初三数学九下反比例函数所有知识点总结和常考题型练习题
初三数学下册(人教版)第二十六章反比例函数26.1知识点总结含同步练习及答案
k S = P M ⋅ P N = |y| ⋅ |x| = |xy| .因为 y = ,所以 k = xy ,故 S = |k|.连接 P O ,MN ,则 △P MO 和 △MON x 1
1 和 △P NO 的面积都相等,其值为 |k| . 2
x
常见模型 ① A ,B 为反比例函数上任意不重合两点,连接 OA ,OB ,过 A ,B 分别作 AE ⊥ x 轴,BF ⊥ x 轴于点 E,F , 则 S △OAB = S 四边形AEFB .
k1 k 上一点,向 x,y 轴上作垂线,交反比例函数 y = 2 上于点 A ,B ,交 x 轴于点 x x
③ 当反比例函数过矩形对角线交点时,则 S 四边形OABC = 4k .
④ 当反比例函数过矩形一个顶点,并且原点在矩形的一条对角线上时,则 S 1 = S 2 = k.
⑤ 四边形 ABCD 为平行四边形,对角线的交点与原点重合,A 、B 、C 、D 在反比函数图象上,则
10 ,当 1 < x < 2 时,y 的取值范围是( ) x B. 1 < y < 2 C. 5 < y < 10 D. y > 10
如图,A 、B 两点在双曲线 y =
S 1 + S 2 =(
)
4 上,分别经过 A 、B 两点向轴作垂线段,已知阴影部分的面积为 1 ,则 x
A. 3 B. 4 C. 5 D. 6 解:D. 因为过 A 、B 两点所作出的矩形面积为 4 ,所以 S 1 = S 2 = 3 . 如图,原点O 是矩形 ABCD 的对称中心,顶点 A 、C 在反比例函数图象上,AB 平行 x 轴.若矩形 ABCD 的面积 为 8 ,那么反比例函数的解析式是______.
反比例函数九年级数学下册同步考点知识清单+例题讲解+课后练习(人教版)
第1课时——反比例函数知识点一:反比例函数的定义:1.反比例函数的定义:形如的函数叫做反比例函数。
有时又表示为。
【类型一:判断函数关系】1.下列式子中,成反比例关系的是()A.圆的面积与半径B.速度一定,行驶路程与时间C.平行四边形面积一定,它的底和高D.一个人跑步速度与它的体重2.下面两个问题中都有两个变量:①矩形的周长为20,矩形的面积y与一边长x;②矩形的面积为20,矩形的宽y与矩形的长x.其中变量y与变量x之间的函数关系表述正确的是()A.①是反比例函数,②是二次函数B.①是二次函数,②是反比例函数C.①②都是二次函数D.①②都是反比例函数3.下面几组量不成反比例的是()A.路程一定,时间和速度B.长方形面积一定,长和宽C.圆周长一定,圆的直径和圆周率D.比的前项一定,比的后项和比值【类型二:判断反比例函数解析式】4.下列关系式中,表示y 是x 的反比例函数的是( ) A .21x y =B .3x y =C .12+=x y D .xy 3=5.下列关系式中,y 是x 的反比例函数的是( ) A .xk y =B .21x y =C .121+=x y D .﹣2xy =16.下列函数关系式中,y 是x 的反比例函数的是( ) A .y =5x B .3=xy C .xy 1=D .y =x 2﹣3【类型三:根据反比例函数关系式求字母】7.若函数y =(m 2﹣3m +2)x |m |﹣3是反比例函数,则m 的值是( )A .1B .﹣2C .±2D .28.已知函数y =(m ﹣2)52-m x 是反比例函数,则m 的值为( )A .2B .﹣2C .2或﹣2D .任意实数9.若函数y =(2m ﹣1)22-m x 是反比例函数,则m 的值是( )A .﹣1或1B .小于21的任意实数 C .﹣1D .110.如果函数y =(m ﹣1)x |m |﹣2是反比例函数,那么m 的值是( )A .2B .﹣1C .1D .0知识点一:反比例函数的图像与性质:1. 反比例函数的图像:反比例函数的图像是 双曲线 ,分布在函数的 两 个象限内。
(2021年整理)初三数学九下反比例函数所有知识点总结和常考题型练习题
初三数学九下反比例函数所有知识点总结和常考题型练习题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初三数学九下反比例函数所有知识点总结和常考题型练习题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初三数学九下反比例函数所有知识点总结和常考题型练习题的全部内容。
反比例函数知识点1. 定义:一般地,形如xk y =(k 为常数,o k ≠)的函数称为反比例函数。
x ky =还可以写成kx y =1-,xy=k , (k 为常数,o k ≠)。
2. 反比例函数解析式的特征:⑴等号左边是函数y ,等号右边是一个分式。
分子是不为零的常数k (也叫做比例系数k ),分母中含有自变量x ,且指数为1. ⑵比例系数0≠k⑶自变量x 的取值为一切非零实数。
⑷函数y 的取值是一切非零实数。
3. 反比例函数的图像⑴图像的画法:描点法① 列表(应以O 为中心,沿O 的两边分别取三对或以上互为相反的数) ② 描点(有小到大的顺序) ③ 连线(从左到右光滑的曲线)⑵反比例函数的图像是双曲线,xky =(k 为常数,0≠k )中自变量0≠x ,函数值0≠y ,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。
⑶反比例函数的图像是是轴对称图形(对称轴是x y =或x y -=)。
⑷反比例函数x k y =(0≠k )中比例系数k 的几何意义是:过双曲线xky = (0≠k )上任意引x轴y 轴的垂线,所得矩形面积为k 。
4.反比例函数性质与k 的符号有关:5。
反比例函数解析式的确定:利用待定系数法(只需一组对应值或图像上一个点的坐标即可求出k )6.“反比例关系”与“反比例函数":成反比例的关系式不一定是反比例函数,但是反比例函数xky =中的两个变量必成反比例关系。
九年级-反比例函数知识点典型例题及练习
反比例函数一、反比例函数的概念 一般地,可化为形如:(),0ky k k x=≠为常数且 叫做反比例函数,即y 是x 的反比例函数。
(x 为自变量,y 为因变量,其中x 、y 不能为零)反比例函数的等价形式:y 是x 的反比例函数:①一般式()0ky k x=≠,②指数式(主要用于填空选择题)()10y kx k -=≠,③ 乘积式(变量积为定值是分析反比例函数应用的理论基础)()0xy k k =≠ ←→ 变量y 与x 成反比例,比例系数为k ,k 不为零是重要条件. 二、反比例函数性质①当k>0时,双曲线的两支分别位于一、三象限;在每个象限内,y 随x 的增大而减小;②当k<0时,双曲线的两支分别位于二、四象限;在每个象限内,y 随x 的增大而增大;③双曲线的两支会无限接近坐标轴(x 轴和y 轴),但不会与坐标轴相交。
拓展:反比例函数的图像(双曲线)既是轴对称图形也是中心对称图形,两条对称轴分别为直线x y ±=,对称中心为坐标原点。
三、反比例函数图象的几何特征:(如下图所示) 点P(x,y)在双曲线上都有11||||||||22AOB OAPB S xy k S xy k ∆====矩形反比例函数(0≠=k xky 图像是双曲线,我们会经常遇到与之有关的面积问题,现对这部分内容进行拓展。
例题分析例1 下面函数中是反比例函数的有 .(填入序号即可)①5y x=; ②x y -=5; ③2x y =; ④2=xy ; ⑤πx y =; ⑥y =26x;⑦12-=x y ; ⑧x y 52-=; ⑨)0(2≠=a a xay 为常数且;⑩2112y x =+.例2 k 为何值时,函数y =322)(--+k k x k k 是反比例函数?例3 已知y 与x 成反比例,并且当2x =时,1y =-,则当4x =-时,求y 的值.6-1-1例4 若双曲线1k y x+=经过点(),2A m m -. (1)若7k =-,求m 的值;(2)若图象两支分布在第二、四象限内,求k 的范围;(3)在(1)问条件下,双曲线还与直线()0y ax a a =≠为常数,且交于点()()1122,,,B x y C x y : ①求211232x y x y -的值;②若12x x >,试比较12,y y 的大小.例5 如图6-1-1,点A 是双曲线xky =与直线()1y x k =--+在第二象限内的交点,AB x ⊥轴于B ,且32ABO S ∆=. (1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A 、C 的坐标 (3)x 取何值时,一次函数的值大于反比例函数的值; (4)求AOC ∆的面积.例 6 已知()()1122,,,A x y B x y 是反比例函数1y x=在平面直角坐标系xOy 的第一象限上图象的两点,满足122175,23y y x x +=-=,求AOB S ∆的值.例7 如图6-1-2,若双曲线ky x=与边长为5的等边AOB ∆的边,OA AB 分别相交于,C D 两点,且3OC BD =,则实数k 的值为 .课堂练习1.下列函数中是反比例函数的有 _________ (填序号).①3x y =-; ②x y 2=-; ③xy 23-=; ④21=xy ; ⑤1-=x y ; ⑥2=x y ;⑦xky =(k 为常数,0≠k )2.若22)1(-+=a x a y 是反比例函数,则a 的值是多少?3.已知函数12y y y =+,1y 与x 成正比例,2y 与x 成反比例,且当1x =时,4y =,当2x =时,5y =. 求y 关于x 的函数解析式.6-1-24.已知函数xy 3=,当x <0时,函数图象在第 象限,y 随x 的增大而 .5.在平面直角坐标系中,反比例函数xa a y 22+-=图像的两个分支分别在哪个象限?6.设11(,)A x y ,22(,)B x y 是反比例函数xy 3-=图像上的任意两点,且21y y <,则1x ,2x 可能满足的关系是什么?A.021>>x xB.210x x <<C.120x x <<D.012<<x x 7.如图6-1-3,,P Q 是双曲线上第二象限内的任意两点,PM x ⊥轴于M ,QN y ⊥ 轴于N ,试比较梯形PMNQ 与PQO ∆面积的大小.8.若0ab <,则函数ax y =与xby =在同一坐标系内的图象大致可能是下图中的( )A B C D6-1-39.若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)都是反比例函数xy 1-=的图象上的点,且x 1<0<x 2<x 3,则y 1,y 2,y 3由小到大的顺序是 ;10.已知y 与x 成正比例,z 与y 成反比例,则z 与x 成__________关系,当1=x 时,2=y ;当2=y 时,2-=z ,则当2-=x 时,______=z ; 11.如图6-1-4,过点O 作直线与双曲线()0ky k x=≠交,A B 两点,过点B 作BC x ⊥轴于点C ,作BD y ⊥轴于点D .在x 轴上分别取点,E F ,使点,,A E F 在同一条直线上,且AE AF =.设图中矩形ODBC 的面积为1S ,EOF ∆的面积为2S ,试判断1S 、2S 的数量关系.12.如图6-1-5,点A 、B 在反比例函数y=(k >0,x >0)的图象上,过点A 、B 作x 轴的垂线,垂足分别为M ,N ,延长线段AB 交x 轴于点C ,若OM=MN=NC ,S △BNC=2,求k 的值.13.如图6-1-6,A 、B 是双曲线y=上的两点,过A 点作AC ⊥x 轴,交OB 于D 点,垂足为C .若△ADO 的面积为1,D 为OB 的中点,求k 的值.6-1-46-1-56-1-66-1-76-1-86-1-914.如图6-1-7,A ,C 是函数y=的图象上任意两点,过点A 作y 轴的垂线,垂足为B ,过点C 作y 轴的垂线,垂足为D ,设Rt △AOB 的面积为S 1,Rt △COD 的面积为S 2,则( ) A .S 1>S 2 B .S 1<S 2 C .S 1=S 2D .S 1和S 2的大小关系不能确定15.如图6-1-8,以点O 为圆心的圆与反比例函数的图象相交,若其中一个交点P 的坐标为(5,1),则图中两块阴影部分的面积和为 .16.如图6-1-9,曲线是反比例函数在第二象限的一支,O 为坐标原点,点P在曲线上,PA ⊥x 轴,且△PAO 的面积为2,则此曲线的解析式是 . 17.如图6-1-10,P 是函数()021>=x xy 图象上一点,直线1+-=x y 分别交x 轴、y 轴于点A ,B ,作x PM ⊥轴于M 点,交AB 于点E ,作y PN ⊥轴于N 点,交AB 于F 点,求BE AF ⋅的值.6-1-1018.两个反比例函数x k y 1=和()0212>>=k k xky 在第一象限内的图象依次是曲线1c 和2c ,设点P 在1c 上,x PE ⊥轴于点E ,交2c 于点A ,y PD ⊥轴于点D ,交2c 于点B ,求四边形PAOB 的面积.19.如图6-1-11,在平面直角坐标系xOy 中,直线y =x 与双曲线y =相交于A ,B 两点,C 是第一象限内双曲线上一点,连接CA 并延长交y 轴于点P ,连接BP ,B C .若△PBC 的面积是20,求点C 的坐标.20.如图6-1-12,在x 轴的正半轴上依次间隔相等的距离取点A 1,A 2,A 3,A 4,…,A n ,分别过这些点做x 轴的垂线与反比例函数y=的图象相交于点P 1,P 2,P 3,P 4,…P n ,再分别过P 2,P 3,P 4,…P n 作P 2B 1⊥A 1P 1,P 3B 2⊥A 2P 2,P 4B 3⊥A 3P 3,…,P n B n ﹣1⊥A n ﹣1P n ﹣1,垂足分别为B 1,B 2,B 3,B 4,…,B n ﹣1,连接P 1P 2,P 2P 3,P 3P 4,…,P n ﹣1P n ,得到一组Rt △P 1B 1P 2,Rt △P 2B 2P 3,Rt △P 3B 3P 4,…,Rt △P n ﹣1B n ﹣1P n ,则Rt △P n ﹣1B n ﹣1P n 的面积为 .6-1-116-1-12。
九年级数学反比例函数知识点归纳和典型例题(附答案解析)
九年级数学反比例函数知识点归纳和典型例题一、基础知识(一)反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质1.函数解析式:()2.自变量的取值范围:3.图象:(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.图1 图25.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(3)反比例函数与一次函数的联系.(四)实际问题与反比例函数1.求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上.(五)充分利用数形结合的思想解决问题.三、例题分析1.反比例函数的概念(1)下列函数中,y是x的反比例函数的是().A.y=3x B.C.3xy=1 D.(2)下列函数中,y是x的反比例函数的是().A.B.C.D.答案:(1)C;(2)A.2.图象和性质(1)已知函数是反比例函数,①若它的图象在第二、四象限内,那么k=___________.②若y随x的增大而减小,那么k=___________.(2)已知一次函数y=ax+b的图象经过第一、二、四象限,则函数的图象位于第________象限.(3)若反比例函数经过点(,2),则一次函数的图象一定不经过第_____象限.(4)已知a·b<0,点P(a,b)在反比例函数的图象上,则直线不经过的象限是().A.第一象限B.第二象限C.第三象限D.第四象限(5)若P(2,2)和Q(m,)是反比例函数图象上的两点,则一次函数y=kx+m的图象经过().A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限(6)已知函数和(k≠0),它们在同一坐标系内的图象大致是().A.B.C.D.答案:(1)①②1;(2)一、三;(3)四;(4)C;(5)C;(6)B.3.函数的增减性(1)在反比例函数的图象上有两点,,且,则的值为().A.正数B.负数C.非正数D.非负数(2)在函数(a为常数)的图象上有三个点,,,则函数值、、的大小关系是().A.<<B.<<C.<<D.<<(3)下列四个函数中:①;②;③;④.y随x的增大而减小的函数有().A.0个B.1个C.2个D.3个(4)已知反比例函数的图象与直线y=2x和y=x+1的图象过同一点,则当x>0时,这个反比例函数的函数值y随x的增大而(填“增大”或“减小”).答案:(1)A;(2)D;(3)B.注意,(3)中只有②是符合题意的,而③是在“每一个象限内” y随x的增大而减小.4.解析式的确定(1)若与成反比例,与成正比例,则y是z的().A.正比例函数B.反比例函数C.一次函数D.不能确定(2)若正比例函数y=2x与反比例函数的图象有一个交点为(2,m),则m=_____,k=________,它们的另一个交点为________.(3)已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值.(4)已知一次函数y=x+m与反比例函数()的图象在第一象限内的交点为P (x 0,3).①求x 0的值;②求一次函数和反比例函数的解析式.(5)为了预防“非典”,某学校对教室采用药薰消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧完后,y与x 成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克.请根据题中所提供的信息解答下列问题:①药物燃烧时y关于x的函数关系式为___________,自变量x 的取值范围是_______________;药物燃烧后y关于x的函数关系式为_________________.②研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过_______分钟后,学生才能回到教室;③研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?答案:(1)B;(2)4,8,(,);(3)依题意,且,解得.(4)①依题意,解得②一次函数解析式为,反比例函数解析式为.(5)①,,;②30;③消毒时间为(分钟),所以消毒有效.5.面积计算(1)如图,在函数的图象上有三个点A、B、C,过这三个点分别向x轴、y 轴作垂线,过每一点所作的两条垂线段与x轴、y轴围成的矩形的面积分别为、、,则().A.B.C.D.第(1)题图第(2)题图(2)如图,A、B是函数的图象上关于原点O对称的任意两点,AC//y轴,BC//x 轴,△ABC的面积S,则().A.S=1 B.1<S<2C.S=2 D.S>2(3)如图,Rt△AOB的顶点A在双曲线上,且S△AOB=3,求m的值.第(3)题图第(4)题图(4)已知函数的图象和两条直线y=x,y=2x在第一象限内分别相交于P1和P2两点,过P1分别作x轴、y轴的垂线P1Q1,P1R1,垂足分别为Q1,R1,过P2分别作x 轴、y轴的垂线P2 Q 2,P2 R 2,垂足分别为Q 2,R 2,求矩形O Q 1P1 R 1和O Q 2P2 R 2的周长,并比较它们的大小.(5)如图,正比例函数y=kx(k>0)和反比例函数的图象相交于A、C两点,过A作x轴垂线交x轴于B,连接BC,若△ABC面积为S,则S=_________.第(5)题图第(6)题图(6)如图在Rt△ABO中,顶点A是双曲线与直线在第四象限的交点,AB⊥x轴于B且S△ABO=.①求这两个函数的解析式;②求直线与双曲线的两个交点A、C的坐标和△AOC的面积.(7)如图,已知正方形OABC的面积为9,点O为坐标原点,点A、C分别在x轴、y轴上,点B在函数(k>0,x>0)的图象上,点P (m,n)是函数(k>0,x>0)的图象上任意一点,过P分别作x轴、y轴的垂线,垂足为E、F,设矩形OEPF在正方形OABC以外的部分的面积为S.①求B点坐标和k的值;②当时,求点P的坐标;③写出S关于m的函数关系式.答案:(1)D;(2)C;(3)6;(4),,矩形O Q 1P1 R 1的周长为8,O Q 2P2 R 2的周长为,前者大.(5)1.(6)①双曲线为,直线为;②直线与两轴的交点分别为(0,)和(,0),且A(1,)和C(,1),因此面积为4.(7)①B(3,3),;②时,E(6,0),;③.6.综合应用(1)若函数y=k1x(k1≠0)和函数(k2 ≠0)在同一坐标系内的图象没有公共点,则k1和k2().A.互为倒数B.符号相同C.绝对值相等D.符号相反(2)如图,一次函数的图象与反比例数的图象交于A、B两点:A(,1),B(1,n).①求反比例函数和一次函数的解析式;②根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.(3)如图所示,已知一次函数(k≠0)的图象与x 轴、y轴分别交于A、B两点,且与反比例函数(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D,若OA=OB=OD=1.①求点A、B、D的坐标;②求一次函数和反比例函数的解析式.(4)如图,一次函数的图象与反比例函数的图象交于第一象限C、D两点,坐标轴交于A、B两点,连结OC,OD(O是坐标原点).①利用图中条件,求反比例函数的解析式和m的值;②双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明并求出点P的坐标;若不存在,说明理由.(5)不解方程,判断下列方程解的个数.①;②.(2)①反比例函数为,一次函数为;②范围是或.(3)①A(0,),B(0,1),D(1,0);②一次函数为,反比例函数为.(4)①反比例函数为,;②存在(2,2).(5)①构造双曲线和直线,它们无交点,说明原方程无实数解;②构造双曲线和直线,它们有两个交点,说明原方程有两个实数解.。
九年级数学反比例函数知识点归纳和典型例题
新人教版九年级数学下册第26章反比例函数知识点归纳和典型例题(一)知识结构(二)学习目标1.理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式(k为常数,),能判定一个给定函数是不是为反比例函数.2.能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点.3.能根据图象数形结合地分析并掌握反比例函数(k为常数,)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题.4.对于实际问题,能“找出常量和变量,成立并表示函数模型,讨论函数模型,解决实际问题”的进程,体会函数是刻画现实世界中转变规律的重要数学模型.5.进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法.(三)重点难点1.重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用.2.难点是反比例函数及其图象的性质的理解和掌握.二、基础知识新人教版九年级数学下册第26章反比例函数知识点归纳和典型例题(二)知识结构(二)学习目标1.理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式(k为常数,),能判定一个给定函数是不是为反比例函数.2.能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点.3.能根据图象数形结合地分析并掌握反比例函数(k为常数,)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题.4.对于实际问题,能“找出常量和变量,成立并表示函数模型,讨论函数模型,解决实际问题”的进程,体会函数是刻画现实世界中转变规律的重要数学模型.5.进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法.(三)重点难点1.重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用.2.难点是反比例函数及其图象的性质的理解和掌握.二、基础知识(一)反比例函数的概念1.()能够写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应专门注意系数这一限制条件;2.()也能够写成xy=k的形式,用它能够迅速地求出反比例函数解析式中的k,从而取得反比例函数的解析式;3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应付称取点(关于原点对称).(三)反比例函数及其图象的性质1.函数解析式:()2.自变量的取值范围:3.图象:(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支别离位于一、三象限;在每一个象限内,y随x的增大而减小;当时,图象的两支别离位于二、四象限;在每一个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即假设(a,b)在双曲线的一支上,那么(,)在双曲线的另一支上.图象关于直线对称,即假设(a,b)在双曲线的一支上,那么(,)和(,)在双曲线的另一支上.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,那么矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,那么有三角形PQC的面积为.图1 图25.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支别离讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(3)反比例函数与一次函数的联系.(四)实际问题与反比例函数1.求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上.(五)充分利用数形结合的思想解决问题.三、例题分析1☆.反比例函数的概念(1)下列函数中,y是x的反比例函数的是().A.y=3x B.C.3xy=1 D.(2)以下函数中,y是x的反比例函数的是().A.B.C.D.答案:(1)C;(2)A.2.图象和性质(1)已知函数是反比例函数,①假设它的图象在第二、四象限内,那么k=___________.②假设y随x的增大而减小,那么k=___________.(2)已知一次函数y=ax+b的图象经过第一、二、四象限,则函数的图象位于第________象限.(3)若反比例函数通过点(,2),那么一次函数的图象必然不通过第_____象限.(4)已知a·b<0,点P(a,b)在反比例函数的图象上,则直线不通过的象限是().A.第一象限B.第二象限C.第三象限D.第四象限(5)若P(2,2)和Q(m,)是反比例函数图象上的两点,那么一次函数y=kx+m的图象通过().A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限(6)已知函数和(k≠0),它们在同一坐标系内的图象大致是().A.B.C.D.答案:(1)①②1;(2)一、三;(3)四;(4)C;(5)C;(6)B.3.函数的增减性(1)在反比例函数的图象上有两点,,且,那么的值为().A.正数B.负数C.非正数D.非负数(2)在函数(a为常数)的图象上有三个点,,,那么函数值、、的大小关系是().A.<<B.<<C.<<D.<<(3)以下四个函数中:①;②;③;④.y随x的增大而减小的函数有().A.0个B.1个C.2个D.3个(4)已知反比例函数的图象与直线y=2x和y=x+1的图象过同一点,那么当x>0时,那个反比例函数的函数值y随x的增大而(填“增大”或“减小”).答案:(1)A;(2)D;(3)B.注意,(3)中只有②是符合题意的,而③是在“每一个象限内” y随x的增大而减小.4.解析式的确信(1)若与成反比例,与成正比例,那么y是z的().A.正比例函数B.反比例函数C.一次函数D.不能确定(2)若正比例函数y=2x与反比例函数的图象有一个交点为(2,m),那么m=_____,k=________,它们的另一个交点为________.(3)已知反比例函数的图象通过点,反比例函数的图象在第二、四象限,求的值.(4)已知一次函数y=x+m与反比例函数()的图象在第一象限内的交点为P (x 0,3).①求x 0的值;②求一次函数和反比例函数的解析式.(5)☆为了预防“非典”,某学校对教室采纳药薰消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时刻x (分钟)成正比例,药物燃烧完后,y与x成反比例(如下图),现测得药物8分钟燃毕,现在室内空气中每立方米的含药量为6毫克.请依照题中所提供的信息解答以下问题:①药物燃烧时y关于x的函数关系式为___________,自变量x 的取值范围是_______________;药物燃烧后y 关于x的函数关系式为_________________.②研究说明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要通过_______分钟后,学生才能回到教室;③ 研究说明,当空气中每立方米的含药量不低于3毫克且持续时刻不低于10分钟时,才能有效杀灭空气中的病菌,那么这次消毒是不是有效?什么缘故?答案:(1)B;(2)4,8,(,);(3)依题意,且,解得.(4)①依题意,解得②一次函数解析式为,反比例函数解析式为.(5)①,,;②30;③消毒时刻为(分钟),因此消毒有效.5.面积计算(1)☆如图,在函数的图象上有三个点A、B、C,过这三个点别离向x轴、y轴作垂线,过每一点所作的两条垂线段与x轴、y轴围成的矩形的面积别离为、、,那么().A.B.C.D.第(1)题图第(2)题图(2)☆如图,A、B是函数的图象上关于原点O对称的任意两点,AC//y轴,BC//x轴,△ABC的面积S,那么().A.S=1 B.1<S<2 C.S=2 D.S>2(3)如图,Rt△AOB的极点A在双曲线上,且S△AOB=3,求m的值.第(3)题图第(4)题图(4)☆已知函数的图象和两条直线y=x,y=2x在第一象限内别离相交于P1和P2两点,过P1别离作x轴、y轴的垂线P1Q1,P1R1,垂足别离为Q1,R1,过P2别离作x轴、y轴的垂线P2 Q 2,P2 R 2,垂足别离为Q 2,R 2,求矩形O Q 1P1 R 1和O Q 2P2 R 2的周长,并比较它们的大小.(5)如图,正比例函数y=kx(k>0)和反比例函数的图象相交于A、C两点,过A作x轴垂线交x 轴于B,连接BC,假设△ABC面积为S,那么S=_________.第(5)题图第(6)题图(6)如图在Rt△ABO中,极点A是双曲线与直线在第四象限的交点,AB⊥x轴于B 且S△ABO=.①求这两个函数的解析式;②求直线与双曲线的两个交点A、C的坐标和△AOC的面积.(7)如图,已知正方形OABC的面积为9,点O为坐标原点,点A、C别离在x轴、y轴上,点B在函数(k>0,x>0)的图象上,点P (m,n)是函数(k>0,x>0)的图象上任意一点,过P别离作x轴、y轴的垂线,垂足为E、F,设矩形OEPF在正方形OABC之外的部份的面积为S.① 求B点坐标和k的值;② 当时,求点P的坐标;③ 写出S关于m的函数关系式.答案:(1)D;(2)C;(3)6;(4),,矩形O Q 1P1 R 1的周长为8,O Q 2P2 R 2的周长为,前者大.(5)1.(6)①双曲线为,直线为;②直线与两轴的交点别离为(0,)和(,0),且A(1,)和C(,1),因此面积为4.(7)①B(3,3),;②时,E(6,0),;③.6.综合应用(1)若函数y=k1x(k1≠0)和函数(k2 ≠0)在同一坐标系内的图象没有公共点,那么k1和k2().A.互为倒数B.符号相同C.绝对值相等D.符号相反(三)(2)如图,一次函数的图象与反比例数的图象交于A、B两点:A(,1),B(1,n).① 求反比例函数和一次函数的解析式;② 依照图象写出使一次函数的值大于反比例函数的值的x的取值范围.(3)如图所示,已知一次函数(k≠0)的图象与x 轴、y轴别离交于A、B两点,且与反比例函数(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D,假设OA=OB=OD=1.① 求点A、B、D的坐标;② 求一次函数和反比例函数的解析式.(4)☆如图,一次函数的图象与反比例函数的图象交于第一象限C、D两点,坐标轴交于A、B两点,连结OC,OD(O是坐标原点).① 利用图中条件,求反比例函数的解析式和m的值;② 双曲线上是不是存在一点P,使得△POC和△POD的面积相等?假设存在,给出证明并求出点P的坐标;假设不存在,说明理由.(5)不解方程,判断下列方程解的个数.①;②.答案:(1)D.(2)① 反比例函数为,一次函数为;②范围是或.(3)①A(0,),B(0,1),D(1,0);②一次函数为,反比例函数为.(4)①反比例函数为,;②存在(2,2).(5)①构造双曲线和直线,它们无交点,说明原方程无实数解;②构造双曲线和直线,它们有两个交点,说明原方程有两个实数解.。
反比例函数知识点归纳和典型例题
反比例函数知识点归纳和典型例题反比例函数是数学中的一个重要概念,它在实际问题的建模和解决中起着重要作用。
本文将对反比例函数的知识点进行归纳,并给出一些典型例题进行解析。
一、定义和性质反比例函数又称为倒数函数,其定义如下:设x和y是实数,且y ≠ 0,若存在一个实数k,使得y = k/x,那么称y是x的反比例函数。
反比例函数的图象通常是一个拋物线的两支或一支,不包括原点。
其一般形式为y = k/x,其中k为常数。
反比例函数具有以下重要性质:1. 定义域:定义除数x不能为0,所以反比例函数的定义域为x ≠ 0。
2. 值域:值域取决于常数k的正负,当k > 0时,值域为(0, +∞),当k < 0时,值域为(-∞, 0)。
3. 对称性:反比例函数关于两个坐标轴都具有对称性。
二、图象和特殊情况反比例函数的图象通常是一个拋物线的两支或一支,不包括原点。
当常数k > 0时,反比例函数的图象在第一象限和第三象限,当常数k< 0时,反比例函数的图象在第二象限和第四象限。
对于一些特殊情况,我们有以下例子:1. 当k > 0时,反比例函数的图象经过点(1, k),且在x轴和y轴上有渐进线。
2. 当k < 0时,反比例函数的图象经过点(-1, k),且在x轴和y轴上有渐进线。
三、典型例题解析下面通过几个典型例题来进一步理解反比例函数的应用。
例题1:已知y和x成反比例关系,且当x = 2时,y = 5,求当x =4时,y的值。
解析:根据反比例函数的定义,有y = k/x。
代入已知条件x = 2时,y = 5,得到5 = k/2,解得k = 10。
因此,当x = 4时,y = 10/4 = 2.5。
例题2:如果一根细木杆以每分钟1.5cm的速度缩短,那么多少分钟后长度为60cm?解析:设时间为t分钟,根据题意可以列出反比例函数y = k/x。
已知当t = 0时,y = 100,即杆子的初始长度是100cm。
人教版九年级数学下册反比例函数知识点归纳及练习含答案
人教版九年级数学下册反比例函数知识点归纳及练习含答案在九年级数学下册教材中,反比例函数是一个重要的知识点。
它是函数的一种特殊形式,具有一些独特的性质和应用。
下面将对反比例函数的知识点进行归纳总结,并提供一些相关的练习题及答案。
一、反比例函数的定义反比例函数是指一个函数,它的函数关系是如下形式:y = k/x其中,k是常数,x和y分别是自变量和因变量。
二、反比例函数的性质1. 定义域和值域:对于反比例函数 y = k/x,其定义域是除数x不能为零的实数集,值域为除数k不能为零的实数集。
2. 反比例函数的图像:反比例函数的图像是一条经过原点(0,0)的曲线,其形状根据k的正负不同而有所变化。
当k>0时,反比例函数为一条开口向右上方的双曲线;当k<0时,反比例函数为一条开口向右下方的双曲线。
3. 反比例函数的性质:a) 反比例函数的图像关于y轴和x轴对称。
b) 当x>0时,y随着x的增大而减小;当x<0时,y随着x的减小而增大。
c) 当x等于1时,y等于k,这是反比例函数的特殊点。
d) 反比例函数可以通过求导得到,导数的值为-ky^2。
三、反比例函数的应用反比例函数在实际问题中具有广泛的应用,以下是几个常见的应用场景:1. 速度与时间的关系:当一个物体以恒定的速度运动时,它所用的时间与距离成反比。
2. 人均所得与人口数量的关系:当一个国家人口增加时,人均所得会相应减少。
3. 工人数量与完成一项任务所需时间的关系:当工人的数量增加时,完成一项任务所需的时间会相应减少。
四、练习题及答案1. 以下哪个函数是反比例函数?A. y = 2xB. y = x^2C. y = 3/xD. y = x + 1答案:C. y = 3/x2. 反比例函数 y = k/x 中,若k > 0,则函数的图像是一条__________的双曲线。
答案:开口向右上方3. 若反比例函数的定义域为(-∞, -4) ∪ (4, +∞),则函数的值域为__________。
【单元练】人教版初中九年级数学下册第二十六章《反比例函数》知识点总结(含答案解析)
一、选择题1.下列式子中表示y 是x 的反比例函数的是( )A .24y x =-B .y=5x 2C .y=21xD .y=13x D 解析:D【分析】根据反比例函数的定义逐项分析即可.【详解】A. 24y x =-,y 是x 的一次函数,故不符合题意;B. y=5x 2,y 是x 的正比例函数,故不符合题意;C. 21y x =,y 是x²的反比例函数,故不符合题意; D. y=13x,y 是x 的反比例函数,符合题意; 故选:D .【点睛】本题考查了反比例函数的定义,一般地,形如k y x=(k 为常数,k ≠0)的函数叫做反比例函数.2.如图,已知在平面直角坐标系中,Rt ABC 的顶点()0,3A ,()3,0B ,90ABC ∠=︒,函数()40y x x=>的图象经过点C ,则AC 的长为( )A .32B .5C .26D 26解析:B【分析】 如图(见解析),先根据点A 、B 的坐标可得3,45OA OB OBA ==∠=︒,从而可得45CBD ∠=︒,再根据等腰直角三角形的判定与性质可得BD CD =,设BD CD a ==,从而可得点C 的坐标为(3,)C a a +,然后利用反比例函数的解析式可求出a 的值,最后利用两点之间的距离公式即可得.【详解】如图,过点C 作CD x ⊥轴于点D ,()()0,3,3,0A B ,3OA OB ∴==,Rt AOB ∴是等腰直角三角形,45OBA ∠=︒,90ABC ∠=︒,18045CBD OBA ABC ∠=︒-∠-∠=∴︒,Rt BCD ∴是等腰直角三角形,BD CD ∴=,设BD CD a ==,则3OD OB BD a =+=+,(3,)C a a ∴+,将(3,)C a a +代入()40y x x =>得:43a a=+, 解得1a =或40a =-<(不符题意,舍去), (4,1)C ∴,由两点之间的距离公式得:22(40)(13)25AC =-+-=,故选:B .【点睛】本题考查了反比例函数的几何应用、等腰直角三角形的判定与性质、两点之间的距离公式等知识点,熟练掌握等腰直角三角形的判定与性质是解题关键.3.已知(5,-1)是双曲线(0)k y k x =≠上的一点,则下列各点中不在该图象上的是( ) A .1(,15)3-B .(5,1)C .(1,5)-D .1(10,)2-B 解析:B【详解】解:因为点(5,-1)是双曲线(0)k y k x =≠上的一点, 将(5,-1)代入(0)k y k x=≠得k=-5; 四个选项中只有B 不符合要求:k=5×1≠-5. 故选B .【点睛】本题考查反比例函数图象上点的坐标特征.4.如图,△ABC 的三个顶点分别为A (1,2),B (2,5),C (6,1).若函数在第一象限内的图像与△ABC 有交点,则的取值范围是A .2≤≤B .6≤≤10C .2≤≤6D .2≤≤A解析:A【分析】 把A 点的坐标代入即可求出k 的最小值;当反比例函数和直线BC 相交时,求出b 2﹣4ac 的值,得出k 的最大值.【详解】把点A (1,2)代入k y x=得:k=2; C 的坐标是(6,1),B 的坐标是(2,5),设直线BC 的解析式是y=kx+b ,则2561k b k b +=⎧⎨+=⎩, 解得:17k b =-⎧⎨=⎩, 则函数的解析式是: y=﹣x+7,根据题意,得:k x=﹣x+7, 即x 2﹣7x+k=0,△=49﹣4k≥0,解得:k≤494. 则k 的范围是:2≤k≤494. 故选A .考点:反比例函数综合题.5.如图,在平面直角坐标系中,直线y x =-与双曲线k y x=交于A 、B 两点,P 是以点(2,2)C 为圆心,半径长1的圆上一动点,连结AP ,Q 为AP 的中点.若线段OQ 长度的最大值为2,则k 的值为( )A .12-B .32-C .2-D .14-A 解析:A 【分析】 连接BP ,证得OQ 是△ABP 的中位线,当P 、C 、B 三点共线时PB 长度最大,PB=2OQ=4,设 B 点的坐标为(x ,-x ),根据点(2,2)C ,可利用勾股定理求出B 点坐标,代入反比例函数关系式即可求出k 的值.【详解】解:连接BP ,∵直线y x =-与双曲线k y x =的图形均关于直线y=x 对称, ∴OA=OB ,∵点Q 是AP 的中点,点O 是AB 的中点∴OQ 是△ABP 的中位线,当OQ 的长度最大时,即PB 的长度最大,∵PB≤PC+BC ,当三点共线时PB 长度最大,∴当P 、C 、B 三点共线时PB=2OQ=4,∵PC=1,∴BC=3,设B 点的坐标为(x ,-x ),则()()22BC=2-23x x ++=,解得1222,22x x ==-(舍去) 故B 点坐标为22,22⎛⎫- ⎪ ⎪⎝⎭, 代入k y x=中可得:12k =-, 故答案为:A .【点睛】本题考查三角形中位线的应用和正比例函数、反比例函数的性质,结合题意作出辅助线是解题的关键.6.若点()()()1231,,1,,3,A y B y C y -在反比例函数6y x =的图像上,则123,,y y y 的大小关系是( )A .123y y y <<B .132y y y <<C .321y y y <<D .213y y y <<B 解析:B【分析】根据反比例函数的解析式分别代入求解,把123,,y y y 的值求解出来,再进行比较,即可得到答案.【详解】解:∵点()()()1231,,1,,3,A y B y C y -在反比例函数6y x =的图像上, ∴1166y -==-,2166y ==,3362y ==, 即:132y y y <<,故选B .【点睛】本题主要考查了与反比例函数有关的知识点,能根据已知条件求出未知量是解题的关键,再比较大小的时候注意符号.7.若函数5y x=与1y x =+的图像交于点(),A a b ,则11a b -的值为 ( )A .15-B .15C .5-D .5B解析:B【分析】 先把A (a ,b )分别代入两个解析式得到5b a =,b =a +1,则ab =5,b -a =1,再变形11a b -得到b a ab-,然后利用整体思想进行计算即可. 【详解】解:把A (a ,b )代入5y x=与y =x +1, 得5b a=,b =a +1, 即ab =5,b -a =1, 所以11a b -=b a ab -=15. 故选:B.【点睛】 本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标满足两函数的解析式.8.若函数2m y x+=的图象在其每一个分支中y 的值随x 值的增大而增大,则m 的取值范围是( )A .2m ≥B .2m <C .2m ≤-D .2m -<D 解析:D【分析】根据k <0,反比例函数的函数值y 在每一个分支中随x 值的增大而增大列出不等式计算即可得解.【详解】 解:∵2m y x+=在其每一个分支中y 的值随x 值的增大而增大, 20m ∴+<, 2m ∴<-.故选:D .【点睛】此题考查反比例函数的性质.解题关键在于掌握反比例函数y=k x,当k >0时,在每一个象限内,函数值y 随自变量x 的增大而减小;当k <0时,在每一个象限内,函数值y 随自变量x 增大而增大.9.如图,双曲线k y x=经过Rt BOC ∆斜边上的中点A ,且与BC 交于点D ,若BOD 6S ∆=,则k 的值为( )A .2B .4C .6D .8B 解析:B【分析】设,k A x x ⎛⎫ ⎪⎝⎭,根据A 是OB 的中点,可得22,k B x x ⎛⎫ ⎪⎝⎭,再根据BC OC ⊥,点D 在双曲线k y x =上,可得2,2k D x x ⎛⎫ ⎪⎝⎭,根据三角形面积公式列式求出k 的值即可. 【详解】 设,k A x x ⎛⎫ ⎪⎝⎭ ∵A 是OB 的中点∴22,k B x x ⎛⎫ ⎪⎝⎭∵BC OC ⊥,点D 在双曲线k y x =上 ∴2,2k D x x ⎛⎫ ⎪⎝⎭∴BOD 112322222k k S BD OC x k x x ∆⎛⎫=⨯⨯=⨯-⨯= ⎪⎝⎭ ∵BOD 6S ∆=∴3642k =÷= 故答案为:B .【点睛】 本题考查了反比例函数的几何问题,掌握反比例函数的性质、中点的性质、三角形面积公式是解题的关键.10.对于反比例函数5y x=-,下列说法中不正确的是( ) A .图象经过点(1,5)-B .当0x >时,y 的值随x 的值的增大而增大C .图像分布在第二、四象限D .若点11()A x y ,,22()B x y ,都在图像上,且12x x <,则12y y <.D解析:D【分析】根据反比例函数的性质判断即可.【详解】解:A. 把(1,5)-代入反比例函数得,55-=-,本选项正确;B. 50-<,图象分别位于第二、四象限,函数在x<0上为增函数、在x>0上同为增函数,本选项正确;C. 50-<,因此图像分布在第二、四象限,本选项正确;D. 函数在x<0上为增函数、在x>0上同为增函数,若点11()A x y ,,22()B x y ,都在图像上,当120x x <<或120x x <<时,12y y <,本选项错误.故选:D .【点睛】本题考查的知识点是反比例函数的性质,牢记反比例函数图象的性质是解此题的关键. 二、填空题11.双曲线y =k x经过点A (a ,﹣2a ),B (﹣2,m ),C (﹣3,n ),则m _____n (>,=,<).>【分析】先求出反比例函数解析式判断函数的增减性﹣2>﹣3即可判断mn 的大小【详解】∵双曲线y =经过点A (a ﹣2a )∴k =﹣2a2<0∴双曲线在二四象限在每个象限内y 随x 的增大而增大∵B (﹣2m )C解析:>.【分析】先求出反比例函数解析式,判断函数的增减性﹣2>﹣3,即可判断m ,n 的大小..【详解】∵双曲线y =k x经过点A (a ,﹣2a ), ∴k =﹣2a 2<0, ∴双曲线在二、四象限,在每个象限内,y 随x 的增大而增大,∵B (﹣2,m ),C (﹣3,n ),﹣2>﹣3,∴m >n ,故答案为:>.【点睛】本题利用函数的性质比较大小,关键是求出函数解析式,掌握反比例函数的性质. 12.如图,平面直角坐标系中,矩形ABCD 的顶点B 在x 轴负半轴上,边CD 与x 轴交于点E ,连接AE ,//AE y 轴,反比例函数()0k y x x=>的图象经过点A ,及AD 边上一点F ,4AF FD =,若,2DA DE OB ==,则k 的值为________.【分析】根据矩形的性质已知条件可得均为等腰直角三角形进而根据点在坐标系中的位置设并过点作于再根据点与点之间的相对位置反比例函数的解析式用含表示出然后利用反比例函数的解析式得到关于的方程解方程即可得解解析:15【分析】根据矩形的性质、已知条件可得ADE 、ABE △、BCE 均为等腰直角三角形,进而根据点在坐标系中的位置设(),0E x ,并过D 点作DHAE ⊥于H ,再根据点与点之间的相对位置、反比例函数的解析式用含x 、k 表示出,k A x x ⎛⎫ ⎪⎝⎭、7436,55x x F ++⎛⎫ ⎪⎝⎭,然后利用反比例函数的解析式得到关于k 的方程,解方程即可得解.【详解】∵AD AE =,90ADE ∠=︒∴ADE 为等腰直角三角形∴45DAE ∠=︒ ∴9045BAE DAE ∠=︒-∠=︒∴ABE △为等腰直角三角形∴45ABE ∠=︒∴45CBE ∠=︒∴BCE 为等腰直角三角形设(),0E x ,则,k A x x ⎛⎫ ⎪⎝⎭,过D 点作DH AE ⊥于H ,如图:∴()1112222DH AE BE x ===+ ∴()132222x DH OE x x ++=++= ∴322,22x x D ++⎛⎫ ⎪⎝⎭ ∵4AF FD =∴点F 的横坐标为32217422415x x x +++-⋅=+、纵坐标为2213622145x x x ++++⋅=+ ∴7436,55x x F ++⎛⎫ ⎪⎝⎭∵,k A x x⎛⎫ ⎪⎝⎭ ∴2k AE x x ==+ ∴()2k x x =+ ∴()7436255x x k x x ++=⋅=⋅+ ∴()()()7436252x x x x ++=+∴3x =或2x =-(不合题意舍去)∴()()233215k x x =+=⨯+=.【点睛】本题考查了反比例函数、矩形的性质、等腰直角三角形的判定和性质等,能够表示出点F 坐标是解题的关键.13.如图,一次函数1y k x b =+的图象过点()0,4A ,且与反比例函数()20k y x x =>的图象相交于B 、C 两点,若2BC AB =,则12k k ⋅的值为______.﹣3【分析】由题意可设一次函数的解析式为y =k1x+4然后联立两个函数的解析式可得等式k1x2+4x ﹣k2=0进而可根据根与系数的关系得出x1+x2=﹣x1x2=﹣再由可得点C 的横坐标是点B 横坐标的 解析:﹣3【分析】由题意可设一次函数的解析式为y =k 1x +4,然后联立两个函数的解析式可得等式k 1x 2+4x ﹣k 2=0,进而可根据根与系数的关系得出x 1+x 2=﹣14k ,x 1x 2=﹣21k k ,再由2BC AB =可得点C 的横坐标是点B 横坐标的3倍,不妨设x 2=3x 1,然后对上述的两个式子整理变形即得结果.【详解】解:∵一次函数y =k 1x +b 的图象过点A (0,4),∴一次函数的解析式为y =k 1x +4,由k 1x +4=2k x,得k 1x 2+4x ﹣k 2=0, 设上述方程的两个实数根为x 1、x 2,则x 1+x 2=﹣14k , x 1x 2=﹣21k k , ∵BC =2AB ,∴点C 的横坐标是点B 横坐标的3倍,不妨设x 2=3x 1,∴x 1+x 2=4x 1=﹣14k ,x 1x 2=3x 12=﹣21k k , ∴221113k k k ⎛⎫⨯-=- ⎪⎝⎭,整理得:k 1k 2=﹣3. 故答案为﹣3.【点睛】本题考查了一次函数与反比例函数的交点、一元二次方程的根与系数的关系等知识,熟练掌握上述知识、掌握求解的方法是关键.14.如图,一次函数y 1=ax+b 与反比例函数2k y x=的图像交于A(1,4)、B(4,1)两点,若使y 1>y 2,则x 的取值范围是___________.x<0或1<x<4【分析】根据图形找出一次函数图象在反比例函数图象上方的x 的取值范围即可【详解】解:根据图形当x<0或1<x<4时一次函数图象在反比例函数图象上方y1>y2故答案为:x<0或1<x<解析:x<0或1<x<4【分析】根据图形,找出一次函数图象在反比例函数图象上方的x的取值范围即可.【详解】解:根据图形,当x<0或1<x<4时,一次函数图象在反比例函数图象上方,y1>y2.故答案为:x<0或1<x<4.【点睛】本题考查了反比例函数一次函数的交点问题,要注意y轴左边的部分,一次函数图象在第二象限,反比例函数图象在第三象限,这也是本题容易忽视而导致出错的地方.15.过原点直线l与反比例函数kyx=的图像交于点(2,)A a-,(,3)B b-,则k的值为____.-6【分析】由AB在过原点的直线l上且在反比例函数的图像上可得AB 关于原点对称根据关于原点对称的点的坐标特征可求出ab的值把a值代入反比例函数解析式即可得答案【详解】∵过原点的直线l与反比例函数y=解析:-6【分析】由A、B在过原点的直线l上且在反比例函数的图像上可得A、B关于原点对称,根据关于原点对称的点的坐标特征可求出a、b的值,把a值代入反比例函数解析式即可得答案.【详解】∵过原点的直线l与反比例函数y=kx的图象交于点A(−2,a),B(b,−3),∴A、B两点关于原点对称,∵关于原点对称的点的横坐标和纵坐标都互为相反数,A(−2,a),B(b,−3),∴a=3,b=2,把A(-2,3)代入y=kx得3=k−2,解得k=-6,故答案为:-6【点睛】本题考查反比例函数图象的性质,反比例函数的图象关于原点对称,熟练掌握图象性质是解题关键.16.如图,直线y=34x+6与反比例函数y=kx(k>0)的图象交于点M、N,与x轴、y轴分别交于点B、A,作ME⊥x轴于点E,NF⊥x轴于点F,过点E、F分别作EG∥AB,FH∥AB,分别交y轴于点G、H,ME交HF于点K,若四边形MKFN和四边形HGEK的面积和为12,则k的值为_____.9【分析】容易知道四边形ANFHAMEGAMKH为平行四边形根据MN在反比例函数的图象上利用平行四边形的面积公式就可以求出它们的面积从而确定两者的数量关系【详解】解:∵HF∥ANNF∥MEEG∥AM解析:9.【分析】容易知道四边形ANFH、AMEG、AMKH为平行四边形,根据M、N在反比例函数的图象上,利用平行四边形的面积公式就可以求出它们的面积,从而确定两者的数量关系.【详解】解:∵HF∥AN,NF∥ME,EG∥AM∴四边形ANFH、AMEG、AMKH为平行四边形,∴S平行四边形AMEG=ME•OE=k,S平行四边形ANFH=NF•OF=k,则S平行四边形AMEG+S平行四边形ANFH=2k,∵四边形MKFN 和四边形HGEK 的面积和为12,∴2S 平行四边形AMKH +12=2k ,∴S 平行四边形AMKH =k ﹣6,设点M 、N 的坐标分别为(x 1,y 1),(x 2,y 2),将y =34-x+6与反比例函数y =k x 联立并整理得:3x 2﹣24x+4k =0, ∴x 1+x 2=8,x 1x 2=43k , 则S 平行四边形AMKH =k ﹣6=MK•x 1=NF•x 1=x 1y 2=x 1(﹣34x 2+6)=﹣34x 1x 2+6x 1=﹣k+6x 1, ∴6x 1=2k ﹣6,即x 1=13k ﹣1,则x 2=8﹣x 1=9﹣13k , ∴x 1x 2=43k =(13k ﹣1)(9﹣13k ), 解得:k =9,故答案为9.【点睛】本题考查了反比例函数的问题,掌握反比例函数的图象以及性质、平行四边形的性质以及判定定理、平行四边形的面积公式、韦达定理是解题的关键.17.如图,点A 是反比例函数y =k x(k >0,x >0)图象上一点,B 、C 在x 轴上,且AC ⊥BC ,D 为AB 的中点,DC 的延长线交y 轴于E ,连接BE ,若△BCE 的面积为8,则k 的值为_____.16【分析】设A (nm )B (t0)即可得到C 点坐标为(n0)D 点坐标为()利用待定系数法求出CD 的解析式可得E 点坐标为(0)然后利用三角形的面积公式可得到mn=16即得到k 的值【详解】解:设A (nm 解析:16【分析】设A (n ,m ),B (t ,0),即可得到C 点坐标为(n ,0),D 点坐标为(2n t +,2m ),利用待定系数法求出CD 的解析式,可得E 点坐标为(0,mn t n--),然后利用三角形的面积公式可得到mn=16,即得到k 的值.【详解】解:设A (n ,m ),B (t ,0),∵AC ⊥BC ,D 为AB 的中点,∴C 点坐标为(n ,0),D 点坐标为(2n t +,2m ), 设直线CD 的解析式为y=ax+b ,把C (n ,0),D (2n t +,2m ),代入得:na+b=0,22n t m a b ++=, 解得a=m t n-,b=mn t n --, ∴直线CD 的解析式为y=m mn x t n t n ---, ∴E 点坐标为(0,mn t n --), 由S △BCE =12•OE•BC=8, 可得,1()82mn t n t n-=-, ∴mn=16,∴k=mn=16;故答案为:16.【点睛】本题考查了反比例函数的综合题的解法,熟练掌握并灵活运用是解题的关键.18.如图,在平面直角坐标系中,反比例函数y=k x(k≠0),经过▱ABCD 的顶点B .D ,点A 的坐标为(0,-1),AB ∥x 轴,CD 经过点(0,2),▱ABCD 的面积是18,则点C 的坐标是______.(32)【分析】如图先求出AE 的长再根据平行四边形的面积可求出ABCD 的长从而可知点B 坐标然后利用待定系数法可求出反比例函数的解析式最后利用函数解析式可求出点D 坐标从而根据CD 的长可求出点C 的横坐标解析:(3,2)【分析】如图,先求出AE 的长,再根据平行四边形的面积可求出AB 、CD 的长,从而可知点B 坐标,然后利用待定系数法可求出反比例函数的解析式,最后利用函数解析式可求出点D 坐标,从而根据CD 的长可求出点C 的横坐标,即可得出答案.【详解】如图,由题意得,2(1)3,,AE AE AB AB CD =--=⊥=,点C 、D 纵坐标均为2 ABCD S AE AB AE CD ∴=⋅=⋅,即3318AB CD ==解得6AB CD ==∴点B 坐标为(6,1)B -将点(6,1)B -代入反比例函数的解析式得16k =- 解得6k =-则反比例函数的解析式为6y x =-令2y =得62x-=,解得3x =- (3,2)D ∴-设点C 坐标为(,2)C a(3)6CD a ∴=--=,解得3a =(3,2)C ∴故答案为:(3,2).【点睛】本题考查了平行四边形的面积、利用待定系数法求反比例函数的解析式等知识点,根据平行四边形的面积求出AB 的长,从而得出点B 坐标是解题关键.19.如图,直线y =ax 经过点A (4,2),点B 在双曲线y =k x(x >0)的图象上,连结OB 、AB ,若∠ABO =90°,BA =BO ,则k 的值为_____. 3【分析】作BC ⊥x 轴于CAD ⊥BC 于D 易证得△BOC ≌△ABD 得出OC=BDBC=AD 设B 的坐标为(mn )则OC=mBC=n 根据线段相等的关系得到解得求得B 的坐标然后代入y=(x >0)即可求得k 的 解析:3.【分析】作BC ⊥x 轴于C ,AD ⊥BC 于D ,易证得△BOC ≌△ABD ,得出OC=BD ,BC=AD ,设B 的坐标为(m ,n ),则OC=m ,BC=n ,根据线段相等的关系得到24m n n m -⎧⎨-⎩== ,解得13m n ⎧⎨⎩== ,求得B 的坐标,然后代入y=k x(x >0)即可求得k 的值. 【详解】解:作BC ⊥x 轴于C ,AD ⊥BC 于D ,则∠COB+∠OBC=90°,∵∠ABO=90°,∴∠OBC+∠ABD=90°,∴∠COB=∠ABD ,在△BOC 和△ABD 中COB ABD OCB BDA OB AB ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△BOC ≌△ABD (AAS ),∴OC=BD ,BC=AD ,设B 的坐标为(m ,n ),则OC=m ,BC=n ,∵点A (4,2),∴24m n n m -⎧⎨-⎩== ,解得, ∴B 的坐标为(1,3),∵点B 在双曲线y=k x(x >0)的图象上, ∴k=1×3=3,故答案为3.【点睛】此题考查反比例函数图象上点的坐标特征,三角形全等的判定和性质,得出相等线段列出关于m 、n 的方程组是解题的关键.20.已知点A (-1,2)在反比例函数1m y x -=的图象上,则m =_____________.-1【分析】将点A (-12)代入反比例函数即可求出m 的值【详解】将点A (-12)代入反比例函数得解得m=-1;故答案为:-1【点睛】本题考查了反比例函数图象上点的坐标特征所有在反比例函数上的点的横纵解析:-1【分析】将点A (-1,2)代入反比例函数1m y x -=即可求出m 的值. 【详解】将点A (-1,2)代入反比例函数1m y x-=,得 121m -=-, 解得,m=-1;故答案为:-1.【点睛】本题考查了反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.三、解答题21.为让同学们更好的了解电路,学校实验室购进一批蓄电池,已知蓄电池的电压为定值,同学们在实验过程中得到电流I (A )是电阻R (Ω)的反比例函数,其图象如图所示.(电压=电流×电阻)(1)求蓄电池的电压是多少?(2)若保证电路中的小灯泡发光所需要的电流的范围为212I ≤≤,则求电路中能使小灯泡发光的电阻R 的取值范围.解析:(1)蓄电池的电压是36V ;(2)电阻R 的取值范围是318R ≤≤.【分析】(1)根据“电压=电流×电阻”即可求解;(2)先利用待定系数法即可求出这个反比例函数的解析式,再将212I ≤≤代入即可确定电阻的取值范围.【详解】(1)蓄电池的电压是4×9=36,∴蓄电池的电压是36V ;(2)电流I 是电阻R 的反比例函数,设k I R =, ∵图象经过(9,4), ∴9436k =⨯=,∴36I R=, 当I=2时,18R =,当I=12时,3R =,∵I 随R 的增大而减小,∴电阻R 的取值范围是:318R ≤≤.【点睛】本题考查了反比例函数的应用,解题的关键是正确地从中整理出函数模型,并利用函数的知识解决实际问题.22.如图,已知A 为反比例函数(0)k y x x=<的图像上一点,过点A 作AB y ⊥轴,垂足为B .若OAB 的面积为2,求k 的值.解析:-4【分析】利用反比例函数比例系数k 的几何意义得到12|k|=2,然后根据反比例函数的性质确定k 的值.【详解】解:∵AB ⊥y 轴,∴S △OAB=12|k|=2, 而k <0,∴k=-4.故答案为-4.【点睛】本题考查了反比例函数比例系数k 的几何意义:在反比例函数y=k x 图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是 12|k|,且保持不变. 23.如图,直线AC 与函数()0k y x x=<的图象相交于点()1,6A -,与x 轴交于点C ,且45ACO ∠=︒,点D 是线段AC 上一点.(1)求k 的值; (2)若DOC △与OAC 的面积比为2∶3,求点D 的坐标;(3)将OD 绕点O 逆时针旋转90°得到OD ',点D 恰好落在函数()0k y x x=<的图象上,求点D 的坐标.解析:(1)k=-6;(2)(1,4);(3)(3,2)或(2,3)【分析】(1)将点()1,6A -代入反比例函数解析式中即可求出k 的值;(2)过点D 作DM ⊥x 轴于M ,过点A 作AN ⊥x 轴于N ,根据三角形的面积比可得23DM AN =,再根据点A 的坐标即可求出DM ,然后证出ACN 和DCM 都是等腰直角三角形,即可求出OM ,从而求出结论;(3)过点D 作DM ⊥x 轴于M ,过点A 作AN ⊥x 轴于N ,过点D 作D G ⊥x 轴于G ,设点D 的纵坐标为a (a >0),即DM=a ,然后用a 表示出OM ,利用AAS 证出△G D O ≌△MOD ,即可用a 表示出点D 的坐标,将D 的坐标反比例函数解析式中即可求出a 的值,从而求出点D 的坐标.【详解】解:(1)将点()1,6A -代入k y x=中,得 61k =-解得k=-6;(2)过点D 作DM ⊥x 轴于M ,过点A 作AN ⊥x 轴于N∵DOC △与OAC 的面积比为2∶3 ∴122132OC DM OC AN = ∴23DM AN = ∵()1,6A -∴AN=6,ON=1∴DM=4∵45ACO ∠=︒∴ACN 和DCM 都是等腰直角三角形∴CN=AN=6,CM=DM=4 ∴OM=CN -CM -ON=1 ∴点D 的坐标为(1,4);(3)过点D 作DM ⊥x 轴于M ,过点A 作AN ⊥x 轴于N ,过点D 作D G ⊥x 轴于G设点D 的纵坐标为a (a >0),即DM=a∵ACN 和DCM 都是等腰直角三角形∴CN=AN=6,CM=DM=a∴OM=CN -CM -ON=5-a∴点D 的坐标为(5-a ,a )∵∠D GO=∠OMD=∠D OD=90°∴∠G D O +∠D OG=90°,∠MOD +∠D OG=90°,∴∠G D O=∠MOD由旋转的性质可得D O=OD∴△G D O ≌△MOD∴G D =OM=5-a ,OG=DM=a∴D 的坐标为(-a ,5-a )由(1)知,反比例函数解析式为()06y x x=-< 将D 的坐标代入,得 56a a-=-- 解得:122,3a a ==∴点D 的坐标为(3,2)或(2,3).【点睛】此题考查的是反比例函数与几何图形的综合大题,掌握利用待定系数法求反比例函数解析式、等腰直角三角形的判定及性质、全等三角形的判定及性质和旋转的性质是解题关键. 24.一次函数y = x + b 和反比例函数2y x=(k≠0)交于点A (a ,1)和点B . (1)求一次函数的解析式;(2)求△AOB 的面积;解析:(1)1y x =-;(2)32. 【分析】 (1)分别把A 的坐标代入反比例函数解析式求出a 的值,把A 的坐标代入一次函数解析式得出b 的值,即可求解;(2)先求得点B 的坐标,再求出一次函数与y 轴的交点D 的坐标,根据三角形的面积公式求出△AOD 和△BOD 的面积即可.【详解】(1)∵点A (a ,1)是反比例函数2y x=图象上的点, ∴2y 1a==, ∴2a =, ∴A (2,1),又∵点A 是一次函数y x b =+的图象上的点,∴12b =+,解得,b 1=- ,故一次函数解析式为:1y x =-;(2)联立方程组:y x 12y x =-⎧⎪⎨=⎪⎩,,解得:1212x 2x 1y 1y 2==-⎧⎧⎨⎨==-⎩⎩,, 则()B 12--,, 因为直线1y x =-与y 轴交点D01)-(,,则1OD =, ∴1131211222AOB AOD DOB S S S ∆∆∆=+=⨯⨯+⨯⨯=. 【点睛】本题考查了一次函数与反比例函数的交点问题,用待定系数法求一次函数的解析式,函数的图象等知识点,熟练掌握待定系数法求函数解析式是解题的关键.25.如图,一次函数y =ax +b 的图象与反比例函数的图象交于A (﹣4,2)、B (2,n )两点,且与x 轴交于点C .(1)试确定上述反比例函数和一次函数的表达式;(2)求△AOB 的面积;(3)根据图象写出一次函数的值<反比例函数的值x 的取值范围.解析:(1)反比例函数8y x -=,一次函数y=-x-2;(2)6AOB S ∆=;(3)-4<x <0或x >2.【分析】(1)先根据点A 的坐标求出反比例函数的解析式,再求出B 的坐标是(2,-4),利用待定系数法求一次函数的解析式;(2)求出C 点坐标,再利OC 把△AOB 的面积分成两个部分求解;(3)当一次函数的值<反比例函数的值时,直线在双曲线的下方,直接根据图象得出x 的取值范围.【详解】解:(1)设反比例函数的解析式为k y x =,因为经过A (-4,2), ∴k=-8,∴反比例函数的解析式为8y x-=.因为B (2,n )在8y x -=上, ∴842n ,∴B 的坐标是(2,-4)把A (-4,2)、B (2,-4)代入y=ax+b ,得4224a b a b -+=⎧⎨+=-⎩, 解得:12a b =-⎧⎨=-⎩, ∴y=-x-2;(2)y=-x-2中,当y=0时,x=-2;∴直线y=-x-2和x 轴交点是C (-2,0),∴OC=2∴112422622AOB S ∆=⨯⨯+⨯⨯=; (3)由图象可知-4<x <0或x >2时一次函数的值<反比例函数的值.【点睛】本题主要考查了待定系数法求反比例函数与一次函数的解析式和一次函数与反比例函数综合.这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.26.如图,一次函数y=ax+b 的图象与反比例函数y=k x的图象交于M (-3,1),N (1,n )两点.(1)求这两个函数的表达式;(2)过动点C (m ,0)且垂直于x 轴的直线与一次函数及反比例函数的图象分别交于D 、E 两点,当点E 位于点D 上方时,直接写出m 的取值范围.解析:(1)y=3x-;2y x =--;(2)m >1或-3<m <0 【分析】(1)把M 代入反比例函数的解析式即可求得k 的值,然后求得n 的值,利用待定系数法即可求得一次函数的解析式;(2)先画出两函数的图象,再根据两函数图象的上下位置关系结合交点的横坐标即可得出m 的取值范围.【详解】(1)∵点M (-3,1)和N (1,n )在反比例函数k y x =的图象上, ∴3k =-,3n =-.∴反比例函数表达式为3x=-, 点N 的坐标为N (1,3-),∵点M (-3,1)和N (1,3-)在一次函数y ax b =+的图象上,∴313a b a b -+=⎧⎨+=-⎩, 解得12a b =-⎧⎨=-⎩, ∴一次函数表达式为2y x =--;(2)一次函数2y x =--的图象与反比例函数3y x=-的图象相交于点M (-3,1)和N (1,3-),观察函数图象可知:若过动点C (m ,0)且垂直于x 轴的直线分别与反比例函数图象和一次函数图象交于E 、D 两点,当点E 位于点D 上方时,则m 的取值范围是:m >1或-3<m <0.【点睛】本题是反比例函数与一次函数的综合题,考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征以及待定系数法求函数解析式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.27.如图,直线y=k 1x+b 与双曲线y=2k x相交于A (1,2)、B (m ,﹣1)两点.(1)求直线和双曲线的解析式;(2)若A 1(x 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3)为双曲线上的三点,且x 1<x 2<0<x 3,请直接写出y 1,y 2,y 3的大小关系式;(3)观察图象,请直接写出不等式k 1x+b >2k x 的解集. 解析:(1)双曲线的解析式为:y=2x 直线的解析式为:y=x+1(2)y 2<y 1<y 3(3),x >1或﹣2<x <0【分析】(1)将点A (1,2)代入双曲线y=2k x,求出k 2的值,将B (m ,﹣1)代入所得解析式求出m 的值,再用待定系数法求出k 1x 和b 的值,可得两函数解析式.(2)根据反比例函数的增减性在不同分支上进行研究.(3)根据A 、B 点的横坐标结合图象找出直线在双曲线上方时x 的取值即可.【详解】解:(1)∵双曲线y=2k x 经过点A (1,2),∴k 2=2,∴双曲线的解析式为:y=2x. ∵点B (m ,﹣1)在双曲线y=2x上,∴m=﹣2,则B (﹣2,﹣1). 由点A (1,2),B (﹣2,﹣1)在直线y=k 1x+b 上,得 11k +b=2{2k +b=1--,解得1k =1{b=1. ∴直线的解析式为:y=x+1.(2)∵双曲线y=2x在第三象限内y 随x 的增大而减小,且x 1<x 2<0,∴y 2<y 1<0, 又∵x 3>0,∴y 3>0.∴y 2<y 1<y 3.(3)由图可知,x >1或﹣2<x <0. 28.如图,在平面直角坐标系中,一次函数1y ax b =+的图象与反比例函数2k y x=的图象交于点()A 1,2和()B 2,m -. ()1求一次函数和反比例函数的表达式;()2请直接写出12y y >时,x 的取值范围;()3过点B 作BE //x 轴,AD BE ⊥于点D ,点C 是直线BE 上一点,若AC 2CD =,求点C 的坐标.解析:()1反比例函数的解析式为22y x=,一次函数解析式为:1y x 1=+;()2当2x 0-<<或x 1>时,12y y >;()3当点C 的坐标为()13,1-或)31,1-时,AC 2CD =.【分析】 (1)利用待定系数法求出k ,求出点B 的坐标,再利用待定系数法求出一次函数解析式;(2)利用数形结合思想,观察直线在双曲线上方的情况即可进行解答;(3)根据直角三角形的性质得到∠DAC=30°,根据正切的定义求出CD ,分点C 在点D 的左侧、点C 在点D 的右侧两种情况解答.【详解】()1点()A 1,2在反比例函数2k y x=的图象上, k 122∴=⨯=,∴反比例函数的解析式为22y x=, 点()B 2,m -在反比例函数22y x =的图象上, 2m 12∴==--, 则点B 的坐标为()2,1--,由题意得,{a b 22a b 1+=-+=-,解得,{a 1b 1==,则一次函数解析式为:1y x 1=+; ()2由函数图象可知,当2x 0-<<或x 1>时,12y y >;()3AD BE ⊥,AC 2CD =,DAC 30∠∴=,由题意得,AD 213=+=,在Rt ADC 中,CD tan DAC AD ∠=,即CD 333=, 解得,CD 3=, 当点C 在点D 的左侧时,点C 的坐标为()13,1--,当点C 在点D 的右侧时,点C 的坐标为()31,1+-,∴当点C 的坐标为()13,1--或()31,1+-时,AC 2CD =.【点睛】本题考查一次函数和反比例函数的交点问题,熟练掌握待定系数法求函数解析式的一般步骤、灵活运用分类讨论思想、数形结合思想是解题的关键.。
中考一轮复习反比例函数(知识点梳理+典型例题 )
反比例函数一、反比例函数的概念:一般地,形如 y = xk ( k 是常数, k≠0 ) 的函数叫做反比例函数。
注意:(1)常数 k 称为比例系数,k 是非零常数;(2)解析式有三种常见的表达形式:① y = xk (k ≠ 0) , ② 指数形式:1(0)y kx k -=≠; ③ 乘积形式:(0)xy k k =≠ ※反比例函数解析式可写成xy= k (k≠0)它表明反比例函数中自变量x 与其对应函数值y 之积,总等于常数k(3)自变量x 的取值范围是0x ≠,函数y 的取值范围是0y ≠。
例:点A (-1,1)是反比例函数m y x=的图象上一点,则m 的值为( ) A. 0 B. -2 C. -1 D. 1二、反比例函数的图象(1)形状与位置:反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。
(2)变化趋势:由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴(坐标轴又称为双曲线的渐近线)。
三、反比例函数的性质(1)对称性:反比例函数的图像是关于原点对称的中心对称图形,同时也是轴对称图形,有两条对称轴,分别是一、三象限和二、四象限的角平分线,即直线y x =±。
(注:过原点的直线与双曲线的两个交点关于原点对称)(2)双曲线的位置:当k>0时,双曲线位于一、三象限(x ,y 同号);当k<0时,双曲线位于二、四象限(x ,y 同号异号),反之也成立。
(3)增减性: 当k>0时,双曲线走下坡路,在同一象限内,y 随x 的增大而减小;当k<0时,双曲线走上坡路,在同一象限内,y 随x 的增大而增大。
反之也成立。
※注:① 在利用反比例函数的增减性比较坐标大小时,一定通过画图解决,这是一个易错点);② 在反比例函数y 随x 的变化情况中一定注明在每一个象限内例1 已知反比例函数x y 2-=,下列结论不正确的是( )A .图象必经过点(-1,2)B .y 随x 的增大而增大C .图象在第二、四象限内D .若x >1,则y >-2例2 若ab >0,则一次函数y=ax+b 与反比例函数y=ab x在同一坐标系数中的大致图象是( ) A .B .C . D .例3 若点(﹣3,y 1),(﹣2,y 2),(﹣1,y 3)在反比例函数y=﹣图象上,则下列结论正确的是( )A .y 1>y 2>y 3B .y 2>y 1>y 3C .y 3>y 1>y 2D .y 3>y 2>y 1变式训练:1.正比例函数y=kx 和反比例函数21k y x+=-(k 是常数且k≠0)在同一平面直角坐标系中的图象可能是( ) A .B .C .D . 2.反比例函数y=m x的图象如图所示,以下结论: ①常数m <-1; ②在每个象限内,y 随x 的增大而增大; ③若A (-1,h ),B (2,k )在图象上,则h <k ; ④若P (x ,y )在图象上,则P′(-x ,-y )也在图象上.其中正确的是( )A .①②B .②③C .③④D .①④3.已知点A (1,m ),B (2,n )在反比例函数(0)k y k x=<的图象上,则( ) A. 0m n << B. 0n m << C. 0m n >> D. 0n m >>(4)k 的几何意义:如图,设点P (a ,b )是反比例函数y=xk 上任意一点,作PA ⊥x 轴于A 点,PB ⊥y 轴于B 点,则矩形PBOA 的面积是k (三角形PAO 和三角形PBO 的面积都是k 21;面积是正数,所以k 要加绝对值)例1 如图,点A 是反比例函数(x >0)图象上一点,过点A 作x 轴的平行线,交反比例函数(x >0)的图象于点B ,连接OA 、OB ,若△OAB 的面积为2,则k 的值为______.例2 反比例函数y=(a >0,a 为常数)和y=在第一象限内的图象如图所示,点M在y=的图象上,MC ⊥x 轴于点C ,交y=的图象于点A ;MD ⊥y 轴于点D ,交y=的图象于点B ,当点M 在y=的图象上运动时,以下结论:①S △ODB =S △OCA ; ②四边形OAMB 的面积不变;③当点A 是MC 的中点时,则点B 是MD 的中点.其中正确结论的个数是( )A .0B .1C .2D .3变式训练:1、如图,点A 是反比例函数y=k x(x <0)的图象上的一点,过点A 作平行四边形ABCD ,使点B 、C 在x 轴上,点D 在y 轴上.已知平行四边形ABCD 的面积为6,则k 的值为( )A. 6B. 3C. ﹣6D. ﹣32、如图,直线(0)x t t =>与反比例函数k y x =(x >0)、1y x-=(x >0)的图象分别交于B 、C 两点,A 为y 轴上任意一点,△ABC 的面积为3,则k 的值为( )A. 2B. 3C. 4D. 53、如图,已知双曲线y =k x(k>0)与直角三角形OAB 的直角边AB 相交于点C ,且BC =3AC ,若△OBC 的面积为3,则k =_________.4.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y=的图象上,则k 的值为 .四、直线与双曲线相交(1)交点坐标即为直线关系式和双曲线关系式联立所得方程组的解。
九年级数学下册第二十六章反比例函数重点知识归纳(带答案)
九年级数学下册第二十六章反比例函数重点知识归纳单选题1、如图,在平面直角坐标系中,矩形ABCD 的对角线AC 的中点与坐标原点重合,点E 是x 轴上一点,连接AE .若AD 平分∠OAE ,反比例函数y =k x (k >0,x >0)的图象经过AE 上的两点A ,F ,且AF =EF ,△ABE 的面积为18,则k 的值为( )A .6B .12C .18D .24答案:B分析:先证明OB ∥AE ,得出S △ABE =S △OAE =18,设A 的坐标为(a ,k a ),求出F 点的坐标和E 点的坐标,可得S △OAE =12×3a×k a =18,求解即可.解:如图,连接BD ,∵四边形ABCD 为矩形,O 为对角线,∴AO=OD ,∴∠ODA=∠OAD ,又∵AD 为∠DAE 的平分线,∴∠OAD=∠EAD ,∴∠EAD=∠ODA ,∴OB ∥AE ,∵S △ABE =18,∴S △OAE =18,设A 的坐标为(a ,k a ), ∵AF=EF ,∴F 点的纵坐标为k 2a , 代入反比例函数解析式可得F 点的坐标为(2a ,k 2a ), ∴E 点的坐标为(3a ,0),S △OAE =12×3a×k a =18,解得k=12,故选:B .小提示:本题考查了反比例函数和几何综合,矩形的性质,平行线的判定,得出S △ABE =S △OAE =18是解题关键.2、若反比例函数y =k x 的图象经过点(2,4),则k 的值是( ) A .2B .−2C .8D .−8答案:C分析:把点(2,4)代入y =k x ,求出k 的数值即可. 解:把点(2,4)代入y =k x 得4=k 2, 解得k =8.故选:C .小提示:此题考查利用待定系数法求函数解析式,图象上点的坐标都适合函数解析式解题的关键.3、如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=c x (c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是( )A.﹣3<x<2B.x<﹣3或x>2C.﹣3<x<0或x>2D.0<x<2答案:C分析:一次函数y1=kx+b落在与反比例函数y2= c图象上方的部分对应的自变量的取值范围即为所求.x∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2= c(c是常数,且c≠0)的图象相交于A(﹣3,x﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2,故选C.小提示:本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.的图象上,则x1,x2,x3的大小关系是()4、若点A(x1,−5),B(x2,2),C(x3,5)都在反比例函数y=10xA.x1<x2<x3B.x2<x3<x1C.x1<x3<x2D.x3<x1<x2答案:C分析:因为A,B,C三点均在反比例函数上,故可将点代入函数,求解x1,x2,x3,然后直接比较大小即可.,可求得x1=−2,x2=5,x3=2,比较其大小可得:x1<x3<x2.将A,B,C三点分别代入y=10x故选:C.小提示:本题考查反比例函数比较大小,解答本类型题可利用画图并结合图像单调性判别,或者直接代入对应数值求解即可.(k为常数,且k≠0)的图象大致( )5、在同一平面直角坐标系中,函数y=x−k与y=kxA .B .C .D .答案:A 分析:根据题目中的函数解析式,利用分类讨论的方法可以判断哪个选项中图象是正确的,本题得以解决. 解:∵函数y =x −k 与y =k x (k 为常数,且k≠0), ∴当k >0时,y =x −k 经过第一、三、四象限,y =k x 经过第一、三象限,故选项A 正确,选项B 错误; 当k <0时,y =x −k 经过第一、二、三象限,y =k x 经过第二、四象限,故选项C 错误,选项D 错误, 故选:A .小提示:本题考查反比例函数的图象、一次函数的图象,熟练掌握是解题的关键.6、如图,在平面直角坐标系中,菱形ABCD 的顶点A ,B 在反比例函数y =k x (k >0,x >0)的图象上,横坐标分别为1,4,对角线BD ∥x 轴.若菱形ABCD 的面积为452,则k 的值为( )A .54B .154C .4D .5答案:D分析:设A(1,m),B(4,n),连接AC 交BD 于点M ,BM=4-1=3,AM=m-n ,由菱形的面积可推得m-n=154,再根据反比例函数系数的特性可知m=4n ,从而可求出n 的值,即可得到k 的值.设A(1,m),B(4,n),连接AC 交BD 于点M ,则有BM=4-1=3,AM=m-n ,∴S 菱形ABCD =4×12BM•AM , ∵S 菱形ABCD =452,∴4×12×3(m-n )=452,∴m-n=154,又∵点A ,B 在反比例函数y =k x , ∴k=m=4n ,∴n=54,∴k=4n=5,故选D.小提示:本题考查了反比例函数k 的几何意义、菱形的性质、菱形的面积等,熟记菱形的对角线互相垂直平分是解题的关键.7、一次函数y =mx +n 的图像与反比例函数y =m x 的图像交于点A 、B ,其中点A 、B 的坐标为A (-1m ,-2m )、B (m ,1),则△OAB 的面积( )A .3B .134C .72D .154答案:D分析:将点A 的坐标代入可确定反比例函数关系式,进而确定点B 的坐标,再利用待定系数法求出一次函数关系式;求出直线AB 与y 轴交点D 的坐标,确定OD 的长,再根据三角形的面积公式进行计算即可.解:∵A (-1m ,-2m )在反比例函数y =m x 的图像上, ∴m =(-1m ) • ( -2m )=2,∴反比例函数的解析式为y =2x ,∴B (2,1),A (-12,-4), 把B (2,1)代入y =2x +n 得1=2×2+n ,∴n =-3,∴直线AB 的解析式为y =2x -3,直线AB 与y 轴的交点D (0,-3),∴OD =3,∴S △AOB =S △BOD +S △AOD=12×3×2+12×3×12 =154.故选:D . .小提示:本题考查一次函数与反比例函数的交点,把点的坐标代入函数关系式是解决问题常用的方法.8、为了响应“绿水青山就是金山银山”的号召,建设生态文明,某工厂自2019年1月开始限产进行治污改造,其月利润y (万元)与月份x 之间的变化如图所示,治污完成前是反比例函数图象的一部分,治污完成后是一次函数图象的一部分,下列选项错误..的是( )A.4月份的利润为50万元B.治污改造完成后每月利润比前一个月增加30万元C.治污改造完成前后共有4个月的利润低于100万元D.9月份该厂利润达到200万元答案:C分析:直接利用已知点求出一次函数与反比例函数的解析式进而分别分析得出答案.A、设反比例函数的解析式为y=kx,把(1,200)代入得,k=200,∴反比例函数的解析式为:y=200x,当x=4时,y=50,∴4月份的利润为50万元,正确意;B、治污改造完成后,从4月到6月,利润从50万到110万,故每月利润比前一个月增加30万元,正确;C、当y=100时,则100=200x,解得:x=2,则只有3月,4月,5月共3个月的利润低于100万元,不正确.D、设一次函数解析式为:y=kx+b,则{4k+b=506k+b=110,解得:{k=30b=−70,故一次函数解析式为:y=30x−70,故y=200时,200=30x−70,解得:x=9,则治污改造完成后的第5个月,即9月份该厂利润达到200万元,正确.故选:C.小提示:此题主要考查了一次函数与反比函数的应用,正确得出函数解析式是解题关键.(k≠0)的图象经过点(2,−3),则它的图象也一定经过的点是()9、若反比例函数y=kxA.(−2,−3)B.(−3,−2)C.(1,−6)D.(6,1)答案:C分析:先利用反比例函数y=k(k≠0)的图象经过点(2,−3),求出k的值,再分别计算选项中各点的横纵坐x标之积,然后根据反比例函数图象上点的坐标特征进行判断.(k≠0)的图象经过点(2,−3),解:∵反比例函数y=kx∴k=2×(﹣3)=﹣6,∵(﹣2)×(﹣3)=6≠﹣6,(﹣3)×(﹣2)=6≠﹣6,1×(﹣6)=﹣6,,6×1=6≠﹣6,则它一定还经过(1,﹣6),故选:C.小提示:本题考查了反比例函数图象上点的坐标特征:反比例函数y=k(k≠0)的图象是双曲线,图象上的点x(x,y)的横纵坐标的积是定值k,即xy=k.熟练掌握反比例函数的性质是解题的关键.(x>0)图象上的一点,过点A作x轴的平行线交y轴于点B,连接OA,如果10、如图,点A为函数y=kx△AOB的面积为2,那么k的值为()A.1B.2C.3D.4答案:Dmn=2,所以mn=4,设点A坐标为(m,n),则有AB=m,OB=n,由题意可得:12又点A在双曲线y=k上,所以k=mn=4,x故选D.填空题的图象相交于点M(1,m),N(﹣2,n).若y1<y2,则x的取值范围11、如图,函数y1=x+1与函数y2=2x是x<﹣2或 _____.答案:0<x<1分析:观察函数图象,找出一次函数图象在反比例函数图象的下方时对应的x的取值范围即可.解:由图象可知,y1<y2时的x的取值范围为:x<−2或0<x<1,所以答案是:0<x<1.小提示:本题主要考查了反比例函数图象与一次函数图象的交点问题,能利用数形结合求出不等式的解集是解答此题的关键.的图象交于M,N两点.若点M的坐标是(1,2),则点N的坐标12、如图,已知直线y=2x与反比例函数y=2x是______.答案:(-1,-2)分析:直接利用正比例函数和反比例函数的性质得出M,N两点关于原点对称,进而得出答案.解:∵直线y=2x与反比例函数y=2x的图象交于M,N两点,∴M,N两点关于原点对称,∵点M的坐标是(1,2),∴点N的坐标是(-1,-2).所以答案是:(-1,-2).小提示:此题主要考查了反比例函数与正比例函数图象的性质,正确得出M,N两点位置关系是解题关键.13、如图,点A是反比例函数y=kx(x<0)图象上一点,过点A作AB⊥y轴于点D,且点D为线段AB的中点.若点C为x轴上任意一点,且△ABC的面积为4,则k=______________.答案:−4分析:设点A(a,ka ),利用S△ABC=12×(−2a)×ka=4即可求出k的值.解:设点A(a,ka),∵点D为线段AB的中点.AB⊥y轴∴AB=2AD=−2a,又∵S△ABC=12×(−2a)×ka=4,∴k=−4.所以答案是:−4小提示:本题考查利用面积求反比例函数的k的值,解题的关键是找出S△ABC=12×(−2a)×ka=4.14、已知反比例函数y=−k2−1x图象上的三个点(x1,y1),(x2,y2),(x3,y3),其中x1<0<x2<x3,则y1,y2,y3的大小关系是______(用“<”连接).答案:y2<y3<y1分析:根据平方的非负性得出−k2−1<0,再分析反比例函数y=−k2−1x图象上点的坐标特征解答即可.解:∵反比例函数y=−k2−1x中,−k2−1<0,∴反比例函数图象位于第二,第四象限内,且每一象限内y随x的增大而增大.∵点(x1,y1),(x2,y2),(x3,y3)在反比例函数y=−k2−1x图象上,且x1<0<x2<x3,∴y2<y3<0<y1,∴y2<y3<y1.所以答案是:y2<y3<y1.小提示:本题考查了根据反比例函数图象的性质比较反比例函数值的大小,根据平方的非负性判断反比例函数图象所处的象限,并熟练掌握反比例函数图象上点的坐标特征是解题的关键.15、正比例函数y=kx与反比例函数y=1x的图象交于A(x1,y1)、B(x2,y2)两点,则代数式x1y2+x2y1的值是_________.答案:-2分析:联立方程组,用含k的式子表示x1,x2,y1,y2,再代入求解即可.解:正比例函数y=kx与反比例函数y=1x的图象交于A(x1,y1)、B(x2,y2)两点,∴{y =kx y =1x解得:{x 1=√k k y 1=√k 或{x 2=−√k k y 2=−√k,∴x 1y 2+x 2y 1=√k k ×(−√k)+(−√k k )×√k =−2,所以答案是:-2.小提示:本题考查了正比例函数与反比例函数的交点问题和解二元一次方程组,联立方程组求解是解题的关键.解答题16、定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点(1,1)是函数y =12x +12的图象的“等值点”.(1)分别判断函数y =x +2,y =x 2−x 的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,说明理由;(2)设函数y =3x (x >0),y =−x +b 的图象的“等值点”分别为点A ,B ,过点B 作BC ⊥x 轴,垂足为C .当△ABC 的面积为3时,求b 的值;(3)若函数y =x 2−2(x ≥m)的图象记为W 1,将其沿直线x =m 翻折后的图象记为W 2.当W 1,W 2两部分组成的图象上恰有2个“等值点”时,直接写出m 的取值范围.答案:(1)函数y =x +2没有“等值点”; 函数y =x 2−x 的“等值点”为(0,0),(2,2);(2)b =4√3或−2√3;(3)m <−98或−1<m <2.. 分析:(1)根据定义分别求解即可求得答案;(2)根据定义分别求A (√3,√3),B (b 2,b 2),利用三角形面积公式列出方程求解即可;(3)由记函数y =x 2-2(x ≥m )的图象为W 1,将W 1沿x =m 翻折后得到的函数图象记为W 2,可得W 1与W 2的图象关于x =m 对称,然后根据定义分类讨论即可求得答案.解:(1)∵函数y =x +2,令y =x ,则x +2=x ,无解,∴函数y =x +2没有“等值点”;∵函数y=x2−x,令y=x,则x2−x=x,即x(x−2)=0,解得:x1=2,x2=0,∴函数y=x2−x的“等值点”为(0,0),(2,2);(2)∵函数y=3x,令y=x,则x2=3,解得:x=√3(负值已舍),∴函数y=3x的“等值点”为A(√3,√3);∵函数y=−x+b,令y=x,则x=−x+b,解得:x=b2,∴函数y=−x+b的“等值点”为B(b2,b2);△ABC的面积为12BC•|x B−x A|=12•|b2|•|b2−√3|=3,即b2−2√3b−24=0,解得:b=4√3或−2√3;(3)将W1沿x=m翻折后得到的函数图象记为W2.∴W1与W2两部分组成的函数W的图象关于x=m对称,∴函数W的解析式为{y=x2−2(x≥m)y=(2m−x)2−2(x<m),令y=x,则x2−2=x,即x2−x−2=0,解得:x1=2,x2=−1,∴函数y=x2−2的“等值点”为(-1,-1),(2,2);令y=x,则(2m−x)2−2=x,即x2−(4m+1)x+4m2−2=0,当m≥2时,函数W的图象不存在恰有2个“等值点”的情况;当−1<m<2时,观察图象,恰有2个“等值点”;当m<−1时,∵W1的图象上恰有2个“等值点”(-1,-1),(2,2),∴函数W2没有“等值点”,∴△=[−(4m+1)]2−4×1×(4m2−2)<0,整理得:8m+9<0,解得:m<−98.综上,m的取值范围为m<−98或−1<m<2.小提示:本题属于二次函数的综合题,考查了二次函数、反比例函数、一次函数的性质以及函数的对称性.解答本题的关键是明确题意,找出所求问题需要的条件.17、如图,点A(a,2)在反比例函数y=4x 的图象上,AB//x轴,且交y轴于点C,交反比例函数y=kx于点B,已知AC=2BC.(1)求直线OA的解析式;的解析式;(2)求反比例函数y=kx上一动点,连接AD交y轴于点E,当E为AD中点时,求△OAD的面积.(3)点D为反比例函数y=kx;(3)3.答案:(1)y=x;(2)y=−2x分析:(1)先求解A的坐标,再把A的坐标代入正比例函数y=mx,解方程即可得到答案;(2)利用AC=2BC,先求解B的坐标,再利用待定系数法求解解析式即可;),而A(2,2),E为AD的中点,利用中点坐标公式求解D,E的坐标,再利用S△OAD=S△ODE+(3)设D(n,−2nOE(|x A|+|x D|),计算即可得到答案.S△OAE=12的图象上,解:(1)∵点A(a,2)在反比例函数y=4x∴2a=4,a=2,则A(2,2),∴AC=2,设直线AO为:y=mx,∴2m=2,则m=1,所以直线AO为:y=x,(2)∵AB//x轴,AC=2BC=2.∴BC=1,∴B(−1,2),∴k=xy=−1×2=−2,.所以反比例函数为:y=−2x(3)设D(n,−2n),而A(2,2),E为AD的中点,∴x E=12(2+n)=0,∴n=−2,∴D(−2,1),E(0,32),∴S△OAD=S△ODE+S△OAE=12OE(|x A|+|x D|)=12×32×(2+2)=3.小提示:本题考查的利用待定系数法求解一次函数与反比例函数的解析式,图形与坐标,中点坐标公式,熟练应用以上知识解题是关键.18、如图,一次函数y=k1x+b与反比例函数y=k2x(x>0)的图象交于A(1,6),B(3,n)两点.(1)求反比例函数的解析式和n的值;(2)根据图象直接写出不等式k1x+b<k2x的x的取值范围;(3)求△AOB的面积.答案:(1)y=6x,2;(2)0<x<1或x>3;(3)8分析:(1)把A的坐标代入反比例函数解析式即可求得k2的值,然后把x=3代入即可求得n的值;(2)根据一次函数和反比例函数的图象即可直接求解;(3)利用待定系数法求得一次函数的解析式,设直线与x轴相交于点C,然后根据S△AOB=S△AOC−S△BOC即可求解.解:(1)∵A(1,6)在y=k2x的图象上,∴k2=6,∴反比例函数的解析式是y =6x . 又∵B(3,n)在y =k 2x 的图象上,∴n =63=2; (2)由图像可知:当0<x <1或x >3时,k 1x +b <k 2x ;(3)∵A(1,6),B(3,2)在函数y =k 1x +b 的图象上,∴ {k 1+b =63k 1+b =2, 解得:{k 1=−2b =8, 则一次函数的解析式是y =−2x +8, 设直线y =−2x +8与x 轴相交于点C ,则C 的坐标是(4,0).∴S △AOB =S △AOC −S △BOC=12OC ⋅|y A |−12OC ⋅|y B | =12×4×6−12×4×2 =8.小提示:本题考查了反比例函数和一次函数的综合,熟练掌握待定系数法求函数的解析式是解决本题的关键.。
反比例函数篇(解析版)--中考数学必考考点总结+题型专训
知识回顾微专题反比例函数--中考数学必考考点总结+题型专训考点一:反比例函数之定义、图像与性质1.反比例函数的定义:形如()0≠=k xky 的函数叫做反比例函数。
有时也用k xy =或1-=kx y 表示。
2.反比例函数的图像:反比例函数的图像是双曲线。
3.反比例函数的性质与图像:反比例函数()0≠=k xky k 的符号>k 0<k 所在象限一、三象限二、四象限大致图像增减性在一个支上(每一个象限内),y 随x 的增大而减小。
在一个支上(每一个象限内),y随x 的增大而增大。
对称性图像关于原点对称1.(2022•黔西南州)在平面直角坐标系中,反比例函数y =xk(k ≠0)的图象如图所示,则一次函数y =kx +2的图象经过的象限是()A .一、二、三B .一、二、四C .一、三、四D .二、三、四【分析】先根据反比例函数的图象位于二,四象限,可得k <0,由一次函数y =kx +2中,k <0,2>0,可知它的图象经过的象限.【解答】解:由图可知:k <0,∴一次函数y =kx +2的图象经过的象限是一、二、四.故选:B .2.(2022•上海)已知反比例函数y =xk(k ≠0),且在各自象限内,y 随x 的增大而增大,则下列点可能在这个函数图象上的为()A .(2,3)B .(﹣2,3)C .(3,0)D .(﹣3,0)【分析】根据反比例函数的性质判断即可.【解答】解:因为反比例函数y =(k ≠0),且在各自象限内,y 随x 的增大而增大,所以k <0,A .2×3=6>0,故本选项不符合题意;B .﹣2×3=﹣6<0,故本选项符合题意;C .3×0=0,故本选项不符合题意;D .﹣3×0=0,故本选项不符合题意;故选:B .3.(2022•广东)点(1,y 1),(2,y 2),(3,y 3),(4,y 4)在反比例函数y =x4图象上,则y 1,y 2,y 3,y 4中最小的是()A .y 1B .y 2C .y 3D .y 4【分析】根据k >0可知增减性:在每一象限内,y 随x 的增大而减小,根据横坐标的大小关系可作判断.【解答】解:∵k =4>0,∴在第一象限内,y 随x 的增大而减小,∵(1,y 1),(2,y 2),(3,y 3),(4,y 4)在反比例函数y =图象上,且1<2<3<4,∴y 4最小.故选:D .4.(2022•云南)反比例函数y =x6的图象分别位于()A .第一、第三象限B .第一、第四象限C .第二、第三象限D .第二、第四象限【分析】根据反比例函数的性质,可以得到该函数图象位于哪几个象限,本题得以解决.【解答】解:反比例函数y =,k =6>0,∴该反比例函数图象位于第一、三象限,故选:A .5.(2022•镇江)反比例函数y =xk(k ≠0)的图象经过A (x 1,y 1)、B (x 2,y 2)两点,当x 1<0<x 2时,y 1>y 2,写出符合条件的k 的值(答案不唯一,写出一个即可).【分析】先根据已知条件判断出函数图象所在的象限,再根据系数k 与函数图象的关系解答即可.【解答】解:∵反比例函数y =(k ≠0)的图像经过A (x 1,y 1)、B (x 2,y 2)两点,当x 1<0<x 2时,y 1>y 2,∴此反比例函数的图象在二、四象限,∴k <0,∴k 可为小于0的任意实数,例如,k =﹣1等.故答案为:﹣1.6.(2022•福建)已知反比例函数y =xk的图象分别位于第二、第四象限,则实数k 的值可以是.(只需写出一个符合条件的实数)【分析】根据图象位于第二、四象限,易知k <0,写一个负数即可.∴k <0,∴k 取值不唯一,可取﹣3,故答案为:﹣3(答案不唯一).7.(2022•成都)在平面直角坐标系xOy 中,若反比例函数y =xk 2的图象位于第二、四象限,则k 的取值范围是.【分析】根据反比例函数的性质列不等式即可解得答案.【解答】解:∵反比例函数y =的图象位于第二、四象限,∴k ﹣2<0,解得k <2,故答案为:k <2.8.(2022•襄阳)二次函数y =ax 2+bx +c 的图象如图所示,则一次函数y =bx +c 和反比例函数y =xa在同一平面直角坐标系中的图象可能是()A .B .C .D .【分析】根据二次函数图象开口向下得到a <0,再根据对称轴确定出b ,根据与y 轴的交点确定出c <0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.【解答】解:∵二次函数图象开口方向向下,∴a <0,∵对称轴为直线x =﹣>0,∴b >0,∵与y 轴的负半轴相交,∴c <0,∴y =bx +c 的图象经过第一、三、四象限,反比例函数y =图象在第二四象限,只有D 选项图象符合.故选:D .9.(2022•菏泽)根据如图所示的二次函数y =ax 2+bx +c 的图象,判断反比例函数y =xa与一次函数y =bx +c 的图象大致是()A.B.C.D.【分析】先根据二次函数的图象,确定a、b、c的符号,再根据a、b、c的符号判断反比例函数y=与一次函数y=bx+c的图象经过的象限即可.【解答】解:由二次函数图象可知a>0,c<0,由对称轴x=﹣>0,可知b<0,所以反比例函数y=的图象在一、三象限,一次函数y=bx+c图象经过二、三、四象限.故选:A.c 10.(2022•安顺)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则一次函数y=ax+b和反比例函数y=x(c≠0)在同一直角坐标系中的图象可能是()A.B.C.D.【分析】直接利用二次函数图象经过的象限得出a,b,c的取值范围,进而利用一次函数与反比例函数的性质得出答案.【解答】解:∵二次函数y=ax2+bx+c的图象开口向上,∴a>0,∵该抛物线对称轴位于y轴的右侧,∴a、b异号,即b<0.∵抛物线交y轴的负半轴,∴c <0,∴一次函数y =ax +b 的图象经过第一、三、四象限,反比例函数y =(c ≠0)在二、四象限.故选:A .11.(2022•西藏)在同一平面直角坐标系中,函数y =ax +b 与y =axb(其中a ,b 是常数,ab ≠0)的大致图象是()A .B .C .D .【分析】根据a 、b 的取值,分别判断出两个函数图象所过的象限,要注意分类讨论.【解答】解:若a >0,b >0,则y =ax +b 经过一、二、三象限,反比例函数y =(ab ≠0)位于一、三象限,若a >0,b <0,则y =ax +b 经过一、三、四象限,反比例函数数y =(ab ≠0)位于二、四象限,若a <0,b >0,则y =ax +b 经过一、二、四象限,反比例函数y =(ab ≠0)位于二、四象限,若a <0,b <0,则y =ax +b 经过二、三、四象限,反比例函数y =(ab ≠0)位于一、三象限,故选:A .12.(2022•张家界)在同一平面直角坐标系中,函数y =kx +1(k ≠0)和y =xk(k ≠0)的图象大致是()A .B .C .D .【分析】分k >0或k <0,根据一次函数与反比例函数的性质即可得出答案.【解答】解:当k >0时,一次函数y =kx +1经过第一、二、三象限,反比例函数y =位于第一、三象限;当k <0时,一次函数y =kx +1经过第一、二、四象限,反比例函数y =位于第二、四象限;故选:D .13.(2022•绥化)已知二次函数y =ax 2+bx +c 的部分函数图象如图所示,则一次函数y =ax +b 2﹣4ac 与反比例函数y =xcb a ++24在同一平面直角坐标系中的图象大致是()A .B .C .D .【分析】由二次函数y =ax 2+bx +c 的部分函数图象判断a ,b 2﹣4ac 及4a +2b +c 的符号,即可得到答案.【解答】解:∵二次函数y =ax 2+bx +c 的部分函数图象开口向上,∴a >0,∵二次函数y =ax 2+bx +c 的部分函数图象顶点在x 轴下方,开口向上,∴二次函数y =ax 2+bx +c 的图象与x 轴有两个交点,b 2﹣4ac >0,∴一次函数y =ax +b 2﹣4ac 的图象位于第一,二,三象限,由二次函数y =ax 2+bx +c 的部分函数图象可知,点(2,4a +2b +c )在x 轴上方,∴4a +2b +c >0,∴y =的图象位于第一,三象限,据此可知,符合题意的是B ,故选:B .14.(2022•贺州)已知一次函数y =kx +b 的图象如图所示,则y =﹣kx +b 与y =xb的图象为()A .B .C .D .【分析】本题形数结合,根据一次函数y =kx +b 的图象位置,可判断k 、b 的符号;再由一次函数y =﹣kx +b ,反比例函数y =中的系数符号,判断图象的位置.经历:图象位置﹣系数符号﹣图象位置.【解答】解:根据一次函数y =kx +b 的图象位置,可判断k >0、b >0.所以﹣k <0.再根据一次函数和反比例函数的图像和性质,故选:A .15.(2022•广西)已知反比例函数y =xb(b ≠0)的图象如图所示,则一次函数y =cx ﹣a (c ≠0)和二次函数y =ax 2+bx +c (a ≠0)在同一平面直角坐标系中的图象可能是()A .B .C .D .【分析】本题形数结合,根据反比例函数y =(b ≠0)的图象位置,可判断b >0;再由二次函数y =ax 2+bx +c (a ≠0)的图象性质,排除A ,B ,再根据一次函数y =cx ﹣a (c ≠0)的图象和性质,排除C .【解答】解:∵反比例函数y =(b ≠0)的图象位于一、三象限,∴b >0;∵A 、B 的抛物线都是开口向下,∴a <0,根据同左异右,对称轴应该在y 轴的右侧,故A 、B 都是错误的.∵C 、D 的抛物线都是开口向上,∴a >0,根据同左异右,对称轴应该在y 轴的左侧,∵抛物线与y 轴交于负半轴,∴c <0由a >0,c <0,排除C .故选:D .16.(2022•滨州)在同一平面直角坐标系中,函数y =kx +1与y =﹣xk(k 为常数且k ≠0)的图象大致是()A .B .C .D .【分析】根据一次函数和反比例函数的性质即可判断.【解答】解:当k >0时,则﹣k <0,一次函数y =kx +1图象经过第一、二、三象限,反比例函数图象在第二、四象限,所以A 选项正确,C 选项错误;当k <0时,一次函数y =kx +1图象经过第一、二,四象限,所以B 、D 选项错误.故选:A .17.(2022•德阳)一次函数y =ax +1与反比例函数y =﹣xa在同一坐标系中的大致图象是()A .B .C .D .【分析】根据一次函数与反比例函数图象的特点,可以从a >0,和a <0,两方面分类讨论得出答案.【解答】解:分两种情况:(1)当a >0,时,一次函数y =ax +1的图象过第一、二、三象限,反比例函数y =﹣图象在第二、四象限,无选项符合;(2)当a <0,时,一次函数y =ax +1的图象过第一、二、四象限,反比例函数y =﹣图象在第一、三象限,故B 选项正确.故选:B .18.(2022y =xk(k ≠0)的图象经过点(﹣2,4),那么该反比例函数图象也一定经过点()A .(4,2)B .(1,8)C .(﹣1,8)D .(﹣1,﹣8)【分析】先把点(﹣2,4)代入反比例函数的解析式求出k 的值,再对各选项进行逐一判断即可.【解答】解:∵反比例函数y =(k ≠0)的图象经过点(﹣2,4),∴k =﹣2×4=﹣8,A 、∵4×2=8≠﹣8,∴此点不在反比例函数的图象上,故本选项错误;B 、∵1×8=8≠﹣8,∴此点不在反比例函数的图象上,故本选项错误;C 、﹣1×8=﹣8,∴此点在反比例函数的图象上,故本选项正确;D 、(﹣1)×(﹣8)=8≠﹣8,∴此点不在反比例函数的图象上,故本选项错误.故选:C .19.(2022•襄阳)若点A (﹣2,y 1),B (﹣1,y 2)都在反比例函数y =x2的图象上,则y 1,y 2的大小关系是()A .y 1<y 2B .y 1=y 2C .y 1>y 2D .不能确定【分析】根据反比例函数图象上点的坐标特征即可求解.【解答】解:∵点A (﹣2,y 1),B (﹣1,y 2)都在反比例函数y =的图象上,k =2>0,∴在每个象限内y 随x 的增大而减小,∵﹣2<﹣1,∴y 1>y 2,故选:C .20.(2022•海南)若反比例函数y =xk(k ≠0)的图象经过点(2,﹣3),则它的图象也一定经过的点是()A .(﹣2,﹣3)B .(﹣3,﹣2)C .(1,﹣6)D .(6,1)【分析】将(2,﹣3)代入y =(k ≠0)即可求出k 的值,再根据k =xy 解答即可.【解答】解:∵反比例函数y =(k ≠0)的图象经过点(2,﹣3),∴k =2×(﹣3)=﹣6,A 、﹣2×(﹣3)=6≠﹣6,故A 不正确,不符合题意;B 、(﹣3)×(﹣2)=6≠﹣6,故B 不正确,不符合题意;C 、1×(﹣6)=﹣6,故C 正确,符合题意,D 、6×1=6≠﹣6,故D 不正确,不符合题意.故选:C .21.(2022•武汉)已知点A (x 1,y 1),B (x 2,y 2)在反比例函数y =x6的图象上,且x 1<0<x 2,则下列结论一定正确的是()A .y 1+y 2<0B .y 1+y 2>0C .y 1<y 2D .y 1>y 2【分析】先根据反比例函数y =判断此函数图象所在的象限,再根据x 1<0<x 2判断出A (x 1,y 1)、B(x 2,y 2)所在的象限即可得到答案.【解答】解:∵反比例函数y =中的6>0,∴该双曲线位于第一、三象限,且在每一象限内y 随x 的增大而减小,∵点A (x 1,y 1),B (x 2,y 2)在反比例函数y =的图象上,且x 1<0<x 2,∴点A 位于第三象限,点B 位于第一象限,∴y 1<y 2.故选:C .22.(2022•天津)若点A (x 1,2),B (x 2,﹣1),C (x 3,4)都在反比例函数y =x8的图象上,则x 1,x 2,x 3的大小关系是()A .x 1<x 2<x 3B .x 2<x 3<x 1C .x 1<x 3<x 2D .x 2<x 1<x 3【分析】根据函数解析式算出三个点的横坐标,再比较大小.【解答】解:点A (x 1,2),B (x 2,﹣1),C (x 3,4)都在反比例函数y =的图象上,∴x 1==4,x 2==﹣8,x 3==2.∴x 2<x 3<x 1,故选:B .23.(2022•淮安)在平面直角坐标系中,将点A (2,3)向下平移5个单位长度得到点B ,若点B 恰好在反比例函数y =xk的图象上,则k 的值是.【分析】点A (2,3)向下平移5个单位长度得到点B (2,﹣2),代入y =利用待定系数法即可求得k 的值.【解答】解:将点A (2,3)向下平移5个单位长度得到点B ,则B (2,﹣2),∵点B 恰好在反比例函数y =的图像上,∴k =2×(﹣2)=﹣4,故答案为:﹣4.24.(2022•北京)在平面直角坐标系xOy 中,若点A (2,y 1),B (5,y 2)在反比例函数y =xk(k >0)的图象上,则y 1y 2(填“>”“=”或“<”).【分析】先根据函数解析式中的比例系数k 确定函数图象所在的象限,再根据各象限内点的坐标特征及函数的增减性解答.【解答】解:∵k >0,∴反比例函数y =(k >0)的图象在一、三象限,∵5>2>0,知识回顾微专题∴点A (2,y 1),B (5,y 2)在第一象限,y 随x 的增大而减小,∴y 1>y 2,故答案为:>.考点二:反比例函数之综合应用1.反比例函数k 的集合意义:①过反比例函数图像上任意一点作坐标轴的垂线,两垂线与坐标轴构成一个矩形,矩形的面积等于k 。
人教版初三数学9年级下册 第26章(反比例函数)复习讲义及例题和习题(含答案)
第二十六章 反比例函数本章知识结构图:中考说明中对本章知识的要求:考试内容A 层次B 层次C 层次反比例函数能结合具体情境了解反比例函数的意义;能画出反比例函数的图象;理解反比例函数的性质能根据已知条件确定反比例函数的解析式;能用反比例函数的知识解决有关问题主要内容:1.定义:一般地,形如)0(≠=k k x ky 是常数,且的函数,叫反比例函数. 反比例函数的解析式有三种形式:(1)xky =(k ≠0的常数);(2)k xy =(k ≠0的常数);(3)1-=kx y (k ≠0的常数).2. 反比例函数的图象及性质:(1)反比例函数的图象是双曲线;(2)当k >0时,两支曲线分别位于第一、三象限,在每一象限内,y 的值随x 值的增大而减小;当k <0时,两支曲线分别位于第二、四象限,在每一象限内,y 的值随x 值的增大而增大;(3)反比例函数图象的两个分支无限接近x 轴和y 轴,但永远不会与x 轴和y 轴相交;(4)反比例函数的图象是对称图形,反比例函数的图象既是轴对称图形又是中心对称图形:①)0(≠=k x ky 是轴对称图形,其对称轴为x y x y -==和两条直线;②)0(≠=k x ky 是中心对称图形,对称中心为原点(0,0)。
③xky x k y -==和在同一坐标系中的图像关于x 轴、y 轴成轴对称。
(5)反比例函数的几何意义:在反比例函数)0(≠=k xky 的图象上任取一点M ,从几何意义上看,从点M 向两轴作垂线,两垂线段与坐标轴所围成的矩形的面积为定值k ;(6)k 越大,双曲线越远离原点。
3.反比例函数在代数、几何及实际问题中的应用。
四、例题与习题:1.下面的函数是反比例函数的是 ( )A . 13+=x yB .x x y 22+= C . 2xy =D .xy 2=2.用电器的输出功率与通过的电流、用电器的电阻之间的关系是,下面说法正确的是()A .为定值,与成反比例B .为定值,与成反比例C .为定值,与成正比例D .为定值,与成正比例3.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m 3)是体积V (单位:m 3)的反比例函数,它的图象如图3所示,当310m V =时,气体的密度是( )A .5kg/m 3B .2kg/m 3C .100kg/m 3D .1kg/m 34. 已知三角形的面积一定,则它底边上的高与底边之间的函数关系的图象大致是( )B .C .D .5.某物体对地面的压力为定值,物体对地面的压强p (Pa )与受力面积S (m 2)之间的函数关系如图所示,这一函数表达式为p = .6.点在反比例函数的图象上,则 .7.点(3,-4)在反比例函数ky x=的图象上,则下列各点中,在此图象上的是( )A.(3,4)B. (-2,-6)C.(-2,6)D.(-3,-4)P I R 2P I R =P I R P 2I R P I R P 2I R a h a (231)P m -,1y x=m =8.已知某反比例函数的图象经过点()m n ,,则它一定也经过点( )A .()m n -,B .()n m ,C .()m n -,D .()m n ,9.已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为 .10.已知n 是正整数,n P (n x ,n y )是反比例函数xky =图象上的一列点,其中1x 1=,2x 2=,…,n x n =,记211y x T =,322y x T =,…,1099y x T =;若1T 1=,则921T T T ⋅⋅⋅⋅⋅⋅的值是_________.11.在平面直角坐标系中,将点(53)P ,向左平移6个单位,再向下平移1个单位,恰好在函数ky x=的图象上,则此函数的图象分布在第 象限.12.对于反比例函数(),下列说法不正确的是( )A. 它的图象分布在第一、三象限B. 点(,)在它的图象上C. 它的图象是中心对称图形D. 每个象限内,随的增大而增大13. 一个函数具有下列性质:①它的图像经过点(-1,1);②它的图像在二、四象限内; ③在每个象限内,函数值y 随自变量x 的增大而增大.则这个函数的解析式可以为 .14.已知反比例函数y =x2k -的图象位于第一、第三象限,则k 的取值范围是( ).(A )k >2 (B ) k ≥2(C )k ≤2(D ) k <215.若反比例函数的图象经过点,其中,则此反比例函数的图象在( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限16.若反比例函数1k y x-=的图象在其每个象限内,y 随x 的增大而减小,则k 的值可以是( )A.-1B.3C.0D.-317.若点00()x y ,在函数ky x=(0x <)的图象上,且002x y =-,则它的图象大致是( )18.设反比例函数中,在每一象限内,随的增大而增大,则一次函数的图象不经过()xk y 2=0≠k k k y x ky x=(3)m m ,0m ≠)0(≠-=k xky y x k kx y -=A .B .C .D .(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限19.如果点11()A x y ,和点22()B x y ,是直线y kx b =-上的两点,且当12x x <时,12y y <,那么函数ky x=的图象大致是( )20.若()A a b ,,(2)B a c -,两点均在函数1y x=的图象上,且0a <,则b 与c 的大小关系为( )A .b c>B .b c<C .b c=D .无法判断21.已知点A (3,y 1),B (-2,y 2),C (-6,y 3)分别为函数xky =(k<0)的图象上的三个点.则y 1 、y 2 、y 3的大小关系为 (用“<”连接).22.在反比例函数的图象上有两点A ,B ,当时,有,则的取值范围是( )A 、B 、C 、D 、23.若A (,)、B (,)在函数的图象上,则当、满足______________________________________时,>.24. 已知直线与双曲线的一个交点A 的坐标为(-1,-2).则=_____;=____;它们的另一个交点坐标是______.25.在平面直角坐标系xoy 中,直线yx =向上平移1个单位长度得到直线l .直线l 与反比例函数ky x=的图象的一个交点为(2)A a ,,则k 的值等于 .26.如果函数x y 2=的图象与双曲线)0(≠=k xky 相交,则当0<x 时,该交点位于A .第一象限B .第二象限C .第三象限D .第四象限27.在同一平面直角坐标系中,函数xy 1=与函数x y =的图象交点个数是( )A 、0个B 、1个C 、2个D 、3个28.函数1ky x-=的图象与直线y x =没有交点,那么k 的取值范围是( ) A .1k > B .1k < C .1k >- D .1k <-12my x-=()11,x y ()22,x y 120x x <<12y y <m 0m <0m >12m <12m >1x 1y 2x 2y 12y x=1x 2x 1y 2y mx y =xky =m k xxxx.D .29.在同一坐标系中,一次函数(1)21y k x k =-++与反比例函数ky x=的图象没有交点,则常数k 的取值范围是.30.如图,直线)0(>=k kx y 与双曲线xy 2=交于A 、B 两点,若A 、B 两点的坐标分别为A ()11,y x ,B ()22,y x ,则1221y x y x +的值为()A . -8B .4C . -4D . 031.已知反比例函数2y x=,下列结论中,不正确的是( ) A .图象必经过点(12),B .y 随x 的增大而减少C .图象在第一、三象限内D .若1x >,则2y <32.已知函数1y x=的图象如下,当1x ≥-时,y 的取值范围是( ) A .1y <- B .1y ≤- C .1y ≤- 或0y > D .1y <-或0y ≥33.如图,一次函数与反比例函数的图象相交于A、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是_____________.34.如图,正方形ABOC 的边长为2,反比例函数xky =过点A ,则K 的值是( )A .2B .-2C .4D .-435.过反比例函数(0)ky k x=>的图象上的一点分别作x 、y 轴的垂线段,如果垂线段与x 、y 轴所围成的矩形面积是6,那么该函数的表达式是______;若点A(-3,m)在这个反比例函数的图象上,则m=______.36.如图,若点A 在反比例函数(0)ky k x=≠的图象上,AM x ⊥轴于点M ,AMO △的面积为3,则k =.37.在反比例函数4y x=的图象中,_4-1-1yx第32题图第34题图第33题图第36题图阴影部分的面积不等于4的是( )A .B .C .D .38.两个反比例函数k y x =和1y x =在第一象限内的图象如图所示,点P 在ky x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x=的图象于点B ,当点P在ky x=的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 .(把你认为正确结论的序号都填上,少填或错填不给分).39.如图,第四象限的角平分线OM 与反比例函数()0≠=k xky 的图象交于点A ,已知OA=23,则该函数的解析式为( )A .xy 3=B .xy 3-= C .xy 9=D .xy 9-=40.如图,一次函数122y x =-的图象分别交x 轴、y 轴于A 、B ,P 为AB 上一点且PC 为△AOB 的中位线,PC 的延长线交反比例函数(0)k y k x =>的图象于Q ,32OQC S ∆=,则k的值和Q 点的坐标分别为______________.ky x =1y x=(第38题图)第39题图41.当m 取什么数时,函数2)1(--=m xm y 为反比例函数式?42.已知反比例函数102)2(--=m x m y 的图象,在每一象限内y 随x 的增大而减小,求反比例函数的解析式.43.平行于直线y x =的直线l 不经过第四象限,且与函数3(0)y x x=>和图象交于点A ,过点A 作AB y ⊥轴于点B ,AC x ⊥轴于点C四边形ABOC 的周长为8.求直线l 的解析式.44.已知正比例函数的图象与反比例函数(为常数,)的图象有一个交点的横坐标是2.(1)求两个函数图象的交点坐标;(2)若点,是反比例函数图象上的两点,且,试比较的大小.45.已知一次函数y kx b =+的图象与反比例函数my x=的图象相交于A (-6,-2)、B (4,3)两点.(1)求出两函数解析式;(2)画出这两个函数的图象;(3)根据图象回答:当x 为何值时,一次函数的函数值大于反比例函数的函数值?46.如图,直线y =x +1与双曲线x2y =交于A 、B 两点,其中A 点在第一象限.C 为x 轴正半轴上一点,且S △ABC =3.(1)求A 、B 、C 三点的坐标;(2)在坐标平面内,是否存在点P ,使以A 、B 、C 、P 为顶点的四边形为平行四边形?若存在,请直接写出点P 的坐标,若不存在,请说明理由.47.为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与y kx =5ky x-=k 0k ≠11()A x y ,22()B x y ,5ky x-=12x x <12y y ,3(0)x x>(第47题)t 的函数关系式为tay =(a 为常数),如图所示.据图中提供的信息,解答下列问题: (1)写出从药物释放开始,y 与t 之间的两个函数关系式及相应的自变量的取值范围; (2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?48.我们学习了利用函数图象求方程的近似解,例如:把方程的解看成函数的图象与函数的图象交点的横坐标.如图,已画出反比例函数在第一象限内的图象,请你按照上述方法,利用此图象求方程的正数解.(要求画出相应函数的图象;求出的解精确到0.1)49.如图,帆船A 和帆船B 在太湖湖面上训练,O 为湖面上的一个定点,教练船静候于O点.训练时要求A 、B 两船始终关于O 点对称.以O 为原点.建立如图所示的坐标系,轴、y 轴的正方向分别表示正东、正北方向.设A 、B 两船可近似看成在双曲线上运动,湖面风平浪静,双帆远影优美.训练中当教练船与A 、B 两船恰好在直线上时,三船同时发现湖面上有一遇险的C 船,此时教练船测得C 船在东南45°方向上,A 船测得AC 与AB 的夹角为60°,B 船也同时测得C 船的位置(假设C 船位置213x x -=-21y x =-3y x =-1y x=210x x --=x 4y x=y x=不再改变,A 、B 、C 三船可分别用A 、B 、C 三点表示).(1)发现C 船时,A 、B 、C 三船所在位置的坐标分别为 A( , )、B( ,)和C(,);(2)发现C 船,三船立即停止训练,并分别从A 、O 、B 三点出发沿最短路线同时前往救援,设A 、B 两船 的速度相等,教练船与A 船的速度之比为3:4,问教练船是否最先赶到?请说明理由。
反比例函数讲义(知识点+典型例题)
变式1 如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数 变式2 若函数11-=m xy (m 是常数)是反比例函数,则m =________,解析式为________.题型二:反比例函数解析式例3 已知A (﹣1,m )与B (2,m ﹣3)是反比例函数图象上的两个点.则m 的值 .例4 已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式.变式3已知y 与x 成反比例,当x =2时,y =3.(1)求y 与x 的函数关系式;(2)当y =-23时,求x 的值.变式4 已知函数12y y y =-,其中1y 与x 成正比例, 2y 与x 成反比例,且当x =1时,y =1;x =3时,y =5.求:(1)求y 关于x 的函数解析式; (2)当x =2时,y 的值.1、反比例函数的图像(1)形状与位置:反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。
(2)变化趋势:由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
2、反比例函数的性质(1)对称性:反比例函数的图像是关于原点对称的中心对称图形,同时也是轴对称图形,有两条对称轴,分别是一、三象限和二、四象限的角平分线,即直线y x =±。
(注:过原点的直线与双曲线的两个交点关于原点对称)(2)双曲线的位置:当k>0时,双曲线位于一、三象限(x ,y 同号);当k<0时,双曲线位于二、四象限(x ,y 同号异号),反之也成立。
(3)增减性: 当k>0时,双曲线走下坡路,在同一象限内,y 随x 的增大而减小;当k<0时,双曲线走上坡路,在同一象限内,y 随x 的增大而增大。
(完整版)反比例函数知识点归纳总结与典型例题
反比例函数知识点归纳总结与典型例题(一)反比例函数的概念:知识要点:1、一般地,形如y = — ( k是常数,k = 0 )的函数叫做反比例函数。
x注意:(1)常数k称为比例系数,k是非零常数;(2)解析式有三种常见的表达形式:(A) y = k (k w 0) , (B) xy = k (k 丰 0) (C) y=kx-1 (kw0)x例题讲解:有关反比例函数的解析式1 1 1 x 1 (1)下列函数,① x(y 2) 1②.y ——③y /④.y ——⑤y —⑥y —;其中是y关x 1 x 2x 2 3x 于x的反比例函数的有:。
a2 2 ....... …(2)函数y (a 2)x 是反比例函数,则a的值是( )A.—1B. — 2C. 2D.2 或—21 .................(3)若函数y 七彳勤是常数)是反比例函数,则m=,解析式为 .xk(4)反比例函数y — (k 0)的图象经过(一2, 5)和(J2 , n),x求1) n的值;2)判断点B ( 4J2 , 短)是否在这个函数图象上,并说明理由(二)反比例函数的图象和性质:知识要点:1、形状:图象是双曲线。
2、位置:(1)当k>0时双曲线分另位于第象限内;(2)当k<0时,双曲线分另位于第象限I 3、增减性:(1)当k>0 时,,y 随x的增大而 ;(2)当k<0时,,y随x的增大而。
4、变化趋势:双曲线无限接近于x、y轴,但永远不会与坐标轴相交5、对称性:(1)对于双曲线本身来说,它的两个分支关于直角坐标系原点; (2)对于k取互为相反数的两个反比例函数(如:y = 6和丫= ―)来说,它们是关于x轴,y轴。
x x例题讲解:反比例函数的图象和性质:(1)写出一个反比例函数,使它的图象经过第二、四象限m2 2⑵若反比例函数v (2m 1)x的图象在第二、四象限,则m的值是( )A—1或1; B、小于-的任意实数;C、一1; D、不能确定2(3)下列函数中,当x 0时,y随x的增大而增大的是( )1 一一4 _ 1A y 3x 4B y - x 2 C. y - D. y ——.3 x 2x2 ____ ,. 一 . 一(4)已知反比例函数y ——的图象上有两点A ( x1,y1),B ( x2, y2),且x1 x2,则y i y 的值是()A.正数B.负数C.非正数D.不能确定2 .(5)右点(x i, y 1)、(X 2, y 2)和(X 3,y 3)分别在反比例函数 y —的图象上,且X iX 2 0 X 3,x则下列判断中正确的是()A . y i y y 3B . y 3 y i y 2C . y 2 y 3 y iD . y 3 y y ik 1 ................... 一 ...(6)在反比例函数 y --- 的图象上有两点(x1,y 1)和(x 2, y 2),右x 10 x 2时,y i y 2 ,则k 的x取值范围是.(7)老师给出一个函数,甲、乙、丙三位同学分别指出了这个函数的一个性质:甲:函数的图象经过第二象限;乙:函数的图象经过第四象限;丙:在每个象限内,y 随x 的增大而增大.请你根据他们的叙述构造满足上述性质的一个函数 :.(三)反比例函数与面积结合题型。
新人教版九年级数学下册第26章反比例函数知识点归纳和典型例题
可编辑可修改新人教版九年级数学下册第26章反比例函数知识点归纳和典型例题〔一〕知识结构〔二〕〔三〕〔二〕学习目标〔四〕1.理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式〔k为常数,〕,能判断一个给定函数是否为反比例函数.〔五〕2.能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点.〔六〕3.能根据图象数形结合地分析并掌握反比例函数〔k为常数,〕的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题.〔七〕4.对于实际问题,能“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题〞的过程,体会函数是刻画现实世界中变化规律的重要数学模型.〔八〕5.进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法.〔九〕〔三〕重点难点〔十〕1.重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用.1可编辑可修改〔十一〕2.难点是反比例函数及其图象的性质的理解和掌握.〔十二〕二、根底知识〔十三〕〔一〕反比例函数的概念〔十四〕1.〔〕可以写成〔〕的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;〔十五〕2.〔〕也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;〔十六〕3.反比例函数的自变量,故函数图象与x轴、y轴无交点.〔十七〕〔二〕反比例函数的图象〔十八〕在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点〔关于原点对称〕.〔十九〕〔三〕反比例函数及其图象的性质〔二十〕1.函数解析式:〔〕〔二十一〕2.自变量的取值范围:〔二十二〕3.图象:〔二十三〕〔1〕图象的形状:双曲线.2可编辑可修改〔二十四〕越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.〔二十五〕〔2〕图象的位置和性质:〔二十六〕与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.〔二十七〕当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;〔二十八〕当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.〔二十九〕〔3〕对称性:图象关于原点对称,即假设〔a,b〕在双曲线的一支上,那么〔,〕在双曲线的另一支上.〔三十〕图象关于直线对称,即假设〔a,b〕在双曲线的一支上,那么〔,〕和〔,〕在双曲线的另一支上.〔三十一〕4.k的几何意义〔三十二〕如图1,设点P〔a,b〕是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,那么矩形PBOA的面积是〔三角形PAO和三角形PBO的面积都是〕.〔三十三〕如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,那么有三角形PQC的面积为.3可编辑可修改〔三十四〕〔三十五〕图1图2〔三十六〕5.说明:〔三十七〕〔1〕双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.〔三十八〕〔2〕直线与双曲线的关系:〔三十九〕当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.〔四十〕〔3〕反比例函数与一次函数的联系.〔四十一〕〔四〕实际问题与反比例函数〔四十二〕1.求函数解析式的方法:〔四十三〕〔1〕待定系数法;〔2〕根据实际意义列函数解析式.〔四十四〕2.注意学科间知识的综合,但重点放在对数学知识的研究上.〔四十五〕〔五〕充分利用数形结合的思想解决问题.4〔四十六〕三、例题分析〔四十七〕1☆.反比例函数的概念〔四十八〕〔1〕以下函数中,y是x的反比例函数的是〔〕.〔四十九〕A.y=3x B.C.3xy=1D.〔五十〕〔2〕以下函数中,y是x的反比例函数的是〔〕.〔五十一〕A.B.C.D.〔五十二〕答案:〔1〕C;〔2〕A.〔五十三〕2.图象和性质〔五十四〕〔1〕函数是反比例函数,〔五十五〕①假设它的图象在第二、四象限内,那么k=___________.〔五十六〕②假设y随x的增大而减小,那么k=___________.〔五十七〕〔2〕一次函数y=ax+b的图象经过第一、二、四象限,那么函数的图象位于第________象限.〔五十八〕〔3〕假设反比例函数经过点〔,2〕,那么一次函数的图象一定不经过第_____象限.5〔五十九〕〔4〕a·b<0,点P〔a,b〕在反比例函数的图象上,〔六十〕那么直线不经过的象限是〔〕.〔六十一〕A.第一象限B.第二象限C.第三象限D.第四象限〔六十二〕〔5〕假设P〔2,2〕和Q〔m,〕是反比例函数图象上的两点,〔六十三〕那么一次函数y=kx+m的图象经过〔〕.〔六十四〕A.第一、二、三象限B.第一、二、四象限〔六十五〕C.第一、三、四象限D.第二、三、四象限〔六十六〕〔6〕函数和〔k≠0〕,它们在同一坐标系内的图象大致是〔〕.〔六十七〕〔六十八〕A.B.C.D.〔六十九〕答案:〔1〕①②1;〔2〕一、三;〔3〕四;〔4〕C;〔5〕C;〔6〕B.〔七十〕3.函数的增减性〔七十一〕〔1〕在反比例函数的图象上有两点,,6且,那么的值为〔〕.〔七十二〕A.正数B.负数C.非正数D.非负数〔七十三〕〔2〕在函数〔a为常数〕的图象上有三个点,,,那么函数值、、的大小关系是〔〕.〔七十四〕A.<<B.<<C.<<D.<<〔七十五〕〔3〕以下四个函数中:①;②;③;④.〔七十六〕y随x的增大而减小的函数有〔〕.〔七十七〕A.0个B.1个C.2个D.3个〔七十八〕〔4〕反比例函数的图象与直线y=2x和y=x+1的图象过同一点,那么当x>0时,这个反比例函数的函数值y随x的增大而〔填“增大〞或“减小〞〕.〔七十九〕答案:〔1〕A;〔2〕D;〔3〕B.〔八十〕注意,〔3〕中只有②是符合题意的,而③是在“每一个象限内〞y随x的增大而减小.〔八十一〕4.解析式确实定〔八十二〕〔1〕假设与成反比例,与成正比例,那么y是z的〔〕.〔八十三〕A.正比例函数B.反比例函数C.一次函数D.不7能确定〔八十四〕〔2〕假设正比例函数y=2x与反比例函数的图象有一个交点为〔2,m〕,那么m=_____,k=________,它们的另一个交点为________.〔八十五〕〔3〕反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值.〔八十六〕〔4〕一次函数y=x+m与反比例函数〔〕的图象在第一象限内的交点为P〔x0,3〕.〔八十七〕①求x0的值;②求一次函数和反比例函数的解析式.〔八十八〕〔八十九〕〔5〕☆为了预防“非典〞,某学校对教室采用药薰消毒法进行消毒.药物燃烧时,室内每立方米空气中的含药量y〔毫克〕与时间x〔分钟〕成正比例,药物燃烧完后,y与x成反比例〔如下图〕,现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克.请根据题中所提供的信息解答以下问题:〔九十〕①药物燃烧时y关于x的函数关系式为___________,自变量x的取值范围是_______________;药物燃烧后y关于x的函数关系式为_________________.〔九十一〕②研究说明,当空气中每立方米的含药量低于毫克时学生方可进教室,那么从消毒开始,至少需要经过_______分钟后,学生才能回到教室;8〔九十二〕③研究说明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效为什么?〔九十三〕答案:〔1〕B;〔2〕4,8,〔,〕;〔九十四〕〔3〕依题意,且,解得.〔九十五〕〔4〕①依题意,解得〔九十六〕②一次函数解析式为,反比例函数解析式为.〔九十七〕〔5〕①,,;〔九十八〕②30;③消毒时间为〔分钟〕,所以消毒有效.〔九十九〕5.面积计算〔一○○〕〔1〕☆如图,在函数的图象上有三个点A、B、C,过这三个点分别向x轴、y轴作垂线,过每一点所作的两条垂线段与x轴、y轴围成的矩形的面积分别为、、,那么〔〕.〔一○一〕A.B.C.D.9〔一○二〕〔一○三〕第〔1〕题图第〔2〕题图〔一○四〕〔2〕☆如图,A、B是函数的图象上关于原点O对称的任意两点,AC//y轴,BC//x轴,△ABC的面积S,那么〔〕.〔一○五〕A.S=1B.1<S<2C.S=2D.S>2〔一○六〕〔3〕如图,Rt△AOB的顶点A在双曲线上,且S△AOB=3,求m的值.〔一○七〕〔一○八〕第〔3〕题图第〔4〕题图10〔一○九〕〔4〕☆函数的图象和两条直线y=x,y=2x在第一象限内分别相交于P1和P2两点,过P1分别作x轴、y轴的垂线P1Q1,P1R1,垂足分别为Q1,R1,过P2分别作x轴、y轴的垂线P2Q2,P2R2,垂足分别为Q2,R2,求矩形OQ1P1R1和OQ2P2R2的周长,并比拟它们的大小.〔一一○〕〔5〕如图,正比例函数y=kx〔k>0〕和反比例函数的图象相交于A、C两点,过A作x轴垂线交x轴于B,连接BC,假设△ABC面积为S,那么S=_________.〔一一一〕〔一一二〕第〔5〕题图第〔6〕题图〔一一三〕〔6〕如图在Rt△ABO中,顶点A是双曲线与直线在第四象限的交点,AB⊥x轴于B且S△ABO=.〔一一四〕①求这两个函数的解析式;〔一一五〕②求直线与双曲线的两个交点A、C的坐标和△AOC的面积.11〔一一六〕〔7〕如图,正方形OABC的面积为9,点O为坐标原点,点A、C分别在x轴、y轴上,点B在函数〔k>0,x>0〕的图象上,点P〔m,n〕是函数〔k>0,x>0〕的图象上任意一点,过P分别作x轴、y轴的垂线,垂足为E、F,设矩形OEPF在正方形OABC以外的局部的面积为S.〔一一七〕①求B点坐标和k的值;〔一一八〕②当时,求点P的坐标;〔一一九〕③写出S关于m的函数关系式.〔一二○〕答案:〔1〕D;〔2〕C;〔3〕6;〔一二一〕〔4〕,,矩形OQ1P1R1的周长为8,OQ2P2R2的周长为,前者大.〔一二二〕〔5〕1.〔一二三〕〔6〕①双曲线为,直线为;〔一二四〕②直线与两轴的交点分别为〔0,〕和〔,0〕,且A〔1,〕和C〔,1〕,〔一二五〕因此面积为4.12〔一二六〕〔7〕①B〔3,3〕,;〔一二七〕②时,E〔6,0〕,;〔一二八〕③.〔一二九〕6.综合应用〔一三○〕〔1〕假设函数y=k1x〔k1≠0〕和函数〔k2≠0〕在同一坐标系内的图象没有公共点,那么k1和k2〔〕.〔一三一〕A.互为倒数B.符号相同C.绝对值相等D.符号相反〔一三二〕〔2〕如图,一次函数的图象与反比例数的图象交于A、B两点:A〔,1〕,B〔1,n〕.〔一三三〕①求反比例函数和一次函数的解析式;〔一三四〕②根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.〔一三五〕〔3〕如下图,一次函数〔k≠0〕的图象与x轴、13y轴分别交于A、B两点,且与反比例函数〔m≠0〕的图象在第一象限交于C点,CD垂直于x轴,垂足为D,假设OA=OB=OD=1.〔一三六〕①求点A、B、D的坐标;〔一三七〕②求一次函数和反比例函数的解析式.〔一三八〕〔4〕☆如图,一次函数的图象与反比例函数的图象交于第一象限C、D两点,坐标轴交于A、B两点,连结OC,OD〔O 是坐标原点〕.〔一三九〕①利用图中条件,求反比例函数的解析式和m的值;〔一四○〕②双曲线上是否存在一点P,使得△POC和△POD的面积相等假设存在,给出证明并求出点P的坐标;假设不存在,说明理由.〔一四一〕〔5〕不解方程,判断以下方程解的个数.〔一四二〕①;②.〔一四三〕答案:14可编辑可修改〔一四四〕〔1〕D.〔一四五〕〔2〕①反比例函数为,一次函数为;〔一四六〕②范围是或.〔一四七〕〔3〕①A〔0,〕,B〔0,1〕,D〔1,0〕;〔一四八〕②一次函数为,反比例函数为.〔一四九〕〔4〕①反比例函数为,;〔一五○〕②存在〔2,2〕.〔一五一〕〔5〕①构造双曲线和直线,它们无交点,说明原方程无实数解;〔一五二〕②构造双曲线和直线,它们有两个交点,说明原方程有两个实数解.15。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数知识点
1. 定义:一般地,形如x
k y =(k 为常数,o k ≠)的函数称为反比例函数。
x k
y =还可
以写成kx
y =1
-,xy=k , (k 为常数,o k ≠).
2. 反比例函数解析式的特征:
⑴等号左边是函数y ,等号右边是一个分式。
分子是不为零的常数k (也叫做比例系数
k ),分母中含有自变量x ,且指数为1.
⑵比例系数0≠k
⑶自变量x 的取值为一切非零实数。
⑷函数y 的取值是一切非零实数。
3. 反比例函数的图像
⑴图像的画法:描点法
① 列表(应以O 为中心,沿O 的两边分别取三对或以上互为相反的数) ② 描点(有小到大的顺序) ③ 连线(从左到右光滑的曲线) ⑵反比例函数的图像是双曲线,x
k
y =
(k 为常数,0≠k )中自变量0≠x ,函数值0≠y ,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,
但是永远不与坐标轴相交。
⑶反比例函数的图像是是轴对称图形(对称轴是x y =或x y -=)。
⑷反比例函数x k y =
(0≠k )中比例系数k 的几何意义是:过双曲线x
k
y = (0≠k )上任意引x 轴y 轴的垂线,所得矩形面积为k 。
4.反比例函数性质与k 的符号有关:
5. 反比例函数解析式的确定:利用待定系数法(只需一组对应值或图像上一个点的坐标即可求出k )
6.“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比
例函数x
k
y =中的两个变量必成反比例关系。
反比例函数练习
一. 选择题
1. 函数y m x m m =+--()2229是反比例函数,则m 的值是( ) A. m =4或m =-2 B. m =4 C. m =-2 D. m =-1
2. 下列函数中,是反比例函数的是( ) A. y x =-
2
B. y x =-
12 C. y x
=-1
1
D. y x =
12
3. 函数y kx =-与y k x
=
(
k ≠0)的图象的交点个数是( ) A. 0 B. 1 C. 2 D. 不确定 4. 函数y kx b =+与y k
x
kb =
≠()0的图象可能是( )
A B C D
5. 若y 与x 成正比,y 与z 的倒数成反比,则z 是x 的( ) A. 正比例函数 B. 反比例函数 C. 二次函数 D. z 随x 增大而增大
6. 下列函数中y 既不是x 的正比例函数,也不是反比例函数的是( )
A. y x
=-
19
B. 105=-x y :
C.
y x
=412
D.
1
5
2xy =- 7. 如图,直线y =x -2与y 轴交于点C ,与x 轴交于点B ,与反比例函数的图象在第
一象限交于点A ,连接OA ,若S △AOB S △BOC = 1:2,则k 的值为( ) A .2 B .3
C .4
D .6
8. 如图,A 、B 是双曲线y=上的两点,过A 点作AC⊥x 轴,交OB 于D 点,垂足为C .若△ADO 的面积为1,D 为OB 的中点,则k 的值为( ) A .
B .
C . 3
D . 4
9. 如图,△AOB 是直角三角形,AOB ∠=︒90,OA OB 2=,点A 在反比例函数x
y 1=的图象上.若点B 在反比例函数x
k
y =的图象上,则k 的值为
A .4-
B .4
C .2-
D .2
二. 填空题
1. 已知y 是x 的反比例函数,当x >0时,y 随x 的增大而减小。
请写出一个满足以上条件的函数表达式____ ____。
2. 已知反比例函数y x
=
2,当
y =6时,x =_________。
3. 反比例函数y a x a a =---()3224的函数值为4时,自变量x 的值是_________。
4. 反比例函数的图象过点(-3,5),则它的解析式为_________
)
8(题第x
y
O
A
B
5. 若函数y x =4与y x
=
1的图象有一个交点是(12,2)
,则另一个交点坐标是_________。
6. 已知A (﹣1,m )与B (2,m ﹣3)是反比例函数图象上的两个点.则m 的值 . 7.点、在反比例函数
的图像上,若
,则的范围
是
8.如图,已知点A 在反比例函数)0(<=
x x
k
y 上,作Rt ⊿ABC ,点D 为斜边AC 的中点,连DB 并延长交y 轴于点E ,若⊿BCE 的面积为8,则k= 。
9. 如图,已知点A ,C 在反比例函数)0(>=
a x
a
y 的图象上,点B ,D 在反比例函数)0(<=
b x
b
y 的图象上,AB ∥CD ∥x 轴,AB ,CD 在x 轴的两侧,AB =3,CD =2,AB 与CD 的距离为5,则b a -的值是
三. 解答题
1. 直线y kx b =+过x 轴上的点A (32,0),且与双曲线y k
x
=相交于B 、C 两点,已
知B 点坐标为(-12
,4),求直线和双曲线的解析式。
2. 已知一次函数y x =+2与反比例函数y k x
=的图象的一个交点为P (a ,b ),且P 到原点的距离是10,求a 、b 的值及反比例函数的解析式。
3. 如图,一次函数的图象与x 轴、y 轴分别相交于A 、B 两点,且与反比例函数y =(k ≠0)
的图象在第一象限交于点C ,如果点B 的坐标为(0,2),OA =OB ,B 是线段AC 的中点.
(1)求点A 的坐标及一次函数解析式. (2)求点C 的坐标及反比例函数的解析式.
4. 如图,直线y =ax +1与x 轴、y 轴分别相交于A 、B 两点,与双曲线y =k
x (x >0)相交
于点P ,PC ⊥x 轴于点C ,且PC =2,点A 的坐标为2,0 (). (1)求双曲线的解析式;
(2)若点Q 为双曲线上点P 右侧的一点,且QH ⊥x 轴于H ,当以点Q 、C 、H 为顶点的三角形与△AOB 相似时,求点Q 的坐标.
5. 如图是函数
与函数
在第一象限内的图象,点是
的图象上一动点,轴于点A ,交的图象于点
,轴于点B ,交
的图象于点.
(1)求证:D 是BP 的中点;
(2)求出四边形ODPC 的面积.
6. 某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体实验.测得成人服药后血液中药物深度(微克/毫升)与服药时间小时之间的函数关系如图所示(当时,与成反比).
(1)根据图象分别求出血液中药物浓度上升和下降阶
段与之间的函数关系式;
(2)问血液中药物浓度不低于4微克/毫升的持续时
间为多少小时?。