铝基复合材料介绍
铝基复合材料
铝基复合材料的制造工艺
连续纤维增强铝基复合材料的制造 1 粉末冶金法 2 高能-高速固结工艺 3 压力浸渗铸造工艺 4 液态金属搅拌铸造法
9
粉末冶金法
粉末冶金法是最早用来制造铝基复合材料的方法,是 一种比较成熟的工艺方法。采用粉末冶金法时,首先将颗 粒增强物和铝合金粉末用机械手段均匀混合,进行冷压实, 然后加热除气,在液相线与固相线之间进行真空热压烧结, 得到复合材料的坯料,在将坯料进行挤压、轧制、锻造、 拉拔等二次加工就可制成所要的型材零件。
4
常见铝基体
工业纯铝 铸造冶金变形铝合金(2014、2024、2124
等,且不选含Mn Cr的铝合金,因其产生脆 性相 ) 粉末冶金变形铝合金 铸造铝合金 新型铝合金
5
复合材料增强基
分类: 连续的和非连续的纤维、晶须、颗粒。
特性: 高强度、高模量、高刚度、抗疲劳、耐
热、耐磨、抗腐蚀、热膨胀系数小、导电、 导热以及润湿性、化学相容性、易加工等。
硼纤维增强铝基复合材料用于航天飞机主舱体龙骨桁架和支柱
16
二、短纤维增强铝基复合材料 特点:在室温和高温下的弹性模量有较大的提高,但线膨胀
系数由所下降,耐磨性改善,并具有良好的的导热性。
17
2、碳—铝复合材料 特点:碳纤维的长度与直径比例对碳—铝复合材料的性能有很大
的影响(当长径比增大时,抗拉强度增大,增大到一定值时, 抗拉强度又开始减少)
金属基复合材料常用基体有铝、镍、镁、钛及其合 金。
3
铝基复合材料基体
铝有许多特点,如质量轻、密度小、可塑性 好,熔点低制备工艺简单。
铝基复合技术容易掌握,易于加工,比强度 和比刚度高,高温性能好,更耐疲劳和更耐 磨,阻尼性能好,热膨胀系数低。
铝基复合材料简述
铝基复合材料1. 铝基复合材料的基本性能1.1 强度,模量与塑性铝基复合材料比强度和比刚度高.高温性能好。
更耐疲劳和更耐磨,阻尼性能好,热膨胀系数低。
同其他复合材料一样,它能组合特定的力学和物理性能,以满足产品的需要。
因此,铝基复合材料已成为金属基复合材料中最常用的、最重要的材料之一。
增强体的加入在提高铝基复合材料强度和模量的同时。
降低了塑性。
另外增强相的加入又赋予材料一些特殊性能,这样不同金属与合金基体及不同增强体的优化组合。
就使金属基复合材料具有各种特殊性能和优异的综合性能。
尤其是弥散增强的铝基复合材料,不仅具有各向同性特征,而且具有可加工和价格低廉的优点,更加引起人们的注意。
1.2 耐磨性高的耐磨性是铝基复合材料(SiC、A1203)增强的特点之一颗粒体积分数对复合材料摩擦系数的影响显著,而颗粒尺寸对复合材料摩擦系数影响不大。
与基体合金相比,铝基复合材料表现出良好的抗磨损性能,并随着加入颗粒尺寸的减小和数量的增多而变强。
在滑动磨损实验中,颗粒及纤维增强的铝基复合材料的耐磨性有两个数量级的提高,但随着磨粒尺寸的增大,载荷中冲击成分的提高使其耐磨性迅速下降。
材料的耐磨性的好坏取决于强化机制、增强相之间的相互制约及与基体在变形过程中的协调作用。
当然,也与增强相类型及基体合金的性能有关。
增强相的聚结显著降低材料的耐磨性。
1.3 疲劳与断裂韧性铝基复合材料的疲劳强度和疲劳寿命一般比基体金属高,这与刚度及强度的提高有关,而断裂韧性却下降。
影响铝基复合材料疲劳性能和断裂的主要因素有:增强物与基体的界面结合状态、基体与增强物本身的特性和增强物在基体中的分布等。
界面结合状态良好,可以有效地传递载荷,并阻止裂纹扩展,提高材料的断裂韧性。
目前对复合材料疲劳断裂过程的研究分为疲劳裂纹的萌生和扩展两个方面。
现有的研究工作在实验的基础上得出疲劳裂纹萌生于SiC 附近。
SiC与铝合金界面或SiC 晶须端部附近的基体中,也观察到基体中大块夹杂物破碎导致裂纹萌生。
铝基复合材料的发展现状与研究样本
铝基复合材料的发展现状与研究样本铝基复合材料是以铝为基体材料,通过添加一定量的强化剂或增强材料制成的材料。
铝基复合材料具有优异的力学性能、耐热性能和耐腐蚀性能等特点,被广泛应用于航空航天、汽车、船舶等领域。
随着科技的不断进步,铝基复合材料的研究与发展也变得越来越重要。
目前,铝基复合材料的研究主要集中在以下几个方面。
首先,增强剂的研究。
铝基复合材料中的增强剂起到增加材料强度和刚度的作用。
目前常用的增强剂有陶瓷颗粒、纤维和纳米颗粒等。
通过改变增强剂的尺寸、形状和含量等因素,可以调控铝基复合材料的力学性能。
其次,界面的研究。
界面是铝基复合材料中起到连接基体和增强剂之间作用的关键部分。
研究表明,优化界面相互作用可以有效提高铝基复合材料的力学性能。
因此,界面改性成为当前铝基复合材料研究的热点。
此外,加工工艺的研究也是铝基复合材料发展的关键。
复合材料的加工工艺对于材料的力学性能和成本都具有重要影响。
目前,常用的加工工艺包括热压、挤压和等离子弧焊等。
通过优化加工工艺参数,可以制备出具有理想力学性能的铝基复合材料。
另外,近年来,铝基纳米复合材料也成为铝基复合材料研究的热点之一、铝基纳米复合材料是将纳米颗粒加入到铝基复合材料中,可以显著改善材料的力学性能和热性能。
这得益于纳米颗粒的小尺寸效应、高比表面积和界面效应等特点。
总体来说,铝基复合材料的研究与发展主要集中在增强剂的研究、界面的研究、加工工艺的研究和铝基纳米复合材料的研究等方面。
随着科技的不断进步和社会对材料性能的不断需求,铝基复合材料在实际应用中的发展前景将会更加广阔。
铝基复合材料的制备及其热学性能研究
铝基复合材料的制备及其热学性能研究铝基复合材料又称为铝基复合材料,是由铝与另一种非金属或金属元素制得的材料,常用的非金属元素包括氧、硅、碳等,常用的金属元素包括钛、镁等。
铝基复合材料具有高强度、高刚度、轻量化、抗腐蚀性好等优点,在航空、车船制造、电子等领域有广泛的应用。
本文将介绍铝基复合材料的制备方法及其热学性能研究。
一、铝基复合材料的制备方法(一)机械合金化机械合金化是将两种或两种以上的粉末在高能球磨机中进行混合和反应的方法,使粉末中的原子和分子互相融合,形成均匀的合金混合物。
通过机械合金化方法可以制备出不同组分、不同形貌的复合粉末,从而制备出不同性能的铝基复合材料。
(二)热压法热压法是将预先压制得到的铝基复合材料粉末,在高温和高压条件下进行加热压实,使得不同粒子在原位形成连续增长的晶粒,最终形成密实的铝基复合材料。
(三)多相反应烧结法多相反应烧结法是将多种原始材料在高温下进行反应,形成不同的化合物,其中铝是主要的基体材料,其他化合物则填充在铝的孔隙中。
采用多相反应烧结法可以制备出不同性能的铝基复合材料。
二、铝基复合材料的热学性能研究(一)热膨胀性能热膨胀性是指材料在温度变化时线膨胀或线收缩的性质,是复合材料进行热设计的重要参数之一。
铝基复合材料的热膨胀性能受到基体铝和填充物的影响。
通常铝基复合材料的热膨胀系数比铝合金低,但高于陶瓷。
(二)热导率热导率是材料传导热量的能力,是衡量材料热学性能的重要指标之一。
铝基复合材料的热导率不仅取决于基体铝和填充物的种类和形态,还受到材料的制备方法和微观组织的影响。
(三)融合温度融合温度是指材料开始熔化的温度。
铝基复合材料的融合温度受到不同基体铝和填充物的影响。
通常情况下,铝基复合材料的融合温度比铝的融点要高。
(四)热稳定性热稳定性是指材料在高温状态下的稳定性,主要包括材料的热氧化稳定性和热环境稳定性。
铝基复合材料的热稳定性受到填充物的种类和形态的影响,一般情况下,填充物越稳定,铝基复合材料的热稳定性越好。
铝基复合材料的应用领域及发展前景
铝基复合材料的应用领域及发展前景铝基复合材料的简单介绍铝在制作复合材料上有许多特点,如质量轻、密度小、可塑性好,铝基的符合技术容以掌握,易于加工等。
此外,铝基复合材料比强度和比刚度高,高温性能好,耐疲劳和耐磨,以及工程可靠性。
同其他复合材料一样,它能组合特定的力学和物理性能,以满足产品的需要。
因此,铝基复合材料已成为金属基复合材料中最常用的,最重要的材料之一。
复合材料的制造包括将复合材料的组分组装并压合成始于复合材料零件的形状。
常用的工艺有两种,第一种是纤维与基体组装压合和零件成型同时进行;第二种是先加工成复合材料的预制品,然后再将预制品制成最终形态的零件。
前一种工艺类似于铸件,后一件则类似于先铸锭然后再锻成零件的形状。
制造过程可分为三个阶段:纤维排列、复合材料组分的组装压合和零件层压。
大多数硼-铝复合材料是用预制品或中间复合材料制造的。
前述的两种工艺具有十分相似的制造工艺,这就是把树脂粘合或者是等离子喷涂条带预制品再经过热压扩散结合。
1.挥发性粘合剂工艺这种工艺是一种直接的方法,几乎不需要什么重要设备或专门技术。
制造预制品的材料包括成卷的硼纤维、铝合金箔、气化后不残留的易挥发树脂以及树脂的溶剂。
铝箔的厚度应结合适当的纤维间距来选择,通常为50~75μm。
所用的纤维排列方法有两种,单丝滚筒缠绕和从纤维盘的线架用多丝排列成连续条带。
前一种工艺因为简单而较常使用。
利用滚筒缠绕可能做成幅片,其尺寸等于滚筒的宽度和围长。
由于简单的螺杆机构便能保证纤维盘的移动与滚筒转动相配合,故能使间距非常精确和满足张力控制。
铝基复合材料的性能铝基复合材料的性能取决于基体合金和增强物的特性、含量、分布等。
与集体和金相比,铝基复合材料具有许多优良的性能。
低密度良好的尺寸稳定性强度、模量与塑性耐磨性疲劳与断裂韧性在硼-铝的压合中有下述一些重要的限制:(1)纤维损伤问题限制了时间-温度参数。
(2)为保证铝的结合和消除孔隙度,时间-温度-压力参数必须高于门限值,因为这是一个受蠕变和扩散限制的过程。
铝基复合材料的分类
铝基复合材料的分类铝基复合材料是指以铝为基体材料,通过添加一种或多种增强材料,经过加工制备而成的一种具有优良性能的复合材料。
铝基复合材料广泛应用于航空航天、汽车、船舶、电子等领域,具有重量轻、强度高、刚性好、耐热性好等优点。
根据不同的增强材料和制备工艺,铝基复合材料可以分为以下几类:1. 碳纤维增强铝基复合材料碳纤维增强铝基复合材料是将碳纤维作为增强材料与铝基体材料相结合而成。
碳纤维具有优异的机械性能和热稳定性,能够显著提高铝基复合材料的强度和刚度。
碳纤维增强铝基复合材料在航空航天领域得到广泛应用,如飞机结构件、导弹外壳等。
2. 碳化硅颗粒增强铝基复合材料碳化硅颗粒增强铝基复合材料是将碳化硅颗粒作为增强材料与铝基体材料相结合而成。
碳化硅具有高硬度、高熔点和良好的耐磨性,可以显著提高铝基复合材料的耐磨性和高温性能。
碳化硅颗粒增强铝基复合材料广泛应用于汽车发动机缸套、摩擦制动器等高温摩擦部件。
3. 碳纳米管增强铝基复合材料碳纳米管增强铝基复合材料是将碳纳米管作为增强材料与铝基体材料相结合而成。
碳纳米管具有优异的力学性能和导电性能,能够显著提高铝基复合材料的强度和导电性能。
碳纳米管增强铝基复合材料在电子领域得到广泛应用,如电子封装材料、散热器等。
4. 陶瓷颗粒增强铝基复合材料陶瓷颗粒增强铝基复合材料是将陶瓷颗粒作为增强材料与铝基体材料相结合而成。
陶瓷颗粒具有高硬度、高耐磨性和耐腐蚀性,可以显著提高铝基复合材料的硬度和耐磨性。
陶瓷颗粒增强铝基复合材料广泛应用于机械制造领域,如轴承、齿轮等耐磨件。
铝基复合材料根据不同的增强材料可以分为碳纤维增强铝基复合材料、碳化硅颗粒增强铝基复合材料、碳纳米管增强铝基复合材料和陶瓷颗粒增强铝基复合材料等多种类型。
这些铝基复合材料在不同领域具有广泛的应用前景,将为相关行业的发展带来巨大的推动力。
未来,随着科技的不断进步和材料制备技术的不断改进,铝基复合材料的性能将会进一步提升,为各行各业的发展提供更多可能性。
铝基复合材料
目录一、复合材料综述 (2)1.1 复合材料简介 (2)1.2 复合材料的分类 (2)二、金属基复合材料 (2)2.1 金属基复合材料的分类 (2)2.1.1 铝基复合材料 (3)2.1.2 镍基复合材料 (3)2.1.3 钛基复合材料 (3)2.2 金属基复合材料的性能 (3)三、铝基复合材料 (3)3.1 铝基复合材料的分类 (4)3.2 铝基复合材料增强相 (4)3.2.1纤维增强 (4)3.2.1.1 硼纤维 (4)3.2.1.2 碳纤维 (5)3.2.1.3 碳化硅纤维 (5)3.2.2 晶须增强 (5)3.2.3 颗粒增强 (5)3.3 铝基复合材料的基体 (6)四、铝基复合材料的制备 (6)4.1 粉末冶金法 (6)4.2 高能-高速固结法 (6)4.3 压力浸渗铸造法 (7)4.4 液态金属搅拌铸造法 (7)4.5 半固态搅拌复合铸造 (7)4.6 反应自生成法 (8)五、铝基复合材料的应用 (8)5.1 在汽车领域的应用 (8)5.2 在航空航天领域的应用 (9)5.3 在电子和光学仪器领域的应用 (9)5.4 在体育用品上的应用 (9)一、复合材料综述1.1 复合材料简介复合材料(Composite materials)是应现代科学发展需求而涌现出的具有强大生命力的材料,是由两种或两种以上不同性质的材料,通过各种工艺手段,在宏观上组成具有新性能的材料。
1.2 复合材料的分类复合材料按其组成分为金属与金属复合材料、金属与非金属复合材料、非金属与非金属复合材料。
按其结构特点又分为纤维增强复合材料、夹层复合材料、细粒复合材料、和混杂复合材料。
60年代,为满足航空航天等尖端技术所用材料的需要,先后研制和生产了以高性能纤维为增强材料的复合材料,这种复合材料按基体材料不同,通常分为聚合物基(或树脂基)复合材料(PMCs)、金属基复合材料(MMCs)和陶瓷基复合材料(CMCs)。
其使用温度分别达250~350℃、350~1200℃和1200℃以上。
军用铝基复合材料类型
军用铝基复合材料类型一、引言铝基复合材料是一种由铝基体和增强体组成的复合材料,具有优异的力学性能、物理性能和化学性能,因此在航空、航天、军事等领域得到了广泛的应用。
本文将介绍军用铝基复合材料的类型、特点以及在军事领域的应用。
二、铝基复合材料的类型根据增强体的不同,铝基复合材料可分为颗粒增强型和纤维增强型两类。
1.颗粒增强型铝基复合材料颗粒增强型铝基复合材料是以铝或铝合金为基体,加入增强颗粒,如SiC、TiB2、BN等,通过熔融法制备而成的一种复合材料。
该材料具有较高的强度、硬度、耐磨性和耐蚀性,适用于制作承受高载荷的零部件。
2.纤维增强型铝基复合材料纤维增强型铝基复合材料是以铝或铝合金为基体,加入增强纤维,如SiC、B4C、Al2O3等,通过热压法或挤压法制备而成的一种复合材料。
该材料具有更高的强度、硬度、耐磨性和耐蚀性,适用于制作承受高载荷、高温和恶劣环境的零部件。
三、铝基复合材料的特点1.高强度、高硬度、高耐磨性:铝基复合材料具有高的强度、硬度和耐磨性,能够承受高载荷和恶劣环境的考验。
2.良好的尺寸稳定性:铝基复合材料具有稳定的尺寸和良好的热稳定性,能够在高温环境下保持性能稳定。
3.良好的耐蚀性:铝基复合材料具有较好的耐蚀性,能够在恶劣环境下保持长期使用。
4.良好的加工性能:铝基复合材料具有良好的加工性能,可以进行切削、钻孔、弯曲等加工操作。
四、铝基复合材料在军事领域的应用铝基复合材料因其优异的性能和广泛的应用,在军事领域中也得到了广泛的应用。
下面将介绍铝基复合材料在军事领域的应用情况。
1.飞机结构材料铝基复合材料具有优异的力学性能和尺寸稳定性,适用于制作飞机结构材料。
例如,碳纤维增强铝基复合材料可以用于制作飞机框架、机身、机翼等部位的结构件,具有高的比强度和比模量,能够减轻重量、提高结构效率。
此外,颗粒增强型铝基复合材料也可以用于制作飞机零部件,如发动机叶片、齿轮等。
2.装甲防护材料铝基复合材料具有高的强度和硬度,能够有效地抵御弹药攻击。
铝基复合材料
铝基复合材料
铝基复合材料是一种由铝合金基体和其他材料(如陶瓷、碳纤维等)组成的复合材料。
它具有优异的性能和广泛的应用前景,因此备受关注和重视。
铝基复合材料在航空航天、汽车制造、电子设备等领域有着重要的应用,其性能优越性和应用前景使其成为当前研究的热点之一。
首先,铝基复合材料具有优异的强度和刚度。
由于铝合金基体和其他材料的复合作用,使得铝基复合材料的强度和刚度得到了显著提高。
这种优异的力学性能使得铝基复合材料在航空航天领域得到了广泛应用,例如飞机结构件、导弹外壳等。
其次,铝基复合材料具有良好的耐热性和耐腐蚀性。
铝合金基体本身就具有良好的耐热性和耐腐蚀性,而通过与其他材料的复合,使得铝基复合材料的耐热性和耐腐蚀性得到了进一步提升。
这种性能使得铝基复合材料在高温、腐蚀环境下仍能保持良好的性能,因此在航空航天和化工领域有着广泛的应用。
另外,铝基复合材料还具有较低的密度和良好的导热性能。
由于铝合金基体的低密度特性以及其他材料的复合作用,使得铝基复合材料的密度相对较低,从而在航空航天和汽车制造领域有着重要的应用。
同时,铝基复合材料还具有良好的导热性能,使得其在电子设备散热领域有着重要的应用前景。
总的来说,铝基复合材料具有优异的性能和广泛的应用前景,其在航空航天、汽车制造、电子设备等领域有着重要的应用。
随着材料科学的不断发展和进步,相信铝基复合材料会在未来得到更广泛的应用和推广,为各个领域的发展和进步做出更大的贡献。
铝基复合材料的发展现状及应用
3、复合增韧
复合增韧即采用不同方法协同增韧Al2O3 陶瓷, 常见的复合方式有延性颗粒与ZrO2 相变、异相颗 粒、ZrO2 相变与晶须等。并非任意增韧方式的复 合都能使Al2O3 陶瓷材料的韧性和强度同时提升。 复合增韧可实现集高韧与高强于一身的理想Al2O3 陶瓷基复合材料。
参考文献
1 李荣久. 陶瓷金属复合材料[M]. 北京: 冶金工业出版 社, 2004.369-377. 2 布莱恩哈里斯. 工程复合材料[M]. 陈祥宝, 张宝艳, 译. 北京:化学工业出版社, 2004. 141-149. 3 黄传真, 刘炳强, 刘含莲, 等. 原位生长碳氮化钛晶须 增韧氧化铝基陶瓷刀具材料粉末及制备工艺[P]. 中国: CN101054290, 20071017. 4 钟长荣, 毕松, 苏勋家, 等. A12O3 陶瓷自增韧研究进 展[J]. 粉末冶金材料科学与工程, 2007, 12(4): 193-196. 5 周玉. 陶瓷材料学[M]. 北京: 科学出版社, 2004. 128-235. 6 葛启录. Al2O3ZrO2 陶瓷材料的显微结构和力学性能 [D]. 哈尔滨: 哈尔滨工业大学, 1992.
1、 颗粒增强铝基复合材料的组分
颗粒增强铝基复合材料的组分包括基体和增强体。
基体的作用是: 固结增强体、传递和承受载荷、赋予 复合材料以特定的形状。基体是颗粒增强铝基复合材料的 主要承载组分。一般选用高强度的铝合金作基体。 根据软硬程度, 颗粒增强体可分为两种。一种是硬质 的陶瓷颗粒, 这种复合材料主要用于制作航空航天领域的 结构件、电子壳体、汽车发动机和其它零部件。另一种是 软质颗粒, 如石墨。主要用于制作发动机的缸套、轴瓦和 机座。
3、纤维增强铝基复合材料的制备 1)扩散连接法 2)粉末冶金法
铝基复合材料
铝基复合材料
铝基复合材料是一种由铝基合金与其他材料组成的复合材料。
它具有轻质、高强度、高刚度、耐磨性好、耐腐蚀性好等优点,在航空航天、汽车、船舶等领域有广泛的应用。
铝基复合材料的制备方法包括粉末冶金法、溶液法、电化学方法等。
其中最常用的方法是粉末冶金法。
该方法是将铝基合金粉末与其他材料的粉末混合,并通过热压或热处理等工艺将其固化在一起。
这种方法制备的铝基复合材料具有均匀分布的颗粒和较好的界面结合性能。
铝基复合材料的优点之一是其轻质。
铝是一种密度较小的金属,因此铝基复合材料具有较低的密度,可以显著减轻结构的重量。
这对于需要提高载荷能力的应用非常有益。
此外,铝基复合材料的强度和刚度也很高,可以满足复杂工况下的使用要求。
另一个优点是其耐磨性好。
铝基合金具有良好的耐磨性能,而与其他材料组合后,其耐磨性能更加突出。
这对于一些需要面对高速摩擦或重负荷情况的部件来说是非常重要的。
例如,在汽车制动系统中使用铝基复合材料可以提高刹车片的耐磨性和散热性能,从而提高制动效果。
此外,铝基复合材料还具有良好的耐腐蚀性能。
铝本身具有较好的耐腐蚀性,与其他材料组合后,能够更好地抵抗酸碱腐蚀等恶劣环境的侵蚀。
这使得铝基复合材料在海洋工程、化工设备等领域有广泛的应用。
综上所述,铝基复合材料具有轻质、高强度、高刚度、耐磨性好、耐腐蚀性好等优点。
随着科学技术的发展,铝基复合材料在航空航天、汽车、船舶等领域的应用前景也会越来越广阔。
铝基复合材料的力学性能与微观结构研究
铝基复合材料的力学性能与微观结构研究引言:铝基复合材料以其良好的强度和轻量化特性在工业和航空航天领域得到广泛应用。
为了进一步提高和优化这些复合材料的性能,研究者们已经开始关注其力学性能与微观结构的关系。
本文就这一主题展开讨论,从不同角度探讨铝基复合材料的力学性能与微观结构之间的关系。
1. 介绍铝基复合材料铝基复合材料是由铝作为基体,加入不同的增强相而制备而成。
常见的增强相包括纳米颗粒、纳米纤维和纳米层状结构。
这些增强相的加入可以显著提高铝基复合材料的强度、刚度和耐热性能。
同时,铝基复合材料还具有良好的导热性和电导率。
2. 微观结构对力学性能的影响微观结构是指铝基复合材料中各种相的分布、形态和尺寸等参数。
这些微观结构参数对铝基复合材料的力学性能有显著影响。
例如,纳米颗粒的尺寸和分布对材料的强度和韧性起着重要作用。
较小尺寸的纳米颗粒可以提高材料的强度,增加晶界的阻尼效应,从而有效地阻碍位错运动。
同时,适当的纳米颗粒分布可以降低晶界的能量,抑制晶粒的长大,进一步提高材料的韧性。
其他微观结构参数如纤维形状、分布密度等也会对材料的力学性能产生影响。
3. 力学性能测试方法为了研究铝基复合材料的力学性能,研究者们采用了多种测试方法。
其中最常见的是拉伸、压缩和弯曲测试。
这些测试可以提供材料的强度、刚度和塑性变形等方面的信息。
同时,纳米硬度测试和扫描电镜观察也被广泛应用于铝基复合材料的力学性能研究中。
4. 力学性能与微观结构的关联通过对铝基复合材料的力学性能和微观结构进行对比研究,研究者们发现这两者之间存在密切的关系。
通过调控复合材料的微观结构参数,可以有效地改善其力学性能。
例如,通过控制纳米颗粒的尺寸和分布,可以提高铝基复合材料的强度和韧性。
此外,还有研究表明纳米纤维的加入可以提高材料的弯曲强度和疲劳寿命。
5. 未来的研究方向尽管已经取得了一些重要成果,但铝基复合材料的力学性能与微观结构之间的关系仍有待进一步研究。
铝基复合材料的制备和性能研究
铝基复合材料的制备和性能研究一、引言铝基复合材料是一种由铝和其他金属、陶瓷等材料复合而成的材料。
它具有较高的强度、刚度和耐热性能,在航空、航天、汽车、机械等领域广泛应用。
本文将分别从制备和性能研究两个方面,探讨铝基复合材料的制备及其性能研究进展。
二、铝基复合材料的制备1. 复合方法铝基复合材料的制备主要包括机械合金化、热扩散、熔融浸渍、等离子喷涂等方法。
(1)机械合金化法机械合金化法是一种通过机械力将两种或多种材料混合在一起,形成复合材料的方法。
该方法制备速度快、成本低,但容易出现氧化等问题,限制了其在实际应用中的发展。
(2)热扩散法热扩散法是一种将两种或多种材料放在一起,在高温下进行扩散反应,形成复合材料的方法。
该方法制备的复合材料结合强度高、纯度高,但制备难度较大、成本较高。
(3)熔融浸渍法熔融浸渍法是一种将一种材料浸渍于另一种材料的熔体中,然后冷却形成复合材料的方法。
该方法制备的复合材料渗透性好、组织致密,但制备过程较为繁琐。
(4)等离子喷涂法等离子喷涂法是一种利用等离子体喷涂技术,将粉末材料喷涂到基体材料表面形成复合材料的方法。
该方法制备速度快、成本低,但制备的复合材料强度较低。
2. 复合材料组成铝基复合材料的组成可分为金属基复合材料、陶瓷基复合材料和有机基复合材料三类。
(1)金属基复合材料金属基复合材料制备简单,性能优异,比如钨/铝、钼/铝等合金材料具有很好的强度和耐热性能,广泛应用于航空航天和核工业等领域。
(2)陶瓷基复合材料陶瓷基复合材料具有硬度大、耐热性好等特点,目前已广泛应用于汽车刹车盘、磨料磨具、人工关节等领域。
常用的陶瓷基复合材料有氧化铝/铝、碳化硅/铝等材料。
(3)有机基复合材料有机基复合材料是以有机高分子为基体,使用纤维或颗粒作为增强材料,常用的有聚偏二氟乙烯(PVDF)基复合材料等。
三、铝基复合材料的性能研究铝基复合材料的性能研究主要包括力学性能、热性能、冲击性能、耐腐蚀性能等方面的研究。
铝基板简介介绍
• 良好的机械强度:铝基板具有较高的机械强度,能够 抵抗外界冲击和振动,保证电子设备的稳定性和可靠 性。
• 优异的电气性能:铝基板具有良好的电气绝缘性能, 能够保证电子设备的安全运行。
• 加工性能良好:铝基板易于加工,可适应各种复杂形 状的电子元器件的安装需求。
铝基板的应用领域
电子领域
铝基板在电子领域的应用主要包括计算机主板、显卡、手 机等电子产品的制造。这些产品对导热性能和电气性能要 求较高,铝基板能够满足其需求。
05
铝基板的应用案例
铝基板的应用案例
• 铝基板是一种具有优良导热性能的金属基板材料, 由铝基板底板和覆盖在其上的绝缘层组成。它具有 高导热率、优异的机械强度、良好的电气性能和加 工方便等特点,广泛应用于电子、电力、通讯、汽 车、航空等领域。以下是铝基板在不同领域的应用 案例
06
铝基板的未来展望
铝基板简介介绍
汇报人: 日期:
contents目录• 铝基板概述 • 铝基板的制造工艺 • 铝基板的性能特点 • 铝基板与其他基板的比较 • 铝基板的应用案例 • 铝基板的未来展望
01
铝基板概述
定义与特点
定义:铝基板,又称铝基复合材料,是由铝基板材和电路 层压而成的一种新型电子材料。
特点
• 高导热性能:铝基板具有优异的导热性能,能够快速 传导热量,降低电子元器件的工作温度。
汽车领域
随着汽车电子化的不断发展,铝基板在汽车电子控制系统 、照明系统等方面也得到了广泛应用。
通信领域
通信设备如路由器、交换机等也需要使用到铝基板,以确 保设备的稳定运行和高效散热。
航空航天领域
航空航天设备对材料的性能要求极为严格,铝基板以其优 良的导热性能、机械强度和电气性能,在航空航天领域得 到了广泛应用。
铝基复合材料
目录一、引言 (1)二、铝基复合材料的基本成分 (1)三、铝基复合材料的性能 (1)3.1 低密度 (1)3.2 良好的尺寸稳定性 (1)3.3强度、模量与塑性 (2)3.4耐磨性 (2)3.5疲劳与断裂韧性 (2)3.6热性能 (2)四、铝基复合材料的应用 (3)4.1 在汽车领域的应用 (3)4.2 在航空航天领域的应用 (3)4.3 在电子和光学仪器中的应用 (3)4.4 在体育用品上的应用 (4)五、铝基复合材料的制造工艺 (4)5.1 粉末冶金法 (4)5.2 高能-高速固结工艺 (4)5.3 压力浸渗工艺 (5)5.4 反应自生成法 (5)5.5 液态金属搅拌铸造法 (5)5.6 半固态搅拌复合铸造 (5)六、铝基复合材料的研究的热点及发展趋势 (6)6.1铝基复合材料的研究的热点 (6)6.1.1纳米相增强铝基复合材料 (6)6.1.2碳管纳米增强铝基复合材料 (6)6.2铝基复合材料的发展趋势 (7)铝基复合材料的综述摘要:本文较为详细的介绍了铝基复合材料的性能、应用及其制造工艺,并指出了铝基复合材料的发展趋势。
关键词: 铝基复合材料; 性能; 应用; 工艺;发展趋势一、引言复合材料是应现代科学发展需求而涌现出的具有强大生命力的材料,它由两种或两种以上性质不同的材料通过各种工艺手段复合而成。
复合材料可分为三类:聚合物基复合材料(PMCs)、金属基复合材料(MMCs)、陶瓷基复合材料(CMCs)。
金属基复合材料基体主要是铝、镍、镁、钛等。
铝在制作复合材料上有许多特点,如质量轻、密度小、可塑性好,铝基复合技术容易掌握,易于加工等。
此外,铝基复合材料比强度和比刚度高,高温性能好,更耐疲劳和更耐磨,阻尼性能好,热膨胀系数低。
同其他复合材料一样,它能组合特定的力学和物理性能,以满足产品的需要[1]。
因此,铝基复合材料已成为金属基复合材料中最常用的、最重要的材料之一。
按照增强体的不同,铝基复合材料可分为纤维增强铝基复合材料和颗粒增强铝基复合材料。
铝基复合材料(课堂PPT)
• 3 在电子和光学仪器中的应用 • 铝基复合材料,特别是 增强铝基复合材料,由于具
有热膨胀系数小、密度低、导热性能好等优点,适 合于制造电子器材的衬装材料、散热片等电子器 件。 颗粒增强铝基复合材料的热膨胀系数完全可 以与电子器件材料的热膨胀相匹配,而且导电、导 热性能也非常好。在精密仪器和光学仪器的应用 研究方面,铝基复合材料用于制造望远镜的支架和 副镜等部件。另外铝基复合材料还可以制造惯性 导航系统的精密零件、旋转扫描镜、红外观测镜、 激光镜、激光陀螺仪、反射镜、镜子底座和光学 仪器托架等许多精密仪器和光学仪器。
9
• 4 在体育用品上的应用 • 铝基复合材料可以代替木材及金属材料来
制作网球拍、钓鱼竿、高尔夫球杆和滑雪 板等。用 颗粒增强铝基复合材料制作的自 行车链齿轮重量轻、刚度高、不易挠曲变 形,性能优于铝合金链齿轮。
10
铝基复合材料的制造工艺
• 铝基复合材料的制备方法对材料的性能影响很大, 其成本也取决于材料的制造工艺,因此研究和发展 有效的制造工艺一直是铝基复合材料的重要研究 内容。
点之一。
5
• 5疲劳与断裂韧性 • 铝基复合材料的疲劳强度一般比基体金属高,而断
裂韧性却下降。影响铝基复合材料疲劳性能和断 裂的主要因素有:增强物与基体的界面结合状态、 基体与增强物本身的特性和增强物在基体中的分 布等。 • 6热性能 • 增强体和基体之间的热膨胀失配在任何复合材料 中都难以避免,为了有效降低复合材料的热膨胀系 数,使其与半导体材料或陶瓷基片保持热匹配,常选 用低膨胀的 合金作为基体和采用不同粒径的颗粒 制备高体积分数的复合材料。
铝基复合材料
1
“铝基复合材料的综述 铝基复合材料的基本成分 铝基复合材料的性能 铝基复合材料的应用 铝基复合材料的制造工艺 铝基复合材料举例 铝基复合材料的发展趋势”
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铝基复合材料,泛指以铝合金为基体(连续体)的复合材料,品种众多,功能各异。从 复合材料品种来分,主要分两大类:陶瓷颗粒增强铝基复合材料;纤维以及晶须增强的铝基 复合材料,当然,两者也经常混合在一起作为增强项以提供更为优异的性能。更多的时候, 是从材料功能及应用领域来分类的。下面介绍法迪公司目前提供的品种:
Alvaco 采用内部真空的薄壁球状陶瓷颗粒替代传统实心颗粒,并添加短碳纤维、短陶 瓷纤维增韧,浸渗铝合金液体后成形。材料典型特点:
1. 密度小:材料密度 1.4-1.6,典型 1.5(视其中加入的其它增强相而定),约为 铝合金的一半;
2. 机械加工性能得到大幅提升:可攻丝、可铣曲面,加工性能类似 7 系铝合金, 这是传统陶瓷颗粒增强材料无法做到的;
极限抗拉强度 曲服强 断裂伸长率
(MPa)
度(MPa)
(%)
弹性模量 (GPa)
洛氏硬 度(HRB)
10#陶瓷增强铝合金
338
303
1.2
86.2
73
20#陶瓷增强铝合金
359
338
0.4
98.6
77
注:基体合金为 ZL102,金属模铸造,T6 热处理。挤压铸造指标略高。
典型应用:
1. 用于制造刹车盘、刹车鼓、制动卡钳、缸套、悬架臂、车架、曲轴箱等结构件, 替代钢材可减重一半以上。
左图为 Alvaco 的晶相 图,球形的是氧化铝陶瓷中 空微珠,内真空。白色为铝 合金。
材料指标典型值:
抗弯强度:95MPa;
弹性模量:85GPa;
剪切模量:34GPa;
热导率:90W/mK;
热膨胀系数:8.5ppm;
电阻率:30µOhm-cm;
材料指标的可调性:作为复合材料,Alvaco 的指标是可调整的。根据应用领域的不同, 复合材料中可添加不同的纤维/晶须增强相,进行不同的热处理,以优化应用性能。如提高 拉伸强度,提高模量等处理。
3. 更好的材料韧性和减震性能,大幅降低传统陶瓷金属复合材料的脆性。
同时,Alvaco 保留了铝基陶瓷复合材料的耐磨、热形变小等优点。
Alvaco 的制做工艺,首先是制备氧化铝中空球形陶瓷,烧制后筛选粒径在 10-30μm 左 右壁厚 1-2μm 的微球,进行陶瓷制坯(可制作成最终产品形状一致的坯,也可做材料块)。 烧结后的陶瓷坯,放入模具后,置入我们特定的铝液浸渗设备中进行铝液的浸渗,凝固出模, 即可得 Alvaco 零件。
金属化的陶瓷 ---- 代表:高体积分数 铝碳化硅复合材料
陶瓷体积分数 55-70%,整体性能更趋向陶瓷。典型特征是:低热膨胀系数、高热导率、 高刚性,主要应用领域是功率电子封装、微波封装、光学支架等。法迪目前提供两个品种:
铝碳化硅-80 用于对刚性需求较高的结构性应用,可铸造成形复杂形状的产品;铝碳化 硅-18 用于功率电子封装,产品形状相对简单。
(30-150°C) 7.94
(75°C) 8.10
(30-200°C)8.34
(125°C)8.70
杨氏模量(GPa)
185
200
剪切模量(பைடு நூலகம்Pa)
75
75
抗弯强度(MPa)
≥350
≥300
断裂伸长率(%)
0.28
0.28
断裂韧度
12
10
电阻率(µOhm-cm)
20
20
气密性(atm-cm3/sHe)
右图为 Alvaco 材料制作的机箱, 相比铝合金机箱,减重 2 公斤以上。
右图:Alvaco 压缩机端盖,替代钢材后,转速由以往 3000 转极限提升至 10000 转以上,并且高频噪音抑制效果 明显。此应用内部加入 5%碳化硅颗粒增强。
上图:Alvaco 复合材料加工出来的零件外观,机加后表面光洁度 Ra0.7,类似铝合金 的金属外观。用于光学台座。
材料的隐形加强筋设计:Alvaco 复合材料可类铸造成形,那么,针对材料的特定应用 环境的要求,可在制作材料素坯时,在特定部位加入碳纤维、陶瓷纤维材料的加强筋,在筋 的部位最后形成碳纤维、陶瓷纤维铝基复合材料,形成隐形加强筋,增加结构稳定性。
Alvaco 材料,来源于导航台架对高模量、可机加、低密度的材料需求。模量可调整到 140GPa 以上,脆性类似铸铁。当用于其它替代铝合金减重的环境,则可调整到与铝合金相 似的韧性和抗冲击性能。
2. 光学支架、支座。
功率电子基板(上),电子基座(下:内含高导热石墨夹芯)
超轻铝基复合材料 ---- 代表:Alvaco (飞酷)
Alvaco 铝基复合材料,是 Aluminum Vacuum Corundum 的缩写,即中空刚玉颗粒增强铝 基复合材料。中文代号“飞酷”。Alvaco 是西安法迪复合材料有限公司的专利材料。
< 10 -9
< 10 -9
注:上述为最常用品种,性价比最高。热导率更高的品种,请来电咨询。
高体积分数铝碳化硅典型应用:
1. IGBT 基板、MOS 基板,用于高铁、地铁、新能源汽车上的 IGBT、MOS 模块的封 装。
2. 混合电路、微波等衬底、气密管壳的制作。通常需要与其它可机加材料,如铝 硅一起制作。
铝硅复合材料:高体积分数铝碳化硅的补充
铝硅复合材料,只有高体积分数品种,增强相为金属硅颗粒,性质类似铝碳化硅,密 度略低,各项指标弱于铝碳化硅,但可机加,常用于需要控制热膨胀系数的精密件加工。
典型应用:军工电子气密管壳、医疗器械底板。
陶瓷增强的金属 ---- 代表:低体积分数 铝碳化硅
陶瓷颗粒增强,平均粒径 10μm,体积分数 5-30%,分碳化硅颗粒及氧化铝颗粒,铸造 或挤压成形。经陶瓷增强的铝合金,材料强度、刚性及耐磨性能都远高于基体铝合金。主要 品种两个: 10#陶瓷增强铝合金、20#陶瓷增强铝合金。
铝/金刚石复合材料
具有比高体积分数更好的热膨胀系数控制能力,热导率可高达 600W/mK 以上。因成本 相对高,加工难度大,通常为一次成形,并且不单独使用,而是与其它材质,如铝硅一起成 形双复合材料,用于高功率微波、高功率电子产品的封装。
双复合材料微波管壳,底部为铝/金刚石复合材料,低热膨胀系数可与芯片匹配,超高 的热导率保持芯片工作环境温度良好。侧壁为铝硅,提供良好的机加性能,用于绝缘子通道 的加工;同时,方便焊接密封盖板。
铝碳化硅-80
铝碳化硅-18
铝合金
ZL101A
ZL101A
陶瓷
电子级碳化硅,体积分数 55% 电子级碳化硅,体积分数 65%
热导率((W/mK) @25°C)
≥180
≥220
比热(J/gK) @ 25°C
0.755
0.803
(30-100°C )7.42
(25°C )5.98
线热膨胀系数(CTE) ppm/°C
退火热解石墨夹芯/铝硅复合材料
用于板体平面高导热,迅速消除热结。平面热导率 800~1100W/mK。 (腔体截面,黑色部分是热导率高
达 1700W/mK 的专用石墨材料)
石墨/铝复合材料
具有比铝碳化硅更好的热导率,比铝硅更好的机械加工性能,密度小、热膨胀系数小。 此材料处研发阶段,抗弯强度 55MPa,热导率 367W/mK。材料性能正在进一步改良之中。