与圆有关的证明与计算
圆的相关证明与计算(复习讲义)(原卷版)-中考数学重难点题型专题汇总
题型五--圆的相关证明与计算(复习讲义)【考点总结|典例分析】考点01圆的有关概念1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形.(2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.(4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.考点02垂径定理及其推论1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.2.推论(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.考点03圆心角、弧、弦的关系1.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.2.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.考点04圆周角定理及其推论1.定理一条弧所对的圆周角等于它所对的圆心角的一半.2.推论(1)在同圆或等圆中,同弧或等弧所对的圆周角相等.(2)直径所对的圆周角是直角.考点05与圆有关的位置关系1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r ⇔点在⊙O 外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系位置关系相离相切相交图形公共点个数0个1个2个数量关系d>r d=r d<r考点06切线的性质与判定1.切线的性质(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.2.切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.考点07三角形与圆1.三角形外接圆外心是三角形三条垂直平分线的交点,它到三角形的三个顶点的距离相等.2.三角形的内切圆内心是三角形三条角平分线的交点,它到三角形的三条边的距离相等.1.如图,点,,,,A B C D E 在O 上,,42AB CD AOB =∠=︒,则CED ∠=()A.48︒B.24︒C.22︒D.21︒2.如图,A,B,C 是半径为1的⊙O 上的三个点,若,∠CAB=30°,则∠ABC 的度数为()A.95°B.100°C.105°D.110°3.如图,AB 是⊙O 的直径,AC,BC 是⊙O 的弦,若20A ∠=︒,则B Ð的度数为()A.70°B.90°C.40°D.60°4.如图,Rt ABC 中,90ACB ∠=︒,AC =3BC =.点P 为ABC ∆内一点,且满足22PA PC +2AC =.当PB 的长度最小时,ACP ∆的面积是()A.3B.C.4D.25.如图,已知在⊙O 中, AB BCCD ==,OC 与AD 相交于点E.求证:(1)AD∥BC(2)四边形BCDE 为菱形.6.如图,A,B 是O 上两点,且AB OA =,连接OB 并延长到点C,使BC OB =,连接AC.(1)求证:AC 是O 的切线.(2)点D,E 分别是AC,OA 的中点,DE 所在直线交O 于点F,G,4OA =,求GF 的长.7.如图,Rt ABC 中,90ABC ∠=︒,以点C 为圆心,CB 为半径作C ,D 为C 上一点,连接AD 、CD ,AB AD =,AC 平分BAD ∠.(1)求证:AD 是C 的切线;(2)延长AD 、BC 相交于点E,若2EDC ABC S S = ,求tan BAC ∠的值.8.如图,在O 中,AB 是直径,弦CD AB ⊥,垂足为H ,E 为 BC上一点,F 为弦DC 延长线上一点,连接FE 并延长交直径AB 的延长线于点G ,连接AE 交CD 于点P ,若FE FP =.(1)求证:FE 是O 的切线;(2)若O 的半径为8,3sin 5F =,求BG 的长.9.如图,ABC 是O 的内接三角形,AC 是O 的直径,点D 是 BC的中点,//DE BC 交AC 的延长线于点E .(1)求证:直线DE 与O 相切;(2)若O 的直径是10,45A ∠=︒,求CE 的长.10.如图,已知点C 是以AB 为直径的圆上一点,D 是AB 延长线上一点,过点D 作BD 的垂线交AC 的延长线于点E ,连结CD ,且CD ED =.(1)求证:CD 是O 的切线;(2)若tan 2DCE ∠=,1BD =,求O 的半径.11.如图,AB 是⊙O 的直径,C 为⊙O 上一点,连接AC,CE⊥AB 于点E,D 是直径AB 延长线上一点,且∠BCE=∠BCD.(1)求证:CD 是⊙O 的切线;(2)若AD=8,BE CE=12,求CD的长.12.如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.13.如图,⊙O的半径OA=6,过点A作⊙O的切线AP,且AP=8,连接PO并延长,与⊙O 交于点B、D,过点B作BC∥OA,并与⊙O交于点C,连接AC、CD.(1)求证:DC∥AP;(2)求AC的长.=CD =DB ,连接AD,过点D作14.如图,AB为⊙O的直径,C、D为⊙O上的两个点,ACDE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)若直径AB=6,求AD的长.15.如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.16.如图,AB为⊙O的直径,C为⊙O上一点,AD与过C点的直线互相垂直,垂足为D,AC 平分∠DAB.(1)求证:DC为⊙O的切线.(2)若AD=3,DC=3,求⊙O的半径.17.如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,过点D作⊙O的切线交AC于点E.(1)求证:DE⊥AC;(2)若⊙O的半径为5,BC=16,求DE的长.。
人教版2020年中考数学一轮复习《与圆有关的证明和计算》大题专项练习含答案解析
中考专题——与圆有关的证明和计算纵观近几年全国各地中考题,圆的有关概念以及性质等一般以填空题,选择题的形式考查并占有一定的分值;圆的有关性质,如垂径定理,圆周角,切线的判定与性质等综合性问题的运用一般以计算证明的形式考查;一般在10分-15分左右,以后发展中利用圆的知识与其他知识点如函数,方程等相结合作为中考压轴题将会占有非常重要的地位。
考查的类型:(1)线段、角以及切线的证明;(2)利用勾股定理、相似以及锐角三角函数进行线段,比值和阴影面积的求解.例题精讲:1、如图,点O为Rt△ABC斜边AB上一点,以OA为半径的⊙O与BC切于点D,与AC 交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).2、如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.(1)求证:△ABC是等边三角形;(2)若∠PAC=90°,AB=2,求PD的长.3、如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E,(1)求证:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.4、如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D,OB与⊙O相交于点E.(1)求证:AC是⊙O的切线;(2)若BD=,BE=1.求阴影部分的面积.5、如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC于点E,F是DE的中点,连接CF.(1)求证:CF是⊙O的切线.(2)若∠A=22.5°,求证:AC=DC.补充练习:1、如图,在△ABC中,AB=AC,以AB为直径作⊙O,分别交BC,AC于点D,E,过点D作DF⊥AC于点F.(1)求证:DF是⊙O的切线;(2)若∠C=60°,⊙O的半径为2,求由弧DE,线段DF,EF围成的阴影部分的面积(结果保留根号和π)2、如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,经过点A的⊙O与BC相切于点D,交AB于点E.(1)求证:AD平分∠BAC;(2)若CD=1,求图中阴影部分的面积(结果保留π).3、如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)若AE=7,BC=6,求AC的长.4、如图,AB为半圆O的直径,AC是⊙O的一条弦,D为的中点,作DE⊥AC,交AB 的延长线于点F,连接DA.(1)求证:EF为半圆O的切线;(2)若DA=DF=6,求阴影区域的面积.(结果保留根号和π)5、如图所示,以△ABC的边AB为直径作⊙O,点C在⊙O上,BD是⊙O的弦,∠A=∠CBD,过点C作CF⊥AB于点F,交BD于点G,过C作CE∥BD交AB的延长线于点E.(1)判断CE与⊙O的位置关系,并说明理由;(2)若∠DBA=30°,CG=8,求BE的长.6、如图,AB为⊙O的直径,C,E为⊙O上的两点,若AC平分∠EAB,CD⊥AE于点D.(1)求证:DC是⊙O的切线;3,求DE的长;(2)若AO=6,DC=33,求图中阴影部分面积.(3)过点C作CF⊥AB于F,如图2,若AD-OA=1.5,AC=3答案解析例题精讲:1、(1)证明:∵⊙O切BC于D,∴OD⊥BC,∵AC⊥BC,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠OAD=∠ADO,∴∠OAD=∠CAD,即AD平分∠CAB;(2)设EO与AD交于点M,连接ED.∵∠BAC=60°,OA=OE,∴∠AEO是等边三角形,∴AE=OA,∠AOE=60°,∴AE=A0=OD,又由(1)知,AC∥OD即AE∥OD,∴四边形AEDO是菱形,则△AEM≌△DMO,∠EOD=60°,∴S△AEM=S△DMO,∴S阴影=S扇形EOD==.2、(1)证明:∵∵ABC=∵APC,∵BAC=∵BPC,∵APC=∵CPB=60°,∵∵ABC=∵BAC=60°,∵∵ABC是等边三角形.(2)解:∵∵ABC是等边三角形,AB=2,∵AC=BC=AB=2,∵ACB=60°.在Rt∵PAC中,∵PAC=90°,∵APC=60°,AC=2,∵AP=AC•cot∵APC=2.在Rt∵DAC中,∵DAC=90°,AC=2,∵ACD=60°,∵AD=AC•tan∵ACD=6.∵PD=AD﹣AP=6﹣2=4.3、(1)证明:∵BE平分∠BAC,AD平分∠ABC,∴∠ABE=∠CBE,∠BAE=∠CAD,∴,∴∠DBC=∠CAD,∴∠DBC=∠BAE,∵∠DBE=∠CBE+∠DBC,∠DEB=∠ABE+∠BAE,∴∠DBE=∠DEB,∴DE=DB;(2)解:连接CD,如图所示:由(1)得:,∴CD=BD=4,∵∠BAC=90°,∴BC是直径,∴∠BDC=90°,∴BC==4,∴△ABC外接圆的半径=×4=2.4、(1)证明:连接OD,作OF⊥AC于F,如图,∵△ABC为等腰三角形,O是底边BC的中点,∴AO⊥BC,AO平分∠BAC,∵AB与⊙O相切于点D,∴OD⊥AB,∵OF⊥AC,∴OF=OD,∴AC是⊙O的切线;(2)解:在Rt△BOD中,设⊙O的半径为r,则OD=OE=r,∴r2+()2=(r+1)2,解得r=1,∴OD=1,OB=2,∴∠B=30°,∠BOD=60°,∴∠AOD=30°,在Rt△AOD中,AD=OD=,∴阴影部分的面积=2S△AOD﹣S扇形DOF=2××1×﹣=﹣.5、(1)证明:∵AB 是⊙O 的直径,∴∠ACB =∠ACD =90°,∵点F 是ED 的中点,∴CF =EF =DF ,∴∠AEO =∠FEC =∠FCE ,∵OA =OC ,∴∠OCA =∠OAC ,∵OD ⊥AB ,∴∠OAC+∠AEO =90°, ∴∠OCA+∠FCE =90°,即OC ⊥FC ,∴CF 与⊙O 相切;(2)解:∵OD ⊥AB ,AC ⊥BD ,∴∠AOE =∠ACD =90°,∵∠AEO =∠DEC ,∴∠OAE =∠CDE =22.5°, ∵AO =BO ,∴AD =BD ,∴∠ADO =∠BDO =22.5°,∴∠ADB =45°,∴∠CAD =∠ADC =45°,∴AC =CD .补充练习:1、(1)如图,连接OD ∵AB 为⊙O 的直径∴AD ⊥BC ∵AB=AC ∴BD=CD ,D 为BC 中点∵O 为AB 中点∴OD ∥AC ∵DF ⊥AC ∴DF ⊥OD ∴DF 为⊙O 的切线(2)如图,连接OE 、OD ∵AB=AC ,∠C=60°∴△ABC 为等边三角形∴∠B=∠A=60°,AB=AC=BC=2⨯2=4∵OA=OB=OD=OE ∴△OAE ,△OBD 都是等边三角形∴∠ODB=∠BOD=∠AOE -∠OEA=∠C=60° ∴∠DOE=180°-2⨯60°=60°,OD ∥AC ,OE ∥BC ∴四边形ODCE 是平行四边形∴OD=CE=BD=CD=2∴DF=CDsin60°=3232=⨯,CF=CDcos60°=1212=⨯ ∴ππ32-323360260-3121-32--2=⨯⨯⨯⨯==∆ODE CDF S S S S 扇形平行四边形阴影2、(1)证明:连接DE 、OD ∵BC 相切⊙O 于点D ∴∠CDA=∠AED ∵AE 为直径∴∠ADE=90°∵AC ⊥BC ∴∠ACD=90°∴∠DAO=∠CAD ∴AD 平分∠BAC(3)在Rt △ABC 中,∠C=90°,AC=BC ∴∠B=∠BAC=45°∵BC 相切⊙O 于点D ∴∠ODB=90°∴OD=BD ,∠BOD=45°设BD=x ,则OD=OA=x ,0B=3x ∴BC=AC=x+1∵AC 2+BC 2=AB 2∴22)2()12x x x +=+( 所以x=2∴BD=OD=2 ∴()4-1360245-22212ππ=⨯⨯=-∆=DOE S BOD S S 扇形阴影3、(1)证明:连接OD ,∵AB=AC ,∴∠B=∠C 。
中考总复习正多边形与圆的有关的证明和计算--知识讲解
中考总复习正多边形与圆的有关的证明和计算--知识讲解【正多边形与圆的有关的证明和计算】一、正多边形的定义与性质:正多边形是指所有边相等、所有角相等的多边形。
正多边形的性质如下:1.所有边相等,所有角相等;2.任意两条边之间的夹角相等;3.对角线相等;4.中心角等于外角。
二、正多边形的内角与外角的关系:1.由正多边形的定义可知,正多边形的内角和为180°(n-2),其中n 为正多边形的边数;2.正多边形的外角和为360°,由此可得正多边形的内角和与外角和之间的关系:内角和=外角和/2三、正多边形的周长和面积的计算:1.正多边形的周长为边长×边数;2.正多边形的面积为面积公式:面积=1/2×边长×边数×正弦(360°/边数)。
四、正多边形内接圆的半径和面积:2.正多边形内接圆的面积等于正多边形面积的一半。
五、正多边形外接圆的半径和面积:1.正多边形外接圆的半径等于正多边形的边长的一半乘以正弦(180°/边数);2.正多边形外接圆的面积等于正多边形边长的平方乘以正弦(360°/边数)乘以1/2六、正多边形的对称轴:正多边形有旋转对称轴和镜像对称轴两类:1.正多边形的旋转对称轴有n条,其中n为正多边形的边数;2.正多边形的镜像对称轴有2n条,其中n为正多边形的边数。
七、圆的性质及计算:1.圆是由一个动点到一个定点的距离保持不变的动点集;2.圆的半径是动点到圆心的距离;3.圆的直径是通过圆心的一条线段,且长度等于半径的两倍;4.圆的周长等于直径的乘以π,即周长=2×半径×π;5.圆的面积等于半径的平方乘以π,即面积=半径×半径×π。
八、正多边形与圆的关系:1.正多边形的内接圆同时是这个正多边形的外接圆,即正多边形的内接圆与外接圆重合;3.正多边形的外接圆的半径等于正多边形的边长的一半乘以正弦(180°/边数);4.正多边形的外接圆的面积等于正多边形边长的平方乘以正弦(360°/边数)乘以1/2;5.正多边形的内接圆和外接圆的关系可以用于计算正多边形的周长和面积。
涉及圆的证明与计算问题
涉及圆的证明与计算问题圆的证明与计算是中考必考点,也是中考的难点之一。
纵观全国各地中考数学试卷,能够看出,圆的证明与计算这个专题内容有三种题型:选择题、填空题和解答题。
一、与圆有关的概念1.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
定点称为圆心,定长称为半径。
圆的半径或直径决定圆的大小,圆心决定圆的位置。
2.圆心角:顶点在圆心上的角叫做圆心角。
圆心角的度数等于它所对弧的度数。
3.圆周角:顶点在圆周上,并且两边分别与圆相交的角叫做圆周角。
4.外接圆和外心:经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆。
外接圆的圆心,叫做三角形的外心。
外心是三角形三条边垂直平分线的交点。
外心到三角形三个顶点的距离相等。
5.若四边形的四个顶点都在同一个圆上,这个四边形叫做圆内接四边形,这个圆叫做这个四边形的外接圆。
6.和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
内心是三角形三个角的角平分线的交点。
内心到三角形三边的距离相等。
二、与圆有关的规律1.圆的性质:(1)圆具有旋转不变性;(2)圆具有轴对称性;(3)圆具有中心对称性。
2.垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
3.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.4.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。
5.在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.7.圆内接四边形的特征①圆内接四边形的对角互补;②圆内接四边形任意一个外角等于它的内对角。
三、点和圆、线和圆、圆和圆的位置关系1.点和圆的位置关系①点在圆内⇔点到圆心的距离小于半径②点在圆上⇔点到圆心的距离等于半径③点在圆外⇔点到圆心的距离大于半径2.直线与圆有3种位置关系如果⊙O的半径为r,圆心O到直线l的距离为d,那么d<;①直线l和⊙O相交⇔rd=;②直线l和⊙O相切⇔rd>。
圆的证明与计算范文
圆的证明与计算范文圆是几何中的基本图形之一,它是平面上所有点与固定点之间距离保持不变的集合。
下面将从不同的角度对圆的性质进行证明,并介绍一些常见的圆的计算方法。
一、圆的性质及证明1.圆的定义证明对于平面上的一个点O以及一个长度r,定义集合E为与O的距离为r的点的集合。
我们要证明E是一个圆。
证明:(1)任意取平面上的一点A,若A∈E,证明OA=r。
假设A∈E,则OA的长度等于A与O的距离,即OA=r。
因此,E是以O为圆心,长度为r的圆。
(2)任意取平面上的一点B,若OB=r,证明B∈E。
假设OB=r,则OB的长度等于B与O的距离,即OB=BO=r。
因此,B∈E。
由(1)和(2)可得,对于平面上的一个点O以及一个长度r,定义集合E为与O的距离为r的点的集合是一个圆。
2.圆心角的证明圆心角是指圆上两条射线所夹的角,它的度数等于弧所对的圆周角的度数。
我们要证明圆心角的度数等于所对弧的度数。
证明:任意取圆上两点A和B,以圆心O为顶点,连接OA和OB两条射线。
延长AO和OB分别与圆交于点C和D,则∠AOB是圆心角,∠ACB是所对弧所对的圆周角。
(1)∠AOB的度数等于所对弧AD的度数。
由于AD是圆上的弧,所以∠ACO是所对弧AD的圆周角。
根据圆周角的性质,∠ACO的度数等于所对弧AD的度数。
(2)∠ACB的度数等于所对弧AD的度数。
同样根据圆周角的性质,∠ACB的度数等于所对弧AD的度数。
由(1)和(2)可得,圆心角∠AOB的度数等于所对弧AD的度数。
通过证明,我们可以得出圆心角的度数等于所对弧的度数这一结论。
二、圆的计算在实际应用中,我们有时需要计算圆的周长、面积以及部分圆的面积。
以下是圆的计算公式:1.周长的计算2.面积的计算3.部分圆的面积的计算对于已知圆的半径r和所对的圆心角θ,部分圆的面积计算公式为:A=(πr²×θ)/360,其中A表示部分圆的面积,r表示半径,θ表示圆心角。
圆的证明与计算(精编版)
《圆的证明与计算》专题讲解圆的证明与计算是中考中的一类重要的问题,此题完成情况的好坏对解决后面问题的发挥有重要的影响,所以解决好此题比较关键。
圆的有关证明一、圆中的重要定理:(1)圆的定义:主要是用来证明四点共圆.(2)垂径定理:主要是用来证明——弧相等、线段相等、垂直关系等等.(3)三者之间的关系定理: 主要是用来证明——弧相等、线段相等、圆心角相等.(4)圆周角性质定理及其推轮: 主要是用来证明——直角、角相等、弧相等.(5)切线的性质定理:主要是用来证明——垂直关系.(6)切线的判定定理: 主要是用来证明直线是圆的切线.(7)切线长定理: 线段相等、垂直关系、角相等.2.圆中几个关键元素之间的相互转化:弧、弦、圆心角、圆周角等都可以通过相等来互相转化.这在圆中的证明和计算中经常用到.二、考题形式分析:主要以解答题的形式出现,第1问主要是判定切线;第2问主要是与圆有关的计算:①求线段长(或面积);②求线段比;③求角度的三角函数值(实质还是求线段比)。
知识点一:判定切线的方法:(1)若切点明确,则“连半径,证垂直”。
常见手法有:全等转化;平行转化;直径转化;中线转化等;有时可通过计算结合相似、勾股定理证垂直;(2)若切点不明确,则“作垂直,证半径”。
常见手法:角平分线定理;等腰三角形三线合一,隐藏角平分线;总而言之,要完成两个层次的证明:①直线所垂直的是圆的半径(过圆上一点);②直线与半径的关系是互相垂直。
在证明中的关键是要处理好弧、弦、角之间的相互转化,要善于进行由此及彼的联想、要总结常添加的辅助线.例:方法一:若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l 就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直.例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F.求证:EF与⊙O相切.例2 如图,AD 是∠BAC 的平分线,P 为BC 延长线上一点,且PA=PD.求证:PA 与⊙O 相切. 证明一:作直径AE ,连结EC. ∵AD 是∠BAC 的平分线, ∴∠DAB=∠DAC. ∵PA=PD , ∴∠2=∠1+∠DAC. ∵∠2=∠B+∠DAB , ∴∠1=∠B. 又∵∠B=∠E , ∴∠1=∠E∵AE 是⊙O 的直径, ∴AC ⊥EC ,∠E+∠EAC=900. ∴∠1+∠EAC=900. 即OA ⊥PA.∴PA 与⊙O 相切.证明二:延长AD 交⊙O 于E ,连结OA ,OE. ∵AD 是∠BAC 的平分线, ∴BE=CE ,∴OE ⊥BC.∴∠E+∠BDE=900. ∵OA=OE , ∴∠E=∠1. ∵PA=PD , ∴∠PAD=∠PDA. 又∵∠PDA=∠BDE, ∴∠1+∠PAD=900 即OA ⊥PA.∴PA 与⊙O 相切说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用.⌒ ⌒例3 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M求证:DM与⊙O相切.例4 如图,已知:AB是⊙O的直径,点C在⊙O上,且∠CAB=300,BD=OB,D在AB的延长线上.求证:DC是⊙O的切线例5 如图,AB是⊙O的直径,CD⊥AB,且OA2=OD·OP.求证:PC是⊙O的切线.例6 如图,ABCD是正方形,G是BC延长线上一点,AG交BD于E,交CD于F.求证:CE与△CFG的外接圆相切.分析:此题图上没有画出△CFG的外接圆,但△CFG是直角三角形,圆心在斜边FG 的中点,为此我们取FG的中点O,连结OC,证明CE⊥OC即可得解.证明:取FG中点O,连结OC.∵ABCD是正方形,∴BC⊥CD,△CFG是Rt△∵O是FG的中点,∴O是Rt△CFG的外心.∵OC=OG,∴∠3=∠G,∵AD∥BC,∴∠G=∠4.∵AD=CD,DE=DE,∠ADE=∠CDE=450,∴△ADE≌△CDE(SAS)∴∠4=∠1,∠1=∠3.∵∠2+∠3=900,∴∠1+∠2=900. 即CE⊥OC.∴CE与△CFG的外接圆相切方法二:若直线l与⊙O没有已知的公共点,又要证明l是⊙O的切线,只需作OA⊥l,A为垂足,证明OA是⊙O的半径就行了,简称:“作垂直;证半径”(一般用于函数与几何综合题)例1:如图,AB=AC,D为BC中点,⊙D与AB切于E点.求证:AC与⊙D相切.分析:说明:证明一是通过证明三角形全等证明DF=DE的,证明二是利用角平分线的性质证明DF=DE的,这类习题多数与角平分线有关.例2: 已知:如图,AC ,BD 与⊙O 切于A 、B ,且AC ∥BD ,若∠COD=900. 求证:CD 是⊙O 的切线.证明一:连结OA ,OB ,作OE ⊥CD ,E 为垂足. ∵AC ,BD 与⊙O 相切, ∴AC ⊥OA ,BD ⊥OB.∵AC ∥BD ,∴∠1+∠2+∠3+∠4=1800. ∵∠COD=900, ∴∠2+∠3=900,∠1+∠4=900. ∵∠4+∠5=900. ∴∠1=∠5.∴Rt △AOC ∽Rt △BDO. ∴OD OCOB AC =. ∵OA=OB ,∴ODOCOA AC =. 又∵∠CAO=∠COD=900, ∴△AOC ∽△ODC , ∴∠1=∠2.又∵OA ⊥AC ,OE ⊥CD, ∴OE=OA. ∴E 点在⊙O 上.∴CD 是⊙O 的切线.证明二:连结OA ,OB ,作OE ⊥CD 于E ,延长DO 交CA 延长线于F. ∵AC ,BD 与⊙O 相切, ∴AC ⊥OA ,BD ⊥OB. ∵AC ∥BD , ∴∠F=∠BDO. 又∵OA=OB ,∴△AOF ≌△BOD (AAS )O∴OF=OD. ∵∠COD=900, ∴CF=CD ,∠1=∠2. 又∵OA ⊥AC ,OE ⊥CD , ∴OE=OA. ∴E 点在⊙O 上.∴CD 是⊙O 的切线.证明三:连结AO 并延长,作OE ⊥CD 于E ,取CD 中点F ,连结OF. ∵AC 与⊙O 相切, ∴AC ⊥AO.∵AC ∥BD , ∴AO ⊥BD.∵BD 与⊙O 相切于B , ∴AO 的延长线必经过点B. ∴AB 是⊙O 的直径.∵AC ∥BD ,OA=OB ,CF=DF , ∴OF ∥AC , ∴∠1=∠COF.∵∠COD=900,CF=DF , ∴CF CD OF ==21. ∴∠2=∠COF. ∴∠1=∠2.∵OA ⊥AC ,OE ⊥CD , ∴OE=OA. ∴E 点在⊙O 上.∴CD 是⊙O 的切线说明:证明一是利用相似三角形证明∠1=∠2,证明二是利用等腰三角形三线合一证明∠1=∠2.证明三是利用梯形的性质证明∠1=∠2,这种方法必需先证明A 、O 、B 三点共线.A课后练习:(1)如图,AB 是⊙O 的直径,BC ⊥AB ,AD ∥OC 交⊙O 于D 点,求证:CD 为⊙O的切线;(2)如图,以Rt △ABC 的直角边AB 为直径作⊙O ,交斜边AC 于D ,点E 为BC 的中点,连结DE ,求证:DE 是⊙O 的切线.(3)如图,以等腰△ABC 的一腰为直径作⊙O ,交底边BC 于D ,交另一腰于F ,若DE ⊥AC 于E (或E 为CF 中点),求证:DE 是⊙O 的切线.(4)如图,AB 是⊙O 的直径,AE 平分∠BAF ,交⊙O 于点E ,过点E 作直线ED ⊥AF ,交AF 的延长线于点D ,交AB 的延长线于点C ,求证:CD 是⊙O 的切线.知识点二:与圆有关的计算计算圆中的线段长或线段比,通常与勾股定理、垂径定理与三角形的全等、相似等知识的结合,形式复杂,无规律性。
2020年中考数学考点聚焦(一)《与圆有关的证明及计算》
︵ (2)如图,点 A,B,C,D 是直径为 AB 的⊙O 上的四个点,是劣弧BD 的中点,AC 与 BD 交于点 E. ①求证:DC2=CE·AC; ②若 AE=2,EC=1,求证:△AOD 是正三角形; ③在②的条件下,过点 C 作⊙O 的切线,交 AB 的延长线于点 H,求△ACH 的面积.
解:①证明:连接 AD,∵∠A=∠BCD,∠AED=∠CEB,∴△AED∽ △CEB,∴ACEE=EEDB,∴AE·EB=CE·ED ②解:∵⊙O 的半径为 3,∴OA=OB=OC=3,∵OE=2BE,∴OE=2, BE=1,AE=5,∵DCEE=95,∴设 CE=9x,DE=5x,∵AE·EB=CE·ED,
[对应训练] 1.(1)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交 AB于点D,E为BC的中点,连接DE并延长交AC的延长线于点F. ①求证:DE是⊙O的切线; ②若CF=2,DF=4,求⊙O直径的长.
解:①如图,连接OD,CD,∵AC为⊙O的直径,∴△BCD是直角三角 形,∵E为BC的中点,∴BE=CE=DE,∴∠CDE=∠DCE,∵OD= OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠DCE=90° ,∴∠ODC+∠CDE=90°,即OD⊥DE,∴DE是⊙O的切线 ②设 ⊙O的半径为r,∵∠ODF=90°,∴OD2+DF2=OF2,即r2+42=(r+ 2)2,解得r=3,∴⊙O的直径为6
解:①如图 1 中,连接 OC.∵AB⊥CD,∴∠CHO=90°,在 Rt△COH 中,
∵OC=r,OH=r-2,CH=4,∴r2=42+(r-2)2,∴r=5 ②如图 1 中,连
接 OD.∵AB⊥CD,AB 是直径,∴A︵D=A︵C=12C︵D,∴∠AOC=12∠COD,
查补重难点07 圆的相关计算与证明(原卷版)
查补重难点07.圆的相关计算与证明考点一:圆的基本概念与性质1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.2.圆心角、弧、弦的关系(定理):在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.3.圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.圆周角定理的推论:1)在同圆或等圆中,同弧或等弧所对的圆周角相等.2)直径所对的圆周角是直角.3)圆内接四边形的对角互补.题型1.垂径定理及其运用 1.如图,可得①AB 过圆心;②AB ⊥CD ;③CE =DE ;④ AC AD =;⑤ BCBD =。
总结:垂径定理及其推论实质是指一条直线满足:(1)过圆心;(2)垂直于弦;(3)平分弦(被平分的弦不是直径);(4)平分弦所对的优弧;(5)平分弦所对的劣弧。
若已知五个条件中的两个,那么可推出其中三个,简称“知二得三”,解题过程中应灵活运用该定理。
2.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.例1.(2024·江苏盐城·模拟预测)如图,A 、B 、C 是O 上的点,OC AB ⊥,若5OA =,8AB =,则CD =()A .5B .4C .3D .2变式2.(2024·江苏徐州·一模)如图,ABC 是O 的内接三角形,若60A ∠=︒,BC =O 的半径长为()A .4BC .2D .1题型2.圆心角、弧、弦的关系在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等。
圆中的相关证明与计算
圆中的相关证明与计算圆是平面上到一个给定点的距离恒定的所有点的集合。
通过研究圆的性质和相关的定理,我们可以了解圆的性质和概念,并可以进行相关的证明和计算。
以下是一些关于圆的相关证明和计算的例子:1.圆的半径与直径的关系证明:首先,我们知道直径是通过圆心并且两端点在圆上的线段。
现在我们要证明直径是半径的两倍。
证明:假设圆的半径为r,直径为d。
根据直径的定义,我们知道直径是通过圆心的,并且它的两个端点在圆上。
所以直径d可以看作是两个半径r的长度相加,即d=r+r=2r。
所以我们可以得出结论:直径等于半径的两倍。
即d=2r。
2.圆周率的计算:周长的计算公式为:C=2πr,其中r为圆的半径。
面积的计算公式为:A=πr^2,其中r为圆的半径。
例如,如果一个圆的半径为5厘米,则它的周长为:C=2π*5=10π≈31.42厘米;面积为:A=π*5^2=25π≈78.54平方厘米。
3.弦和半径的垂直关系证明:在圆中,连接圆周上的两点的线段称为弦。
现在我们要证明如果一个弦与半径相交,那么这个弦就是半径的垂直平分线。
证明:假设在圆中有一个弦AB,如果它与半径OC相交于点M,我们要证明AM=MB。
根据圆的性质,半径OC与弦AB相交于点M,则角OMC是直角,因为OC是半径,所以OM=MC。
又由于弦AB与半径OC相交于点M,所以AM=MC,MB=MC。
综上所述,AM=MB,即弦AB是半径OC的垂直平分线。
通过以上证明和计算,我们可以更深入地了解圆的性质和相关的定理。
圆是几何学中重要的概念之一,它在各种数学和科学领域中都有广泛的应用。
希望以上内容对您有所帮助。
圆中的计算和证明
1、如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连AD。
(1)求证:AD=AN;(2)若AB=24,ON=1,求⊙O的半径。
2、在⊙O中,AB为直径,点C为圆上一点,将劣弧AC沿弦AC翻折交AB于点D,连结CD。
(1)如图1,若点D与圆心O重合,AC=2,求⊙O的半径r;(2)如图2,若点D与圆心O不重合,∠BAC=25°,求出∠DCA的度数。
知识点(圆相关概念和性质)知识点一:垂径定理1.垂径定理:于弦的直径这条弦且这条弦所对的。
2.推论(1):①平分()的垂直于弦且弦所对的;②弦的经过且弦所对的两条弧;③弦所对的一条的直径弦且平分弦所对的另一条弧。
推论(2):圆的两条弦所夹的弧。
知识点二:圆心角、弧、弦、弦心距间的关系1.定理:在或中,相等的圆心角所对的相等,所对的相等,相等。
2.推论:同圆或等圆中,如果①两个相等,②两条相等,③两条相等,④两条弦的中有一组量相等,那么它们所对应的其余各组量都分别相等。
知识点三:圆周角定理及其推论1.定理:在同圆或等圆中,或所对的相等,都等于这条弧所对的的。
2.推论①:同弧或等弧所对的相等;同圆或等圆中,相等的圆周角所对的弧是。
推论②:或所对的是直角;是直角(90°的)所对的弧是,所对的弦是。
推论③:若三角形一边上的中线等于这边的一半,那么这个三角形是。
知识点四:圆内接四边形性质定理1.概念:所有顶点都在同一个圆上的四边形叫做圆内接四边形。
2.定理:圆内接四边形的对角,并且任何一个外角都等于它的。
知识点五:直线与圆的位置关系直线和圆的位置关系相交相切相离公共点个数圆心到直线的距离d与半径r的关系公共点名称直线名称知识点六:圆的切线1.切线的性质(1)切线性质定理:圆的切线垂直于过切点的直径。
拓展:①经过圆心且垂直于切线的直线必经过切点;②经过切点且垂直于切线的直线必经过圆心;③切线与圆只有一个公共点;④圆心到切线的距离等于半径。
第40讲 与圆有关的计算与证明题 课件(共74张ppt) 2024年中考数学总复习专题突破.ppt
复习讲义
(2)若 = 5 , cos ∠ =
4
,求 的长.
5
∘
解: ∵ ∠ = 90∘ , ∴ ∠ + ∠ = 90 .
由(1)知, = 2 = 10 , ∠ = 90∘ ,
∴ ∠ + ∠ = 90∘ .
图3
∴ ∠ = ∠.
4
.
5
∴ cos = cos ∠ =
复习讲义
(2)若 = 10 , = 12 , = 2 ,求 ⊙ 的半径.
思路点拨 由(1)知 ⊥ ,因此可在 Rt △
中利用勾股定理列方程求解.
解: ∵ = , ⊥ , ∴ = =
1
2
= 6.
图1
∴ = 2 − 2 = 102 − 62 = 8.
∴ = 6 .
目录导航
9
第40讲 与圆有关的计算与证明题
复习讲义
2.(2022·鄂尔多斯)如图3,以 为直径的
⊙ 与 △ 的边 相切于点 ,且与 边
交于点 ,点 为 的中点,连接 , ,
.
(1)求证: 是 ⊙ 的切线.
1.(2022·衡阳)如图2, 为 ⊙ 的直径,过圆上一
点 作 ⊙ 的切线 交 的延长线于点 ,过点
作 // 交 于点 ,连接 .
(1)直线 与 ⊙ 相切吗?请说明理由.
图2
目录导航
7
第40讲 与圆有关的计算与证明题
复习讲义
解:直线 与 ⊙ 相切.
, 的点,连接 , ,点 在 的延长线
上,且 ∠ = ∠ ,点 在 的延长线上,
正多边形与圆的有关的证明和计算知识讲解及典型例题解析
正多边形与圆的有关的证明和计算知识讲解及典型例题解析【考纲要求】1.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;2.结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】【考点梳理】考点一、正多边形和圆1、正多边形的有关概念:(1) 正多边形:各边相等,各角也相等的多边形叫做正多边形.(2)正多边形的中心——正多边形的外接圆的圆心.(3)正多边形的半径——正多边形的外接圆的半径.(4)正多边形的边心距——正多边形中心到正多边形各边的距离.(正多边形内切圆的半径)(5)正多边形的中心角——正多边形每一边所对的外接圆的圆心角.2、正多边形与圆的关系:(1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形.(2)这个圆是这个正多边形的外接圆.(3)把圆分成n(n≥3)等分,经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.这个圆叫做正n边形的内切圆.(4)任何正n边形都有一个外接圆和一个内切圆,这两个圆是同心圆.3、正多边形性质:(1)任何正多边形都有一个外接圆.(2) 正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心.当边数是偶数时,它又是中心对称图形,它的中心就是对称中心.(3)边数相同的正多边形相似.它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方.(4)任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.要点诠释:(1)正n边形的有n个相等的外角,而正n边形的外角和为360度,所以正n边形每个外角的度数是360n;所以正n边形的中心角等于它的外角.(2)边数相同的正多边形相似.周长的比等于它们边长(或半径、边心距)的比.面积比等于它们边长(或半径、边心距)平方的比.考点二、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、正多边形有关计算1.图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.【思路点拨】(1)作AE的垂直平分线交⊙O于C,G,作∠AOG,∠EOG的角平分线,分别交⊙O于H,F,反向延长 FO,HO,分别交⊙O于D,B顺次连接A,B,C,D,E,F,G,H,八边形ABCDEFGH即为所求;(2)由八边形ABCDEFGH是正八边形,求得∠AOD=3=135°得到的长=,设这个圆锥底面圆的半径为R,根据圆的周长的公式即可求得结论.【答案与解析】(1)如图所示,八边形ABCDEFGH即为所求,(2)∵八边形ABCDEFGH是正八边形,∴∠AOD=3=135°,∵OA=5,∴的长=,设这个圆锥底面圆的半径为R,∴2πR=,∴R=,即这个圆锥底面圆的半径为.故答案为:.【总结升华】本题考查了尺规作图,圆内接八边形的性质,弧长的计算,圆的周长公式的应用,会求八边形的内角的度数是解题的关键.举一反三:【变式1】如图是三根外径均为1米的圆形钢管堆积图和主视图,则其最高点与地面的距离是______米.【答案】31+.解析:如图,以三个圆心为顶点等边三角形O1O2O3的高O1C=3,所以AB=AO1+O1C+BC=1313122++=+.【变式2】同一个圆的内接正三角形、正方形、正六边形的边长的比是__________.32::【变式3】一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为2,则扇形纸板和圆形纸板的面积比是()A.5:4 B.5:2 C.:2 D.:【答案】A.【解析】解:如图1,连接OD,∵四边形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=2,∵∠AOB=45°,∴OB=AB=2,由勾股定理得:OD==2,∴扇形的面积是=π;如图2,连接MB、MC,∵四边形ABCD是⊙M的内接四边形,四边形ABCD是正方形,∴∠BMC=90°,MB=MC,∴∠MCB=∠MBC=45°,∵BC=2,∴MC=MB=,∴⊙M的面积是π×()2=2π,∴扇形和圆形纸板的面积比是π÷(2π)=.故选:A.类型二、正多边形与圆有关面积的计算2.(1)如图(a),扇形OAB 的圆心角为90°,分别以OA ,OB 为直径在扇形内作半圆,P 和Q分别表示阴影部分的面积,那么P 和Q 的大小关系是( ).A .P =QB .P >QC .P <QD .无法确定(2)如图(b),△ABC 为等腰直角三角形,AC =3,以BC 为直径的半圆与斜边AB 交于点D ,则图中阴影部分的面积是________.(3)如图(c),△AOB 中,OA =3cm ,OB =1cm ,将△AOB 绕点O 逆时针旋转90°到△A ′OB ′,求AB 扫过的区域(图中阴影部分)的面积.(结果保留π)【思路点拨】 直接使用公式计算阴影部分面积比较困难时,可采用和差法、转化法、方程法等,有时也需要运用变换的观点来解决问题.【答案与解析】解:(1)阴影部分的面积直接求出十分困难,可利用几个图形面积的和差进行计算:2OAB OCA P S S Q =-+扇形半圆2211()42R R Q Q ππ=-+=; (2)(转化法“凑整”)利用BmD CnD S S =弓形弓形,则阴影部分的面积可转化为△ACD 的面积,等于△ABC 面积的一半,答案为94; (3)(旋转法)将图形ABM 绕点O 逆时针旋转到A ′B ′M ′位置,则A OA MOM S S S ''=-阴影扇形扇形2211244OA OM πππ=-=. 【总结升华】求阴影面积的几种常用方 (1)公式法;(2)割补法;(3)旋转法;(4)拼凑法;(5)等积变形法;(6)构造方程法.举一反三:【变式】如图,在△ABC 中,AB =AC ,AB =8,BC =12,分别以AB 、AC 为直径作半圆,则图中阴影部分的面积是( )A .64π127-B .16π32-C .16π247-D .16π127-【答案】解:如图,由AB ,AC 为直径可得AD ⊥BC ,则BD =DC =6.在Rt △ABD 中,228627AD =-=,∴ 211246271612722S ππ⎛⎫=⨯⨯⨯-⨯⨯=-⎪⎝⎭阴影. 答案选D.3.如图所示,A 是半径为2的⊙O 外一点,OA =4,AB 是⊙O 的切线,B 为切点,弦BC ∥OA ,连AC ,求阴影部分的面积.【思路点拨】图中的阴影是不规则图形,不易直接求出,如果连接OB 、OC ,由BC ∥OA ,根据同底等高的三角形面积相等,于是所求阴影可化为扇形OBC 去求解.【答案与解析】解:如图所示,连OB 、OC∵ BC ∥OA .∴ △OBC 和△ABC 同底等高,∴ S △ABC =S △OBC ,∴∵ AB 为⊙O 的切线,∴ OB ⊥AB .∵ OA =4,OB =2,∴ ∠AOB =60°.∵ BC ∥OA ,∴ ∠AOB =∠OBC =60°.∵ OB =OC ,∴ △OBC 为正三角形.∴ ∠COB =60°,∴ 260223603OBC S S ππ⨯===阴影扇形.【总结升华】通过等积替换化不规则图形为规则图形,在等积转化中①可根据平移、旋转或轴对称等图形变换;②可根据同底(等底)同高(等高)的三角形面积相等进行转化.举一反三:【变式】如图所示,半圆的直径AB =10,P 为AB 上一点,点C ,D 为半圆的三等分点,则阴影部分的面积等于________.【答案】 解:连接OC 、OD 、CD .∵ C 、D 为半圆的三等分点,∴ ∠AOC =∠COD =∠DOB =180603=°°. 又∵ OC =OD ,∴ ∠OCD =∠ODC =60°,∴ DC ∥AB ,∴ PCD OCD S S =△△,∴ 2605253606S S ππ===g g 阴影扇形OCD .4.如图,在边长为4的正方形ABCD中,以AB为直径的半圆与对角线AC交于点E.(1)求弧BE所对的圆心角的度数.(2)求图中阴影部分的面积(结果保留π).【思路点拨】(1)连接OE,由条件可求得∠EAB=45°,利用圆周角定理可知弧BE所对的圆心角∠EOB=2∠E AB=90°;(2)利用条件可求得扇形AOE的面积,进一步求得弓形的面积,利用Rt△ADC的面积减去弓的面积可求得阴影部分的面积.【答案与解析】解:(1)连接OE,∵四边形ABCD为正方形,∴∠EAB=45°,∴∠EOB=2∠EAB=90°;(2)由(1)∠EOB=90°,且AB=4,则OA=2,∴S扇形AOE==π,S△AOE=OA2=2,∴S弓形=S扇形AOE﹣S△AOE=π﹣2,又∵S△ACD=AD•CD=×4×4=8,∴S阴影=8﹣(π﹣2)=10﹣π.【总结升华】本题主要考查扇形面积的计算和正方形的性质,掌握扇形的面积公式是解题的关键,注意弓形面积的计算方法.»AB)对应5.将一块三角板和半圆形量角器按图中方式叠放,重叠部分(阴影)的量角器圆弧(的中心角(∠AOB)为120°,AO的长为4cm,求图中阴影部分的面积.【思路点拨】看是否由“规则的”三角形、四边形、圆、扇形、弓形等可求面积的图形,经过怎样的拼凑、割补、叠合而成,这是解决这类题的关键.【答案与解析】阴影部分的面积可看成是由一个扇形AOB 和一个Rt △BOC 组成,其中扇形AOB 的中心角是120°,AO 的长为4,Rt △BOC 中,OB =OA =4,∠BOC =60°,∴ 可求得BC 长和OC 长,从而可求得面积,阴影部分面积=扇形AOB 面积+△BOC 面积=21623cm 3π⎛⎫+ ⎪⎝⎭. 【总结升华】本题是求简单组合图形的面积问题,解答时,常常是寻找这些“不规则的图形”是由哪些“可求面积的、规则的图形”组合而成.举一反三:【变式】如图,矩形ABCD 中,AB =1,2AD =.以AD 的长为半径的⊙A 交BC 于点E ,则图中阴影部分的面积为________.【答案】1224π--. 解析:连接AE ,易证AB =BE =1,∠BAE =45°,所以∠EAD =45°, 所以21112(2)22824ABE ABCD DAE S S S S ππ=--=--=--△阴影矩形扇形.6.如图,AB 是⊙O 的直径,点P 是AB 延长线上一点,PC 切⊙O 于点C ,连接AC ,过点O 作AC 的垂线交AC 于点D ,交⊙O 于点E .已知AB ﹦8,∠P=30°.(1)求线段PC 的长;(2)求阴影部分的面积.【思路点拨】(1)连接OC,由PC为圆O的切线,根据切线的性质得到OC与PC垂直,可得三角形OCP为直角三角形,同时由直径AB的长求出半径OC的长,根据锐角三角函数定义得到tanP为∠P的对边OC与邻边PC的比值,根据∠P的度数,利用特殊角的三角函数值求出tanP的值,由tanP及OC的值,可得出PC 的长;(2)由直角三角形中∠P的度数,根据直角三角形的两个锐角互余求出∠AOC的度数,进而得出∠BOC的度数,由OD与BC垂直,且OC=OB,利用等腰三角形的三线合一得到OD为∠BOC的平分线,可求出∠COD度数为60°,再根据直角三角形中两锐角互余求出∠OCD度数为30°,根据30°角所对的直角边等于斜边的一半,由斜边OC的长求出OD的长,先由∠COD的度数及半径OC的长,利用扇形的面积公式求出扇形COE的面积,再由OD与CD的长,利用直角三角形两直角边乘积的一半求出直角三角形COD 的面积,用扇形COE的面积减去三角形COD的面积,即可求出阴影部分的面积.【答案与解析】解:(1)连接OC,∵PC切⊙O于点C,∴OC⊥PC,∵AB=8,∴OC=12AB=4,又在直角三角形OCP中,∠P=30°,∴tanP=tan30°=OCPC,即PC=433=43;(2)∵∠OCP=90°,∠P=30°,∴∠COP=60°,∴∠A OC=120°,又AC⊥OE,OA=OC,∴OD为∠AOC的平分线,∴∠COE=12∠AOC=60°,又半径OC=4,∴S扇形OCE=26048=3603ππ⨯,在Rt△OCD中,∠COD=60°,∴∠OCD=30°,∴OD=12OC=2,根据勾股定理得:CD=22OC-OD=23,【总结升华】此题考查了切线的性质,含30°角的直角三角形的性质,等腰三角形的性质,锐角三角函数定义,以及扇形的面积公式,遇到已知切线的类型题时,常常连接圆心与切点,利用切线的性质得出垂直,利用直角三角形的性质来解决问题.。
初中三:圆的证明与计算
圆的证明与计算【高频核心考点】1,圆周角定理以及垂径定理,如下图所示∵ AB 为直径且AB ⊥CD∴ CE=DE ,弧BC=弧BD ,弧AC=弧AD 注:运算中主要运用勾股定理。
2,圆的切线长定理,如下图所示∵ PA,PB 为⊙O 的两条切线∴ PA=PB ,且PO 垂直平分AB 同理可证:EC=EA ,FC=FB3,相交弦定理 切割线定理 割线定理结论: PA ·PB=PC ·PD PA 2=PB ·PC PB ·PA=PD ·PC4,切割线延伸: 切割线互垂(角平分线):结论:tan A DB BC CDAD CD AC∠===结论:∠ABD=∠CBD ,DB 2=BC ·BE ,AD 2=AE ·ABOFE DC BA【精题精讲精练】◆例1:《角平分线模型》1,如图,在Rt ABC∆中,90C∠=︒,AD平分BAC∠交BC于点D,O为AB上一点,经过点A,D的O⊙分别交AB,AC于点E,F,连接OF交于点G.(1)求证:BC是O⊙的切线;(2)设AB x=,AF y=,试用含,x y的代数式表示线段AD的长;(3)若8BE=,5sin13B=,求DG的长.2,如图1,在△ABC中,AB=AC,⊙O是△ABC的外接圆,过点C作∠BCD=∠ACB交⊙O于点D,连接AD交BC于点E,延长DC至点F,使CF=AC,连接AF.(1)求证:ED=EC;(2)求证:AF是⊙O的切线;(3)如图2,若点G是△ACD的内心,BC·BE=25,求BC的长.AD【变式练习】已知:如图,△ABC 内接于⊙O ,AB 为直径,∠CBA 的平分线交AC 于点F ,交⊙O 于点D ,DE ⊥AB 于点E ,且交AC 于点P ,连结AD. (1)求证:2AC DE =;(2)若tan∠CBD =12,AP·AC=5,求AC 的长; (3)若65AD =,⊙O 的半径为152,延长DE 交⊙O 于点M ,且DP :DM=1:3,求CM 的长.◆例2:《母子型相似》1,如图,AB 为⊙O 的直径,C,D 为圆上的两点,OC∥BD,弦AD ,BC 相交于点E.(1)求证:弧AC=弧CD ;(2)若CE=1,EB=3,求⊙O 的半径;(3)在(2)的条件下,过点C 作⊙O 的切线,交BA 的延长线于点P,过点P 作PQ∥CB 交⊙O 于F,Q 两点(点F 在线段PQ 上),求PQ 的长。
与圆有关的计算和证明解题技巧
与圆有关的计算和证明解题技巧
与圆有关的计算和证明是数学中一个重要的部分,它涉及到许多基本的数学概念和技巧。
以下是一些与圆有关的计算和证明的解题技巧:
1. 确定圆心和半径:在解决与圆有关的问题时,首先需要确定圆心和半径。
圆心是圆的中心点,而半径是从圆心到圆周的距离。
知道这些信息可以帮助你找到圆的方程,或者解决与圆有关的问题。
2. 使用圆的性质:了解并利用圆的性质是解决与圆有关问题的关键。
例如,圆的对称性、切线的性质、弦的性质等。
3. 利用勾股定理:勾股定理是一个非常重要的数学定理,它可以帮助你解决与圆有关的问题。
特别是当涉及到弦、切线、半径等时,勾股定理是非常有用的。
4. 使用圆的方程:圆的方程是解决与圆有关问题的另一个重要工具。
通过圆的方程,你可以找到圆心和半径,或者找到与圆有关的特定点的坐标。
5. 利用三角函数:在解决与圆有关的问题时,三角函数是非常有用的工具。
例如,当涉及到角度、弧长等时,三角函数可以帮助你找到解决方案。
6. 利用几何推理:几何推理是解决与圆有关问题的另一个重要技巧。
通过观察和推理,你可以找到解决问题的方法。
7. 练习和反思:最后,要提高解决与圆有关问题的能力,你需要不断地练习和反思。
通过练习,你可以熟悉各种问题类型和解题技巧,而反思则可以帮助你发现自己的弱点并加以改进。
希望这些技巧能帮助你更好地理解和解决与圆有关的问题!。
中考专题复习——与圆有关的计算与证明
角形的
、这个三角形是圆的
.
7、点与圆的位置关系 :点在圆内、点在圆上、点在圆外 . 其中 r 为圆的半径, d 为点到圆心的
距离,
位置关系
点在圆内
点在圆上
点在圆外
数量( d 与 r )的大小关系
d< r
d= r
d> r
8、直线和圆的位置关系:
直线和圆的位置关系
相离
相切
相交
公共点个数
_______
________
4、正多边形的半径 :
是正多边形的半径。
5、正多边形的中心角 : 正多边形的每一条边所对的
叫做正多边形的中心角。
6、正多边形的边心距:
到
的距离叫做正多边形的边心距。
7、任何一个正多边形都有一个 8、正多边形的边心距与
和一个
,
这两个圆是
.
相等。
14、弧长和扇形面积
1. 圆的周长 为 的弧长为
, 1°的圆心角所对的弧长为
( 2)利用( 1)的结论和三角形的面积公式.
例 2 如图所示, AB是 ⊙O 直径, OD ⊥ 弦 BC 于点 F ,且交 ⊙O 于点 E ,若 AEC ( 1)判断直线 BD 和 ⊙O 的位置关系,并给出证明; ( 2)当 AB 10, BC 8 时,求 BD 的长. 【答案】( 1)直线 BD 和 ⊙O 相切.
( 1)弓形的定义:由弦及其所对的弧(包括劣弧、优弧、半圆)组成的图形叫做
。
( 2)弓形的周长= ( 3)弓形的面积 当弓形所含的弧是劣弧时,如图 当弓形所含的弧是优弧时,如图 当弓形所含的弧是半圆时,如图
1 所示, s 弓形 = 2 所示, s 弓形 3 所示, s 弓形
圆的基本概念,计算,证明
圆的基本计算和证明圆的基本概念和性质1考试内容考试 要求圆的定义定义1:在一个平面内,一条线段绕着它固定的一个端点旋转一周,另一个端点所形成的图形叫做圆.B定义2:圆是到定点的距离 定长的所有点组成的图形. 弦 连结圆上任意两点的 叫做弦.直径 直径是经过圆心的 ,是圆内最 的弦.弧 圆上任意两点间的部分叫做弧,弧有____________________之分,能够完全重合的弧叫做____________________. A 等圆 能够重合的两个圆叫做等圆.同心圆 圆心相同的圆叫做同心圆.2.考试内容考试 要求圆的对称性 圆是轴对称图形,其对称轴是任意一条经过 的直线.C圆是中心对称图形,对称中心为____________________.圆心角、弧、弦之间的关系 在同圆或等圆中,如果两个圆心角、两条弧或两条弦中有一组量 ,那么它们所对应的其余各组量也分别相等.3.考试内容考试 要求 圆周角的定义 顶点在圆上,并且 都和圆相交的角叫做圆周角. B圆周角定理 一条弧所对的圆周角等于它所对的圆心角的 . C推论1 同弧或等弧所对的圆周角 .推论2 半圆(或直径)所对的圆周角是 ;90°的圆周角所对的弦是 . 推论3圆内接四边形的对角 .4.考试内容考试要求位置关系 点在圆内点在圆上 点在圆外 B数量(d 与r)的大小关系(设圆半径为r ,点到圆心距离为d)_____________ ________________________直线与圆的位置关系12.圆的切线3.三角形与圆圆半径R=c2;②直角三角形的内切圆半径r=a+b-c2.考试内容考试要求基本思想分类讨论思想:圆是一种极为重要的几何图形,由于图形位置、形状及大小的不确定,经常出现多结论情况,解题时漏解出错时有发生,解决这类问题,一定要仔细分析,缜密思考,分类讨论,逐一解答.(1)由于点在圆周上的位置的不确定而分类讨论;(2)由于弦所对弧的优劣情况的不确定而分类讨论;(3)由于弦的位置不确定而分类讨论;(4)由于直线与圆的位置关系的不确定而分类讨论.C基本方法判断一直线是否为圆的切线的方法:①连半径,证垂直;②作垂线,证半径.1、理解并掌握圆有关的概念和性质相关计算2、理解并掌握切线的判定和性质的综合应用题型一圆心角、圆周角、垂径定理及推论典型例题1.(2019年镇江中考第15题3分)如图,四边形ABCD是半圆的内接四边形,AB是直径,.若∠C=110°,则∠ABC的度数等于()A.55°B.60°C.65°D.70°题型二构造相似典型例题2.(2019年泰州中考第16题3分)如图,⊙O的半径为5,点P在⊙O上,点A在⊙O内,且AP =3,过点A作AP的垂线交⊙O于点B、C.设PB=x,PC=y,则y与x的函数表达式为__________.题型二切线的性质与判定典型例题3.(2019年苏州中考第5题3分)如图,AB为⊙O的切线,切点为A,连接AO、BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°4.(2019年南通中考第25题9分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=1,以边AC上一点O为圆心,OA为半径的⊙O经过点B.(1)求⊙O的半径;(2)点P为中点,作PQ⊥AC,垂足为Q,求OQ的长;(3)在(2)的条件下,连接PC,求tan∠PCA的值.5.(2019年连云港中考第16题3分)如图,在矩形ABCD中,AB=4,AD=3,以点C为圆心作⊙C 与直线BD相切,点P是OC上一个动点,连接AP交BD于点T,则的最大值是.1.(2019年无锡中考第8题3分)如图,PA是⊙O的切线,切点为A,PO的延长线交⊙O于点B,若∠P=40°,则∠B的度数为()A.20°B.25°C.40°D.50°第1题图第2题图2.(2019年常州中考第16题2分)如图,AB是⊙O的直径,C、D是⊙O上的两点,∠AOC=120°,则∠CDB=__________°.3.(2019年连云港中考第13题3分)如图,点A、B、C在⊙O上,BC=6,∠BAC=30°,则⊙O的半径为___________.第3题图第4题图4.(2019年南京中考第22题7分)如图,⊙O的弦AB、CD的延长线相交于点P,且AB=CD.求证:PA=PC.xyO-6OOOB CAA BBAPEF5.(2019年宿迁中考第24(1)题5分)在Rt△ABC中,∠C=90°,如图,点O在斜边AB上,以点O为圆心,OB长为半径的圆交AB于点D,交BC于点E,与边AC相切于点F.求证:∠1=∠2.6.(2019年淮安中考第24题10分)如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,DE⊥AC,垂足为E.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠BAC=60°,求线段EF的长.7.(2019年泰州州中考第24题10分)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为的中点,过点D作DE∥AC,交BC的延长线于点E.(1)判断DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为5,AB=8,求CE的长.1.(2019年无锡中考第17题3分)如图,在△ABC中,AC:BC:AB=5:12:13,⊙O在△ABC内自由移动,若⊙O的半径为1,且圆心O在△AB C内所能到达的区域的面积为,则△ABC的周长为__________.第1题图第2题图第3题图2.(2019年常州中考第17题2分)如图,半径为的⊙O与边长为8的等边三角形ABC的两边AB、BC都相切,连接OC,则tan∠OCB=____________.3.(2019年南京中考第14题2分)如图,PA、PB是⊙O的切线,A、B为切点,点C、D在⊙O上.若∠P=102°,则∠A+∠C=____________.4.(2019年盐城中考第14题3分)如图,点A、B、C、D、E在⊙O上,且为50°,则∠E+∠C=_____________°.第4题图第5题图5.(2019年杨州中考第25(2-①)题2分)如图,AB是⊙O的弦,过点O作OC⊥OA,OC交于AB 于P,且CP=CB,知∠BAO=25°,点Q是弧A m B上的一点,求∠AQB的度数.6.(2019年徐州中考第24题8分)如图,AB为⊙O的直径,C为⊙O上一点,D为的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:∠A=∠DOB;(2)DE与⊙O有怎样的位置关系?请说明理由.7.(2019年盐城中考第24题10分)如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,以CD为直径的⊙O分别交AC、BC于点M、N,过点N作NE⊥AB,垂足为E.(1)若⊙O的半径为,AC=6,求BN的长;(2)求证:NE与⊙O相切.8.(2019年杨州中考第25(1)题5分)如图,AB是⊙O的弦,过点O作OC⊥OA,OC交于AB于P,且CP=CB,求证:BC是⊙O的切线.9.(2019年镇江中考第22题6分)如图,在△ABC中,AB=AC,过AC延长线上的点O作OD⊥AO,交BC的延长线于点D,以O为圆心,OD长为半径的圆过点B.(1)求证:直线AB与⊙O相切;(2)若AB=5,⊙O的半径为12,则tan∠BDO=__________.10.(2019年镇江中考第26(1)题3分)【材料阅读】地球是一个球体,任意两条相对的子午线都组成一个经线圈(如图1中的⊙O).人们在北半球可观测到北极星,我国古人在观测北极星的过程中发明了如图2所示的工具尺(古人称它为“复矩”),尺的两边互相垂直,角顶系有一段棉线,棉线末端系一个铜锤,这样棉线就与地平线垂直.站在不同的观测点,当工具尺的长边指向北极星时,短边与棉线的夹角α的大小是变化的.【实际应用】观测点A在图1所示的⊙O上,现在利用这个工具尺在点A处测得α为31°,在点A所在子午线往北的另一个观测点B,用同样的工具尺测得α为67°.PQ是⊙O的直径,PQ⊥ON,求∠POB的度数.年月日苏州市5年中考真题高频考点1 圆中角度计算1.(2019年苏州中考第5题3分)如图,AB为⊙O的切线,切点为A,连接AO、BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°第1题图第2题图第3题图2.(2018年苏州中考第7题3分)如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是⌢ AC 上的点,若∠BOC=40°,则∠D的的度数为()A.100°B.110°C.120°D.130°3.(2017年苏州中考第9题3分)如图,在Rt△ABC中,∠ACB=90°,∠A=56°.以BC为直径的⊙O交AB于点D.E是⊙O上一点,且,连接OE.过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为()A.92°B.108°C.112°D.124°高频考点2 圆的几何综合证明与计算1.(2019年苏州中考第26题10分)如图,AB为⊙O的直径,C为⊙O上一点,D是弧BC的中点,BC与AD、OD分别交于点E、F.(1)求证:DO∥AC;(2)求证:DE•DA=DC2;(3)若tan∠CAD=,求sin∠CDA的值.2.(2018年苏州中考第26题10分)如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,CE垂直AB,垂足为E.延长DA交⊙O于点F,连接FC,FC与AB相交于点G,连接OC.(1)求证:CD=CE;(2)若AE=GE,求证:△CEO是等腰直角三角形.3.(2017年苏州中考第27题10分)如图,已知△ABC内接于⊙O,AB是直径,点D在⊙O上,OD ∥BC,过点D作DE⊥AB,垂足为E,连接CD交OE边于点F.(1)求证:△DOE∽△ABC;(2)求证:∠ODF=∠BDE;(3)连接OC,设△DOE的面积为S1,四边形BCOD的面积为S2,若=,求sin A的值.4.(2016年苏州中考第26题10分)如图,AB是圆O的直径,D、E为圆O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD.连接AC交圆O于点F,连接AE、DE、DF.(1)证明:∠E=∠C,(2)若∠E=55°,求∠BDF的度数,(3)设DE交AB于点G,若DF=4,,E是的中点,求的值..5.(2015年苏州中考第26题10分)如图,已知AD是△ABC的角平分线,⊙O经过A、B、D三点,过点B作BE∥AD,交⊙O于点E,连接ED.(1)求证:ED∥AC;(2)若BD=2CD,设△EBD的面积为S1,△ADC的面积为S2,且S12-16S2+4=0,求△ABC的面积.2019苏州市名校中考模拟真题1.(2019年苏州市区一模第6题3分)如图,四边形ABCD内接于⊙O,AB是直径,BC//OD,若∠C=130°,则∠B的度数为( )A.50°B.60°C.70°D. 80°2.(2019年苏州吴中、吴江、相城区一模第7题3分)如图,△ABC内接于⊙O, ∠OAC=25°,则∠ABC 的度数为( )A.110°B. 115°C. 120°D. 125°第1题图第2题图第3题图第4题图3.(2019年苏州工业园区一模第8题3分)如图,点ABCD在⊙O上,OB//CD,∠A=25°,则∠BOD等于( )A.100º B .120º C .130º D.150º4.(2019年苏州将范中学二模第7题3分)如图,AB为⊙O的直径,点C,D在⊙O上.若∠AOD=30°,则∠BCD等于( )A.75°B.95°C.100°D.105°5.(2019年苏州胥江实验中学二模第7题3分)如图,⊙O上A、B、C三点,若∠B=50,∠A=20°,则∠AOB等于()A.30°B.50°C.70°D.60°6.(2019年苏州高新区二模第7题3分)如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C =50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是()A.45°B.85°C.90°D.95°7.(2019年苏州高新区一模第7题3分)如图,A,B,C,D,四个点均在⊙O上,∠AOD=70°,AO//DC,,则∠B的度数为()A.40ºB.45 ºC.50 ºD.55 º第5题图第6题图第7题图第8题图第9题图8.(2019年苏州张家港一模第4题3分)如图,AB是⊙O的直径,P A切⊙O于点A,线段PO交⊙O于点C,连结BC.若∠P=40°,则∠B等于()A.15°B.20°C.25°D.30°9.(2019年苏州市区二模第14题3分)如图,A、B、C、D是⊙O上的四点,且D是弧AB的中点,CD交OB于E,∠AOB=100°,∠OBC=55°,那么∠OEC=__________度.10.(2019年苏州工业园区一模第27题10分)如图,以△ABC的边AB为直径的⊙O与边AC相交于点D,BC是⊙O的切线,E为BC的中点,连接AE、DE.(1)求证:DE是⊙O的切线:(2)设△CDE的面积为S1,四边形ABED的面积为S2.若S2=5S1,求tan∠BAC的值;(3)在(2)的条件下,若AE=,求⊙O的半径长.11.(2019年苏州平江区二模第26题10分)如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,且BD=BC,延长AD到E,使得∠EBD=∠CAB.(1)如图1,若BD=,AC=6.①求证:BE是⊙O的切线;②求DE的长;(2)如图2,连结CD,交AB于点F,若BD=,CF=3,求⊙O的半径.12.(2019年苏州景范中学二模第26题10分)如图,内接于圆O,AB为直径,CD AB 与点D,E为圆外一点,EO AB,与BC交于点G,与圆O交于点F,连接EC,且EG=EC.(1)求证:EC是圆O的切线;(2)当时,连接CF,①求证:AC=CF;②若AD=1,求线段FG的长.\13.(2019年苏州市区一模第26题10分)如图,AB是⊙O的直径,点P在BA的延长线上,过点P 作⊙O的切线,切点为D,BD垂直于PD,垂足为C,BC与⊙O相交于点E,连接OE,交BD于点F.(1)求证:BD平分∠ABC;(2)若BC=6,tan P=,①求线段BD的长; ②求线段BF的长.14.(2019年苏州胥江实验中学二模第26题10分)如图,AB为⊙O的直径,C为⊙O上一点,经过点C的切线交AB的延长线于点E,AD⊥EC交EC的延长线于点D,AD交⊙O于F,FM⊥AB于H,分别交⊙O、AC于M、N,连接MB,BC.(1)求证:AC平分∠DAE;(2)若cos M=,BE=1,①求⊙O的半径;②求FN的长.15.(2019年苏州张家港二模第26题10分)如图,以△ABC的BC边上一点O为圆心的圆,经过A、C两点,与BC边交于点E,点D为CE的下半圆弧的中点,连接AD交线段EO于点F,AB=BF,CF=4,DF=.(1)求证:AB是⊙O的切线;(2)求⊙O的半径r.(3)设点P是BA延长线上的一个动点,连接DP交CF于点M,交弧AC于点N(N与A、C不重合),试问是否为定值?如果是,求出该定值:如果不是,请说明理由.。
圆的计算与证明范文
圆的计算与证明范文圆是数学中一种重要的几何形状,由于其特殊的性质和广泛的应用,圆的计算和证明一直是几何学习的重点内容之一、本文将对圆的计算和证明进行详细介绍。
一、圆的定义与性质圆的定义:平面上的一个点集合,到该点距离相等的所有点构成的图形,称为圆。
圆的性质:1.圆上的任意一点到圆心的距离都相等。
2.圆心到圆上任意一点的线段称为半径,圆上任意两点之间的线段称为弦。
3.圆的直径是通过圆心的一条弦,且等于弦长的两倍。
4.圆的周长是圆上任意一段弧长与半径的乘积,即C=2πr,其中C 为周长,r为半径。
5.圆的面积是半径平方乘以π,即A=πr²,其中A为面积,r为半径。
二、圆的计算根据圆的性质,可以进行以下计算:1.已知圆的半径,计算周长和面积。
以半径为4cm的圆为例,周长和面积的计算公式为:C=2πr=2π×4=8π≈25.13cm(取π≈3.14),A=πr²=π×4²=16π≈50.27cm²。
2.已知圆的周长,计算半径和面积。
以周长为10cm的圆为例,半径的计算公式为:r=C/2π=10/(2π)≈1.59cm,面积的计算公式为:A=πr²=π×(1.59)²≈7.97cm²。
3.已知圆的面积,计算半径和周长。
以面积为20cm²的圆为例,半径的计算公式为:r=√(A/π)=√(20/π)≈2.52cm,周长的计算公式为:C=2πr=2π×2.52≈15.86cm。
三、圆的证明1.圆心角的证明圆心角是指圆心所对的弧所对应的角,圆心角的证明如下:(步骤一)连接弧所对应的两条半径。
(步骤二)在弧所对应的两条半径上分别取任意一点,分别连接这两点与圆心的直线。
(步骤三)观察三角形圆心角,可以发现它们是共边共顶点的相似三角形,根据相似三角形的性质可知,它们的对应角相等。
(步骤四)由于圆上任意两点之间的弦所对应的圆心角相等,因此可以得出结论:圆上任意两点之间的弦所对应的圆心角相等。
与圆有关的计算和证明——从圆内接三角形说起案例
与圆有关的计算和证明——从圆内接三角形说起案例案例背景:圆是在七年级学习了直线,线段和八年级学习了矩形菱形等多边形的基础上来研究的一种特殊的曲线型封闭图形。
它其实也是常见的几何图形之一,在初中数学中占有非常重要的地位,中考中会专门作为一个大的考点,它与其他几何图形的关联性也较强,常常和点,直线,三角形,多边形融合在一起考察,也常常和相似,二次函数等知识点融合在一起考察。
本节课选取其中一种情况,圆和三角形的关联来探究圆的有关计算和证明。
因为时间有限,所以本节课选取的题目较常见,但涉及到圆中相关定理较全面。
教学过程:一·诗句引入,引出主题首先师生互动,创设宽松的学习氛围“同学们,当你听到小时不识月,呼作白玉盘”,你会联想到我们数学上的什么图形呢?当你听到“海上升明月,天涯共此时”你又会想到什么图形呢?简单的两个问题,将语文和数学紧密的联系在一起,符合新课标中的跨学科教学,让学生感受数学学科与其他学科的融合,体会生活当中的场景,培养孩子们空间直观的能力,提高孩子们数学学科素养,用数学的眼光去观察现实世界。
二·活动探究,层层推进教师出示活动一:如图△ABC内接于⊙O,AD是⊙O的切线,请你用量角器量一量∠DAC和∠B的大小,猜想他们的数量关系,并加以证明。
学生操作:学生动手测量并感知角的关系,孩子们测出两个角的度数都是55°,猜想∠DAC=∠B,下面教师放手让孩子们去证明,教师巡视指导,六分钟后教师展示学生的成果,大部分孩子选择的是构造直径的方式证明,个别学生选择的是连半径,但是在教师巡视过程中,发现连半径的方法缺少△AOC内角和是180°这个知识点,导致未证明完全,于是教师将该学生的学习单投影,借助连半径这个辅助线,教师带领孩子们一起分析接下来的步骤,但是教师的表述不够简洁明朗。
教师活动一的反思:开始就想着设计一条主线串联圆中计算与证明,于是想到圆内接三角形,活动一中涵盖了圆中切线性质定理,并且在证明过程中涉及圆周角定理,一道题涉及的定理比较多,同时在证明过程中需要借助辅助线,可以通过构造直径,也可以连接半径,这两个几何辅助手段也圆中常用辅助线的,可以巩固学生之前所学。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与圆有关的证明与计算1.如图,在Rt △ABC 中,∠C =90°,点D 、E 、F 分别在AC 、BC 、AB 的边上,以AF 为直径的⊙O 恰好经过点D 、E ,且DE =EF .(1)求证:BC 是⊙O 的切线;(2)若∠B =30°,求CECD的值.第1题图(1)证明:如解图,连接OD ,OE ,DF , ∵AF 是⊙O 的直径, ∴∠ADF =90°, ∵∠C =90°, ∴DF ∥BC , ∵DE =EF , ∴DE ︵=EF ︵, ∴OE ⊥DF , ∴OE ⊥BC ,∵OE 是⊙O 的半径, ∴BC 是⊙O 的切线;第1题解图(2)解:∵∠B =30°,且OE ⊥BC , ∴∠BOE =60°, ∵OE =OF ,∴△OEF 是等边三角形, ∴∠OEF =60°,又∵DE =EF ,OE ⊥DF , ∴∠OED =∠OEF =60°, ∴∠CED =30°, ∴∠CDE =60°, 在Rt △CDE 中,∵tan ∠CDE =tan60°=CECD=3,∴CECD= 3. 2.如图,在Rt △BGF 中,∠F =90°,AB 是⊙O 的直径,⊙O 交BF 于点E ,交GF 于点D ,AE ⊥OD 于点C ,连接BD .(1)求证:GF 是⊙O 的切线;(2)若OC =2,AE =43,求∠DBF 的度数.第2题图(1)证明:∵AB 是⊙O 的直径,∴∠AEB =90°, 又∵∠F =90°,∴∠AEB =∠F ,∴AE ∥GF , ∵AE ⊥OD ,∴OD ⊥GF , ∵OD 是⊙O 的半径, ∴GF 是⊙O 的切线; (2)解:∵OD ⊥AE , ∴AC =CE =12AE =23,∵OA =OB ,∴OC 是△ABE 的中位线, ∴BE =2OC =4,∴在Rt △AOC 中,OA =OC 2+AC 2=22+(23)2=4, ∵∠CEF =∠DCE =∠F =90°, ∴四边形CDFE 是矩形,∴DF =CE =23,EF =CD =OD -OC =4-2=2, ∴BF =BE +EF =4+2=6, ∴tan ∠DBF =DF BF =236=33,∴∠DBF =30°.3.如图,点C 是⊙O 的直径AB 的延长线上一点,点D 在⊙O 上,且∠DAC =30°,∠BDC =12∠ABD .(1)求证:CD 是⊙O 的切线;(2)若OF ∥AD 分别交BD 、CD 于点E 、F ,BD =2,求OE 、CF 的长.(1)证明:如解图,连接OD , ∵AB 是⊙O 的直径, ∴∠ADB =90°. ∵∠DAC =30°, ∴∠ABD =60°, ∴∠BDC =12∠ABD =30°.∵OD =OB , ∴∠ODB =60°,∴∠ODC =∠ODB +∠BDC =90°,即OD ⊥DC , ∵OD 是⊙O 的半径, ∴CD 是⊙O 的切线;第3题解图(2)解:∵OF ∥AD ,∠ADB =90°, ∴OF ⊥BD ,∠BOE =∠A =30°, ∵OD =OB ,∴DE =BE =12BD =1.∵在Rt △OEB 中,∠BOE =30°, ∴OB =2BE =2,∴OE =OB 2-BE 2=22-12= 3.∵OD =OB =2,∠C =∠ABD -∠BDC =30°,∠DOF =30°, ∴CD =OD tan30°=23,DF =OD ·tan30°=233,∴CF =CD -DF =23-233=433.4. 如图,在Rt △ABC 中,∠ACB =90°,BD 是∠ABC 的平分线,点O 在AB 上,⊙O 经过B ,D 两点,交BC 于点E .(1)求证:AC 是⊙O 的切线;(2)若AB =6,sin ∠BAC =23,求BE 的长.(1)证明:如解图,连接OD ,∵BD 是∠ABC 的平分线,∴∠1=∠2,∵OB =OD ,∴∠2=∠3,∴∠1=∠3,∴DO ∥BC , ∵∠ACB =90°,∴∠ADO =90°,即AC ⊥OD , ∵OD 是⊙O 的半径,∴AC 是⊙O 的切线;第4题解图(2)解:设⊙O 的半径为R ,在Rt △ABC 中,∠ACB =90°,sin ∠BAC =BC AB =23,∵AB =6,∴BC =AB sin ∠BAC =6×23=4,由(1)知,OD ∥BC ,∴△AOD ∽△ABC ,∴OD BC =AO AB ,∴R 4=6-R6,解得R =125,如解图,过点O 作OF ⊥BC 于点F , 则BE =2BF ,OF ∥AC , ∴∠BOF =∠BAC ,∴sin ∠BOF =BF OB =23,∴BF =23×125=85,∴BE =2BF =165.5. 如图,等腰△ACD 内接于⊙O ,其中AC =CD ,AB 是⊙O 的直径,连接BC ,BD ,过点C 作BD 的垂线,分别交AB 、DB 的延长线于点E 、F .(1)求证:CE 是⊙O 的切线;(2)若AB =5,BD =3,求CE 的长.第5题图(1)证明:如解图,连接CO 并延长交AD 于点M , ∵AC =CD ,∴AC ︵=CD ︵,∴CM ⊥AD ,∵AB 是⊙O 的直径, ∴∠ADB =90°,∴AD ⊥DF , ∴CM ∥DF ,即OC ∥DF , ∵DF ⊥CE , ∴OC ⊥CE ,又∵OC 是⊙O 的半径, ∴EC 是⊙O 的切线;第5题解图(2)解:∵在Rt △ABD 中,AB =5,BD =3,∴AD =AB 2-BD 2=4, ∵OC ∥DF ,∴∠COE =∠ABD , ∵∠ADB =∠OCE =90°, ∴△ABD ∽△EOC , ∴AD CE =BD OC ,即4CE =352, ∴CE =103.6. 如图,△ABC 是等腰三角形,AB =AC ,以AC 为直径的半圆O 与BC 交于点D ,DE ⊥AB ,垂足为E ,ED 的延长线与AC 的延长线交于点F .(1)求证:DE 是⊙O 的切线;(2)若半圆O 的半径为2,BE =1,求CF 的长.第6题图(1)证明:如解图,连接OD 、AD , ∵AC 是半圆O 的直径, ∴∠ADC =90°, ∴AD ⊥BC . 又∵AB =AC , ∴DC =BD . ∵OC =OA ,∴OD 是△ABC 的中位线,∵DE⊥AE,∴OD⊥DE,又∵OD为半圆O的半径,∴DE是⊙O的切线;第6题解图(2)解:∵∠ODF=∠AEF,∠F=∠F,∴△ODF∽△AEF,∴ODAE=OFAF,∵OD为△CAB的中位线,∴AB=2OD=4,∴AE=AB-BE=3,∴23=OFOF+2,解得OF=4,∴CF=OF-OC=2.7. 如图,在△ABC中,AB=BC,D是AC的中点,BE平分∠ABD交AC于点E,点O 是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)求证:AC与⊙O相切;(2)若BD=6,CD=8,求⊙O的半径.第7题图(1)证明:如解图,连接OE,∵AB=BC,D是AC中点,∴BD⊥AC,∵BE平分∠ABD,∴∠1=∠2,∵OE=OB,∴∠1=∠3,∴∠2=∠3,∴OE∥BD,∵BD⊥AC,∵OE 是⊙O 的半径, ∴AC 与⊙O 相切;第7题解图(2)解:在Rt △BCD 中,BD =6,CD =8, ∴BC =10, ∴AB =10. ∵OE ∥BD ,∴△AOE ∽△ABD , ∴AO AB =OE BD, 设⊙O 的半径为r ,则有10-r 10=r6,解得r =154,∴⊙O 的半径为154.8. 如图,在等腰△ABC 中,AC =BC ,∠A =30°,以BC 为直径的⊙O 与底边AB 交于点D ,过点D 作DE ⊥AC ,垂足为E .(1)求证:DE 为⊙O 的切线; (2)若BC =4,求DE 的长.第8题图(1)证明:如解图,连接OD , ∵OD =OB ,∴∠ODB =∠B , ∵AC =BC ,∴∠A =∠B ,∴∠ODB =∠A ,∴OD ∥AC , ∴∠ODE =∠DEA =90°, ∵OD 为⊙O 的半径, ∴DE 为⊙O 的切线;第8题解图(2)解:如解图,连接CD , ∵BC 为⊙O 的直径, ∴∠ADC =∠BDC =90°, ∵∠A =30°,AC =BC =4, ∴AD =AC ·cos30°=4×32=23,∴DE =12AD = 3. 9. 如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别与BC ,AC 交于D ,E ,过点D 作DF ⊥AC ,垂足为F .(1)求证:DF 为⊙O 的切线;(2)若AE =42,∠CDF =22.5°,求劣弧AE ︵的长.第9题图(1)证明:如解图,连接AD ,OD , ∵AB 是直径, ∴∠ADB =90°,∴AD ⊥BC , ∵AB =AC ,∴D 是BC 的中点, ∵O 是AB 的中点,∴OD ∥AC , ∵DF ⊥AC , ∴OD ⊥DF .∵OD 是⊙O 的半径, ∴DF 是⊙O 的切线;第9题解图(2)如解图,连接OE ,∵∠ADC =90°,∠DFC =90°, ∴∠DAC +∠C =90°,∠CDF +∠C =90°, ∴∠DAC =∠CDF =22.5°, ∵AB =AC ,D 是BC 中点, ∴∠BAC =2∠DAC =2×22.5°=45°, ∵OA =OE ,∴∠OEA =∠BAC =45°, ∴∠AOE =90°, ∵AE =42, ∴OA =OE =4, ∴lAE ︵=90π·4180=2π.10. 如图,在△ABC 中,D 是AB 边上一点,⊙O 过点B 、C 、D ,连接CD ,且∠B =∠ACD =45°,连接OD 交BC 于点E .(1)求证:AC 是⊙O 的切线; (2)求证:△BDE ∽△CAD ;(3)若∠DCB =30°,求CDBC的值.第10题图(1)证明:如解图,连接OC , ∵∠ABC =45°,∴∠DOC =90°, ∵OC =OD ,∴△OCD 是等腰直角三角形,∴∠OCD =45°, 又∵∠ACD =45°,∴∠OCD +∠ACD =45°+45°=90°,即∠ACO =90°, ∴OC ⊥AC ,∵OC 是⊙O 的半径, ∴AC 是⊙O 的切线;第10题解图(2)证明:由(1)知,OC ⊥AC ,∠DOC =90°,∴OD ∥AC , ∴∠BDO =∠A ,又∵∠B =∠ACD =45°, ∴△BDE ∽△CAD ;(3)解:如解图,过点D 作DH ⊥BC 于点H , 设⊙O 的半径为r ,则CD =2r , 在Rt △CDH 中, ∵∠DCH =30°,∴DH =12CD =22r ,CH =CD ·cos30°=2r ×32=6r 2,在Rt △BDH 中,∵∠B =45°, ∴BH =DH =22r , ∴BC =BH +CH =2+62r , ∴CD BC =2r 6+22r =23+1=3-1.。