MATLAB符号计算实验报告
实验MATLAB符号计算
5.1
5.1.1
【例5.1.1-1】符号常数形成中的差异
a1=[1/3,pi/7,sqrt(5),pi+sqrt(5)]%<1>
a2=sym([1/3,pi/7,sqrt(5),pi+sqrt(5)])%<2>
a3=sym([1/3,pi/7,sqrt(5),pi+sqrt(5)],'e')%<3>
char
CMs =
sym
(4)
isa(Mn,'double'),isa(Mc,'char'),isa(Ms,'sym')
ans =
1
ans =
1
ans =
1
(5)
whos Mn Mc Ms
Name Size Bytes Class
Mc 1x9 18 char array
Mn 2x2 32 double array
Ms 2x2 312 sym object
Grand total is 21 elements using 362 bytes
5.1.4
【例5.1.4-1】对独立自由符号变量的自动辨认。
(1)
syms a b x X Y;k=sym('3');z=sym('c*sqrt(delta)+y*sin(theta)');
MATLAB实验报告(1-4)
信号与系统MATLAB第一次实验报告一、实验目的1.熟悉MATLAB软件并会简单的使用运算和简单二维图的绘制。
2.学会运用MATLAB表示常用连续时间信号的方法3.观察并熟悉一些信号的波形和特性。
4.学会运用MATLAB进行连续信号时移、反折和尺度变换。
5.学会运用MATLAB进行连续时间微分、积分运算。
6.学会运用MATLAB进行连续信号相加、相乘运算。
7.学会运用MATLAB进行连续信号的奇偶分解。
二、实验任务将实验书中的例题和解析看懂,并在MATLAB软件中练习例题,最终将作业完成。
三、实验内容1.MATLAB软件基本运算入门。
1). MATLAB软件的数值计算:算数运算向量运算:1.向量元素要用”[ ]”括起来,元素之间可用空格、逗号分隔生成行向量,用分号分隔生成列向量。
2.x=x0:step:xn.其中x0位初始值,step表示步长或者增量,xn 为结束值。
矩阵运算:1.矩阵”[ ]”括起来;矩阵每一行的各个元素必须用”,”或者空格分开;矩阵的不同行之间必须用分号”;”或者ENTER分开。
2.矩阵的加法或者减法运算是将矩阵的对应元素分别进行加法或者减法的运算。
3.常用的点运算包括”.*”、”./”、”.\”、”.^”等等。
举例:计算一个函数并绘制出在对应区间上对应的值。
2).MATLAB软件的符号运算:定义符号变量的语句格式为”syms 变量名”2.MATLAB软件简单二维图形绘制1).函数y=f(x)关于变量x的曲线绘制用语:>>plot(x,y)2).输出多个图像表顺序:例如m和n表示在一个窗口中显示m行n列个图像,p表示第p个区域,表达为subplot(mnp)或者subplot(m,n,p)3).表示输出表格横轴纵轴表达范围:axis([xmax,xmin,ymax,ymin])4).标上横轴纵轴的字母:xlabel(‘x’),ylabel(‘y’)5).命名图像就在subplot写在同一行或者在下一个subplot前:title(‘……’)6).输出:grid on举例1:举例2:3.matlab程序流程控制1).for循环:for循环变量=初值:增量:终值循环体End2).while循环结构:while 逻辑表达式循环体End3).If分支:(单分支表达式)if 逻辑表达式程序模块End(多分支结构的语法格式)if 逻辑表达式1程序模块1Else if 逻辑表达式2程序模块2…else 程序模块nEnd4).switch分支结构Switch 表达式Case 常量1程序模块1Case 常量2程序模块2……Otherwise 程序模块nEnd4.典型信号的MATLAB表示1).实指数信号:y=k*exp(a*t)举例:2).正弦信号:y=k*sin(w*t+phi)3).复指数信号:举例:4).抽样信号5).矩形脉冲信号:y=square(t,DUTY) (width默认为1)6).三角波脉冲信号:y=tripuls(t,width,skew)(skew的取值在-1~+1之间,若skew取值为0则对称)周期三角波信号或锯齿波:Y=sawtooth(t,width)5.单位阶跃信号的MATLAB表示6.信号的时移、反折和尺度变换:Xl=fliplr(x)实现信号的反折7.连续时间信号的微分和积分运算1).连续时间信号的微分运算:语句格式:d iff(function,’variable’,n)Function:需要进行求导运算的函数,variable:求导运算的独立变量,n:求导阶数2).连续时间信号的积分运算:语句格式:int(function,’variable’,a,b)Function:被积函数variable:积分变量a:积分下限b:积分上限(a&b默认是不定积分)8.信号的相加与相乘运算9.信号的奇偶分解四、小结这一次实验让我能够教熟悉的使用这个软件,并且能够输入简单的语句并输出相应的结果和波形图,也在一定程度上巩固了c语言的一些语法。
实验四MATLAB数值计算与符号计算
实验四 MATLAB数值计算与符号计算一、实验目的1.掌握数据插值和曲线拟合的方法2.掌握求数值导数和数值积分的方法3.掌握代数方程数值求解的方法4.掌握常微分方程数值求解的方法5.掌握求解优化问题的方法6.掌握求符号极限、导数和积分的方法7.掌握代数方程符号求解的方法8.掌握常微分方程符号求解的方法二、实验原理1.数据插值a) 一维数据插值 Y1=interp1(X,Y,X1,’method’)b) 二维数据插值 Z1=interp2(X,Y,Z,X1,Y1,’method’)2.曲线拟合[P,S]=polyfit(X,Y,m)3.符号对象的建立(1)符号量名=sym(符号字符串):建立单个的符号变量或常量;(2)syms arg1 arg2,…,argn:建立n个符号变量或常量。
4.基本符号运算(1)基本四则运算:+,-,*,\,^(2)分子与分母的提取:[n,d]=numden(s)(3)因式分解与展开:factor(s),expand(s)(4)化简:simplify, simple(s)5.符号函数及其应用(1)求极限:limit(f,x,a)(2)求导数:diff(f,x,a);(3)求积分:int(f,v)三、实验内容1.按下表用3次样条方法插值计算0~900范围内整数点的正弦值和0~750范围内整数点的正切值,然后用5次多项式拟合方法计算相同的函数值,并将两种计算结果进行比较。
x2=0:75;y1=sin(pi.*x1./180);y2=tan(pi.*x2./180);;a=interp1(x1,y1,45,'cublic')b=interp1(x1,y1,45,'cublic')p1=polyfit(x1,y1,5)p2=polyfit(x2,y2,5)c1=polyval(p1,x1);c2=polyval(p2,x2);subplot(2,1,1);plot(x1,c1,':o',x1,y1,'r');subplot(2,1,2);plot(x2,c2,':o',x2,y2,'r');10203040506070802.(1)求函数33()sin cos f x x x =+在点,,,6432x ππππ=的数值导数。
南华大学《MATLAB及应用》实验报告2
核科学技术学院实验报告实验项目名称MATLAB符号计算所属课程名称MATLAB及应用实验类型上机实验实验日期12月日指导教师谢芹班级学号姓名成绩一、实验名称MATLAB符号计算二、实验目的(1)掌握定义符号对象的方法(2)掌握符号表达式的运算法则以及符号矩阵运算(3)掌握求符号函数极限及导数的方法(4)掌握求符号函数定积分和不定积分的方法三、实验原理1. 函数极限及导数的方法(1)函数极限:limit(F,x,a) 求符号函数f(x)的极限值。
即计算当变量x趋近于常数a时,f(x)函数的极限值。
(2)limit(f):求符号函数f(x)的极限值。
符号函数f(x)的变量为函数findsym(f)确定的默认变量;没有指定变量的目标值时,系统默认变量趋近于0,即a=0的情况。
(3)limit(f,x,a,'right'):求符号函数f的极限值。
'right'表示变量x从右边趋近于a。
(4)limit(f,x,a,‘left’):求符号函数f的极限值。
‘left’表示变量x从左边趋近于a。
2. 微分:diff(s):没有指定变量和导数阶数,则系统按findsym函数指示的默认变量对符号表达式s求一阶导数。
diff(s,'v'):以v为自变量,对符号表达式s求一阶导数。
diff(s,n):按findsym函数指示的默认变量对符号表达式s求n阶导数,n为正整数。
diff(s,'v',n):以v为自变量,对符号表达式s求n阶导数。
3. 函数定积分和不定积分的方法:int(s):没有指定积分变量和积分阶数时,系统按findsym函数指示的默认变量对被积函数或符号表达式s求不定积分。
int(s,v):以v为自变量,对被积函数或符号表达式s求不定积分。
int(s,v,a,b):求定积分运算。
a,b分别表示定积分的下限和上限。
梯形法:trapz(x,y):x为分割点构成的向量,y为被积函数在分割点上的函数值构成的向量;抛物线法:quad(f,a,b,tol),f 是被积函数,[a,b]是积分区间,tol 是精度。
matlab实验报告总结
matlab实验报告总结1.求一份matlab的试验报告计算方法试验报告3【实验目的】检查各种数值计算方法的长期行为【内容】给定方程组x'(t)=ay(t),y'(t)=bx(t), x(0)=0, y(0)=b的解是x-y 平面上的一个椭圆,利用你已经知道的算法,取足够小的步长,计算上述方程的轨道,看看那种算法能够保持椭圆轨道不变。
(计算的时间步长要足够多)【实验设计】用一下四种方法来计算:1. Euler法2. 梯形法3. 4阶RK法4. 多步法Adams公式【实验过程】1. Euler法具体的代码如下:clear;a=2;b=1;A=[0 a; -b0];U=[];u(:,1)=[0;b];n=1000000;h=6*pi/n;fori=1:n delta(i)=((u(1,i)/a)^2+(u(2,i)/b)^2)^0.5; u(:,i+1)=u(:,i)+h*A*u(:,i);endt=1:n+1;subplot(1, 2,1);plot(1:n,delta);gridon;subplot(1,2,2);plot(u(1,:),u(2,:));gridon;max(abs(delta-ones(1,length(delta))));结果如下:2. 梯形法具体的代码如下:clear;a=2;b=1;A=[0 a; -b 0];U=[];u(:,1)=[0;b];n=300;h=6*pi/n;for i=1:n delta(i)=((u(1,i)/a)^2+(u(2,i)/b)^2)^0.5;v1=u(:,i)+h*A*u(:,i);v2=u(:,i)+h*A*(u(:,i)+v1)/2;1u(:,i+1)=u(:,i)+h*A*(u(:,i)+v2)/2;endt=1:n+1;sub plot(1,2,1);plot(1:n,delta);gridon;subplot(1,2,2);结果如下 3. 4阶RK法clear;a=2;b=1;A=[0 a; -b 0];U=[];u(:,1)=[0;b];n=70;h=6*pi/n;for i=1:n delta(i)=((u(1,i)/a)^2+(u(2,i)/b)^2)^0.5;k1=A*u(:,i); k2=A*(u(:,i)+h/2*k2); k3=A*(u(:,i)+h*k3); k4=A*(u(:,i)+h*k3); u(:,i+1)=u(:,i)+h/6*(k1+2*k2+2*k3+k4);endt=1:n+1 ;subplot(1,2,1);plot(1:n,delta);gridon;subplot(1,2,2);结果如下:4. 多步法Adams公式clear;a=2;b=1;A=[0 a; -b 0];U=[];u(:,1)=[0;b];n=200;h=6*pi/n;u(:;2)=u(u,1)+h*A*u(:,1);u(:;3)=u(u,2)+h/2*A*(3*u(:,2)-u(:,1));u(:;4)=u(u,3)+h/12*A*(23*u(:,3)-16*u(:,2)+5*u(:, 1)); delta(1)=((u(1,1)/a)^2+(u(2,1)/b^2)^0.5 delta(2)=((u(1,2)/a)^2+(u(2,2)/b^2)^0.5delta(3)=((u(1,3)/a)^2+(u(2,3)/b^2)^0.5for i=4:n delta(i)=((u(1,i)/a)^2+(u(2,i)/b)^2)^0.5;u(:,i+1)=u(:,i)+h/24*A*(55*u(:,i)-59*u(:,i-1)+37 *u(:,i-1)+37*u(:,i-2)-9*u(:,i-3));endt=1:n+1;sub plot(1,2,1);plot(1:n,delta);gridon;subplot(1,2,2);结果如下:【实验分析】通过这几种方法对比,发现最为稳定的是多步法Adams公式和4阶RK法,其次是梯形法,而欧拉法最为不稳定。
实验二--MATLAB的符号计算与可视化
实验二 MATLAB的符号计算与可视化1、目的和要求(1)熟练掌握MATLAB符号表达式的创建、代数运算及化简。
(2)熟悉符号方程的求解。
(3)熟练掌握MATLAB二维曲线、三维图形的绘制。
(4)熟练掌握各种特殊图形的绘制。
2:实验内容:(1)完成教材实验三第1节“1.创建符号表达式和符号表达式的操作”中(1)-(5)部分的内容,分别用sym和syms创建符号表达式f和g,并对它们进行相关操作,思考每一条命令的作用是什么,并提交命令行和结果;3:实验内容:(1)完成教材实验三第1节“1.创建符号表达式和符号表达式的操作”中(1)-(5)部分的内容,分别用sym和syms创建符号表达式f和g,并对它们进行相关操作,思考每一条命令的作用是什么,并提交命令行和结果;(1)创建符号表达式:使用sym命令创建符号表达式:f=sym('sin(x)')f =sin(x)>> g=sym('y/exp(-2*t)')g =y*exp(2*t)使用syms命令创建符号表达式:>> syms x y t>> f=sym(sin(x))f =sin(x)>> g=sym(y/exp(-2*t))g =y*exp(2*t)(2):自变量的确定:>> symvar(g)ans =[ t, y]>> symvar(g,1)ans =y>> findsym(g,2)ans =y,t(3):用常数替换符号变量:>> x=0:10;>> y=subs(f,x)y =Columns 1 through 80 0.8415 0.9093 0.1411 -0.7568 -0.9589 -0.2794 0.6570Columns 9 through 110.9894 0.4121 -0.5440(4):符号对象与数值的转换和任意精度控制:>> f1=subs(f,'5')f1 =sin(5)>> y1=double(f1)y1 =-0.9589>> y2=eval(f1)y2 =-0.9589采用digits和vpa实现任意精度控制:>> digitsDigits = 32>> vpa(f1)ans =-0.95892427466313846889315440615599>> vpa(f1,10)ans =-0.9589242747(5):求反函数和复合函数用finverse函数求f,g的反函数>> f=sym('sin(x)');>> g=sym('y/exp(-2*t)')g =y*exp(2*t)>> finverse(f)Warning: finverse(sin(x)) is not unique. ans =asin(x)>> finverse(g)ans =y/exp(2*t)>> finverse(g,'t')ans =log(t/y)/2用compose函数求f,g的复合函数>> compose(f,g)ans =sin(y*exp(2*t))>> compose(f,g,'z')ans =sin(z*exp(2*t))(2)自建两个一元四次符号表达式,分别进行其符号表达式的加、减、乘等运算,并提交命令行和结果;>> syms x>> f=x^4+2*x^3-5*x^2+6*x+8f =x^4 + 2*x^3 - 5*x^2 + 6*x + 8>> class(f)ans =sym>> g=2*x^4-5*x^3+8*x^2+7*x-2g =2*x^4 - 5*x^3 + 8*x^2 + 7*x - 2>> f+gans =3*x^4 - 3*x^3 + 3*x^2 + 13*x + 6>> f-gans =- x^4 + 7*x^3 - 13*x^2 - x + 10>> f*gans =(x^4 + 2*x^3 - 5*x^2 + 6*x + 8)*(2*x^4 - 5*x^3 + 8*x^2 + 7*x - 2)(3)自建一个可化简一元五次多项式和一个三角函数符号表达式,依次使用pretty, horner, factor, simplify和simple等函数对该表达式进行化简,并提交命令行和结果;syms x y>> f=x^5+x^4+2*x+2f =x^5 + x^4 + 2*x + 2>> g=cos(y)^2-sin(y)^2g =cos(y)^2 - sin(y)^2>> class(f)ans =sym>> class(g)ans =sym>> pretty(f)5 4x + x + 2 x + 2>> horner(f)ans =x*(x^3*(x + 1) + 2) + 2 >> factor(f)ans =(x + 1)*(x^4 + 2)>> simplify(f)ans =(x^4 + 2)*(x + 1)>> simple(f)simplify:x^5 + x^4 + 2*x + 2 radsimp:x^5 + x^4 + 2*x + 2 simplify(100):(x^4 + 2)*(x + 1) combine(sincos):x^5 + x^4 + 2*x + 2 combine(sinhcosh):x^5 + x^4 + 2*x + 2combine(ln):x^5 + x^4 + 2*x + 2 factor:(x + 1)*(x^4 + 2) expand:x^5 + x^4 + 2*x + 2 combine:x^5 + x^4 + 2*x + 2 rewrite(exp):x^5 + x^4 + 2*x + 2 rewrite(sincos):x^5 + x^4 + 2*x + 2 rewrite(sinhcosh): x^5 + x^4 + 2*x + 2 rewrite(tan):x^5 + x^4 + 2*x + 2 mwcos2sin:x^5 + x^4 + 2*x + 2collect(x):x^5 + x^4 + 2*x + 2ans =(x^4 + 2)*(x + 1)>> pretty(g)2 2cos(y) - sin(y)>> horner(g)ans =cos(y)^2 - sin(y)^2>> factor(g)ans =(cos(y) - sin(y))*(cos(y) + sin(y)) >> simplify(g)ans =cos(2*y)>> simple(g)simplify:cos(2*y)radsimp:cos(y)^2 - sin(y)^2simplify(100):cos(2*y)combine(sincos):cos(2*y)combine(sinhcosh):cos(y)^2 - sin(y)^2combine(ln):cos(y)^2 - sin(y)^2factor:(cos(y) - sin(y))*(cos(y) + sin(y))expand:cos(y)^2 - sin(y)^2combine:cos(y)^2 - sin(y)^2rewrite(exp):((1/exp(y*i))/2 + exp(y*i)/2)^2 - ((i*exp(i*y))/2 - i/(2*exp(i*y)))^2 rewrite(sincos):cos(y)^2 - sin(y)^2rewrite(sinhcosh):cosh(-y*i)^2 + sinh(-y*i)^2rewrite(tan):(tan(y/2)^2 - 1)^2/(tan(y/2)^2 + 1)^2 - (4*tan(y/2)^2)/(tan(y/2)^2 + 1)^2 mwcos2sin:1 - 2*sin(y)^2collect(y):cos(y)^2 - sin(y)^2ans =cos(2*y)(4)完成教材实验四第1节“1.绘制二维图线”中的所有内容,绘制4种二维曲线,把图形窗口分割为2行2列,并分别标明图名、坐标值等;2行2列子图的第1个图:>> subplot(2,2,1)>> t1=0:0.1:2;>> y1=sin(2*pi*t1);>> plot(t1,y1)>> title('y=sin(2\pit)')2行2列子图的第2个图:>> subplot(2,2,2)>> t2=0:0.1:2;>> y2=[exp(-t2);exp(-2*t2);exp(-3*t2)];>> plot(t2,y2)>> axis([0 2 -0.2 1.2]);>> title('y=e-t,y=e-2t,y=e-3t2行2列的第3个图:subplot(2,2,3);>> t3=[0 1 1 2 2 3 4];>> y3=[0 0 2 2 0 0 0];>> plot(t3,y3);>> axis([0 4 -0.5 3]);>> title('脉冲信号')2行2列的第4个图:>> subplot(2,2,4);>> t4=0:0.1:2*pi;>> plot(sin(t4),cos(t4));>> axis([-1.2 1.2 -1.2 1.2]);>> axis equal;>> title('圆')插图:[文档可能无法思考全面,请浏览后下载,另外祝您生活愉快,工作顺利,万事如意!]11 / 11。
MATLAB实验报告3-符号运算
F =
((x - 1)^3 - 5)/(2*(x - 1)^2 + 7)
2)
>> clear
>> syms x y;
>> g=(x^3*y-5*y)/(2*x^2+7);
>> gxy=diff(diff(g,x),y);
>> G=subs(gxy,{x},{x-1})
>> int(y)
ans =
log(x + 1)
>> int(y,0,1)
ans =
log(2)
>> syms t;
>> int(y,0,t)
ans =
log(t + 1)
>> clear
>> syms x y;
>> z=sin(y)/(x^2*y+1);
>> int(z,-inf,+inf)
ans =
8.积分中值定理:设 ,存在 ,使得 .检验存在 ,使得 .
四、实验步骤和运行结果(如运行有错误,请指出)
1.
>> syms u v x;
>> f=sqrt(1+u^2);
>> g=log(v);
>> h=exp(-x);
>> p=compose(g,h)
p =
log(exp(-x))
>> compose(f,p)
(pi*sin(y))/y^(1/2)
同济大学Matlab实验报告(matlab应用实例)
实 验 报 告班级机械三班学号姓名- 1 -- 2 -画出衰减振荡曲线t ey t 3sin 3-=及其它的包络线30t e y -=,31t e y --=。
t 值的范围是');- 3 -4.通过M 脚本文件,画出下列分段函数所表示的曲面,用冷色调。
⎪⎪⎩⎪⎪⎨⎧-≤+≤+<->+=+-------15457.0117575.015457.0),(215.175.375.0216215.175.375.02112122212212122x x e x x ex x e x x p x x x x x x x x [X1,X2]=meshgrid(-1.5:0.1:1.5,-2:0.1:2);P=0.5457*exp(-0.75*X2.^2-3.75*X1.^2-1.5*X1).*(X1+X2>1)... + 0.7575*exp(-X2.^2-6*X1.^2).*(X1+X2>-1&X1+X2<=1)... + 0.5457*exp(-0.75*X2.^2-3.75*X1.^2+1.5*X1).*(X1+X2<=-1); surf(X1,X2,P);colormap(cool);colorbar('horiz'); shading flat;实验体会与总结通过此次实验,把课堂所学的理论知识运用到了实际中,了解了Matlab 的基本功能和用途。
经过4个实验基,本上掌握了Matlab 绘制曲线、曲面和构造分段函数的方法,相信此次实验会为以后Matlab 的学习奠定坚实的基础。
- 1 -实 验 报 告班级 机械三班 学号 姓名的值,输出一元二次方程2ax bx c ++=root方程形式:a*x^2+b*x+c=0 请输入各项系数: a=1 b=1 c=-1ans =-1.6180 0.6180exchange 请输入x :1 请输入y :0 x=0, y=1- 2 -',num2str(discount*100),'%']) 请输入商品价格:100折扣: 0%实际价格:100请输入商品价格:300 折扣: 3% 实际价格:291请输入商品价格:700 折扣: 5% 实际价格:665 请输入商品价格:1500 折扣: 8% 实际价格:1380请输入商品价格:3000折扣: 10% 实际价格:2700 请输入商品价格:6000 折扣: 14% 实际价格:5160- 3 -4.在.m 文件中编写程序实现,在同一坐标内,分别用不同线型和颜色绘制曲线0.510.2cos(4)y e x x π-=和0.522cos()y e x x π-=,标记两曲线交叉点,给出每条曲线的图注。
实验三 MATLAB符号计算
expr1 =
x^3+2*exp(-t)*x^2+(1+exp(-t)^2)*x+exp(-t) expr2 = x*exp(-t)^2+(2*x^2+1)*exp(-t)+(x^2+1)*x
expand使用指令 y=0.14-(1.2e+002)*(-2.4005*(0.445-x)^7+4.2505*(0.445x)^6-2.2336*(0.445-x)^5+0.4993*(0.445-x)^40.0514*(0.445-x)^3+0.0025*(0.445-x)^2);
符号矩阵的生成
符号矩阵可通过函数sym来生成。符号矩阵中的元素是任何不带等号的符 号表达式,各符号表达式的长度可以不相同;符号矩阵中,以空格或逗号 分隔的元素指定的是不同列的元素而分号分隔的元素指定的是不同行的元 素。 例:
syms x; A=sym(‘[cos(x),sin(x),x;-x+1 x^2+x+1 tan(x)]’) A= [ cos(x), sin(x), x] [ -x+1, x^2+x+1, tan(x)] >> size(A) %求符号矩阵的大小 ans = 2 3 > a=[1 2 3 4;4 5 6 7]; >> b=sym(a) b= [ 1, 2, 3, 4] [ 4, 5, 6, 7]
matlab符号运算实验报告
>> a2=sym(a1); b2=sym(b1);
>> c2=(a2+b2-a2)/b2;c2=1
c1=0
c2=1
变量类型不一样
3.设A是一个符号矩阵(定义如下),试指出findsym(A,1)的输出结果,并由此能得出什么结论?
>> symsa b t u v x y;
>> factor(‘12345678901234567890’)错误
ans =
(2)*(3)^2*(5)*(101)*(3803)*(3607)*(27961)*(3541)
syms x;f=-x+2*x^2+3*x^3+4*x^4;g=5*x^5-6*x^2+9;
A=simple(f*g)
B=simple(f/g)
>> A=[a+b*x,sin(t)+u; x*exp(-t),log(y)+v]
A =
[ a+b*x, sin(t)+u]
[ x*exp(-t), log(y)+v]
试指出下面两条命令的结果是否相同,如果不同,哪个是正确的?为什么?
>> factor(sym('12345678901234567890'))
C=simple(f\g)
int(f)
int(g,1,2)
diff(f,x,2)
D=f/g
limit(D,x,0)
用ezplot命令绘出 在[-4,4]之间的图像。
ezplot('x^2*sin(x)',[-4,4])
matlab符号计算实验总结
matlab符号计算实验总结
MATLAB 是一种广泛使用的数学软件,其中包括符号计算功能。
符号计算实验可以帮助用户了解如何使用 MATLAB 进行符号计算,以及如何解决实际问题。
以下是 MATLAB 符号计算实验的总结:
1. 熟悉 MATLAB 符号计算环境:MATLAB 符号计算环境包括Symbolic and Algebraic Calculator(SAC) 和 Symbolic Math Kernel(SMK)。
SAC 是一个交互式计算器,可用于符号计算和代数计算。
SMK 是一个内核,可嵌入到 MATLAB 主程序中,用于符号计算和数学推理。
2. 掌握 MATLAB 符号计算基本语法:MATLAB 符号计算的基本语法包括变量名、符号表达式、对数、指数、三角函数、反函数等。
此外,MATLAB 还支持特殊的符号运算符,如+、-、*、/和^。
3. 熟悉 MATLAB 符号计算工具箱:MATLAB 提供了许多符号计算工具箱,包括高级代数、符号微积分、符号微分方程、符号计算物理等。
使用这些工具箱可以更高效地进行符号计算。
4. 掌握 MATLAB 符号计算算法:MATLAB 符号计算算法包括对称群、对称矩阵、雅可比矩阵、特征值和特征向量等。
掌握这些算法可以更好地理解符号计算的原理和实现方法。
5. 实践 MATLAB 符号计算:通过实践 MATLAB 符号计算,可以更好地掌握其语法和算法。
可以尝试解决一些简单的符号计算问题,如求根、解方程、求导、积分等。
MATLAB 符号计算实验可以帮助用户了解符号计算的原理和实现
方法,提高其符号计算技能。
matlab符号计算实验总结
matlab符号计算实验总结
在本次实验中,我们学习了 Matlab 符号计算工具箱,并进行了一些基本的符号计算实验,总结如下:
1. Matlab 符号计算工具箱提供了方便的符号计算环境,可以进行代数运算、微积分、线性代数等操作,适合数学建模、符号计算、科学计算等领域。
2. 在 Matlab 符号计算工具箱中,可以使用符号变量来表示数学表达式,这些可以包含未知量、函数、常数以及一些特殊符号等。
3. 不同于数值计算,符号计算可以处理精确的数学表达式,因此可以应用于一些需要保证精度的计算,比如微分方程、符号积分、级数求和等问题。
4. 在 Matlab 中,我们可以使用符号表达式来进行计算。
需要注意的是,在使用符号计算工具进行复杂运算时,计算速度较慢,因此需要谨慎考虑计算的复杂度。
5. Matlab 符号计算工具箱提供了多种符号计算函数,如求导函数、积分函数、解代数方程函数、解微分方程函数等。
学习和掌握这些函数对于进行符号计算实验非常有帮助。
6. Matlab 符号计算工具箱的应用范围广泛,在数学、物理、化学、工程等领域都有应用。
学习和熟练掌握 Matlab 的符号计算工具箱对于各类科学计算工作都是很有帮助的。
总之,本次实验学习了 Matlab 符号计算工具箱,了解了符号计算基本原理和方法,并进行了一些简单的符号计算实验。
这对于进一步掌握 Matlab 符号计算工具箱有很大帮助,也有益于我们将来的科学计算工作。
(完整word)Matlab实验报告
实验一:Matlab操作环境熟悉一、实验目的1.初步了解Matlab操作环境.2.学习使用图形函数计算器命令funtool及其环境。
二、实验内容熟悉Matlab操作环境,认识命令窗口、内存工作区窗口、历史命令窗口;学会使用format 命令调整命令窗口的数据显示格式;学会使用变量和矩阵的输入,并进行简单的计算;学会使用who和whos命令查看内存变量信息;学会使用图形函数计算器funtool,并进行下列计算:1.单函数运算操作。
求下列函数的符号导数(1)y=sin(x);(2) y=(1+x)^3*(2-x);求下列函数的符号积分(1)y=cos(x);(2)y=1/(1+x^2);(3)y=1/sqrt(1—x^2);(4)y=(x1)/(x+1)/(x+2)求反函数(1)y=(x-1)/(2*x+3); (2) y=exp(x);(3) y=log(x+sqrt(1+x^2));代数式的化简(1)(x+1)*(x-1)*(x-2)/(x-3)/(x—4);(2)sin(x)^2+cos(x)^2;(3)x+sin(x)+2*x—3*cos(x)+4*x*sin(x);2.函数与参数的运算操作。
从y=x^2通过参数的选择去观察下列函数的图形变化(1)y1=(x+1)^2(2)y2=(x+2)^2(3) y3=2*x^2 (4) y4=x^2+2 (5) y5=x^4 (6) y6=x^2/2 3.两个函数之间的操作求和(1)sin(x)+cos(x) (2) 1+x+x^2+x^3+x^4+x^5乘积(1)exp(—x)*sin(x) (2) sin(x)*x商(1)sin(x)/cos(x); (2) x/(1+x^2); (3) 1/(x—1)/(x—2); 求复合函数(1)y=exp(u) u=sin(x) (2) y=sqrt(u) u=1+exp(x^2)(3) y=sin(u) u=asin(x) (4) y=sinh(u) u=-x实验二:MATLAB基本操作与用法一、实验目的1.掌握用MATLAB命令窗口进行简单数学运算。
【免费下载】MATLAB原理应用实验报告第三章符号运算
MATLAB 提供的对符号表达式化简的函数如下 Simplify(s) ;应用 MuPAD 简化规则对 s 进行化简。 Simple(s):调用 MATLAB 的其他函数对表达式进行综合化简,并显示化简过程。 【实验 3-5】 在 MATLAB 的命令窗口中输入下例内容:
>> s=sym('(x^2+5*x+6)/(x+2)'); >> simplify(s) ans = x+3 >> s=sym('[2*cos(x)^2-sin(x)^2,sqrt(16)]'); >> simplify(s) ans = [ 3*cos(x)^2-1, 4] 函数 simple 试用了几种不同的化简工具,然后选择在结果表达式中含有最少字符的那
d=
(2*x-1)*(x+1) 如果符号表达式是一个符号矩阵,numden 返回两个新矩阵 n 和 d,其中 n
是分子矩阵,d 是分母矩阵。
>> h=sym('[3/2,(2*x+1)/3;a/x+a/y,x+4]')
[
h=
[ a/x+a/y,
3/2, (2*x+1)/3]
>> [n,d]=numden(h)
n=
[
3, 2*x+1]
[ a*(y+x), x+4]
d=
x+4]
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
matlab 实验报告
matlab 实验报告Matlab实验报告引言:Matlab是一种强大的数值计算和可视化软件,广泛应用于科学、工程和经济等领域。
本实验报告将介绍我在使用Matlab进行实验过程中的一些经验和结果。
实验一:矩阵运算在这个实验中,我使用Matlab进行了矩阵运算。
首先,我创建了一个3x3的矩阵A和一个3x1的矩阵B,并进行了矩阵相乘运算。
通过Matlab的矩阵乘法运算符*,我得到了一个3x1的结果矩阵C。
接着,我对矩阵C进行了转置操作,得到了一个1x3的矩阵D。
最后,我计算了矩阵C和矩阵D的点积,并将结果输出。
实验二:数据可视化在这个实验中,我使用Matlab进行了数据可视化。
我选择了一组实验数据,包括时间和温度两个变量。
首先,我将数据存储在一个矩阵中,并使用Matlab的plot函数将时间和温度之间的关系绘制成曲线图。
接着,我使用Matlab的xlabel、ylabel和title函数添加了横轴、纵轴和标题。
最后,我使用Matlab的legend函数添加了图例,以便更好地理解图表。
实验三:数值积分在这个实验中,我使用Matlab进行了数值积分。
我选择了一个函数f(x)进行积分计算。
首先,我使用Matlab的syms函数定义了符号变量x,并定义了函数f(x)。
接着,我使用Matlab的int函数对函数f(x)进行积分计算,并将结果输出。
为了验证结果的准确性,我还使用了Matlab的diff函数对积分结果进行了求导操作,并与原函数f(x)进行了比较。
实验四:信号处理在这个实验中,我使用Matlab进行了信号处理。
我选择了一个音频文件,并使用Matlab的audioread函数读取了该文件。
接着,我使用Matlab的fft函数对音频信号进行了傅里叶变换,并将结果绘制成频谱图。
为了进一步分析信号的特征,我还使用了Matlab的spectrogram函数绘制了信号的时频图。
通过对信号的频谱和时频图的观察,我可以更好地理解信号的频率和时域特性。
Matlab符号计算上机实验
Matlab7.0符号计算实验报告⒈目的本实验旨在向学生介绍一种解决专业问题的快速有效且具有强大功能的科学与工程计算软件。
通过本实验,应使学生掌握的内容是:MATLAB7.0符号对象的创建和使用,MATLAB7.0任意精度的计算, MATLAB7.0符号表达式的化简和替换,MATLAB7.0符号矩阵计算,MATLAB7.0符号微积分,MATLAB7.0积分变换,MATLAB7.0符号代数方程和符号微分方程求解。
该实验主要为上机实验,要求学生按要求上机实现相关的程序的设计,自己动手编写程序并验证程序的正确性。
⒉实验任务分解通过一些实例初步掌握MATLAB7.0的基本符号计算功能和应用。
实验任务可分解为:MATLAB7.0符号计算的基础,MATLAB7.0符号计算在高等数学中的应用,MATLAB7.0符号方程(组)求解和符号矩阵计算。
⒊实验环境介绍长清校区数学实验室实验一MATLAB7.0符号计算的基础实验目的:1.掌握MATLAB7.0符号对象的创建和使用;2.掌握MATLAB7.0任意精度的计算;3.掌握MATLAB7.0符号表达式的化简和替换。
实验要求:给出程序和实验结果。
实验题目与结果:一、计算符号表达式()cos()sin()f x x x x=+-在1xπ=-处的值,并将结果设置为以下五种精度,即分别为小数点之后1位、2位、10位、20位、50位有效数字;function y=f(x)y=x+cos(x)-sin(x)x=pi-1;>> y=f(x);y =0.7598>> y1=vpa(y,1)y1 =.8>> y2=vpa(y,2)y2 =.76>> y3=vpa(y,10)y3 =.7598193629>> y4=vpa(y,20)y4 =.75981936291375673509>> y5=vpa(y,50)y5 =.75981936291375673508952104384661652147769927978516二、设x为符号变量,42()21f x x x=++,32()635g x x x x=+++,试进行如下运算。
Matlab实验二符号计算
实验二 符号计算一、实验目的1.理解符号计算的本质,掌握符号计算的常规步骤;2.学习认定符号表达式中独立变量;3.学习求极限,符号积分;4.掌握如何求微分方程解,代数方程的解。
二、实验任务1.定义2sin ()(1cos(2*))/2y x x =+-,要求编写程序化简该表达式,理解符号计算实质。
y =sin(x)^2+1/2-1/2*cos(2*x)>> f=simple(y)f =1-cos(2*x)2.练习课后习题2第1题,说出以下四条指令产生的结果各属于哪种数据类型,是“双精度”对象,还是“符号”对象?体验符号常量和符号数字区别。
3/7+0.1;sym(3/7+0.1);vpa(sym(3/7+0.1));vpa(sym(3/7+0.1),4)练习时,可使用class 、whos 、isa 函数检验。
下图为不同类型之间的转换。
以数值矩阵A=[1/3,2.5;1/0.7,2/5]为例,进行符号矩阵和数值矩阵之间转换。
3.编写程序,求解sin(x)/x 趋于0时的极限。
limit(f,x,0)数值型 符号结符号常数 符号量(表达式) 数值 字符串(表达式)ASCIIvpa vpadoubledouble sym char sym double charstr2num str2double int2str num2str mat2strans =14.编写程序求解下面的微分方程''''()5*()6*()(),(0)1,(0)2,()3*sin()2*y t y t y t f t y y f t t t -+==-==+。
2.4 dsolve('D2y-5*Dy+6*y=3*sin(t)+2*t','Dy(0)=-1','y(0)=2')5.已知方程组x+y+z=1,x-y+z=2,2x-y-z=1,编写程序求解符号方程组2.6。
【VIP专享】matlab符号运算实验报告
>> M2='[a,b;c,d]';
>> M3=sym('[a,b;c,d]');
M1 =
M2 =
[a,b;c,d]Biblioteka M3 =[ a, b]
[ c, d]
12
34
2.下面语句计算出来的 c1,c2 相等吗,为什么?上机验证。
>> a1=1e10; b1=1e-10;
>> c1=(a1+b1-a1)/b1;
>> a2=sym(a1); b2=sym(b1);
c1=0
6.培养学生观察、思考、对比及分析综合的能力。过程与方法1.通过观察蚯蚓教的学实难验点,线培形养动观物察和能环力节和动实物验的能主力要;特2征.通。过教对学观方察法到与的教现学象手分段析观与察讨法论、,实对验线法形、动分物组和讨环论节法动教特学征准的备概多括媒,体继课续件培、养活分蚯析蚓、、归硬纳纸、板综、合平的面思玻维璃能、力镊。子情、感烧态杯度、价水值教观1和.通过学理解的蛔1虫.过观适1、察于程3观阅 六蛔寄.内列察读 、虫生出蚯材 让标容生3根常蚓料 学本教活.了 据见身: 生,师的2、解 问的体巩鸟 总看活形作 用蛔 题线的固类 结雌动态业 手虫 自形练与 本雄学、三: 摸对 学动状习人 节蛔生结4、、收 一人 后物和同类 课虫活构请一蚯集 摸体 回并颜步关 重的动、学、蚓鸟 蚯的 答归色学系 点形教生生让在类 蚓危 问纳。习从 并状学理列学平的害 题线蚯四线人 归、意特出四生面体以形蚓、形类 纳大图点常、五观玻存 表及动的鸟请动文 本小引以见引、察璃现 ,预物身类 3学物明 节有言及的、导巩蚯上状 是防的体之生和历 课什根蚯环怎学固蚓和, 干感主是所列环史 学么据蚓节二样生练引牛鸟 燥染要否以举节揭 到不上适动、区回习导皮类 还的特分分蚯动晓 的同节于物让分答。学纸减 是方征节布蚓物起 一,课穴并学蚯课生上少 湿法。?广的教, 些体所居归在生蚓前回运的 润;4泛益学鸟色生纳.靠物完的问答动原 的4蛔,处目类 习和活环.近在成前题蚯的因 ?了虫以。标就 生体的节身其实端并蚓快及 触解寄上知同 物表内特动体结验和总利的慢我 摸蚯生适识人 学有容点物前构并后结用生一国 蚯蚓在于与类 的什,的端中思端线问活样的 蚓人飞技有 基么引进主的的考?形题环吗十 体生行能着 本特出要几变以动,境?大 节活的1密 方征本“特节化下物.让并为珍 近习会形理切 法。课生征有以问的小学引什稀 腹性态解的 。2课物。什游题主.结生出么鸟 面和起结蛔关观题体么戏:要利明蚯?类 处适哪构虫系察:的特的特用确蚓等 ,于些特适。蛔章形殊形征板,这资 是穴疾点于可虫我态结式。书生种料 光居病是寄的们结构,五小物典, 滑生?重生鸟内学构,学、结的型以 还活5要生类部习与.其习巩鸟结的爱 是如原活生结了功颜消固类构线鸟 粗形何因的存构腔能色化练适特形护 糙态预之结的,肠相是系习于点动鸟 ?、防一构现你动适否统。飞都物为结蛔。和状认物应与的行是。主构虫课生却为和”其结的与题、病本理不蛔扁的他构特环以生?8特乐虫形观部特8征境小理三页点观的动位点梳相组等、这;,哪物教相,理适为方引些2鸟,育同师.知应单面导鸟掌类结了;?生识的位学你握日构解2互.。办特生认线益特了通动手征观识形减点它过,抄;察吗动少是们理生报5蛔?物,与的解.参一了虫它和有寄主蛔与份解结们环些生要虫其。蚯构都节已生特对中爱蚓。会动经活征人培鸟与飞物灭相。类养护人吗的绝适这造兴鸟类?主或应节成趣的为要濒的课情关什特临?就危感系么征灭来害教;?;绝学,育,习使。我比学们它生可们理以更解做高养些等成什的良么两好。类卫动生物习。惯根的据重学要生意回义答;的3.情通况过,了给解出蚯课蚓课与题人。类回的答关:系线,形进动行物生和命环科节学动价环值节观动的物教一育、。根教据学蛔重虫点病1.引蛔出虫蛔适虫于这寄种生典生型活的线结形构动和物生。理二特、点设;置2.问蚯题蚓让的学生生活思习考性预和习适。于穴居生活的形态、结构、生理等方面的特征;3.线形动物和环节动物的主要特征。
matlab符号计算实验报告
1. 已知x=6,y=5,利用符号表达式求z =>> syms x >> z=(x+1)/(sqrt(x+3)-sqrt(y)); >> subs(z,x,5) ans =6/(8^(1/2)-y^(1/2)) >> subs(ans,6) ans = 15.83382. 分解因式。
(1)x y -44; >> syms x y >> factor(x^4-y^4) ans =(x-y)*(x+y)*(x^2+y^2)(2)x x x +++64212575151 >> syms x >> factor(125*x^6+75*x^4+15*x^2+1) ans =(5*x^2+1)^33. 化简表达式(1)sin cos cos sin ββββ-1212;>> syms x y >> f=sin(x).*cos(y)-cos(x).*sin(y); >> sfy1=simple(f) 结果:sfy1 =sin(x-y)(2)x x x +++248321>> syms x >> f=(4*x^2+8*x+3)/(2*x+1);sfy1=simplify(f) sfy1 =2*x+34、求下列极限,将完成实验的程序写到文件sy1.m 中:(1) (2) (3) (4)(5) (1)>> syms x >> F1=atan(x)/(x); >> w=limit(F1) w =1(2)>> syms x F2=((1+x)/(1-x))^(1/x); >> w=limit(F2) w =exp(2)(3)>> syms x F3=(x.*log(1+x))/(sin(x^2)); >> w=limit(F3) w =1(4)>> syms x F4=atan(x)/(x); >> w=limit(F4,x,inf) w =0(5)>> syms x F5=(1/(1-x)-1/(1-x^3)); >> w=limit(F5,x,1) w =NaN5、求下列函数的导数,将完成实验的程序写到文件sy2.m 中:1、 >> x = sym('x'); >> y1=(cos(x))^3-cos(3*x); >> diff(y1)ans =-3*cos(x)^2*sin(x)+3*sin(3*x)2、 >> x = sym('x'); >> y2=x.*sin(x).*(log(x)); >> diff(y2)ans =sin(x)*log(x)+x*cos(x)*log(x)+sin(x)3、>> x = sym('x'); >> y3=(x.*exp(x)-1)/sin(x); >> diff(y3)ans =(exp(x)+x*exp(x))/sin(x)-(x*exp(x)-1)/sin(x)^2*cos(x)4、 x x x x F 1011lim 2⎪⎭⎫ ⎝⎛-+=→31115lim()11x F x x →=---20sin )1ln(lim 3x x x F x +=→x x F x arctan lim 10→=arctan 4lim x x F x →∞=xx y 3cos cos 13-=xx x y ln sin 2=x xe y xsin 13-=cos x y e x =>> x = sym('x');y=cos(x).*exp(x); >> diff(y) ans =-sin(x)*exp(x)+cos(x)*exp(x)5、 >> x = sym('x');y=x^2.*sin(x); >> diff(y) ans = 2*x*sin(x)+x^2*cos(x)6、求下列函数的积分1、syms x a b c;int(sin(a*x).*sin(b*x).*sin(c*x)) ans =-1/4/(c+a-b)*cos((c+a-b)*x)+1/4/(-c+a-b)*cos((-c+a-b)*x)+1/4/(c+a+b)*cos((c+a+b)*x)-1/4/(-c +a+b)*cos((-c+a+b)*x) 2、>> syms x ;int(x^5+x^3-sqrt(x)/4) ans =1/6*x^6+1/4*x^4-1/6*x^(3/2)3、>> syms x ;int(x.*exp(x)/(x+1)^2,x,0,1) ans =1/2*exp(1)-1 4、 >> syms x y;F=int(int('x/(1+x*y)',x,0,1),y,0,1) F =2*log(2)-15、 由曲面22y x z +=,1=z ,2=z 所围成 >> syms x y z;F=int(int(int('x^2+y^2',x,-inf,inf),y,-inf,inf),z,1,2) F =Inf7、求下列级数的和(1) (2)(1)>> syms n;symsum(2*n-1/2^n,1,Inf) ans =Inf(2)syms n;symsum(1/n*(2*n-1),1,Inf) ans =Inf8、将函数 展开成2-x 的幂级数>> syms x;mtaylor(1/(x^2+5*x-3),x-2) 2sin 2y x x=⎰cxdx bx ax sin sin sin dx x x x )4(35⎰-+⎰+102)1(dx x xe x ⎰⎰+D dxdy xy x 1]1,0[]1,0[⨯=D ⎰⎰⎰Vzdxdydz 11212n n n I ∞=-=∑211(21)n I n n ∞==+∑21()53f x x x =+-。
实验7 Matlab符号计算
实验7 Matlab 符号计算实验目的:1、 掌握定义符号对象的方法;2、 掌握符号表达式的运算法则以及符号矩阵运算。
3、 掌握求符号函数极限及导数的方法。
4、 掌握求符号函数定积分和不定积分的方法。
实验内容:1. 已知x=6,y=5,利用符号表达式求z =syms x y;>> z=(x+1)./(sqrt(3+x)-sqrt(y)) z =(x+1)/((3+x)^(1/2)-y^(1/2)) 2. 分解因式。
(1)x y -44;(2)x x x +++64212575151>> clear >> syms x y;>> factor(x.^4-y.^4) ans =(x-y)*(x+y)*(x^2+y^2) >> clear >> syms x; >>factor(125.*x.^6+75.*x.^4+15.*x.^2+1) ans =(5*x^2+1)^3 3. 化简表达式(1)sin cos cos sin ββββ-1212;(2)x x x +++248321clearsyms fai1 fai2;f=simple(sin(fai1)*cos(fai2)-cos(fai1)*sin(fai2)) f =sin(fai1-fai2) >> clear >> syms x; >>simplify((4.*x.^2+8.*x+3)./(2.*x+1))ans = 2*x+3 4. 已知,,a bc P P Adefg hi ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦12010100100010001101完成下列运算: (1)B P P A =⋅⋅12. p1=sym([0,1,0;1,0,0;0,0,1]); >> p2=sym([1,0,0;0,1,0;1,0,1]); A=sym('[a,b,c;d,e,f;g,h,i]'); >> B=p1*p2*A B =[ d, e, f] [ a, b, c][ a+g, b+h, c+i](2)B的逆矩阵并验证结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验六符号计算
学院:数计学院班级:1003班姓名:黄晓丹学号:1051020144
一、实验目的
1、了解富符号对象和数值对象之间的差别,以及它们之间的互相转换
2、了解符号运算和数值运算的特点、区别和优缺点
3、掌握符号对象的基本操作和运算,以及符号运算的基本运用
二、实验内容
1、符号常数形成和使用
(1)符号常数形成中的差异
>> a1=[1/3,pi/7,sqrt(5),pi+sqrt(5)]
a1 =
0.3333 0.4488 2.2361 5.3777
>> a2=sym([1/3,pi/7,sqrt(5),pi+sqrt(5)])
a2 =
[ 1/3, pi/7, sqrt(5),
6054707603575008*2^(-50)]
>> a3=sym('[1/3,pi/7,sqrt(5),pi+sqrt(5)]')
a3 =
[ 1/3, pi/7, sqrt(5), pi+sqrt(5)]
>> a24=a2-a3
a24 =
[ 0, 0, 0, 189209612611719/35184372088832-pi-5^(1/2)]
(2)把字符表达式转化为符号变量
>> y=sym('2*sin(x)*cos(x)')
y =
2*sin(x)*cos(x)
>> y=simple(y)
y =
sin(2*x)
(3)用符号计算验证三角等式
>> syms fai1 fai2;y=simple(sin(fai1)*cos(fai2)-cos(fai1)*sin(fai2))
y =
sin(fai1-fai2)
(4)求矩阵的行列式值、逆和特征值
>> syms a11 a12 a21 a22;A=[a11,a12;a21,a22]
A =
[ a11, a12]
[ a21, a22]
>> DA=det(A),IA=inv(A),EA=eig(A)
DA =
a11*a22-a12*a21
IA =
[ a22/(a11*a22-a12*a21), -a12/(a11*a22-a12*a21)] [ -a21/(a11*a22-a12*a21), a11/(a11*a22-a12*a21)]
EA =
1/2*a11+1/2*a22+1/2*(a11^2-2*a11*a22+a22^2+4*a12 *a21)^(1/2)
1/2*a11+1/2*a22-1/2*(a11^2-2*a11*a22+a22^2+4*a12* a21)^(1/2)
2、识别对象类型的指令
生成三种不同类型的矩阵,给出不同的显示形式>> clear,a=1;b=2;c=3;d=4;
>> Mn=[a,b;c,d]
Mn =
1 2
3 4
>> Mc='[a,b;c,d]'
Mc =
[a,b;c,d]
>> Ms=sym(Mc)
Ms =
[ a, b]
[ c, d]
3、符号表达式中自由变量的确定
(1)生成符号变量
>> syms a b x X Y;k=sym('3');z=sym('c*sqrt(delta)+y*sin(theta)');
>> EXPR=a*z*X+(b*x^2+k)*Y;
(2)找出EXPR中的全部自由符号变量
>> findsym(EXPR)
ans =
X, Y, a, b, c, delta, theta, x, y
(3)在EXPR中确定一个自由符号变量
>> findsym(EXPR,1)
ans =
x
(4)在EXPR中确定2个和3个自由变量时的执行情况
>> findsym(EXPR,2),findsym(EXPR,3)
ans =
x,y
ans =
x,y,theta
4、符号表达式的操作:简化f=。
>> syms x;f=(1/x^3+6/x^2+12/x+8)^(1/3); >> g1=simple(f),g2=simple(g1)
g1 =
(2*x+1)/x
g2 =
2+1/x
5、符号数值精度控制和任意精度计算>> digits
Digits = 32
>> p0=sym('(1+sqrt(5))/2');
>> p1=sym((1+sqrt(5))/2)
p1 =
7286977268806824*2^(-52)
>> e01=vpa(abs(p0-p1))
e01 =
.543211520368251e-16
>> p2=vpa(p0)
p2 =
1.6180339887498948482045868343656 >> e02=vpa(abs(p0-p2),64)
e02 =
.38117720309179805762862135448622e-31 >> digits
Digits = 32
6、符号序列的求和
>> s2=simple(symsum(f2,1,inf))
s2 =
[ 1/8*pi^2, -log(2)]
>> syms k t;f1=[t k^3];f2=[1/(2*k-1)^2,(-1)^k/k]; >> s1=simple(symsum(f1))
s1 =
[ 1/2*t*(t-1), k^3*t]
>> s2=simple(symsum(f2,1,inf))
s2 =
[ 1/8*pi^2, -log(2)]
7、符号微分
>> syms a t x;f=[a,t^3;t*cos(x),log(x)];
>> df=diff(f)
df =
[ 0, 0]
[ -t*sin(x), 1/x]
>> dfdt2=diff(f,t,2)
dfdt2 =
[ 0, 6*t]
[ 0, 0]
>> dfdxdt=diff(diff(f,x),t)
dfdxdt =
[ 0, 0]
[ -sin(x), 0]
8、符号积分
>> syms a b x;f=[a*x,b*x^2;1/x,sin(x)]; >> disp('The integral of f is');pretty(int(f)) The integral of f is
[ 2 3]
[1/2 a x 1/3 b x ]
[ ]
[ log(x) -cos(x) ]
9、微分方程符号解
>> S=dsolve('Dx=y,Dy=-x');
>> disp([blanks(12),'x',blanks(21),'y']),disp([S.x,S.y])
x y
[ -C1*cos(t)+C2*sin(t), C1*sin(t)+C2*cos(t)]
三、实验心得
通过对本章知识的学习,我熟练的掌握了符号计算的运用,并了解了符号计算的来源,我练习了书上例子,也练习了课后习题觉得自己受益匪浅,做了本章实验后,我对数学实验这门课有了新的认识。