2.5.1简单的复合函数的求导法则
简单复合函数的求导法则
![简单复合函数的求导法则](https://img.taocdn.com/s3/m/defbd6037375a417866f8ffe.png)
f ( x)
f (u ) ( x )
对 ( x )求导
注意:不要写成 f ( x )!
复合函数的导数
新授课
2 2 y u , u 3 x 2 f ( x ) ( 3 x 2 ) u , ux , f ( x ) 若 , ,求 y
复合函数的导数
新授课 一般地,设函数 u ( x ) 在点 x 处有导数 ux ( x ) ,函 数 y f (u) 在点 x 的对应点 u 处有导数 y u f ( u ) ,则复合 函数 y f ( ( x )) 在点 x 处也有导数,且
y x yu u x
解析
复合函数求导法则的注意问题: (1)首先要弄清复合关系,特别要注意中间变量; (2)尽可能地将函数化简,然后再求导; (3)要注意复合函数求导法则与四则运算的综合 运用; (4)复合函数求导法则,常被称为“链条法则”,
一环套一环,缺一不可。
例3
动手做一做
1. 求下列函数的导数:
y 50(5 x 2)
S f (t ) ( 2t 1)
t
的新函数:
2
由于 f (t ) f ( 2t 1) ( 4t 2 4t 1) 所以由导数的运算法则可得:
f (t )
(8t 4) 4 ( 2t 1)
∵ f (r ) 2r , r (t ) 2 ∴ f (t ) 2 ( 2t 1) 2 f (2t 1) (t )
3 ( 3 x 1 ) f (u ) ( x) 3 2 u 2 3x 1
例2
1
解: 令 u ( x) 2 x 1 ,则函数是由 f (u ) u 3与
导数复合函数求导法则(非常实用)
![导数复合函数求导法则(非常实用)](https://img.taocdn.com/s3/m/85032dc86aec0975f46527d3240c844769eaa0ce.png)
导数复合函数求导法则(非常实用)一、导数复合函数求导法则(非常实用)在学习数学的过程中,我们经常会遇到各种各样的函数,其中有一种特殊的函数叫做复合函数。
复合函数是由两个或多个函数组成的函数,它们之间的关系是“和”的关系。
那么,如何求解复合函数的导数呢?这里我们就来探讨一下导数复合函数求导法则。
我们需要了解什么是导数。
导数是一个函数在某一点处的变化率,也就是说,它表示了函数在这个点的切线斜率。
而求导数的目的,就是为了更好地理解函数在不同点上的变化规律,从而更好地解决实际问题。
那么,如何求解复合函数的导数呢?这里我们可以借鉴一下初等函数的求导方法。
对于一个简单的初等函数f(x),它的导数可以通过以下公式计算:f'(x) = (f(x) f(a)) / (x a)其中,a是一个常数,表示我们要求导的点。
这个公式的意义是:在点a处,函数f(x)的导数等于它在点a两侧的平均变化率。
现在,我们来看一个例子。
假设我们有一个复合函数g(u)(u为参数),它的定义域是[0, 1],值域是[0, 1]。
我们要求的是g(u)在u=0.5时的导数。
根据导数复合函数求导法则,我们可以得到:g'(0.5) = [g(0.5) g(0)] / (0.5 0) = (g(0.5) g(0)) / 0.5这个公式的意义是:在u=0.5处,函数g(u)的导数等于它在u=0和u=0.5两侧的平均变化率。
二、复合函数求导法则的实际应用了解了导数复合函数求导法则之后,我们可以将其应用到实际问题的解决中。
下面我们通过一个例子来说明这一点。
假设我们要设计一个程序,计算一个二次多项式在给定点处的值。
这个二次多项式的定义域是[-1, 1],值域是[-1, 1]。
我们可以将这个二次多项式表示为:h(x) = a * x^2 + b * x + c其中,a、b、c是常数,且满足以下条件:1. a > 0 且 a < 1;2. b > 0 且 b < 1;3. c > -1 且 c < 1;4. |a| + |b| + |c| <= 1;5. a * b * c != 0。
简单复合函数求导法则
![简单复合函数求导法则](https://img.taocdn.com/s3/m/22fea3a86394dd88d0d233d4b14e852458fb3921.png)
简单复合函数求导法则根据链式法则,如果y是一个由u=g(x)和v=f(u)组成的复合函数,则复合函数y=f(g(x))的导数可以表示为:dy/dx = dy/du * du/dx其中,dy/du 是函数f对u的导数,du/dx 是函数g对x的导数。
下面我们将介绍一些常见的简单复合函数求导法则。
一、常数倍数法则如果 f(x) 是一个可导函数,而 c 是一个常数,则 cf(x) 的导数是c * f'(x)。
根据这个法则,我们可以推导出以下常见的函数求导法则。
二、和差法则如果f(x)和g(x)都是可导函数,则它们的和f(x)+g(x)的导数是f'(x)+g'(x)差f(x)-g(x)的导数是f'(x)-g'(x)。
三、乘积法则如果f(x)和g(x)都是可导函数,则它们的乘积f(x)g(x)的导数是f'(x)g(x)+f(x)g'(x)。
四、商法则如果f(x)和g(x)都是可导函数,且g(x)≠0,则它们的商f(x)/g(x)的导数是[f'(x)g(x)-f(x)g'(x)]/[g(x)]²。
如果f(u)是一个可导函数,而u=g(x)是一个可导的函数,则复合函数y=f(g(x))的导数是dy/dx = dy/du * du/dx = f'(u) * g'(x)。
这个法则是链式法则的核心,也是复合函数求导的关键。
对于指数函数 f(x) = a^x,其中 a 是一个正实数,则它的导数是f'(x) = (ln a) * a^x。
对于对数函数 f(x) = log_a(x),其中 a 是一个正实数且a ≠ 1,则它的导数是 f'(x) = 1 / (x * ln a)。
这是一些常见的简单复合函数求导法则。
在实际应用中,我们经常会遇到更复杂的函数,需要根据特定函数的性质和结构来应用合适的求导法则。
掌握这些法则可以帮助我们更准确地计算各种复合函数的导数,并应用于相关问题的求解中。
复合函数导数公式及运算法则
![复合函数导数公式及运算法则](https://img.taocdn.com/s3/m/e13e056b326c1eb91a37f111f18583d049640f26.png)
复合函数导数公式及运算法则复合函数导数公式极其运算法则同学们还记得吗,如果不记得了,请往下看。
下面是由小编为大家整理的“复合函数导数公式及运算法则”,仅供参考,欢迎大家阅读。
复合函数导数公式.常用导数公式1.y=c(c为常数) y'=02.y=x^n y'=nx^(n-1)3.y=a^x y'=a^xlnay=e^x y'=e^x4.y=logax y'=logae/xy=lnx y'=1/x5.y=sinx y'=cosx6.y=cosx y'=-sinx7.y=tanx y'=1/cos^2x8.y=cotx y'=-1/sin^2x9.y=arcsinx y'=1/√1-x^210.y=arccosx y'=-1/√1-x^211.y=arctanx y'=1/1+x^212.y=arccotx y'=-1/1+x^2在推导的过程中有这几个常见的公式需要用到:1.y=f[g(x)],y'=f'[g(x)]•g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』2.y=u/v,y'=u'v-uv'/v^23.y=f(x)的反函数是x=g(y),则有y'=1/x'证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。
用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。
2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。
在得到 y=e^x y'=e^x和y=lnx y'=1/x这两个结果后能用复合函数的求导给予证明。
3.y=a^x,⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)⊿y/⊿x=a^x(a^⊿x-1)/⊿x如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算。
复合函数求导公式运算法则
![复合函数求导公式运算法则](https://img.taocdn.com/s3/m/64a9885b9a6648d7c1c708a1284ac850ad0204e8.png)
复合函数求导公式运算法则1. 基本公式:如果函数y=f(u)和u=g(x)都可导,则复合函数y=f(g(x))也可导,且导数为dy/dx=f'(u)·g'(x)。
2. 对数函数:对于自然对数函数y=ln(u),其中u是一个关于自变量x的函数,其导数为dy/dx=1/u·du/dx。
3. 幂函数:对于幂函数y=u^n,其中u是关于自变量x的函数,n是常数,则其导数为dy/dx=n·u^(n-1)·du/dx。
4. 指数函数:对于指数函数y=a^u,其中a是常数,u是关于自变量x的函数,其导数为dy/dx=a^u·ln(a)·du/dx。
5. 三角函数:对于三角函数y=f(u),其中u是关于自变量x的函数,其导数为dy/dx=f'(u)·du/dx。
常见的三角函数包括正弦函数、余弦函数和正切函数等。
6. 反三角函数:对于反三角函数y=f(u),其中u是关于自变量x的函数,其导数为dy/dx=1/f'(u)·du/dx。
常见的反三角函数包括反正弦函数、反余弦函数和反正切函数等。
7. 双曲函数:对于双曲函数y=f(u),其中u是关于自变量x的函数,其导数为dy/dx=f'(u)·du/dx。
常见的双曲函数包括双曲正弦函数、双曲余弦函数和双曲正切函数等。
8. 反双曲函数:对于反双曲函数y=f(u),其中u是关于自变量x的函数,其导数为dy/dx=1/f'(u)·du/dx。
常见的反双曲函数包括反双曲正弦函数、反双曲余弦函数和反双曲正切函数等。
下面通过实际例子来说明复合函数求导公式的运算法则。
例子1:求函数y=(2x+1)^3的导数。
解:将y看作是外层函数f(u)=u^3,其中u=2x+1、根据链式法则,导数dy/dx=f'(u)·u'(x)。
复合函数求导方法
![复合函数求导方法](https://img.taocdn.com/s3/m/342a1d28793e0912a21614791711cc7931b7781e.png)
复合函数求导方法在微积分中,复合函数是一种十分常见的函数形式,它由两个或多个函数组合而成。
对于复合函数的求导,我们需要掌握一定的方法和技巧。
本文将介绍复合函数求导的方法,希望能够帮助大家更好地理解和掌握这一知识点。
首先,我们来回顾一下基本的导数求法。
对于一个函数y=f(x),它的导数可以用极限的形式表示为:\[f'(x)=\lim_{\Delta x \to 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}\]这是导数的定义式,也是我们求导的基本方法。
而对于复合函数,我们需要使用链式法则来进行求导。
链式法则的表述如下,若函数y=f(u)和u=g(x)都可导,则复合函数y=f(g(x))可导,并且有。
\[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \]这就是链式法则的数学表达形式。
简单来说,就是先对外层函数求导,再对内层函数求导,最后将两者相乘。
下面我们通过实例来具体说明复合函数求导的方法。
假设我们要求函数y=(x^2+1)^3的导数。
首先,我们可以将这个函数看作外层函数f(u)=u^3,内层函数u=g(x)=x^2+1。
按照链式法则,我们先对外层函数求导,再对内层函数求导,最后将两者相乘。
首先,对外层函数f(u)=u^3求导,得到f'(u)=3u^2。
然后,对内层函数u=g(x)=x^2+1求导,得到g'(x)=2x。
最后,将两者相乘,得到复合函数y=(x^2+1)^3的导数为:\[ \frac{dy}{dx} = 3(x^2+1)^2 \cdot 2x = 6x(x^2+1)^2 \]这就是复合函数求导的具体步骤和结果。
通过这个例子,我们可以看到,复合函数求导并不难,只需要按照链式法则的步骤进行,便可以得到结果。
除了链式法则,我们在求导复合函数时还可以使用其他方法,比如对数导数法则、指数导数法则等。
复合函数求导公式有哪些
![复合函数求导公式有哪些](https://img.taocdn.com/s3/m/b116e152a300a6c30c229fc8.png)
复合函数求导公式有哪些
有很多的同学是非常的想知道,复合函数求导公式是什幺,小编整理了
相关信息,希望会对大家有所帮助!
1 复合函数如何求导规则:1、设u=g(x),对f(u)求导得:f’(x)=f’(u)*g’(x);
2、设u=g(x),a=p(u),对f(a)求导得:f’(x)=f’(a)*p’(u)*g’(x);
拓展:
1、设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果Mx∩Du≠Ø,那幺对于Mx∩Du内的任意一个x 经过u;有唯一确定的y 值与之对应,则变量x 与y 之间通过变量u 形成的一种函数关系,这种函数称为复合函数(composite function),记为:y=f[g(x)],其中x 称为自变量,u 为中间变量,y 为因变量(即函数)。
2、定义域:若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数
y=f[g(x)]的定义域是D= {x|x∈A,且g(x)∈B} 综合考虑各部分的x 的取值范围,取他们的交集。
3、周期性:设y=f(u)的最小正周期为T1,μ=φ(x)的最小正周期为T2,则
y=f(μ)的最小正周期为T1*T2,任一周期可表示为k*T1*T2(k 属于R+).
4、单调(增减)性的决定因素:依y=f(u),μ=φ(x)的单调性来决定。
即“增+增=增;减+减=增;增+减=减;减+增=减”,可以简化为“同增异减”。
1 复合函数求导法则Y=f(u),U=g(x),则y′=f(u)′*g(x)′
例1.y=Ln(x),Y=Ln(u),U=x,
y′=f(u)′*g(x)′=[1/Ln(x)]*(x)′=[1/Ln(x)]*(3x)。
复合函数求导法则公式
![复合函数求导法则公式](https://img.taocdn.com/s3/m/18a95514f11dc281e53a580216fc700abb6852e4.png)
复合函数求导法则公式1.链式法则:链式法则是用于求解复合函数导数的基本法则。
设y=f(u),u=g(x)为两个可导函数,且y=f(u)和u=g(x)均是一对一函数,则复合函数y=f(g(x))的导数可以通过链式法则求得。
链式法则的公式为:dy/dx=dy/du * du/dx其中,dy/du表示函数y=f(u)对u的导数,du/dx表示函数u=g(x)对x的导数。
例如,设y=sin(x^2),我们需要求解dy/dx。
首先,令u=x^2,y=sin(u),则dy/du=cos(u)=cos(x^2)。
其次,求解du/dx=2x。
最后,根据链式法则,dy/dx=dy/du * du/dx = cos(x^2) * 2x = 2x*cos(x^2)。
2.乘积法则:乘积法则用于求解两个函数乘积的导数。
设y=u*v为两个可导函数的乘积,则乘积函数y=u*v的导数可以通过乘积法则求得。
乘积法则的公式为:dy/dx = u * dv/dx + v * du/dx例如,设y=x*sin(x),我们需要求解dy/dx。
根据乘积法则,将u=x,v=sin(x)代入上述公式,dy/dx = x * cos(x) + sin(x)。
3.商规则:商规则用于求解两个函数的商的导数。
设y=u/v为两个可导函数的商,则商函数y=u/v的导数可以通过商规则求得。
商规则的公式为:dy/dx = (v * du/dx - u * dv/dx) / v^2例如,设y=(x^2+1) / x,我们需要求解dy/dx。
根据商规则,将u=x^2+1,v=x代入上述公式,dy/dx = ((x) * (2x) - (x^2+1) * (1)) / (x^2)^2 = (x^2 - 1) / x^4小结:复合函数求导法则包括链式法则、乘积法则和商规则。
链式法则适用于求解复合函数的导数,乘积法则适用于求解两个函数乘积的导数,商规则适用于求解两个函数的商的导数。
简单复合函数的求导法则
![简单复合函数的求导法则](https://img.taocdn.com/s3/m/3f15907d11661ed9ad51f01dc281e53a580251d7.png)
简单复合函数的求导法则复合函数的求导是微积分中的重要概念之一,常用于解决实际问题中的导数计算。
在本文中,将介绍简单复合函数和复合函数的求导法则,以及一些例题的解答。
简单复合函数指的是由一个基本函数和一个简单函数复合而成的函数。
例如,如果有一个函数y=f(u)和另一个函数u=g(x),那么可以通过将这两个函数进行复合得到一个新的函数y=f(g(x))。
我们可以使用链式法则来计算这个复合函数的导数。
链式法则是求导中最基本的方法之一,它可以帮助我们计算复合函数的导数。
链式法则的表达式为:(dy/dx) = (dy/du)*(du/dx) 或者 f'(g(x))=f'(u)*g'(x)其中,dy/dx表示函数y关于x的导数,dy/du表示函数y关于u的导数,du/dx表示函数u关于x的导数。
举个例子,如果y=sin(3x)和u=3x,那么我们可以将它们复合为y=sin(u),然后利用链式法则求导。
首先通过求导公式得到dy/du=cos(u),然后通过将du/dx代入得到dy/dx=cos(u)*3、因此,我们得出了函数y=sin(3x)的导数为dy/dx=3*cos(3x)。
复合函数指的是由两个以上的函数复合而成的函数。
与简单复合函数不同,复合函数的求导需要使用多次链式法则来计算。
下面是一些常见的复合函数求导法则:1.和法则如果一个函数可以表示为两个函数之和的形式,那么它的导数等于这两个函数的导数之和。
即,如果y=f(x)+g(x),那么dy/dx=f'(x)+g'(x)。
比如,对于函数y=x^2+3x,我们可以将其分解为f(x)=x^2和g(x)=3x两个函数的和。
然后分别求导得到f'(x)=2x和g'(x)=3、最后,将两个导数相加得到dy/dx=2x+32.差法则如果一个函数可以表示为两个函数之差的形式,那么它的导数等于这两个函数的导数之差。
复合函数的导数公式推导
![复合函数的导数公式推导](https://img.taocdn.com/s3/m/72143ca7690203d8ce2f0066f5335a8103d26670.png)
复合函数的导数公式推导
复合函数的导数公式推导
复合函数是指将一个函数的输出值作为另一个函数的输入值的过程。
在实际问题中,复合函数的应用非常广泛。
例如,在数学中,我们可以将两个函数复合起来,以便求出新函数的导数。
这个过程的推导如下:
假设 f(x) 表示一个函数,并且 g(u) 表示另一个函数。
现在,我们来寻找 f(g(u)) 的导数。
首先,根据复合函数的定义,我们可以得到:
f(g(u)) = f(x)
将其对 u 求导:
f'(g(u)) * g'(u) = f'(x) * x'
其中,f'(x) 和 g'(u) 分别表示函数 f(x) 和 g(u) 的导数。
注意到,当 u 取特定的值时,x 和 g(u) 是相等的。
因此,我们可以将 x 替换为 g(u),得到:
f'(g(u)) * g'(u) = f'(g(u)) * g(u)'
将上式移项,得到:
(f'(g(u))) / (g'(u)) = g(u)'
这个公式就是复合函数的导数公式。
它告诉我们,f(g(u)) 在 u 处的导数等于 f'(g(u)) 和 g'(u) 的商,再乘以 g(u) 在 u 处的导数。
这个公式
在实际问题中非常有用,因为它可以帮助我们求出复合函数的导数,
从而解决问题。
简单复合函数的求导法则(最经典)——王彦文()
![简单复合函数的求导法则(最经典)——王彦文()](https://img.taocdn.com/s3/m/5fea07f8f121dd36a22d8213.png)
练习1
指出下列函数是怎样复合而成:
(1) y sin 2x;
y sin u, u 2x
(2) y 3x2 x 1; (3) y cos(sin x); (4) y (a bxn )m; (5) y sin(1 1 ).
x
y u, u 3x2 x 1
y cos u, u sin x
y x 1
y ax ln a
y ex
y 1 x ln a
y 1 x
y cosx
y sin x
y
1 c os2
x
2.导数的四则运算法则:
设函数 u(x)、v(x) 是 x 的可导函数,则
1) (u(x) v(x)) ' u '(x) v '(x)
2) (u(x) v(x)) ' u '(x)v(x) u(x)v '(x)
推论:[c· f(x)]’ = c f’(x)
3)
u(x)
v(x)
u
'(x)v(x) u(x)v v2 ( x)
'(x)
17:47:20
课前练习:
1.y
x(x2
1 x
1 x2
),求y ';
2.y x sin x cos x ,求y '; 22
3.y x cos(x), 求y ';
4.y 1 ,求y '; sin x
例2 设 y = sin2 x,求 y . 解 这个函数可以看成是 y = sin x ·sin x, 可利 用乘法的导数公式,这里,我们用复合函数求导法. 将 y = sin2 x 看成是由 y = u2,u = sin x 复合而成.而
复合函数求导法则
![复合函数求导法则](https://img.taocdn.com/s3/m/1dd78228eef9aef8941ea76e58fafab068dc445f.png)
复合函数求导法则复合函数是指由两个或多个函数进行组合而成的新函数。
例如,将函数f(x)和g(x)组合而成的函数h(x)可以表示为 h(x) = f(g(x))。
对于这样的函数,我们如何求导呢?下面我们来介绍一下复合函数的求导法则。
一、链式法则复合函数的求导法则可以用数学上的"链式法则"来表示。
链式法则的含义是:如果y 是一个由x的函数所决定的变量,并且z是y的函数,那么z对x的导数等于z对y的导数乘以y对x的导数。
换句话说,链式法则就是把导数分解成两个因子的乘积的法则,其中一个因子是从外面求导,另一个因子是从里面求导。
以y = f(g(x))为例,我们来看一下如何应用链式法则来计算y对x的导数:首先,我们把复合函数y表示成两个单独的函数g和f的乘积,即:y = f(g(x)) = f(u)其中u = g(x),表示g(x)作为中间变量。
然后,我们对f(u)求导,即:其中f'(u)表示f关于u的导数,即f的斜率,它等于f在u处的切线斜率。
u' = g'(x)把上述式子代入y' = f'(u) * u',即可得到y对x的导数:这就是链式法则的公式,它告诉我们如何计算一个复合函数的导数。
二、实例演练为了更好地理解链式法则,我们在这里介绍一个例子,假设有一个复合函数:f(x) = e^(3x^2 + 2x + 1)其中,u'表示u关于x的导数,即u' = 6x + 2这就是函数f(x)的导数了。
三、结论通过上述分析,我们可以得出以下结论:1. 对于由两个或多个函数组合而成的复合函数,我们可以用链式法则来求导。
2. 链式法则的公式为y' = f'(g(x)) * g'(x),其中f和g分别表示外层和内层的函数,f'和g'分别表示它们的导数。
3. 在应用链式法则时,需要将复合函数表示成两个单独的函数的乘积,并对它们分别求导。
2.5简单复合函数的求导法则课件高二下学期数学北师大版选择性
![2.5简单复合函数的求导法则课件高二下学期数学北师大版选择性](https://img.taocdn.com/s3/m/41f6639a09a1284ac850ad02de80d4d8d15a012f.png)
2
(3)设 y=u ,u=ln x,则
于是
1
yu'=2u,ux'=,
2ln
yx'=yu'·ux'= ,即
2ln
y'= .
探究点三
与复合函数有关的切线问题
【例3】 (1)曲线y=ln(2x-1)上的点到直线2x-y+3=0的最短距离是(
变式训练1[人教B版教材例题]求下列函数的导数.
(1)h(x)=e5x-1;
(2)f(x)=ln(2x+1);
(3)y= 2-1;
(4)y=sin 2 +
π
3
.
解 (1)h(x)=e5x-1可以看成f(u)=eu与u=g(x)=5x-1的复合函数,因此
h'(x)=f'(u)g'(x)=(eu)'(5x-1)'=eu×5=5e5x-1.
(2)y'=(e-x)'sin 2x+e-x·(sin 2x)'=-e-xsin 2x+2e-xcos 2x.
4
4
重难探究·能力素养速提升
探究点一
求复合函数的导数
【例1】 求下列函数的导数.
(1)y=(4-3x)2;(2)y=cos(2x- π );(3)y=ln(4x-1);(4)y=
4
e
2 .
分析先分析每个复合函数的构成,再按照复合函数的求导法则进行求导.
解 (1)设y=u2,u=4-3x,则yu'=2u,ux'=-3,于是yx'=yu'·ux'=-6(4-3x)=18x-24,即
复合函数求导原则
![复合函数求导原则](https://img.taocdn.com/s3/m/b380ed76f011f18583d049649b6648d7c1c7082a.png)
复合函数求导原则链式法则是复合函数求导的基本原则,它是由德国数学家莱布尼茨提出的。
链式法则告诉我们,如果一个函数由一个内部函数和一个外部函数组成,在求导的时候应该分别对这两个函数求导,并将两个导数相乘。
具体说来,如果函数y=f(g(x))是一个由内部函数g和外部函数f组成的复合函数,那么它的导数可以通过以下公式来计算:dy/dx = dy/du * du/dx其中,u = g(x),du/dx表示对函数g(x)求导,dy/du表示对函数f(u)求导。
这个公式的意义在于,它将求解一个复杂函数的导数问题转化为求解两个简单函数的导数问题。
值得注意的是,链式法则可以推广为多个函数的复合的情况。
比如,如果函数y=f(g(h(x)))是一个由三个函数组成的复合函数,那么它的导数可以通过以下公式来计算:dy/dx = dy/dv * dv/du * du/dx其中,u = h(x),v = g(u),dy/dv表示对函数f(v)求导。
除了链式法则,我们还可以使用其他方法来求解复合函数的导数。
对于一些特殊函数,我们可以直接使用它们的导数公式。
例如,对于幂函数y=x^n,它的导数可以直接计算出来:dy/dx = n * x^(n-1)对于指数函数y=e^x,它的导数也可以直接计算:dy/dx = e^x其他常见的函数,比如对数函数、三角函数、反三角函数等,也都有相应的导数公式。
如果我们要求解复合函数的导数,可以根据复合函数的具体形式,利用这些导数公式来计算。
对于实际问题,复合函数的导数求解可以帮助我们分析问题的变化率。
例如,在物理学中,我们经常研究速度、加速度等物理量的变化情况。
这些物理量往往是由时间的函数组成的复合函数。
通过求解这些复合函数的导数,我们可以获得物理量随时间变化的速度、加速度等信息。
在经济学中,复合函数的导数求解可以帮助我们分析市场的需求函数和供应函数对价格的反应程度。
通过求解这些复合函数的导数,我们可以计算出市场的价格弹性,从而了解消费者和生产者对价格变化的敏感程度。
复合函数求导法则
![复合函数求导法则](https://img.taocdn.com/s3/m/e1b18717905f804d2b160b4e767f5acfa1c783e2.png)
复合函数求导法则复合函数是由两个或多个函数构成的函数,形式为f(g(x)),其中g(x)是一个函数,f(u)是一个与u相关的函数。
在求复合函数的导数时,我们可以使用复合函数求导法则,该法则有三个部分:链式法则,反链式法则和迭代法则。
1.链式法则:链式法则适用于复合函数f(g(x)),其中g(x)是一个内层函数,f(u)是一个外层函数。
链式法则的公式如下:[f(g(x))]'=f'(g(x))*g'(x)例如,我们考虑函数f(u) = sin(u^2),其中g(x) = x^2、我们先计算g'(x),然后计算f'(u),最后使用链式法则计算出f(g(x))的导数。
首先,计算g'(x)如下:g'(x)=2x接下来,计算f'(u)如下:f'(u) = cos(u^2) * 2u最后,使用链式法则计算f(g(x))的导数如下:[f(g(x))]'=f'(g(x))*g'(x)= cos((x^2)^2) * 2(x^2)= cos(x^4) * 2x^2所以,f(g(x)) = sin(x^4) 的导数为 cos(x^4) * 2x^22.反链式法则:反链式法则适用于复合函数f(g(x)),其中g(x)是一个外层函数,f(u)是一个内层函数。
反链式法则的公式如下:[f(g(x))]'=f'(u)*u'例如,我们考虑函数f(u) = u^3,其中g(x) = sin(x)。
我们可以直接计算出g'(x)和f'(u),然后使用反链式法则计算出f(g(x))的导数。
首先,计算g'(x)如下:g'(x) = cos(x)接下来,计算f'(u)如下:f'(u)=3u^2最后,使用反链式法则计算f(g(x))的导数如下:[f(g(x))]'=f'(u)*u'= 3(sin(x))^2 * cos(x)= 3sin^2(x) * cos(x)所以,f(g(x)) = sin^3(x) 的导数为 3sin^2(x) * cos(x)。
简单复合函数的求导法则
![简单复合函数的求导法则](https://img.taocdn.com/s3/m/444e91cc951ea76e58fafab069dc5022aaea46ba.png)
简单复合函数的求导法则简单复合函数的求导法则是微积分中的重要内容之一,它可以帮助我们求解复杂的函数导数问题。
在这里,我将详细介绍简单复合函数的求导法则及其应用。
什么是简单复合函数?简单复合函数是指由两个或多个基本函数组成的新函数,其中一个基本函数作为另一个基本函数的自变量。
例如,f(x) = sin(2x)就是一个简单复合函数。
如何求解简单复合函数的导数?对于简单复合函数f(g(x)),我们可以使用链式法则来计算其导数。
具体来说,链式法则可以表达为:(f(g(x)))' = f'(g(x)) * g'(x)其中,f'表示f(x)的导数,g'表示g(x)的导数。
例如,对于f(x) = sin(2x),我们可以设g(x) = 2x,则:f'(x) = cos(2x)g'(x) = 2因此,(f(g(x)))' = f'(g(x)) * g'(x)= cos(2*2x) * 2= 2cos(4x)这样就得到了sin(2x)的导数为2cos(4x),这个结果可以进一步用于计算更加复杂的函数。
需要注意的是,在使用链式法则时,我们需要先计算内层函数(即g(x))的导数,并将其代入到外层函数(即f(x))的导数中。
简单复合函数的应用简单复合函数的求导法则在实际问题中有着广泛的应用,例如:1. 物理学中,运动物体的位置、速度和加速度之间可以用简单复合函数表示。
对于这些函数,我们可以使用链式法则来计算它们的导数,从而得到运动物体在不同时刻的速度和加速度。
2. 金融学中,利率和时间之间可以用简单复合函数表示。
对于这些函数,我们可以使用链式法则来计算它们的导数,从而得到不同时间点上的利率变化率。
3. 工程学中,电路元件之间的电流和电压之间可以用简单复合函数表示。
对于这些函数,我们可以使用链式法则来计算它们的导数,从而得到电路元件在不同时刻上的功率和能量变化率。
复合函数求导运算法则
![复合函数求导运算法则](https://img.taocdn.com/s3/m/12fac667842458fb770bf78a6529647d27283406.png)
复合函数求导运算法则求导作为数学分析中重要的运算,复合函数求导尤其重要。
求导定义为求复合函数的微分,或者求函数的偏导数,目的是为了计算函数的变化率,它是微分学的基础。
复合函数求导运算法则是指根据复合函数的组成部分和复合函数的变化关系,来求复合函数的微分或者偏导数。
首先,复合函数是指一个函数由多个函数所组成,这些函数在某一特定的函数上都有定义,且组合后可生成另外一个函数,这样的一个新函数就称作复合函数。
比如,一个函数由多个函数的乘积或者其他的运算形式组成,那么就可以生成一个复合函数,这样的复合函数求导就比较复杂,其运算法则更为复杂。
其次,复合函数求导的运算法则主要可以分为两部分,第一部分是复合函数的组成部分与其变化关系,它涉及到原函数的相关属性,包括函数的定义域和值域,以及复合函数的运算法则,这部分内容在求导时需要综合考虑,也就是所谓的“原函数性质”。
第二部分是复合函数求导运算法则,它是求导时必须遵守的准则,其中最重要的是链式法则和次数乘法法则,而其他的主要是系数法则,指数法则,除法法则等,根据不同的复合函数的组成,选择合适的法则进行求解即可。
最后,在实际应用中,复合函数的求导过程具有很强的实际价值,从极大极小问题的求解,极限的求解,到整体函数的变化趋势等,都需要依赖求导结果。
但同时,复合函数求导运算法则也很复杂,并且很容易出错,因此,在求导时需要综合考虑原函数的特性,根据正确的运算法则来求解,以避免错误求解导致的不正确的答案。
综上所述,复合函数求导运算法则是指在求解复合函数的微分或者偏导数时,根据复合函数的组成部分和复合函数的变化关系,c采用链式法则、次数乘法法则、系数法则、指数法则、除法法则等多种运算法则,结合原函数的特性,求解复合函数的导数,因此,在求导时,需要深入理解这些法则并谨慎使用,以避免出现误差。
一句话总结复合函数求导法
![一句话总结复合函数求导法](https://img.taocdn.com/s3/m/1c9059bf760bf78a6529647d27284b73f24236a9.png)
一句话总结复合函数求导法
复合函数求导法是微积分中的重要概念,它描述了两个函数复合后求导的方法。
下面列举了十个关于复合函数求导法的总结:
1. 复合函数的求导法则:对于复合函数f(g(x)),其导数等于外层函数f'(g(x))乘以内层函数g'(x)。
2. 复合函数求导的链式法则:对于复合函数f(g(x)),其导数等于
f'(g(x))乘以g'(x)。
3. 复合函数求导的应用:复合函数求导法可以用于求解复杂函数的导数,如指数函数、对数函数等。
4. 复合函数求导的基本思想:将复合函数视为两个函数的组合,先求内层函数的导数,再求外层函数的导数。
5. 复合函数求导的步骤:首先求内层函数的导数,然后求外层函数的导数,最后将两个导数相乘。
6. 复合函数求导的注意事项:在求导过程中,需要注意函数的定义域和导数的存在性。
7. 复合函数求导的例子:例如,对于复合函数f(g(x))=sin(x^2),其导数等于2x*cos(x^2)。
8. 复合函数求导的推广:复合函数求导法可推广到多个函数的复合,依然使用链式法则进行求导。
9. 复合函数求导与反函数求导的关系:复合函数求导与反函数求导是相互关联的,可以通过链式法则进行推导。
10. 复合函数求导与高阶导数的关系:复合函数求导法可以推广到
高阶导数的计算,依然使用链式法则进行推导。
通过上述总结,可以清晰地了解复合函数求导法的基本原理和应用方法。
掌握这一知识点对于解决复杂函数求导问题非常重要,有助于进一步理解微积分的概念和方法。
希望上述内容能对你有所帮助!。
复合函数求导公式
![复合函数求导公式](https://img.taocdn.com/s3/m/89942cd5dbef5ef7ba0d4a7302768e9951e76efc.png)
复合函数求导公式一、复合函数的导数定义假设y=f(u),u=g(x)都是可导函数,则复合函数y=f(g(x))也是可导函数。
复合函数的导数定义如下:dy/dx = dy/du * du/dx其中dy/du表示y关于u的导数,du/dx表示u关于x的导数。
二、链式法则链式法则是复合函数求导的重要工具,它表明复合函数的导数等于内外导数的积。
链式法则的数学表示如下:d(f(g(x)))/dx = f'(g(x)) * g'(x)其中f'(g(x))是f对于g(x)的导数,g'(x)是g对于x的导数。
三、基本公式1.复合函数的求导公式【公式1】(f(g(x))'=f'(g(x))*g'(x)【例题1】计算函数y=sin(x^2)的导数。
解:我们将y=sin(u)和u=x^2,那么y=sin(g(x))。
根据链式法则:dy/dx = dy/du * du/dx= cos(u) * 2x所以,函数y=sin(x^2)的导数为2x * cos(x^2)。
【例题2】计算函数y=(3x^2+2x+1)^3的导数。
解:我们将y=u^3和u=3x^2+2x+1,那么y=(g(x))^3、根据链式法则:dy/dx = dy/du * du/dx=3u^2*(6x+2)=3(3x^2+2x+1)^2*(6x+2)所以,函数y=(3x^2+2x+1)^3的导数为3(3x^2+2x+1)^2*(6x+2)。
2.反函数的导数公式如果y=f(g(x)),且g(x)与f(x)互为反函数,则有:dy/dx = 1 / (dx/dy)其中dx/dy表示g(x)对于x的导数。
【例题3】计算函数y=ln(sin(x))的导数。
解:将y=ln(u)和u=sin(x),那么y=ln(g(x))。
根据反函数的导数公式:dy/dx = 1 / (dx/dy)= 1 / (d(sin(x))/dx)所以,函数y=ln(sin(x))的导数为1 / (cos(x))。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一 般 地 , 设 函 数 u = ϕ ( x )在 点 x处 有 导 数 u
' = ϕ '( x ),
复合函数对自变量的导数,等于已知函数对中间变量f(u) 的导数,乘以中间变量 u = ϕ ( x ) 对自变量的导数.
注意: 1、法则可以推广到两个以上的中间变量; 2、求复合函数的导数,关键在于分清函数的复合关系,合理选定 中间变量,明确求导过程中每次是哪个变量相对于哪个变量求导.
y = log a x ( a > 0, a ≠ 1)
y = ln x
y = sin x
Title
y ′ = cos x
y′ = − sin x
y′ = 1 cos 2 x
1 sin 2 x
20:30:35
y = cos x
y = tan x
y = cot x
y′ = −
2.导数的四则运算法则: 设函数 u(x)、v(x) 是 x 的可导函数,则
20:30:35
练习1 练习
指出下列函数是怎样复合而成:
(1) y = sin 2 x; (2) y = 3x + x + 1; (3) y = cos(sin x);
2
y = sin u ,
y = u,
y = cos u ,
u = 2x
u = 3x 2 + x + 1
u = sin x
(4) y = (a + bx n ) m; 1 (5) y = sin(1 − ). x
y' =
x cos x − x sin x 2x
cos x sin 2 x
y' = −
y ' = 3x 2 −
3 x x cos x − sin x + 3 2x x 2 20:30:35
二、讲授新课:
1.复合函数的概念:
对 于 函 数 y = f (ϕ ( x )), 令 u = ϕ ( x ), 若 y = f ( u ) 是 中 间 变 量 u的 函 数 , u = ϕ ( x ) 是 自 变 量 x的 函 数 , 则 称 y = f (ϕ ( x )) 是 自 变 量 x 的 复 合 函 数 .
1)
2)
(u ( x ) ± v ( x )) ' = u '( x ) ± v '( x )
(u ( x) ⋅ v ( x)) ' = u '( x)v( x) + u ( x )v '( x)
推论:[c f(x)]’ = c f’(x)
3) ′ u ( x) u '( x)v( x) − u ( x)v '( x) = 2 v ( x) v( x)
yห้องสมุดไป่ตู้u ,
m
u = a + bx .
n
y = sin u ,
1 u = 1− x
20:30:35
① y x = y =[(3x− 2) ]' = (9x −12x + 4) =18x −12
'
'
2
问题: 如何求 y = (3 x − 2 ) 2 的导数?
2 '
y ② 其实, = (3x −2) 是一个复合函数,
2
由 y=u
2
与 u = 3 x − 2 复合而成.
′ yu =
2u
=
6 x − 4 ; u′x =
′ x y = y = yu ⋅ u ′
' ' x
3 ;
' x
′ x 分析三个函数解析式以及导数 y u , u ′ , y
之间的关系:
20:30:35
2.复合函数的导数:
x 函 数 y = f ( u ) 在 点 x 对 应 u 处 有 导 数 y ' = f '( u ), 则 复 合 u 函 数 y = f (ϕ ( x )) 在 点 x 处 也 有 导 数 , 且 y ' = y '⋅ u ' , x u x 或 写 作 [ f (ϕ ( x )) ] x ' = f '( u )ϕ '( x ).
简单复合函数的 求导法则
紫阳中学 张茂毅
20:30:35
知识回顾
1、导数公式表
函数 导函数
y = c(c是常数)
y = xα (α为实数)
y = a x (a > 0, a ≠ 1)
y′ = 0
y ′ = α x α −1
y′ = a x ln a
y=e
x
y′ = e x
y′ = 1 x ln a 1 y′ = x
20:30:35
求下列函数的导数.
(1) y = (2 x − 1) ;
5
( 2 ) y = ln (5 x + 1) ;
1 (3 ) y = ; 3x −1
( 4 ) y = co s(1 − 2 x );
(5) y =
5
x ; 1− x
练习:P51,练习。
20:30:35
20:30:35
20:30:35
课前练习:
1 1 1. y = x( x + + 2 ), 求y '; x x x x 2. y = x − sin cos , 求y '; 2 2
2
1 y ' = 2x + 2 x
2
1 y ' = 1 − cos x 2
3. y = x cos( − x), 求y ';
1 4. y = , 求 y '; sin x 5 x + x + x sin x 5. y = , 求 y '. 2 x