行程问题解题技巧精编版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行程问题解题技巧公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

行程问题解题技巧

行程问题

在行车、走路等类似运动时,已知其中的两种量,按照速度、路程和时间三者之间的相互关系,求第三种量的问题,叫做“行程问题”。此类问题一般分为四类:一、相遇问题;二、追及问题;三、相离问题;四、过桥问题等。

行程问题中的相遇问题和追及问题主要的变化是在人(或事物)的数量和运动方向上。相遇(相离)问题和追及问题当中参与者必须是两个人(或事物)以上;如果它们的运动方向相反,则为相遇(相离)问题,如果他们的运动方向相同,则为追及问题。

相遇问题

两个运动物体作相向运动,或在环形道口作背向运动,随着时间的延续、发展,必然面对面地相遇。这类问题即为相遇问题。

相遇问题的模型为:甲从A地到B地,乙从B地到A地,然后甲,乙在途中相遇,实质上是两人共同走了A、B之间这段路程,如果两人同时出发,那么:

A,B两地的路程=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间

基本公式有:

两地距离=速度和×相遇时间

相遇时间=两地距离÷速度和

速度和=两地距离÷相遇时间

二次相遇问题的模型为:甲从A地出发,乙从B地出发相向而行,两人在C 地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。则有:

第二次相遇时走的路程是第一次相遇时走的路程的两倍。

相遇问题的核心是“速度和”问题。利用速度和与速度差可以迅速找到问题的突破口,从而保证了迅速解题。

相离问题

两个运动着的动体,从同一地点相背而行。若干时间后,间隔一定的距离,求这段距离的问题,叫做相离问题。它与相遇问题类似,只是运动的方向有所改变。

解答相离问题的关键是求出两个运动物体共同趋势的距离(速度和)。

基本公式有:两地距离=速度和×相离时间相离时间=两地距离÷速度和速度和=两地距离÷相离时间

相遇(相离)问题的基本数量关系:速度和×相遇(相离)时间=相遇(相离)路程

在相遇(相离)问题和追及问题中,必须很好的理解各数量的含义及其在数学运算中是如何给出的,这样才能够提高解题速度和能力。

追及问题

两个运动着的物体从不同的地点出发,同向运动。慢的在前,快的在后,经过若干时间,快的追上慢的。有时,快的与慢的从同一地点同时出发,同向而行,经过一段时间快的领先一段路程,我们也把它看作追及问题。解答这类问题要找出两个运动物体之间的距离和速度之差,从而求出追及时间。解题的关键是

在互相关联、互相对应的距离差、速度差、追及时间三者之中,找出两者,然后运用公式求出第三者来达到解题目的。

基本公式有:

追及(或领先)的路程÷速度差=追及时间

速度差×追及时间=追及(或领先)的路程

追及(或领先)的路程÷追及时间=速度差

要正确解答有关“行程问题”,必须弄清物体运动的具体情况。如:运动的方向(相向、相背、同向),出发的时间(同时、不同时),出发的地点(同地、不同地)、运动的路线(封闭、不封闭),运动的结果(相遇、相距多少、追及)。

常用公式:

行程问题基本恒等关系式:速度×时间=路程,即S=vt.

行程问题基本比例关系式:路程一定的情况下,速度和时间成反比;

时间一定的情况下,路程和速度成正比;

速度一定的情况下,路程和时间成正比。

相遇追及问题中符号法则:相向运动,速度取和;同向运动,速度取差。

流水行船问题中符号法则:促进运动,速度取和;阻碍运动,速度取差。

行程问题常用比例关系式:路程比=速度比×时间比,即S

1/S

2

=v

1

/v

2

×t

1/

t

2

电梯运行规律:能看到的电梯级数=(人速+电梯速度)×顺电梯运动所需时间能看到的电梯级数=(人速—电梯速度)×逆电梯运动所需时间

2v

1v 2

往返运动问题核心公式:往返平均速度= ------- (其中v

1和v

2

分别表示往返的

速度)

v

1+v

2

3S

1+S

2

两次相遇问题核心公式:单岸型S= -------;两岸型 S=3S

1-S

2

(S表示两岸的

距离)

2

相向而行:相遇时间=距离÷速度之和

相背而行:相背距离=速度之和×时间

注意:同向而行追及时速度慢的在前,快的在后。在环形跑道上,速度快的在前,慢的在后。

环形运动的追击问题和相遇问题:若同向同起点运动,第一次相遇时,速度快的比速度慢的多跑一圈;若相向同起点运动,第一次相遇时,两者路程和为一圈的长度。

解决行程问题,常以速度为中心,路程和时间为两个基本点,善于抓住不变量列方程。

对于有三个以上人或车同时参与运动的行程问题,在分析其中某两个的运动情况的同时,还要弄清此时此刻另外的人或车处于什么位置,他(它)与前两者有什么关系。

分析复杂的行程问题时,最好画线段图帮助思考。

理解并熟记下面的结论,对分析、解答复杂的行程问题是有好处的。

(3)甲的速度是a,乙的速度是b,在相同时间内,甲、乙一共行的

At+bt=s t=s/a+b S甲=a*t=a*s/a+b S乙=b*t=b*s/a+b

封闭路线中的行程问题

解决封闭路线中的行程问题,仍要抓住“路程=速度×时间”这个基本关系式,搞清路程、速度、时间三者之间的关系。

封闭路线中的行程问题,可以转化为非封闭路线中的行程问题来解决。在求两个沿封闭路线相向运动的人或物体相遇次数时,还可以借助图示直观地解决。

直线上的来回运动、钟表上的时针分针夹角问题,实质上也是封闭路线中的行程问题。

每个小时内时针与分针重合一次垂直两次。

流水行船问题

顺流而下与逆流而上问题通常称为流水问题,流水问题属于行程问题,仍然利用速度、时间、路程三者之间的关系进行解答。解答时要注意各种速度的涵义及它们之间的关系。

已知船的顺水速度和逆水速度,求船的静水速度及水流速度。解答这类问题,一般要掌握下面几个数量关系:

船速:在静水中的速度

水速:河流中水流动的速度

顺水船速:船在顺水航行时的速度

逆水速度:船在逆水航行时的速度

船速+水速=顺水船速

船速-水速=逆水船速

(顺水船速+逆水船速)÷2=船速

相关文档
最新文档