x=n+3或x=n+4.故答案为:x=n+3或x=n+4.【点评】此题考查了分式方程的解的知识.此题属于规律性题目,注意找到规律:方程x+=a+b的根为:x=a或x=b是解此题的关键.变式3.3已知关于x的方程只有整数解,则整数a的值为.【答案】﹣2,0或4【解析】试题分析:首先解此分式方程,即可求得x==﹣2﹣,由方程只有整数解,可得1﹣a=3或1或﹣3或﹣1,然后分别分析求解即可求得答案,注意分式方程需检验.试题解析:方程两边同乘以(x﹣1)(x+2),得:2(x+2)﹣(a+1)(x﹣1)=3a,解得:x==﹣2﹣,∵方程只有整数解,∴1﹣a=3或1或﹣3或﹣1,当1﹣a=3,即a=﹣2时,x=﹣2﹣1=﹣3,检验,将x=﹣3代入(x﹣1)(x+2)=4≠0,故x=﹣3是原分式方程的解;当1﹣a=1,即a=0时,x=﹣2﹣3=﹣5,检验,将x=﹣5代入(x﹣1)(x+2)=18≠0,故x=﹣7是原分式方程的解;当1﹣a=﹣3,即a=4时,x=﹣2+1=﹣1,检验,将x=﹣1代入(x﹣1)(x+2)=﹣2≠0,故x=﹣1是原分式方程的解;当1﹣a=﹣1,即a=2时,x=1,检验,将x=1代入(x﹣1)(x+2)=0,故x=1不是原分式方程的解;∴整数a的值为:﹣2,0或4.学*科网故答案为:﹣2,0或4.【点评】此题考查了分式方程的解知识.此题难度较大,注意分类讨论思想的应用是解此题的关键.考点四、不等式(组)的含参问题例4.[x]表示不超过x的最大整数.如,[π]=3,[2]=2,[﹣2.1]=﹣3.则下列结论:①[﹣x]=﹣[x];②若[x]=n,则x的取值范围是n≤x<n+1;③当﹣1<x<1时,[1+x]+[1﹣x]的值为1或2;④x=﹣2.75是方程4x﹣2[x]+5=0的唯一一个解.其中正确的结论有(写出所有正确结论的序号).【答案】②③.【解析】试题分析:①举出反例即可求解;②根据[x]表示不超过x的最大整数的定义即可求解;③分两种情况:﹣1<x<0;x=0;0<x<1;进行讨论即可求解;④首先确定x﹣[x]的范围为0~1,依此可得﹣5≤2x<﹣7,即﹣2.5≤x<﹣3.5,再找到满足条件的x值即为所求.④x﹣[x]的范围为0~1,4x﹣2[x]+5=0,﹣5≤2x<﹣7,即﹣2.5≤x<﹣3.5,x=﹣2.75或x=﹣3.25都是方程4x﹣2[x]+5=0,故原来的说法错误.故答案为:②③.【点评】本题考查了不等式的应用,正确理解[x]表示不超过x的最大整数是关键.&变式训练&变式4.1如果关于x的不等式(a+b)x+2a﹣b>0的解集是x<,那么关于x的不等式(b﹣a)x+a+2b≤0的解集是.【答案】x≥﹣.【解析】试题分析:先根据关于x的不等式(a+b)x+2a﹣b>0的解集是x<,得出b=﹣3a以及a的取值范围,进而得到b﹣a=﹣4a<0,再根据b=﹣3a,即可得到关于x的不等式(b﹣a)x+a+2b≤0的解集.试题解析:∵关于x的不等式(a+b)x+2a﹣b>0的解集是x<,∴x<,∴=,且a+b<0,即b=﹣3a,a+b<0,∴a﹣3a<0,即a>0,∴b﹣a=﹣4a<0,∴关于x的不等式(b﹣a)x+a+2b≤0的解集是x≥,∵==﹣,∴关于x的不等式(b﹣a)x+a+2b≤0的解集是x≥﹣,故答案为:x≥﹣.【点评】本题主要考查了解一元一次不等式的应用,解题时注意:根据不等式的基本性质,在去分母和化系数为1时可能需要改变不等号方向.变式4.2若不等式组无解,则m的取值范围是.【答案】m<【解析】试题分析:先求出各个不等式的解集,因为不等式组无解,所以必须是大大小小找不到的情况,由此即可求出答案.试题解析:解不等式组可得,因为不等式组无解,所以m<.【点评】本题主要考查了已知一元一次不等式组的解集,求不等式组中的字母的值,同样也是利用口诀求解.变式4.3按下面程序计算,若开始输入x的值为正数,最后输出的结果为656,则满足条件所有x的值是.【答案】131或26或5或【解析】试题分析:利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【点评】此题考查了方程与不等式的应用.注意理解题意与逆向思维的应用是解题的关键.变式4.4若关于x的不等式组解集为x<2,则a的取值范围是.【答案】a≥2【解析】试题分析:求出不等式组的解集,与已知解集x<2比较,可以求出a的取值范围.试题解析:由>+1,得2x+8>3x+6,解得x<2,由x﹣a<0,得x<a,又因关于x的不等式组解集为x<2,所以a≥2.【点评】本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知数处理,求出解集与已知解集比较,进而求得另一个未知数.【实战演练】1.(2017重庆A 卷第12题)若数a 使关于x 的分式方程2411y a x x++=--的解为正数,且使关于y 的不等式组12()y 232y a y ⎧+->-≤⎪⎨⎪⎩的解集为y<﹣2,则符合条件的所有整数a 的和为()A.10B.12C.14D.16【答案】B.【解析】试题解析:分式方程2411y a x x ++=--的解为x=6-4a ,∵关于x 的分式方程+=4的解为正数,∴6-4a >0,∴a<6.y 123)02(2①y ②y a ⎧+>≤--⎪⎨⎪⎩,解不等式①得:y<﹣2;解不等式②得:y≤a.∵关于y 的不等式组12()y 232y a y ⎧+->-≤⎪⎨⎪⎩的解集为y<﹣2,∴a≥﹣2.∴﹣2≤a<6.∵a 为整数,∴a=﹣2、﹣1、0、1、2、3、4、5,(﹣2)+(﹣1)+0+1+2+3+4+5=12.故选B.学*科网考点:1.分式方程的解;2.解一元一次不等式组.2.(2017甘肃兰州第6题)如果一元二次方程2230x x m ++=有两个相等的实数根,那么是实数m 的取值A.98m >B.89m >C.98m =D.89m =【答案】98m =考点:根的判别式.3.(2017山东烟台第10题)若21,x x 是方程01222=--+-m m mx x 的两个根,且21211x x x x -=+,则m 的值为()A.1-或2B.1或2- C.2-D.1【答案】D.【解析】试题解析:∵x 1,x 2是方程x 2﹣2mx+m 2﹣m﹣1=0的两个根,∴x 1+x 2=2m,x 1•x 2=m 2﹣m﹣1.∵x 1+x 2=1﹣x 1x 2,∴2m=1﹣(m 2﹣m﹣1),即m 2+m﹣2=(m+2)(m﹣1)=0,解得:m 1=﹣2,m 2=1.∵方程x 2﹣2mx+m 2﹣m﹣1=0有实数根,∴△=(﹣2m)2﹣4(m 2﹣m﹣1)=4m+4≥0,解得:m≥﹣1.∴m=1.故选D.考点:根与系数的关系.4.(2017江苏宿迁第5题)已知45m <<,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有A .1个B.2个 C.3个D.4个5.(2017浙江金华第9题)若关于x 的一元一次不等式组()2132,x x x m->-⎧⎪⎨<⎪⎩的解是5x <,则m 的取值范围是()A.5m ≥B.5m > C.5m ≤D.5m <【答案】A.【解析】试题分析:解第一个不等式得:x <5;解第二个不等式得:x <m ;因为不等式组的解是x <5,根据不等式组解集的判定方法即可得m ≥5,故选A.6.(2017甘肃庆阳第15题)若关于x 的一元二次方程(k-1)x 2+4x+1=0有实数根,则k 的取值范围是【答案】k≤5且k≠1.考点:根的判别式.7.(2017山东烟台第15题)运行程序如图所示,从“输入实数x ”到“结果是否18<”为一次程序操作,若输入x 后程序操作仅进行了一次就停止,则x 的取值范围是.【答案】x<8.【解析】试题解析:依题意得:3x﹣6<18,解得x<8.考点:一元一次不等式的应用.考点:1.分式方程的解;2.解一元一次不等式9.(2017四川宜宾第13题)若关于x、y的二元一次方程组2m133x yx y⎧-=+⎨+=⎩的解满足x+y>0,则m的取值范围是.【答案】m>﹣2.考点:1.解一元一次不等式;2.二元一次方程组的解.10.(2017四川泸州第15题)关于x的分式方程2322x m mx x++=--的解为正实数,则实数m的取值范围是.【答案】m<6且m≠2.【解析】试题分析:方程两边同乘以x-2可得,x+m-2m=3(x-2),解得x=62m--,因方程的解为正实数,且x-2≠0,所以62m-->0且m≠2,即m<6且m≠2.11.(2017江苏宿迁第14题)若关于x的分式方程1322m xx x-=---有增根,则实数m的值是.【答案】1.【解析】试题分析:方程两边同乘以x-2,可得m=x-1-3(x-2),解得m=-2x+5,因分式方程1322m xx x-=---有增根,可得x=2,所以m=1.12.(2017山东菏泽第10题)关于的一元二次方程的一个根式,则的值是_______.【答案】0.【解析】试题分析:把x=0代入,得,解得k=1(舍去),或k=0;。

第二章一元一次不等式与一元一次不等式组 回顾与思考教案2021-2022学年北师大版八年级数学下册

第二章一元一次不等式与一元一次不等式组 回顾与思考教案2021-2022学年北师大版八年级数学下册

基于标准的教学设计北师大版八年级(下册)第二章一元一次不等式与一元一次不等式组《回顾与思考》第二章一元一次不等式与一元一次不等式组回顾与思考一、课标描述(摘要)及其解读2011版新课程标准要求:1.结合具体问题,了解不等式的意义,探索不等式的基本性质.2.能解数字系数的一元一次不等式,并能在数轴上表示出解集;会用数轴确定由两个元一次不等式组成的不等式组的解集.3.能根据具体问题中的数量关系,列出一元一次不等式,解决具体问题.课标对于“了解”的要求是:从具体实例中知道或举例说明对象的有关特征;根据对象的特征,从具体情境中辨认或者举例说明对象.课标对于“理解,会”的要求是:描述对象的特征和由来,阐述此对象与相关对象之间的区别和联系.课标对于“能”的要求是:在理解的基础之,把对象用于新的情境.课标对于“体会”的要求是:参与特定的数学活动,主动认识或验证对象的特征,获得一些经验.二、教材分析在小学数学教材中,已经呈现了一些关于不等关系的相关知识,学生知道生活大量存在着不等关系的量,了解“大于”、“小于”等符号的用法和意义,能比较两数的大小,并能用数学的语言表达;学生通过对本章内容的学习,掌握了不等式的性质、一元一次不等式(组)的解法,并通过解决一些简单的实际问题,体会不等式的模型思想及一元一次不等式、一次函数、一元一次方程之间的内在联系.三、学情分析学生的知识技能基础:学生通过对本章内容的学习,掌握了不等式的性质、一元一次不等式(组)的解法,并通过解决一些简单的实际问题,体会不等式的模型思想及一元一次不等式、一次函数、一元一次方程之间的内在联系.学生活动能力基础:经历探索、发现不等关系的过程学习解决一些简单的实际问题.四、学习目标学生通过整理本章学习的主要内容,建构本章知识联系图,体会知识之间的发展脉络与内在联系,增强应用数学知识研究和解决实际问题的能力. 本节课的具体学习目标是:1.通过梳理本章内容,进一步体会数形结合思想及类比的思想方法.2.通过基础过关题组的训练,进一步夯实基础,掌握不等式的基本性质,理解不等式(组)的解及解集的含义,会解简单的一元一次不等式(组),并能在数轴上表示其解集,并体会不等式函数、方程之间的联系.3.通过深度研讨环节,能够举一反三,灵活应用.4.通过实际应用,能够建立不等模型,能够用一元一次不等式解决一些简单的实际问题.五、学习重难点重点:梳理本章内容,掌握不等式的基本性质,理解不等式(组)的解及解集的含义,会解简单的一元一次不等式(组),并能在数轴上表示其解集,并体会不等式、函数、方程之间的联系.难点:进一步体会数形结合思想及类比的思想方法,能够建立不等模型,能够用一元一次不等式解决一些简单的实际问题.六、评价设计根据课标要求:评价的主要目的的为了全面了解学生数学学习的过程和结果,激励学生的学习和改进教师的教学. 所以,本节课的教学评价主要通过以下环节进行:1.通过小组讨论交流展示本章思维导图的过程,引领学生进行对话交流,在鼓励的基础上纠正偏差,并对其进行定性的评价;2.通过“基础过关”、“当堂检测”来检验教学效果,并在讲评中,肯定优点,指出不足;3.通过深度研讨环节,使学生能够在交流中,思想相互碰撞,思维得到提升;4.通过自我评价表和组长评价表,对本节课学习过程进行过程性评价;通过作业,反馈信息,再次对本节课做出评价,以便查缺补漏.七、学习过程依据“目标导引教学”的理念和“教、学、评一致性”的原则,具体流程如下:学习目标学习评价学习过程一、课前准备、交流复习目标1:通过梳理本章内容,进一步体会数形结合思想及类比的思想方法.1.通过小组分享,制作思考评价学生思路是否清楚,结构是否合理;2.通过提问,检测学生是否能快速的回答这些问题.1.学生通过课前准备,以小组为单位制作思维导图,并且分享制作思路,对本章内容进行梳理并且再一次画出本章的结构图.2.教师引导,总结本章的核心数学思想以及做题方法,并提出如下问题(1)不等式有哪些基本性质?它与等式的基本性质有什么异同?(2)接一元一次不等式与解一元一次方程有什么异同?(3)举例说明在数轴上如何表示一元一次不等式(组)的解集?(4)举例说明不等式、函数、方程之间的关系.设计意图学生通过对本章的知识进行整理,建构本章的知识体系. 通过画本章知识联系图培养学生归纳整理、对比分析的能力,学生可以互相进行比较、补充,养成交流与合作的习惯.二、基础过关、大展身手目标2:通过基础过关题组的训练,进一步夯实基础,掌握不等式的基通过独立完成、教师提问、自我评价的方式检测学生的基础过关题1.给出下面6个式子:①3>0;②x<-2;③4x+3y≠0;④x=3;⑤x-1;⑥x+2≤3. 其中不等式有()A.2个B.3个C.4个D.5个2.有下列四个命题:①若a>b,则a+1>b+1;②若a>b,则a-1>b-1;③若a>b,则-2a<-2b;本性质,理解不等式(组)的解及解集的含义,会解简单的一元次不等式(组),并能在数轴上表示其解集,并体会不等式、函数、方程之间的联系.组,进一步查漏补缺.④若a>b,则ma<mb. 其中正确的有()A.1个B.2个C.3个D.4个3.若x>y,且(a-3)x<(a-3)y,则a的值可能是()A.0B.3C.4D.5归纳总结:不等式的性质.4.下列不等式中,是一元一次不等式的有()①3x-7>0;②2x+y>3;③2x2-x>2x2-1;④x+1<7.A.1个B.2个C.3个D.4个5.解不等式113xx+-<.归纳总结:解一元一次不等式的步骤.6.解不等式组3(2)42113x xxx--≥-⎧⎪⎨+-<⎪⎩,并在数轴上表示不等式的解集.总结归纳:解一元一次不等式组的步骤以及在数轴上表示其解集.7.一次函数y=kx+b的图象如图所示,当y>0时,x的取值范围是()A.x<0B.x>0C.x<2D.x>28.若关于x的不等式mx-1>0(m≠0)的解集是x>1,则直线y=mx-1与x轴的交点坐标是 .9.如图,直线y=3x和y=kx+2相交于点P(a,3),则不等式3x>kx+2的解集为 .总结归纳:一次函数与一元一次不等式的关系.设计意图要建高楼大夏必须先打好基础,通过这个环节的设计,对于不等式的基本性质、元一次不等式的解法以及用数轴表示其解集起到了很好的检测目的,然后让学生先独自完成上述各小题的解答,然后教师提问,让学生自己来作评判,找出存在的问题. 对于做得比较好的同学,教师给予鼓励,使学生对本章知识内容有进一步的理解和掌握.三、深度研讨、再度提高目标3:通过深度研讨环节,能够举反三,灵活应用.通过独立思考、小组探讨、小组分享的方式评价学生对较复杂的一元一次不等式(组)——含参的不等式的问题解决.问题四:含参数的不等式相关问题.10.已知不等式组+21x m nx m+⎧⎨-<⎩>的解集为-1<x<3,求(m+n)2018的值.11.若不等式x-2≤m的正整数解只有3个,则m的取值围为 .12.已知不等式组2xx a⎧⎨<⎩>.(1)如果此不等式组无解,则a的取值范围;(2)如果此不等式组有解,则a的取值范围.数学思想:.设计意图通过小组讨论,学生自己总结做题方法,更利于学生理解和掌握一元一次不等式(组)的与应用,同时也培养和提高了学生的总结归纳能力和抽象思维能力.也再次感受到数形结合的数学思想.四、建构模型、实际应用目标4:通过实际应用,能够建立不等模型,能够用一元次不等式解决一些简单的实际问题.通过独立思考,同学分享评价学生是否能够从实际问题中建立不等模型,模型建立后,能否找到符合实13.小丽去文具店买铅笔和橡皮,铅笔每支0.5元,橡皮每块0.4元,小丽带了2元钱,可以买几支铅笔几块橡皮?14.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超过300元时,超出部分按原价的8折付款;在乙超市累计购买商品超过250元时,超出部分按原价的85际情况的解. 折付款,设一顾客预计购物x(x>300)元. (1)分别写出该顾客在甲、乙两家超市购物所付的费用y甲(元),y乙(元)与x之间的函数关系式;(2)该顾客到哪家超市购物更优惠?设计意图本环节通过实际问题的设置,进一步体会不等式是来源于生活,又服务于生活,能够用不等式解决实际问题,并进一步渗透数学建模的思想. 让学生感受到生活当中处处有数学,激发学生对学习数学的兴趣和愿望.五、归纳总结、反馈评价培养归纳能力,养成反思习惯.并检测目标1、2、3、4的学习效果.通过学生能否完整清晰地说出本节课学习的收获和困惑,了解学生理解知识和情感态度方面的情况.通过“当堂检测”,评价学生的知识技能达标情况.总结归纳说说本节课又学习到了哪些数学知识?体会到了哪些数学思想与方法?还有什么困惑吗?当堂检测:1.下列各式是一元一次不等式的是()A.2x-4>5y+1B.3>-5C.4x+1>0D.4y+3<1y2.若a>b,则下列式子正确的是()A. 1122a b< B.-5a>-5bC. a-3>b-3D.4-a>4-b3.已知关于x的不等式组x ax⎧⎨⎩>>b,其中a、b在数轴上对应点如图所示,则这个不等式组的解集为()A.x>bB.x>aC.b<x<aD.无解4.不等式3x+12≥0的所有正整数解的和为 .5.如图,直线y=ax+b经过A(-2,-5)、B(3,0)两点,那么,不等式ax+b<0的解集是.6.小聪用100元钱去购买笔记本和钢笔共15件,已知每本笔记本5元,每支钢笔7元,小聪最多能购买多少支钢笔?通过归纳和总结,让学生学会提炼和阐述自己的认知,养成善于反思的习惯. 并通过反馈检测样题,评价知识技能的达成度,确保课堂实效性.在学习指导书的最后附一份个人评价表,对本节课学习过程进行过程性评价.1.必做:完成课本61页复习题第2、4、7、9、12题(AB组全做)2.选做:完成课本63页复习题第13、15题(B组做)八、板书设计第二章一元一次不等式与一元一次不等式组知识结构多媒体核心思想:类比思想数形结合数学建模1.本节课的重点在让每个学生建构本章知识体系. 教师让学生充分思考、练习和交流,同时充分暴露出存在的问题,达到有效复习的目的.2.华罗庚教授说:读书要从薄到厚,又从厚到薄. 复习重在从厚到薄.每一章的复习要把全章的知识分成块,整理成知识网络,形成知识系统,并加以综合运用,其中采用思维导图、知识结构图、习题组等措施复习是有效的,本节课在这方面做了一些尝试.3.一般复习课的容量比较大,一方面要让充分学生思考和交流,积极发挥其主体作用;另方面教师作为组织者和引导者,要主次分明,把握好教学的节奏,提高课堂效率.4.复习课不仅仅是知识的小结及运用,而且更重要的是学习方法、能力和习惯的培养,关注学生的可持续发展,这一点对于学生的终身学习是有益的.。

求一元一次不等式(组)中的参数问题

求一元一次不等式(组)中的参数问题

学生易错成 : 口> b 。
点值 m、 f i , / + 1 、 或者 m一1 代入不等式( 组) 的解集检验看是否具
司 骶已 知 关 于 的 不 等 式 组 : 的 解 集 是 … 。枢
莉 — — 6 ( 填< , > 或= )

萋 蘩 。
—r - - — - - - b -
语数外学 习
No . O 9 . 2 0 1 3
Y u S h uⅥ r a j X u e X i
2 0 1 3年第 9期
求 一 元 一 次不 等 式 ( 组) 中的 参数 问题
魏 文芳
( 公安县章 田寺 中学, 湖北
荆州 4 3 4 3 2 4 )
摘 要: 为了解决求一元一次不等式( 组) 的参数 问题 , 通过观察、 分析、 比较等方 法掌握其解题技巧 , 从而提 高同学们的解题能 力, 培养同学们的创新思维。 关键词 : 一元一次不等式; 一元一次不等式组; 正整数解; 取值范围 中圈分 类号 : G 6 3 3 文献 标识码 : A 文章编 号 : 1 0 0 5— 6 3 5 1 ( 2 0 1 3 ) 一 o 9- 0 0 2 8 - 0 1
一 一
例 3 、 已 知 关 于 的 不 等 式 组 f I : : ) . 只 有 三 个 整 数 解 , 则口
解析: 由 不等式的性质3及解集符号特点知 < _ 一 = 一所以 ,


例4 、 已 知 关 于 的 不 等 式 组f I = < 。 只 有 三 个 整 数 解, 则。
元一 次不等式 ( 组) 这一 章是 初一数 学 中 的一个 重 要 内容 , 也 是 同学们 学习 的一 个 难点 , 又 是 中考数 学 中 的一个 热 门考 点 。 现将笔者在教学中遇到的几种情况归类解析如ห้องสมุดไป่ตู้ 。 常规题型 : 千里之行 , 始 于足下

专题3.6 一元一次不等式(组)中的含参问题专项训练(60道)(学生版)

专题3.6 一元一次不等式(组)中的含参问题专项训练(60道)(学生版)

专题3.6一元一次不等式(组)中的含参问题专项训练(60道)【浙教版】考卷信息:本套训练卷共60题,题型针对性较高,覆盖面广,选题有深度,可深化学生对一元一次不等式(组)中的含参问题的理解!一、单选题(共30小题)1.(2022·山东济宁·七年级期末)已知关于x的不等式1−a x<2的解集为x<21−a,则a的取值范围为()A.a>0B.a>1C.a<0D.a<12.(2022·四川乐山·七年级期末)若关于x的不等式组{2x−43≤x−1a−x>0的整数解恰有5个,则a取值范围为()A.2<a≤3B.2≤a<3C.3<a≤4D.3≤a<43.(2022·河南新乡·七年级期末)若关于x<x0的解集为2<x<5,则多项式A可以是() A.x−5B.2x−5C.x−10D.3x−124.(2022·云南临沧·八年级期末)若整数a使关于x的不等式组x−12≤6+x34x−a>x+1,有且只有19个整数解,且使关于y的方程2y+a+31+y+10y+1=1的解为非正数,则a的值是()A.−13或−12B.−13C.−12D.−12或−115.(2022·重庆秀山·七年级期末)关于x的方程k﹣2x=3(k﹣2)的解为非负数,且关于x的不等式组x−2(x−1)≤32k+x3≥x 有解,符合条件的整数k的值的和为()A.3B.4C.5D.66.(2022·重庆涪陵·七年级期末)若关于x的一元一次不等式组−5−x≤13(x−a)3x+1>4x+2有解,则符合条件的所有正整数a的和为()A.50B.55C.66D.707.(2022·福建漳州·七年级期末)若不等式组x−4<0x≥m有解,则m的取值范围为()A.m<4B.m>4C.m≤4D.m≥4 8.(2022·广东广州·七年级期末)若不等式组x+9<5x+1x>m的解集为x>2,则m的取值范围是()A.m≤2B.m<2C.m≥2D.m>2 9.(2022·重庆·巴川初级中学校八年级期中)若关于x的一元一次不等式组x−44a−2≤123x−12<x+3的解集是x≤a,且关于y的方程2y−a−3=0a的个数为()个A.5B.4C.3D.2 10.(2022·广东云浮·七年级期末)若关于x的一元一次不等式组x−4<0x+m≥6有解,则m的取值范围为()A.m>−2B.m≤2C.m>2D.m<−211.(2022·重庆·四川外国语大学附属外国语学校七年级期末)若实数m使关于x的不等式组3−2+x3≤x+322x−m2≤−1有解且至多有3个整数解,且使关于y的方程2y=4y−m3+2的解为非负整数解,则满足条件的所有整数m的和为()A.15B.11C.10D.612.(2022·山东烟台·七年级期末)已知关于x的不等式x−m<0,5−2x≤1的整数解共有2个,则m的取值范围为()A.m>3B.m≤4C.3<m<4D.3<m≤413.(2022·福建·泉州市城东中学七年级期中)若关于x的方程42−x+x=ax的解为正整数,且关于x的不等2>2x x≤0有解,则满足条件的所有整数a的值有()个.A.1B.2C.3D.414.(2022·重庆荣昌·七年级期末)若关于x的方程ax+32−2x−13=1的解为正数,且a使得关于y的不等式组y+3>13y−a<1恰有两个整数解,则所有满足条件的整数a的值的和是()A.0B.1C.2D.315.(2022·江苏镇江·七年级期末)关于x的不等式组x≤−1x>m的整数解只有2个,则m的取值范围为()A.m>−3B.m<−2C.−3≤m<−2D.−3<m≤−216.(2022·黑龙江佳木斯·七年级期末)已知不等式组x+a>1,2x−b<2解集为−2<x<3,则a−b2022的值为()A.1B.2022C.−1D.−202217.(2022·重庆丰都·七年级期末)若关于x的不等式组x−24<x−133x−m≤3−x恰有2个整数解,且关于x、y的方程组mx+y=43x−y=0也有整数解,则所有符合条件的整数m的乘积为()A.−6B.−2C.2D.018.(2022·重庆·七年级期末)若关于x 的不等式组x−24<x−134x −m ≤4−x 恰有2个整数解,且关于x ,y 的方程组mx +y =43x −y =0也有整数解,则所有符合条件的整数m 的和为()A .−2B .−3C .−6D .−719.(2022·重庆铜梁·七年级期末)若a 使关于x 的不等式组4x +2≥x +a −23x +3≥2有三个整数解,且使关于y 的方程2y +a =5y+62有正数解,则符合题意的整数a 的和为()A .12B .9C .5D .320.(2022·浙江舟山·八年级期末)对于任意实数p 、q ,定义一种运算:p @q =p -q +pq ,例如2@3=2-3+2×3.请根据上述定义解决问题:若关于x 的不等式组2@x <4x@2≥m有3个整数解,则m 的取值范围为是()A .-8≤m <-5B .-8<m ≤-5C .-8≤m ≤-5D .-8<m <-521.(2022·重庆九龙坡·七年级期末)整数a 使得关于x ,y 的二元一次方程组ax −y =113x −y =1的解为正整数(x ,y 均为正整数),且使得关于x +8)≥7x −a <2无解,则所有满足条件的a 的和为()A .9B .16C .17D .3022.(2022·四川资阳·七年级期末)若关于x 的一元一次不等式组{2(x +1)<x +3x −a ≤a +5的解集是x <1,且a 为非正整数,则满足条件的a 的取值有()个.A .1B .2C .3D .423.(2022·重庆江北·七年级期末)已知关于x 的不等式组x >a,x ≤5至少有三个整数解,关于y 的方程y −3a =12的解为正数,则满足条件的所有整数a 的值之和为()A .−7B .−3C .0D .324.(2022·重庆巴南·七年级期末)若关于x的不等式组2x−1>7x−a≤0无解,且关于x的方程ax=3x+2的解为整数,则满足条件的所有整数a的和为()A.12B.7C.3D.1 25.(2022·重庆·七年级期末)若关于x的一元一次不等式组x−m≥02x+1<3无解,关于y的一元一次方程2(y−3)+m= 0的解为非负数,则满足所有条件的整数m的和为()A.14B.15C.20D.21 26.(2022·重庆北碚·七年级期末)若关于x的不等式组x+2x−1≤−52k+x3≤x无解,且关于y的一元一次方程2(y+1)+3k=11的解为非负数,则符合条件的所有整数k的和是()A.2B.3C.5D.6 27.(2022·福建省福州屏东中学七年级期末)已知关于x,y的方程组x−3y=4−tx+y=3t,其中−3≤t≤1,若M=x−y,则M的最小值为()A.−2B.−1C.2D.328.(2022·重庆·巴川初级中学校七年级期中)如果整数m使得关于x m>0 −x≥−4有解,且使得关于x,y的二元一次方程组mx+y=52x+y=1的解为整数(x,y均为整数),则符合条件的所有整数m的个数为()A.2个B.3个C.4个D.5个29.(2022·重庆忠县·七年级期末)若整数a使关于x≤2x+59x−a+13至少有1个整数解,且使关于x,y的方程组ax+2y=−4x+y=4的解为正整数,那么所有满足条件的a值之和为()A.﹣17B.﹣16C.﹣14D.﹣12 30.(2022·重庆綦江·七年级期末)如果关于x、y的方程组3x+2y=m+12x+y=m−1中x>y,且关于x的不等式组x−12<1+x35x+2≥x+m有且只有4个整数解,则符合条件的所有整数m的和为()A.8B.9C.10D.11二、填空题(共15小题)31.(2022·江苏·南京市第一中学泰山分校七年级阶段练习)若不等式组x>a x−2<3无解,则a的取值范围为________.32.(2022·湖北孝感·七年级期末)若关于x的不等式组2x−1>4x−a>0的解集为x>3,那么a的取值范围是_____.33.(2022·湖南永州·八年级期末)若关于x的不等式组{2x−b≥0x+a≤0的解集为3≤x≤4,则关于x的不等式ax+b<0的解集为_____.34.(2022·北京平谷·七年级期末)若x<a的解集中的最大整数解为2,则a的取值范围是_________.35.(2022·湖北·武汉市光谷实验中学七年级阶段练习)若关于x的不等式组,3−2x4<x−132x−m≤2−x3有且只有两个整数解,m=2n,则整数n的值为______.36.(2022·河南·鹿邑县基础教育研究室七年级期末)已知关于x的不等式组2x−m≥0x−n<0的整数解是−1,0,1,2,若m、n为整数,则n−m的值为______.37.(2022·黑龙江·大庆市庆新中学九年级阶段练习)关于x的不等式组2x−13<2−1+x>a恰好只有4个整数解,则a 的取值范围为_________.38.(2022·湖北·+4≤0+m>0的整数解的和为-5,则m的取值范围为_______39.(2022·河南南阳·七年级期末)如果不等式组x<4x<3a+1的解集为x<3a+1,则a的取值范围为______.40.(2022·江西宜春·七年级期末)若整数a使关于x的不等式组x−12≤11+x34x−a>x+1,有且只有45个整数解,则a的值为_____.41.(2022·四川雅安·八年级期末)已知关于x,y的方程组2x+y=−4m+5x+2y=m+4的解满足x+y≤5,且2m﹣n<1.若m只有三个整数解,则n的取值范围为________.42.(2022·黑龙江·大庆外国语学校八年级期中)关于x的不等式组2x−5<0x−a>0无整数解,则a的取值范围为_____.43.(2022·全国·河南省淮滨县第一中学七年级期末)已知不等式组3x+a<2x,−13x<53x+2,有解但没有整数解,则a的取值范围为________.44.(2022·福建·平潭第一中学七年级期末)已知关于x的不等式组3x+m<0x>−5的所有整数解的和为﹣9,m的取值范围为_________45.(2022·全国·七年级专题练习)已知关于x的不等式组x+2>0x−a≤0的整数解共有4个,则a的最小值为__________.三、解答题(共15小题)46.(2022·四川宜宾·七年级期中)已知关于x的不等式组2x+4>03x−k<6.(1)当k为何值时,该不等式组的解集为−2<x<2?(2)若该不等式组只有4个正整数解,求k的取值范围.47.(2022·四川宜宾·七年级期中)已知关于x的不等式组2x+4>03x−k<6.(1)当k为何值时,该不等式组的解集为−2<x<2?(2)若该不等式组只有4个正整数解,求k的取值范围.48.(2022·吉林·东北师大附中七年级期中)若关于x的不等式组{x−a>−b,x+a≤2b+1的解集为1<x≤3,求a b的值.49.(2022·江苏徐州·七年级期末)已知关于x、y的方程组2x+y=5m−1x+2y=4m+1(m为常数)(1)若x+y=1,求m的值;(2)若−3≤x−y≤5,求m的取值范围.50.(2022·全国·七年级)定义新运算为:对于任意实数a、b都有a⊕b=a−b b−1,等式右边都是通常的加法、减法、乘法运算,比如1⊕2=1−2×2−1=−3.(1)求2⊕3的值.(2)若x⊕2<7,求x的取值范围.(3)若不等式组x⊕1≤22x⊕3>a恰有三个整数解,求实数a的取值范围.51.(2022·全国·七年级)新定义:如果一元一次方程的解是一元一次不等式组的解中的一个,则称该一元一次方程为该不等式组的关联方程.(1)在方程①2x−1=0,②13x+=0,③x−(3x+1)=−5中,不等式组−x+3>x−43x−1>−x+2的关联方程是_____;(填序号)(2)若不等式组x−2<11+x>−3x+6的一个关联方程的根是整数,则这个关联方程可以是________;(写出一个即可)(3)若方程6−x=2x,7+x=3x+x的不等式组x<2x−mx−2≤m的关联方程,直接写出m的取值范围.52.(2022·河南周口·七年级期末)已知关于x的不等式组2x−m>13x−2m<−1(1)如果不等式组的解集为6<x<7,求m的值;(2)如果不等式组无解,求m的取值范围;53.(2022·江苏·泰州中学附属初中七年级阶段练习)如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.例如:方程2x﹣6=0的解为x=3,不等式组x−1>0x<4的解集为1<x<4,因为1<3<4,所以称方程2x﹣6=0为不等式组x−1>0x<4的关联方程.(1)在方程①3x﹣3=0;②23x+1=0;③x﹣(3x+1)=﹣9中,不等式组2x−8<0−4x−3<x+2的关联方程是.(填序号)(2)若不等式组x−12<32x−3>−x+5的一个关联方程的解是整数,则这个关联方程可以是.(写出一个即可)(3)若方程2x−1=x+2,x+5=2x+x的不等式组x+3>2ax≤a+8的关联方程,且关于y的不等式组y−4<02y+1>a−2y恰好有两个奇数解,求a的取值范围.54.(2022·河南省淮滨县第一中学七年级单元测试)已知,关于x的不等式组x+1>mx−1≤n有解.(1)若上不等式的解集与1−2x<53x−12≤4的解集相同,求m+n的值;(2)若上不等式有4个整数解①若m=−1,求n的取值范围;②若n=2m,则m的取值范围为______.55.(2022·广东江门·七年级期末)已知方程组x−y=1+3ax+y=−7−a中x为负数,y为非正数.(1)求a的取值范围;(2)在a的取值范围中,当a为何整数时,不等式2ax+3x>2a+3的解集为x<1 56.(2022·北京·人大附中西山学校七年级期末)若关于x的不等式组2x−a<1x−5b>3的解集为−1<x<1,则a+5b 的值为________.57.(2022·河南·商水县希望初级中学七年级期中)已知方程组x+y=−7−ax−y=1+3a的解x为非正数,y为负数.(1)求a的取值范围:(2)化简|a−3|+|a+3|;(3)在a的取值范围内,当a取何整数时,不等式2ax+x>2a+1的解为x<1?58.(2022·福建·龙海二中一模)已知对于任意实数a,b,定义min{a,b}的含义为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a.例如:min{1,−2}=−2,min{−3,−3}=−3.(1)若min{−2k+5,−1)=−1,求k的取值范围;(2)解不等式组:{x+1≥x−321−3(x−1)>8−x设不等式组的最大整数解为m,求min{m,−2.5}的值.59.(2022·甘肃白银·八年级期中)已知关于x,y的不等式组{x+k≤5−2x4(x−34)≥x−1,(1)若该不等式组的解为23≤x≤3,求k的值;(2)若该不等式组的解中整数只有1和2,求k的取值范围.60.(2022·江苏·扬州市江都区华君外国语学校七年级阶段练习)如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的伴随方程,这个根在数轴上对应的点该不等式组的伴随点.(1)在方程①23x+1=0,②x−3x+1=−5,③3x−1=0中,不等式组−x+2>x−5,5x−1>x+2的伴随方程是;(填序号)(2)如图,M、N都是关于x的不等式组x<2x−mx−5≤m的伴随点,求m的取值范围.(3)不等式组−x>−2x+12x≤m+2的伴随方程的根有且只有2个整数,求m的取值范围.。

人教版初中数学中考复习 一轮复习 —一元一次不等式(组)解法及含字母(参数)问题

人教版初中数学中考复习  一轮复习  —一元一次不等式(组)解法及含字母(参数)问题

8
4

解:(2)去分母,得:8﹣(7x﹣1)>2(3x﹣2),
去括号,得:8﹣7x+1>6x﹣4,
移项,得:﹣7x﹣6x>﹣4﹣1﹣8,
合并同类项,得:﹣13x>﹣13,
系数化1,得:x<1.
考点二:解不等式(组)并在数轴上表示解(集)
5.(2021•武汉)解不等式组
2x x 1 ① 4x 10 x 1 ②
考点一:不等式的性质
C 1.(2021•常德)若a>b,下列不等式不一定成立的是( )
A.a﹣5>b﹣5
B.﹣5a<﹣5b
C. a b
cc
D.a+c>b+c
考点一:不等式的性质
2.(2021•临沂)已知a>b,下列结论:①a2>ab;②a2>b2;③若b<0,
A 则a+b<2b;④若b>0,则 1 1 ,其中正确的个数是( ) ab
性质3:不等式两边同时乘或除同一个负数,不等号的。方向改变
知识点梳理:
二、一元一次不等式(组)及其解法
一元一次不等 含有一个未知数,未知数的次数是
1
式定义
的不等式
解一元一次不 等式的步骤
去分母→去括号→移项→合并同类项→系数化为1
一元一次 一般地,关于同一个未知数的几个一元一次不等式合在一起,
不等式组 就组成一个一元一次不等式组
3.(2021•南京)解不等式1+2(x﹣1)≤3,并在数轴上表示解集. 解: 1+2(x﹣1)≤3, 去括号,得1+2x﹣2≤3. 移项、合并同类项,得2x≤4. 化系数为1,得x≤2.
表示在数轴上为:
考点二:解不等式(组)并在数轴上表示解(集)
Hale Waihona Puke 4.(2021•泰安)(2)解不等式: 1- 7x 1 3x 2

以“形”换“数”,化繁为简——以“含参一元一次不等式组”为例

以“形”换“数”,化繁为简——以“含参一元一次不等式组”为例

学习指导2024年3月下半月㊀㊀㊀以 形 换 数 ,化繁为简以 含参一元一次不等式组 为例◉湖南工业大学㊀闫㊀旭㊀汤㊀琼㊀魏莉莎㊀杨㊀婕㊀㊀摘要:数形结合思想在数学学科中扮演着重要角色,它贯穿整个初中数学,尤其在解决含参一元一次不等式组问题时,经常需要运用数形结合的方法解题.文章针对不同类型加以举例分析说明与总结.关键词:数形结合;一元一次不等式组;含参㊀㊀数形结合思想是初中数学教学中广泛应用的一种思维方式,它是代数学与几何学相互渗透的产物,具有较高的解题应用价值.数形结合思想源于 直观形象 ,表现为 经验形态 [1],它能够化繁为简,将抽象转变成具象,辅助学生解题.初中生面对有关 动点㊁变量㊁含参 等具有不确定性的动态问题时,普遍会感到困惑,这是他们的认知从低阶到高阶㊁由具象到抽象提升道路上的必经之路.在 解一元一次不等式组 教学中,教师引导学生运用数形结合思想,借助数轴找到不等式组的解集.那么遇到含参问题,也可利用数轴,把原本抽象的字母㊁不等关系等具体表示出来,从而简化题目,准确求解.下面以 含参一元一次不等式组 为例,说明如何利用数形结合思想来教学.1数轴直接判断型例1㊀(2020 崇川区校级一模)若关于x的不等式组x-a>0,2x-2<1-x{有解,则a的取值范围是(㊀㊀).A.a>1㊀㊀B.aȡ1㊀㊀C.a<1㊀㊀D.aɤ1解析:解原不等式组,得x>a且x<1.由不等式组有解,可知两不等式的解在数轴上有重合部分,表示在数轴如图1所示,则a<1.令a=1,原不等式组为x>1,x<1,{无解.综上可知a<1.故选:C .图1变式练习1㊀若关于x的不等式组2x+7>4x+1,x-k<2{的解集为x<3,求k的取值范围.解析:解原不等式组,得x<3,x<k+2.{因为该不等式组的解集为x<3,若k+2<3,如图2重合部分所示,解集是x<k+2,不符合题意;若k+2>3,如图3重合部分所示,解集为x<3,符合题意,若k+2=3,则解集是x<3,符合题意.综上k+2ȡ3,故kɤ1.图2㊀图3小结:此类型问题一般表现为问法直接,且只有一个不等式含参,求参数取值范围.一般思路是先整理不等式组,在数轴上画出确定的不等式的解,再根据有解或无解条件大致表示出含参数的不等式的解,最后确定临界值即等号的取舍.2整数解分析型例2㊀(2020 宿迁模拟)若不等式组xɤ2,x>m+1{恰有三个整数解,则m的取值范围是.解析:由不等式组m+1<xɤ2恰有三个整数解,可知整数解为0,1,2,大致画出数轴,如图4,则-1<m+1<0.若m+1=-1,如图5,不等式组的解集为-1<xɤ2,恰有0,1,2三个整数解,符合题意;若m+1=0,如图6,不等式组的解集为0<xɤ2,有1,2两个整数解,不符合题意.综上可知-1ɤm+1<0,解得-2ɤm<-1.图4图5㊀图6变式练习2㊀(2023春 宿城区期末)若关于x的不等式组x-2<0,12x+mȡ2{有四个整数解,则m的取值662024年3月下半月㊀学习指导㊀㊀㊀㊀范围为(㊀㊀).A.-3<m<-2B.-3ɤm<-2C.3<mɤ72D.3ɤm<72解析:解原不等式组,得4-2mɤx<2.由不等式组有4个整数解,可知这4个整数解为-2,-1,0,1,大致画出数轴,如图7,则有-3<4-2m<-2.若4-2m=-3,如图8,不等式组的解集为-3ɤx<2,有-3,-2,-1,0,1五个整数解;若4-2m=-2,如图9,不等式组的解集为-2ɤx<2,有-2,-1,0,1四个整数解,符合题意.综上可知,-3<4-2mɤ-2,解得3ɤm<72.故选:D .图7图8㊀图9小结:此类型问题一般表现为,已知整数解个数,且只有一个不等式含参,求参数的取值范围.一般思路是先整理不等式组,在数轴上画出确定的不等式的解,根据确定的一支和整数解个数推理出另一个不等式解的临界值在哪两个整数之间,最后确定临界值即等号的取舍.3分类讨论型例3㊀已知关于x的不等式组x-a>0,x-a<1{的解集中每一个x的取值范围均不在3ɤx<5的范围内,则a的取值范围是(㊀㊀).A.a>5或a<2B.aȡ5或a<2C.a>5或aɤ2D.aȡ5或aɤ2解析:解原不等式组,得a<x<a+1.由解集中每一个x的取值范围均不在3ɤx<5的范围内,可知a<x<a+1与3ɤx<5在数轴上没有重合部分,因此分两种情况讨论.如图10,当a<x<a+1位于3ɤx<5的左侧时,有a+1<3,解得a<2.令a=2,依然满足原不等式解集不在3ɤx<5范围内.故aɤ2.图10如图11,当a<x<a+1位于3ɤx<5的右侧时,有aȡ5.图11综上,aɤ2或aȡ5.故选:D.变式练习4㊀(2019春 南京期末)关于x的不等式组2x+12+3>-1,x<m{的所有整数解的和是-9,则m的取值范围是.解析:解原不等式组,得-92<x<m.因为不等式组的所有整数解的和是-9,所以分两种情况讨论.①当m<-1时,整数解为-4,-3,-2,大致画出数轴,如图12,则-2<m<-1.分别令m=-2,-1,得出m=-2时不符合题意,舍去,而m=-1时符合题意.所以-2<mɤ-1.②当m>0时,整数解为-4,-3,-2,-1,0,1,大致画出数轴,如图13,所以1<m<2.同样地,分别令m=1,2,得出只有m=2时符合题意,则1<mɤ2.综上,可知-2<mɤ-1或1<mɤ2.图12图13小结:此类型问题一般表现为解集不在某个封闭的范围内,或题目条件不明确,而是以 整数解的和 的形式指出有几个整数解.一般思路是先整理不等式组整理,根据题目条件确定不同情况,再借助数轴对每种情况具体讨论,最后综上得出答案.4总结数形结合是一种辅助解题的思想方式,不能误解为完全依赖画图得出答案.在 含参一元一次不等式组 解题与教学时,要先对题目进行深入分析和思考,判断问题类型,理清条件,再借助数轴来直观表示,快速准确建立含参不等式,最后考虑端点问题[2].当然,数学是一门灵活的学科,以数轴的 形 来替代 数 辅助解题与教学并非必须,也可以采用口诀 大大取大㊁小小取小㊁大小小大找中间㊁大大小小找不了 直接判断,需要结合实际问题灵活运用.参考文献:[1]王永强.数形结合思想的教学过程与阶段性表现形态的研究[J].中学数学月刊,2022(11):16G19.[2]徐树光.含参一元一次不等式(组)问题求解策略[J].中学数学,2022(22):58G59.Z76。

一元一次不等式组含参问题

一元一次不等式组含参问题

一元一次不等式组含参问题
易江南
【期刊名称】《中学数学:初中版》
【年(卷),期】2022()7
【摘要】一元一次不等式是初中“数与代数”板块内容,其中的“含参问题”为中考必考类型之一.对于学生来说,能否准确地确定参数的取值范围是一个摸不着头脑的问题.本文中就一元一次不等式组含参数问题作一些探讨,分析、总结此类问题的常见题型,为学生解题提供借鉴.
【总页数】2页(P68-69)
【作者】易江南
【作者单位】重庆师范大学
【正文语种】中文
【中图分类】G63
【相关文献】
1.分类讨论思想方法解决含参一元二次不等式问题
2.含参一元二次不等式恒成立问题变式探究
3.浅谈一元一次不等式(组)的解法及含参问题求解对策
4.巧分类,妙分离——含参的一元二次不等式问题求解策略
5.探析解含字母系数的一元一次不等式(组)
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0的整数解只有5个 1
4 m 3
评估检测
选择题
1
不等式组
x x
2 m
的解集是空集,则m的取值范围是
A.m 2
B.m 2
C.m 2
D.m 2
2
不等式组
x x
2 m
的解集是空集,则m的取值范围是
A.m 2
B.m 2
C.m 2
D.m 2
3
不等式组
x x
2 m
的解集是空集,则m的取值范围是
A.m 2
B.m 2
C.m 2
D.m 2
评估检测
4
不等式组
x x
2 m
的解集是x 2,则m的取值范围是
A.m 2
B.m 2
C.m 2
D.m 2
5
不等式组
x x
2 m
的解集是x m,则m的取值范围是
A.m 2
B.m 2
C.m 2
D.m 2
6
不等式组
x x
当a 0时
a
不等式的解集为x b a
决定不等式解集的因素是界点和不等号的 方向.
那么决定不等式组的因素又是什么呢?
合作交流
设a b,则下列不等式组的解集是什么?
1
ห้องสมุดไป่ตู้
x x
a的解集是 b
xa ;
大大取大
2
x x
a的解集是 无解

b
大大小小取不了
3
x x
a的解集是 b x a ;
x
3
4
x 2
11 的解集为x
2,
x a 0 2
求a的取值范围
解:由原不等式组得
x
x
2 a
a 2时,成立
7 6 5 4 321 0 1 2 3 4 5 6 Q 不等式组的解集是x 2 a 2
a 2时,成立 a 2时,不成立
解得a 2
合作探究
例2.若不等式组
x m 1 无解,求m的取值范围. x 2m 1
2 m
只有3个整数解,则m的取值范围是
A.m 1
B.m 1
C. 2 m 1
D.2 m 1
反思小结
通过本节课的学习,你有什么收获?
数形结合万般好 割裂分家万事休
b
大小小大中间夹
4
x x
a的解集是 b
xb
小小取小

b
a
b
a
b
a
b
a
合作交流
填空:
1
若不等式组
x x
a的解集是x b
a,
则a
b;
2
若不等式组
x x
a b
无解, 则a
b;
3
若不等式组
x x
a b
有解, 则a
b;
4
若不等式组
x x
a的解集是x b
b,
则a
b;
合作探究
例1.若关于x的不等式组
1.进一步理解一元一次不等式组解集的概念; 2.能够迅速确定一元一次不等式组的解集; 3.能够利用数轴解决有关不等式组解集的含参问题; 4.体会数形结合思想的优越性.
问题导入
解不等式ax ba 0
解 解这 :不当等a 式0需时要做什么?两边都除以a
不不等等式式号的的解方集向为是x否改b变?a的符号确定吗?
m1
解:Q
不等式组
x m 1 无解 x 2m 1
2m 1 m 1
解得m 2
合作探究
例3.已知关于x的不等式组
xm 5 2x
0的整数解只有5个 1
求m的取值范围.
解:由不等式组
xm 5 2x
0得 1
x m
x
2
7 6 5 4 321 0 1 2 3 4 5 6
Q
不等式组
xm 5 2x
相关文档
最新文档