概率统计试卷A及答案

合集下载

概率论与数理统计试题-a_(含答案)

概率论与数理统计试题-a_(含答案)

第一部分 基本题一、选择题(共6小题,每小题5分,满分30分。

在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项前的字母填在题后的括号内)(每道选择题选对满分,选错0分) 1. 事件表达式A B 的意思是 ( ) (A) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生(C) 事件B 发生但事件A 不发生 (D) 事件A 与事件B 至少有一件发生答:选D ,根据A B 的定义可知。

2. 假设事件A 与事件B 互为对立,则事件A B ( )(A) 是不可能事件 (B) 是可能事件 (C) 发生的概率为1 (D) 是必然事件 答:选A ,这是因为对立事件的积事件是不可能事件。

3. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) (A) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 (C) 自由度为1的F 分布 (D) 自由度为2的F 分布答:选B ,因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为n 的χ2分布。

4. 已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( ) (A) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3)答:选C ,因为相互独立的正态变量相加仍然服从正态分布,而E (X +Y )=E (X )+E (Y )=2-2=0, D (X +Y )=D (X )+D (Y )=4+1=5, 所以有X +Y ~N (0,5)。

5. 样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) (A) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计(C) 22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计答:选B ,因为样本均值是总体期望的无偏估计,其它三项都不成立。

概率统计试卷A及答案

概率统计试卷A及答案

概率统计试卷A及答案2010—2011—2概率统计试题及答案⼀、选择题(每题3分,共30分)1 11 .已知P(A) P(B) P(C) , P(AC) P(BC) , P(AB) 0 求事件A,B,C 4 16全不发⽣的概率1 3(A) 3(B)8(C)2 ?设A、B、C为3个事件?运算关系A B C表⽰事件___________ .(A)A、B、C⾄少有⼀个发⽣(B)A、B、C中不多于⼀个发⽣(C) A , B, C不多于两个发⽣(D) A,⽉,C中⾄少有两个发⽣3?设X的分布律为P{X k} 2 k (k 1,2,),贝U _________________________ .(A) 0的任意实数(B) 31(C) 3(D) 14. 设X为⼀个连续型随机变量,其概率密度函数为f(x),则f(x)必满⾜(A) 0 f (x) 1 ( B)单调不减(C) f (x)dx 1(D) lim f (x) 15. 对正态总体的数学期望⼙进⾏假设检验,如果在显著性⽔平=下接受H。

0,那么在显著性⽔平=下,下列结论正确的是:(A)必接受H。

( B)可能接受也可能拒绝H 0(C)必拒绝H。

( D)不接受,也不拒绝H。

6. 设随机变量X和丫服从相同的正态分布N(0,1),以下结论成⽴的是(A) 对任意正整数k,有E(X k) E(Y k)(B) X Y服从正态分布N(0,2)(C) 随机变量(X ,Y)服从⼆维正态分布(D) E(XY) E(X) E(Y) 7.若正态总体X 的⽅差D (X )1 2未知,检验期望E (X ) 0⽤的统计量是(C) x 0 (n 1) (D)x0 — 1 2n勺2 2X X kX X k1k 18.设⼆维随机变量(X,Y )服从G 上的均匀分布,G 的区域由曲线y x 2与参数落在区间(?1 , ?2 )之内的概率为1 参数落在区间(?1 , ?2)之外的概率为D )对不同的样本观测值,区间(?1 , ?2)的长度相同.、填空题(每题3分,共30 分)1 1 _ _1 n 2-(X i X)2( D)n i 1x 所围, 则(X ,Y )的联合概率密度函数为 (A) f(x,y) 6, (x,y) G0,其他(B) f(x ,y) 1/6, (x,y) G 0, 其他 (C) f(x,y) 2, (x,y) G 0,其他(D )f(x ,y) 1/2, (x,y) G 0, 其他 9 ?样本 X 1, X 2,,X n 来⾃总体N ( 2), 则总体⽅差 2的⽆偏估计为 A ) S 12 七 n (X i X)2( n 2 i 1S ;七(X i n 1 i 1X)2 S41 nf (X i X)10.设(2)是参数的置信度为1 的区间估计,则以下结论正确的是(A)x. n(n 1) (B)1n _2⼆x X kx 0 n- n 2 2 2x X kk 1C )区间( 2)包含参数的概率为11?设P(A) P(B) - , P(A B)—,则P(A|B)3 2 12?设⼀批产品共10件,其中8件正品,2件次品,从中任意抽取3件,则恰有1件是次品的概率是 __________ .13?已知随机变量X在[a, a]上服从均匀分布,且P{X 1}丄,则a _____________ . 3设随机变量X服从(0,3)上的均匀分布,则随机变量丫=X2在(0,9)的概率密度函数为____________ .4.设X ~ N(3,4),丫~N( 5,6),且X 与丫相互独⽴,则X 2Y ~ _____________ . 5?设随机变量X的数学期望为E(X) 、⽅差D(X) 2,则由切⽐雪夫不等式有P X —.4 ------------------6.设随机变量X的分布律为E(2X 1) __________ .7. 已知D(X) 25,D(Y) 36, (X,Y) 0.4,则D(X Y) _______________ .8. 设总体X服从参数为的泊松分布,X1 , X2 , , X100为来⾃总体的⼀个样本,则矩估计量为____________ .9. 设总体X服从正态分布N(m, s2),X1,X2, X3是来⾃总体X的⼀个样本,则X1,X X B的联合概率密度为___________ .10. 设总体X服从正态分布N(m, s2),其中s2未知,现从总体中抽取⼀容量为n的样本,则总体均值的置信度为1 的置信区间为 ________ .,X10是来⾃总体X的⼀个样本且X ~ N (0,0.52)求、设X1,X2,P i24 . ( 0.O5(9) 16 , 2.io(1O) 16,)i 1四、从⼀正态总体中抽取容量为10的样本,假定有2%的样本均值与总体均值之差的绝对值在4以上,求总体的标准差.(已知:(2.33) 0.99, (2.06) 0.98 , t o.8(9) 0.261 ,t o.8(1O) 0.26)五、在肝癌诊断中,有⼀种甲胎蛋⽩法,⽤这种⽅法能够检查出95%勺真实患者,但也有可能将10%勺⼈误诊。

大学概率论与数理统计期末试卷A+答案

大学概率论与数理统计期末试卷A+答案

第1页 第2页某某大学概率论与数理统计期末试卷A (20200115)一、 单项选择(每小题3分,共30分,请用铅笔在选项框处涂黑,否则影响自动评分)A B C DA B C DA B C DA B C DA B C D1. □ □ □ □2. □ □ □ □3. □ □ □ □4. □ □ □ □5. □ □ □ □6.□ □ □ □7. □ □ □ □8. □ □ □ □9. □ □ □ □10. □ □ □ □二、(8分)假定有三种投资理财的方式:基金理财、国债理财、银行存款,每种投资方式相对物价(CPI)上涨而言都存在一定的风险。

某人只选择一种投资方式,且选择上述三种投资方式之一进行投资理财的概率分别为0.4、0.3、0.3。

据统计,以上各种理财方式收益赶不上CPI 涨幅的概率分别为0.3,0.2,0.2.求此人投资收益赶不上CPI 涨幅的概率。

三、(8分)某人的一串钥匙上有3把钥匙,其中只有一把能打开自己的家门,他随意地试用这串钥匙中的某一把去开开门. 若每把钥匙试开一次后除去,求打开门时试开次数X 的分布律和分布函数。

四、(10分)某旅客到达火车站的时间 X 均匀分布在早上7点55分到8点之间,而火车这段时间开出的时间Y 的概率密度为2,05()250,Y y y f y -⎧≤≤⎪=⎨⎪⎩(5)其他,求(1)此人能及时上火车的概率(2)已知在=(05)Y y y ≤≤的条件下,X 的条件密度函数。

五、(10分)设随机变量X 与Y 独立同分布,且~(0,1)X N ,求22Z X Y =+的分布密度。

注意:学号参照范例用铅笔工整书写和填涂,上方写学号,下方填涂,一一对齐;每六点连线确定一个数字,连线不间断,不涂改;数字1可连左边或右边,请认真完成。

选择题填涂选项作答,其它题须在框内作答。

本卷共4页。

设123、、A A A 分布表示基金理财、国债理财、银行存款,B 为理财方式收益赶不上CPI 涨幅31()(()0.40.30.30.20.30.20.24===⨯+⨯+⨯=∑)i i i P B P A P B A所求分布律为即1()1,2,33P X k k ===,. 故所求分布函数为011123()223313x x F x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≥⎩(1)1,055()0,X x f x ⎧≤≤⎪=⎨⎪⎩其它,(,)=()()X Y X Y f x y f x f y 与独立,则552(5)1()(,).1253x yxy P X Y f x y dxdy dx dy ≤-≤===⎰⎰⎰⎰(2)在=(05)Y y y ≤≤的条件下,因为1,055()=()()0,X X X Y x X Y f x y f x f x ⎧≤≤⎪=⎨⎪⎩与独立,则其它(,)=()()X Y X Y f x y f x f y 与独立,则,221(,)exp{()/2}2f x y x y π=-+ 0()0≤=当时,Z z F z ,22222222222000()()()1exp{()/2}21=2ππθπ+<-->=≤=+≤=-+=⎰⎰⎰⎰⎰当时,Z x y zr rzr z F z P Z z P X Y z x y dxdy d e rdr e rdr所以Z 的概率密度函数22,0()0zZ ze z f z -⎧⎪>=⎨⎪⎩,其它第3页 第4页六、(10分)设随机变量X 和Y 相互独立,概率密度分别为22,0()0,x X e x f x -⎧≥=⎨⎩其他, 212(),2Y f y e y π--=-∞<<+∞(y )求: (1 ;)32(Y X E -)(2 );32(Y X D -)(3XY ρ).七、(8分)假设某天来超市的人数为1000人,每人的消费是独立的,每人购物开支服从U(40,200)分布(单位:元), 问超市该天营业额介于11.8万~12.2万元之间的概率。

《概率论与数理统计》期末考试试卷(A)答案

《概率论与数理统计》期末考试试卷(A)答案

2013-2014学年《概率论与数理统计》期末考试试卷 (A)一、 填空题(每小题4分,共32分).1.设 A 、B 为随机事件, P (A ) = 0.3, P (B ) = 0.4, 若 P (A |B ) =0.5, 则 P (A ⋃B ) = _______; 若 A 与 B 相互独立, 则 P (A ⋃B ) = _________.2.设随机变量 X 在区间 [1, 6] 上服从均匀分布, 则 P { 1 < X < 3} = ______________. 3.设随机变量 X的分布函数为,2,1 21 ,6.011 ,3.01 ,0 )(⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=x x x x x F则 X 的分布律为 ___________________________ . 4.若离散型随机变量 X 的分布律为则常数 a = _________; 又 Y = 2X + 3, 则 P {Y > 5} =_________ .5.设随机变量 X 服从二项分布 b (50, 0.2), 则 E (X ) = ________, D (X ) = ___________.6.设随机变量 X ~ N (0, 1), Y ~ N (1, 3), 且X 和 Y 相互独立, 则D (3X - 2Y ) = _________.7.设随机变量 X 的数学期望 E (X ) = μ, 方差 D (X ) =σ2, 则由切比雪夫不等式有P{|X -μ| < 3σ} ≥_________________.8.从正态总体N(μ, 0.12) 随机抽取的容量为16 的简单随机样本, 测得样本均值5=x,则未知参数μ的置信度为0.95的置信区间是____________________________. (用抽样分布的上侧分位点表示).二、选择题(只有一个正确答案,每小题3分,共18分)1.设A, B, C是三个随机变量,则事件“A, B, C不多于一个发生”的逆事件为( ).(A) A, B, C都发生(B) A, B, C至少有一个发生(C)A, B, C都不发生(D)A, B, C 至少有两个发生2.设随机变量X的概率密度为f (x), 且满足f (x) = f (-x), F(x) 为X 的分布函数, 则对任意实数a, 下列式子中成立的是( ).(A)(B)(C)(D)3.设随机变量 X , Y 相互独立, 与 分别是X 与 Y 的分布函数, 则随机变量 Z = max{X ,Y } 分布函数 为 ( ).(A) max{,} (B)+ -(C)(D)或4. 设两个相互独立的随机变量 X 和 Y 分别服从正态分布 N (0, 1) 和 N (1, 1), 则 ( ).21}0{ )A (=≤+Y X P 21}1{ )B (=≤+Y X P 21}0{ )C (=≤-Y X P21}1{ )D (=≤-Y X P 5.对任意两个随机变量 X 和 Y , 若 E (XY ) = E (X )E (Y ), 则 ( ).(A) X 和 Y 独立 (B) X 和 Y 不独立(C) D (XY ) = D (X )D (Y ) (D) D (X + Y ) = D (X ) + D (Y )6.设 X 1, X 2, …, X n (n ≥ 3) 为来自总体 X 的一个简单随机样本, 则下列估计量中不是总体期望 μ 的无偏估计量的是 ( ). (A)X(B) 0.1⨯ (6X 1 + 4X 2) (C)(D) X 1 + X 2 - X 3三、解答(本题 8 分)某大型连锁超市采购的某批商品中, 甲、乙、丙三厂生产的产品分别占45%、35%、20%,各厂商的次品率分别为4%、2%、5%,现从中任取一件产品,(1) 求这件产品是次品的概率; (2) 若这件产品是次品, 求它是甲厂生产的概率?四、解答(本题8分)设连续型随机变量 X 的概率密度为,其他⎩⎨⎧<<= ,0 0,sin )(πx x A x f求: (1) 常数 A 的值; (2) 随机变量 X 的分布函数 F (x ); (3)}.23{ππ≤≤X P五、解答(本题10分)设二维随机变量 (X , Y ) 的联合概率密度为求: (1) 求 X , Y 的边缘概率密度 f X (x ), f Y (y ), 并判断 X 与 Y 是否相互独立(说明原因)? (2) 求 P { X + Y ≤ 1}.六、解答(本题8分)已知随机变量 X 分布律为X k -1 0 2 4 P k0.10.50.30.1求 E (X ), D (X ).七、(本题6分)设某供电区域中共有10000 盏电灯,夜晚每盏灯开着的概率均为 0.7,假设各灯开、关时间彼此独立,求夜晚同时开着的灯的数量在6800 至 7200 间的概率.(其中999999.0)36.4()2120(=≈ΦΦ).八、(10分) 设总体 X 的概率密度为,其他⎩⎨⎧<<+= ,010 ,)1()(x x x f θθ其中θ > -1 是未知参数, X 1,X 2, …, X n 为来自总体的一个简单随机样本,x 1, x 2, …, x n 为样本值, 求 θ 的矩估计量和极大似然估计量.参考答案: 一、填空题 1. 0.5 ;0.58 2. 2/5 3.4. 0.3 ;0.5 5. 10 ;8 6. 21 7. 8/9 8. )41.05,41.05(025.0025.0z z +-详解:4.因为0.5+0.2+a=1,所以 a=0.3 Y = 2X + 3所以P {Y > 5} =0.2+0.3=0.5二、选择题1. D2. A3. C4. B5. D6. C 详解:2. 因为⎰∞-=xtt f x F d )()( 故⎰-∞-=-att f a F d )()( 令u =-t⎰∞+--=-a u u f a F d )()(⎰+∞=au u f d )(⎰+∞=at t f d )(⎰-=at t f 0d )(21 (21d )(0=⎰+∞t t f ) 详解:4.因为X ~)1,0(N ,Y ~)1,1(N 所以 1)(=+Y X E ,2)(=+Y X D 故)()(Y X D Y X E Y X ++-+21-+=Y X ~)1,0(N 所以21}021{=≤-+Y X P 即 21}01{=≤-+Y X P 21}01{=≤-+Y X P三、解答题解:设A 事件表示“产品为次品”,B 1事件表示“是甲厂生产的产品”,B 2事件表示“是乙厂生产的产品”,B 3事件表示“是丙厂生产的产品”(1) 这件产品是次品的概率:)()()()()()()(332211B P B A P B P B A P B P B A P A P ++= 035.02.005.035.002.045.004.0=⨯+⨯+⨯=(2) 若这件产品是次品,求它是甲厂生产的概率:3518035.045.004.0)()()()(111=⨯==A PB P B A P A B P 四、解答题 解:(1) A x x A x x f 2d sin d )(10===⎰⎰∞∞-π21=∴A (2) ⎰∞-=xt t f x F d )()(0d 0d )()(0===≤⎰⎰∞-∞-xxt t t f x F x 时,当)cos 1(21d sin 210d d )()(00x t t t t t f x F x xx-=+==<<⎰⎰⎰∞-∞-时,当π 10d d sin 210d d )()(0=++==≥⎰⎰⎰⎰∞-∞-x xt t t t t t f x F x πππ时,当 所以⎰∞-=xt t f x F d )()(=⎪⎩⎪⎨⎧≥<<-≤ππx x x x ,10),cos 1(210,0(3)414121)3()2(}23{=-=-=≤≤ππππF F X P 五、解答题 (1)⎪⎩⎪⎨⎧≤≤-=-==⎰⎰∞∞-其它,020),2(21d )2(d ),()(10x x y y x y y x f x f X ⎪⎩⎪⎨⎧≤≤=-==⎰⎰∞∞-其它,010,2d )2(d ),()(20y y x y x x y x f y f Y因为 ),()()(y x f y f x f Y X =⋅,所以X 与Y 是相互独立的.(2)247d )1)(2(21d )2(d }1{1021010=--=-=≤+⎰⎰⎰-x x x y y x x Y X P x六、解答题1.043.025.001.01)(⨯+⨯+⨯+⨯-=X E =0.9 1.043.025.001.0)1()(22222⨯+⨯+⨯+⨯-=X E =2.9 2229.09.2])([)()(-=-=X E X E X D =2.09七、解答题解:设X 为夜晚灯开着的只数,则X ~)7.0,10000(b}72006800{≤≤X P }3.07.0100007.010********.07.0100007.0100003.07.0100007.010*******{⨯⨯⨯-≤⨯⨯⨯-≤⨯⨯⨯-=X P}21203.07.0100007.010*******{≤⨯⨯⨯-≤-=X P 1)2120(2)]2120(1[)2120()2120()2120(-Φ=Φ--Φ=-Φ-Φ≈999998.01999999.02=-⨯=八、解答题 解:(1) 矩估计法21d )1()(101++=+==⎰θθθμθx x x X E 11112μμθ--=∴∑===ni iX n X A 111 所以θ的矩估计量∧θXX --=112(2) 最大似然法似然函数θθi ni x L )1(1+∏==,10<<ixθθi ni x L )1(1+∏==θθi n i n x 1)1(=∏+=∑=++=ni ix n L 1ln )1ln(ln θθ∑=++=ni ix nL 1ln 1d ln d θθ 令0d ln d =θL得θ的最大似然估计值 ∧θ1ln 1--=∑=ni ixnθ的最大似然估计量 ∧θ1ln 1--=∑=ni iXn。

2020-2021大学《概率论与数理统计》期末课程考试试卷A(含答案)

2020-2021大学《概率论与数理统计》期末课程考试试卷A(含答案)

2020-2021大学《概率论与数理统计》期末课程考试试卷A适用专业: 考试日期:试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一.填空题(每题2分,共10分)1设事件A,B 互不相容,若P (A )=0.3,P (B )=0.7,则P (AB )为_________。

设事件A,B 相互独立,若P (A )=0.3,P (B )=0.7,则P (AB )为______.3.设母体X 服从正态分布N (μ,σ2),X 1,X 2⋯,X n 为取自母体的子样,X̄为子样均值,则X ̄服从的分布为__________.4.设X 1,X 2⋯,X n 相互独立,且都服从正态分布N (0,1),则∑X i 2n i=1服从的分布为_____________.5. 将一枚硬币重复掷N 次,以X 和Y 分别表示正面向上和反面向上的次数,则X 和Y 的相关系数等于__________.二、选择题(每小题2分共10分)1.设A,B 为互不相容事件,且P (A )>0,P (B )>0,则结论正确的有( )(A )P (A |B )>0 (B )P (A |B )>P(A) (C) P (A |B )=0 (D) P (A |B )=P (A )P (B ) 2、设随机变量ξ,η相互独立,且有Dξ=6,Dη=3.则D (2ξ+η)为( ) (A )9 (B )15 (C)21 (D)27 3、设随机变量X 服从正态分布N (μ,σ2),则随着σ的增大,P (|X −μ|<σ)( )(A )单调增大 (B )单调减少 (C )保持不变 (D )增减不定4、任一连续型随机变量的概率密度函数ϕ(x )一定满足( )(A )0≤ϕ(x )≤1;(B )定义域内单调不减;(C )∫ϕ(x )+∞−∞dx =1;(D )lim x→+∞ϕ(x )=1。

5、设随机变量ξ,η满足条件D (ξ+η)=D (ξ−η),则有( )事实上 (A ) Dη=0 (B )ξ,η不相关 (C )ξ,η相互独立 (D )Dξ⋅Dη=0三、综合题(每小题5分共30分)1.某射击小组共有20名射手,其中一级射手4名,二级射手8名,三级射手7名,四级射手1名,一、二、三、四级射手能通过选拔进入决赛的概率分别是0.9,0.7,0.5,0.2,求在小组内任选一名射手,该射手能通过选拔进入决赛的概率。

概率论与数理统计 期末试卷及答案 A

概率论与数理统计 期末试卷及答案 A

第 1 页 共 5 页班级 姓名 准考证号‥‥‥‥‥‥密‥‥‥‥‥‥封 ‥‥‥‥‥ 线 ‥‥‥‥内 ‥‥‥‥‥不 ‥‥‥‥‥准 ‥‥‥‥‥答 ‥‥‥‥‥题 ‥‥‥‥‥‥期末考试试卷 参考答案学年学期: 课程名称: 《概率论与数理统计》 适用专业:(满分:100分 时间:120分钟)一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的备选项中选择符合题目要求的,请将其代码填涂在答题卡上相应的位置,错涂、多涂或未涂均无分。

1.设二项分布的随机变量,其数学期望与方差之比为4:3,则该分布的参数p =( ).A .0.5B .0.25C .0.75D .不能确定2.设随机变量X 与Y 的关系为21Y X =+,如果()D X =2,则()D Y =( ).A .4B .6C .8D .103.若X 服从区间[]2,6上的均匀分布,则{23}P x <<=( ).A .0.2B .0.75C .0.5D .0.254.若随机变量X 的期望EX 存在,则()E aX b +=( ).A .aEXB .2a EXC .aEX b +D .2a EX b +5.当随机变量X 的可能值充满( )时,则()cos f x x =可以成为随机变量X 的密度函数.A .π[0,]2B .π[,π]2C .[0,π]D .3π7π[,]226.矿砂中铜含量服从正态分布),(~2σμN X ,2μσ,未知,现从总体中抽取样本521,,,X X X ,5115i i X X ==∑,52211()5i i S X X ==-∑,在显著水平α下检验00:μμ=H ,则所取的统计量为( ).A .5/0σμ-X B .5/0S X μ- C .4/0σμ-X D .4/0S X μ-7.事件表达式A B +的表示( ).A .事件A 与事件B 同时发生 B .事件A 发生但事件B 不发生C .事件B 发生但事件A 不发生D .事件A 与事件B 至少有一个发生8.样本空间S 中的事件A 与B 相互独立的充要条件是( ). A .A B S += B .()()()P AB P A P B =C .AB =∅D .()()()P A B P A P B +=+9.设1X 、2X 是总体X 的样本,则下列统计量不是总体X 的期望的无偏估计量的是( ).A .1XB .121233X X + C .121()2X X + D .121()3X X +10.任何一个连续型随机变量X 的密度函数()f x 一定满足( ).A 卷第 2 页 共 5 页‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 密 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 封 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 线‥‥‥‥‥‥‥‥‥‥‥‥‥A .0()1f x ≤≤B .() d 1f x x +∞-∞=⎰C .在定义域内单调不减D .lim ()1x f x →+∞= 11.袋中有5球,3新2旧,从中任取一球,无返回的取两次,A =第一次取新球,B =第二次取新球.求P (B|A )=( ).A .12B .23C .35D .1312.已知事件A 和B 互不相容,()0,()0P A P B >>,下式成立的是( ). A .()()()P A B P A P B =+ B .()()()P AB P A P B =C .()1P A B =D .()0P AB >13.若随机变量2(,),3,1,X N EX DX μσ==则11}P X ≤≤={-( ).A .2(1)1A Φ-、 B .(4)(2)B Φ-Φ、C .(4)(2)Φ--Φ-C 、 D .(2)(4)Φ-ΦD 、 14.参数为λ的指数分布的方差是( ).A .1λB .2λC .λD .21λ15.设X 为连续型随机变量,则{1}P X ==( ). A .1B .0C .不能确定D .以上都不对二、判断题(本大题共5小题,每小题2分,共10分)判断正误,正确代码为A ,错误代码为B ,请将正确的答案代码涂在答题卡相应的题号下。

概率论与数理统计+试卷与答案

概率论与数理统计+试卷与答案

《概率论与数理统计》期末考试试题(A)专业、班级:姓名:学号:九、(8分)设随机变量X 与Y 的数学期望分别为2-和2,方差分别为1和4,而相关系数为5.0-,求)2(),2(Y X D Y X E --。

十、(7分)设供电站供应某地区1000户居民用电,各户用电情况相互独立。

已知每户每日用电量(单位:度)服从[0,20]上的均匀分布,利用中心极限定理求这1000户居民每日用电量超过10100度的概率。

(所求概率用标准正态分布函数)(x Φ的值表示).十一、(7分)设n x x x ,,,21 是取自总体X 的一组样本值,X 的密度函数为⎩⎨⎧<<+=,,0,10 ,)1()(其他x x x f θθ其中0>θ未知,求θ的最大似然估计。

十二、(5分)某商店每天每百元投资的利润率)1,(~μN X 服从正态分布,均值为μ,长期以来方差2σ稳定为1,现随机抽取的100天的利润,样本均值为5=x ,试求μ的置信水平为95%的置信区间。

(,99.1)100(05.0=t 975.0)96.1(=Φ)解答及评分标准一、单项选择题(每题3分共18分)1.D 2.A 3.B 4.A 5.A 6.B二、填空题(每空3分共15分)1.)(B P 2.⎩⎨⎧≤>=-00)(x x xe x f x,23-e 3.1- 4.)9(t 三、(6分)解:0.88=)()()()(AB P B P A P B A P -+= =)()()()(B P A P B P A P -+(因为B A ,相互独立)……..2分=)(7.0)(7.0B P B P -+…………3分则6.0)(=B P ………….4分)()()()()()(B P A P A P AB P A P B A P -=-=-28.06.07.07.0=⨯-=…………6分四、(6分)解:用X 表示时刻T 运行的电梯数,则X ~)7.0,4(b ………...2分所求概率{}{}011=-=≥X P X P …………4分4004)7.01()7.0(1--=C =0.9919………….6分五、(6分)解:因为12+=x y 是单调可导的,故可用公式法计算………….1分当0≥X 时,1≥Y ………….2分由12+=x y ,得21',21=-=x y x …………4分从而Y 的密度函数为⎪⎪⎩⎪⎪⎨⎧<≥⋅-=10121)21()(y y y f y f Y …………..5分=⎪⎪⎩⎪⎪⎨⎧<≥⋅--1012121y y e y …………..6分六、(8分)解:因为{}10==XY P ,所以{}00=≠XY P (1)根据边缘概率与联合概率之间的关系得出Y X-101014100214102121412141………….4分(1)因为}{{}{}4121210000,0=⨯===≠===Y P X P Y X P 所以X 与Y 不相互独立…………8分七、(8分)解:(1)⎰⎰+-=≤≤≤≤12)43(12)20,10(dye dx Y X P y x …………..2分⎰⎰--⋅=241343dy e dx ey x=[][]24103y xe e ----=[31--e ]]1[8--e ………….4分(2)⎰+∞∞-+-=dye xf y x X )43(12)(…………..6分⎩⎨⎧≤>=-0033x x e x ……………..8分八、(6分)解:因为)41(~e X 得⎪⎩⎪⎨⎧≤>=-00041)(41x x e x f x ………….2分用Y 表示出售一台设备的净盈利⎩⎨⎧<<-≥=103001001100X X Y …………3分则414141)100(--∞+===⎰e dx e Y P x ()41410141200---==-=⎰e dx e Y P x………..4分所以)1()200(1004141---⨯-+⨯=e e EY 20030041-=-e64.33≈(元)………..6分九、(8分)解:已知5.0,4,1,2,2-====-=XY DY DX EY EX ρ则62)2(22)2(-=--⨯=-=-EY EX Y X E ……….4分),2cov(2)2()2(Y X DY X D Y X D -+=-……….5分),cov(42Y X DY DX -+=……….6分XY DY DX DY DX ρ42-+==12…………..8分十、(7分)解:用i X 表示第i 户居民的用电量,则]20,0[~U X i 102200=+=i EX 310012)020(2=-=i DX ………2分则1000户居民的用电量为∑==10001i i X X ,由独立同分布中心极限定理{}{}10100110100≤-=>X P X P ………3分=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⨯⨯-≤⨯⨯--3100100010100010100310010001010001X P ………4分)3100100010100010100(1⨯⨯-Φ-≈……….6分=-1)103(Φ………7分十一、(7分)解:最大似然函数为θθθi ni i ni n x x f x x L )1()(),,,(111+==∏∏== ……….2分=θθ),,()1(1n n x x +……….3分则),,ln()1ln(),,,(ln 11n n x x n x x L θθθ++=1,,01<<n x x ………..4分令0),,ln(1ln 1=++=n x x nd L d θθ………..5分于是θ的最大似然估计:),,ln(ln 1ˆ1n x x n--=θ。

18-19-2概率统计A(A卷)答案

18-19-2概率统计A(A卷)答案

南京林业大学试卷(A 卷)(答案)课程 概率统计A 2018~2019学年第2学期3分,共15分),A B ,若0()1,0()1P A P B <<<<,且(|)1P A B =,则(|)P B A = 1 . X 的概率密度为()f x ,且()3E X =,则(1)()x f x dx +∞-∞-=⎰2 .X ~(0,1)N ,Y ~(2,1)N -,且X 和Y 独立,21Z X Y =-+,则2()E Z = 14 . X ~2(,)N μσ,12,,,n X X X (1n >)为其样本,X 和2S 分别是样本均值和样本μ的置信度为1α-的置信区间为/2/2((1),(1))X n X n αα-+-.y a bx =+,通过对样本观测值计算得y bˆ1.6,3,3===,则y 关于x 的线性回归方程是 3 1.8y x =-. 3分,共15分),A B 为任意事件,则关于()P AB 有( D ).)()()P AB P A ≥ (B )()()()P AB P A P B = )()()()P AB P A P B ≥+ (D )1()[()()]2P AB P A P B ≤+ X 的分布函数为()F x ,12,X X 为其样本,又{}12max ,Y X X =,则Y 的分布函数为 A ).)2()F y (B )2[1()]F y - (C )21()F y - (D )1()F y -设随机变量X 的概率密度是21,0()20,xe xf x -⎧>⎪=⎨⎪⎩其它,用切比雪夫不等式估计概率(|2|3)P X =-≥,有( C ).题号 一 二 三 四 总分 得分(A )59p ≤(B )59p ≥ (C )49p ≤ (D )49p ≥ 4.设总体X ~(,1)N μ,12,,,n X X X (1n >)为其样本,X 是样本均值,则以下统计量服 从2χ分布的是( D ). (A )1()nii Xμ=-∑ (B )212()n X X - (C )2()X μ- (D )21()ni i X X =-∑5.在假设检验问题中,显著性水平α意义是( A ). (A )在0H 成立的条件下,经检验0H 被拒绝的概率 (B )在0H 成立的条件下,经检验0H 被接受的概率 (C )在0H 不成立的条件下,经检验0H 被拒绝的概率 (D )在0H 不成立的条件下,经检验0H 被接受的概率 三、计算下列各题(第1-5题每题12分,第6题10分,共70分)1.设随机变量X 的分布律为21312XPa b-,且()0E X =.试求:(1),a b 的值;(2)X 的分布函数;(3)()D X .解:(1)由()130,1/2E X a b a b =-++=+=解得1/4a b ==,从而X 的分布律2131/21/41/4XP -(4分)(2)0,21/2,21()3/4,131,3x x F x x x <-⎧⎪-≤<⎪=⎨≤<⎪⎪≥⎩(8分)(3)()0E X =,222()9/2,()()()9/2 4.5E X D X E X E X ==-==. (12分)2.设随机变量,X Y 相互独立,且X 的分布律为12(0),(1)33P X P X ====,Y 的概率密度2,01()0,y y f y <<⎧=⎨⎩其他,求:(1)(())P Y E Y ≤;(2)3()2P X Y +≤.解: (1)12/32()22/3,(())24/9E Y y dy P Y E Y ydy ==≤==⎰⎰,(6分)(2)333((0)(|0)(1)(|1)222P X Y P X P X Y X P X P X Y X +≤==+≤=+=+≤=13211211()()132323342P Y P Y =≤+≤=⨯+⨯=. (12分)3.对于上题中的随机变量Y ,求2Z Y =的概率密度()Z f z . 解:由于2(01)z y y =<<严格单调,反函数y =连续可导且z y '=()(0,1)R Z = (6分)由公式得011,01()0,0,Z z z f z ⎧<<<<⎧⎪==⎨⎨⎩⎪⎩其他其他. (12分)4.设(,)X Y 的概率密度,01,1(,)0,xk x y ey f x y ⎧<<<<⎪=⎨⎪⎩其它,求:(1)k 的值;(2)求关于X和Y 的边缘概率密度,并判断X 与Y 是否独立;(3)求(2)P Y <.解:(1)由规范性111/21ekxdx dy k y==⎰⎰得2k =; (4分)(2)12()(,)2eX xf x f x y dy dy x y+∞-∞===⎰⎰,(01)x <<, 1021()(,)Y x f y f x y dx dx y y+∞-∞===⎰⎰,(1)y e <<, 由于(,)()()X Y f x y f x f y =, 故X 与Y 相互独立; (8分)(3)(2)P Y <12:211(,)2ln 2D y f x y d xdx dy yσ<===⎰⎰⎰⎰. (12分)5.设总体X 的概率密度233,0(,)0,x x f x θθθ⎧<<⎪=⎨⎪⎩其他,其中θ为未知参数,又设12,,,nX X X 为来自总体X 容量为n 的样本,试求:(1)θ的矩估计量ˆθ;(2)θ的最大似然估计量ˆLθ.解:(1)31333()4E X x dx θθμθ===⎰,解得143θμ=,从而4ˆ3X θ=; (6分)(2)22331133()nnni ini i x L xθθθ====∏∏,1ln ()ln 33ln 2ln nii L n n xθθ==-+∑,由于ln ()30d L nd θθθ=-<,故()L θ单调减少,又0,max(),1,2,,i i x x i n θθ<<>= ,故12ˆmax(,,,)L nX X X θ= . (12分)6.某厂生产的某种铝材长度X ~2(,)N μσ,其均值μ设定为240cm .现从该厂抽取9件产品,测得239.5x =cm ,20.16s =,试判断该厂这批铝材的长度是否满足设定要求?(取0.05α=).(附:0.05(8) 1.86t =,0.025(8) 2.31t =) 解:由题意,即在0.05α=下检验假设00:240H μμ==vs 10:H μμ≠(2分)检验统计量X T =,拒绝域/2||(1)T t n α-(7分)又0.025239.5240|| 3.75(8) 2.310.4/3t t -==>=,从而拒绝0H ,认为不满足设定要求.(10分)。

福州大学《概率论与数理统计》试卷A及答案

福州大学《概率论与数理统计》试卷A及答案

福州大学《概率论与数理统计》试卷A附表: (Φ 2.5)=0.9937, (Φ3)=0.9987,09.2)19(025.0=t一、 单项选择(共18分,每小题3分)1.设随机变量X 的分布函数为()F x ,则以下说法错误的是( ) (A )()()F x P X x =≤ (B )当12x x <时,12()()F x F x < (C )()1,()0F F +∞=-∞= (D )()F x 是一个右连续的函数 2.设,A B 独立,则下面错误的是( )(A) B A ,独立 (B) B A ,独立 (C) )()()(B P A P B A P = (D)φ=AB 3. 设X 与Y 相互独立,且31)0()0(=≥=≥Y P X P ,则=≥)0},(max{Y X P ( ) (A )91 (B )95 (C )98 (D )314. 设128,,,X X X 和1210,,,Y Y Y 分别是来自正态总体()21,2N -和()2,5N 的样本,且相互独立,21S 和22S 分别为两个样本的样本方差,则服从(7,9)F 的统计量是( )(A )222152S S (B ) 212254S S (C )222125S S (D )222145S S5. 随机变量)5.0,1000(~B X ,由切比雪夫不等式估计≥<<)600400(X P ( ) (A)0.975 (B)0.025 (C)0.5 (D) 0.256.设总体),(~2σμN X ,n X X X ,,,21 为X 的一组样本, X 为样本均值,2s 为样本方差,则下列统计量中服从)(2n χ分布的是( ).(A) 1--n s X μ (B) 22)1(σs n - (C) n s X μ- (D)∑=-ni iX122)(1μσ学院 专业 级 班 姓 名 学 号二.填空题(每空3分,共30分)1.某互联网站有10000个相互独立的用户,若每个用户在平时任一时刻访问网站的概率为0.2,则用中心极限定理求在任一时刻有1900-2100个用户访问该网站的概率为 .2. 已知c B A P b b B P a A p =≠==)(),1()(,)( ,则=)(B A P ,)(B A P = .3. 在区间)1,0(上随机取两点Y X ,,则Y X Z -=的概率密度为 . 4.设随机变量]2,1[~U X ,则23+=X Y 的概率密度()Y f y = .5.当均值μ未知时,正态总体方差2σ的置信度为α-1的置信区间是6.设随机变量 n X X X ,,,21相互独立且同分布,它的期望为μ,方差为2σ,令∑==n i i n X n Z 11,则对任意正数ε,有{}=≥-∞→εμn n Z P lim .7. 设)1(~P X (泊松分布),则==))((2X E X P .8. 设921,,,X X X 是来自总体]1,3[~N X 的样本,则样本均值X 在区间]3,2[取值的概率为 9. 设随机变量X 的分布为()()1,2,k P X k p k λ===,则λ= .三、计算题(每小题8分,共16分)1.城乡超市销售一批照相机共10台,其中有3台次品,其余均为正品,某顾客去选购时,超市已售出2台,该顾客从剩下的8台任购一台,求 (1)该顾客购到正品的概率.(2)若已知顾客购到的是正品,则已出售的两台都是次品的概率是多少?2.设顾客在银行的窗口等待服务的时间X (单位:min)服从参数为0.2的指数分布.假设某顾客在窗口等待时间超过10min 就离开.又知他一周要到银行3次,以Y 表示一周内未等到服务而离开窗口的次数,求).1(≥Y P四、计算题(每小题8分,共24分)1. 设二维随机变量),(Y X 的联合分布律为,),(22-===n qp n Y m X P ;,2,1 =m;,2,1 ++=m m n ,10<<p 1=+q p ,求关于X 与Y 的边缘分布律.2.设随机变量),(Y X 满足,1)0(==XY P 且X 与Y 边缘分布为,41)1(=±=X P ,21)0(==X P ,21)1()0(====Y P Y P XY Y X ρ相关系数求,,并判别X 与Y 是否相互独立?3. 设二维随机变量),(Y X 服从区域G 上的均匀分布,其中G 是由2,0=+=-y x y x 与0=y 所围成的三角形区域,求条件概率密度)(y x f Y X .五、计算题(每小题6分,共12分)1.总体X 的概率密度函数为⎪⎩⎪⎨⎧<<=-其它,010,1)()1(x x x f θθθ,其中为未知参数0>θ,nX X X ,,,21 为总体X 的简单随机样本,求(1)θ的极大似然估计量θˆ. (2)证明θˆ是θ的无偏估计.2.设某厂生产的电灯泡的寿命X 服从正态分布),(2σμN ,现测试了20只灯泡的寿命,算得样本均值1832=X (小时),样本方差4972=S (小时),问2000=μ(小时)这个结论是否成立()05.0=α?概率统计试题A 参考答案一.选择题1.B2.D3.B4.D5.A6.D 二.填空题1、0.9874 2.b bc b c ---1,3.⎩⎨⎧<<-=-=其他010)1(2)(z z z f Y X Z 4.⎪⎩⎪⎨⎧≤≤=其他08531)(y y f Y 5.))1()1(,)1()1((2212222-----n s n n s n ααχχ6.07.e218.0.4987 9.p p -1三.计算题1. 解: 设B={顾客买到的是正品},=i A {售出的两台有i 台次品},2,1,0=i,157)(210270==C C A P ,157)(21017131==C C C A P 151)(2=A P⑴107871518615785157)()()(2=⨯+⨯+⨯==∑=i i i A B P A P B P ⑵12110787151)()()(22=⨯==B P B A P B A P2..解:(1) 0.2102(15|5)(10)P X X P X e e -⨯->>=>==(2) 因为0.2102(10)P X ee -⨯->==假设Y 表示三次等待不到服务而离开窗口的次数,由题意得2~(3,)Y B e - 23(1)1(0)1(1)P Y P Y e -≥=-==--四.计算题1. 2211(),1,2,n m n m P X m p q pq m +∞--=+====∑122221()(1),2,3,n n n m P Y n p q n p q n ---====-=∑2. .由题可得(0)0P XY ≠=,因此联合分布律容易得出显然由 (1,1)0(1)(1)1/8P X Y P X P X =-==≠=-==,所以,X Y 不独立。

10-11(2)概率统计A答案

10-11(2)概率统计A答案

东莞理工学院(本科)试卷(A 卷)答案2010 --2011 学年第二学期《概率论与数理统计》试卷开课单位:计算机学院数学教研室 ,考试形式:闭卷,允许带 计算器 入场选择填空题(共80分, 其中第1-25小题每题2分,第26-353分) A 、B 是两个随机事件,P( A ) = 0.3,P( B ) = 0.4,且A 与B 相互独立, 则()P A B = B ;(A) 0.7 (B) 0.58 (C) 0.82 (D) 0.12A 、B 是两个随机事件,P( A ) = 0.3,P( B ) = 0.4,且A 与B 互不相容,则()P A B = D ;(A) 0 (B) 0.42 (C) 0.88 (D) 1已知B,C 是两个随机事件,P( B | C ) = 0.5,P( BC ) = 0.4,则P( C ) = C ; (A) 0.4 (B) 0.5(C) 0.8(D) 0.9袋中有6只白球,4只红球,从中抽取两只,如果作不放回抽样,则抽得的两个球颜色不同的概率为: A ; (A)815(B)415(C)1225(D)625袋中有6只白球,4只红球,从中抽取两只,如果作放回抽样,则抽得的两个球颜色不同的概率为: C ; (A)815(B)415(C)1225(D)6256.在区间[0,1]上任取两个数,则这两个数之和小于12的概率为 C ;(A) 1/2 (B) 1/4 (C) 1/8(D) 1/167.在一次事故中,有一矿工被困井下,他可以等可能地选择三个通道之一逃生.假设矿工通过第一个通道逃生成功的可能性为1/2,通过第二个通道逃生成功的可能性为1/3,通过第三个通道逃生成功的可能性为1/6.请问:该矿工能成功逃生的可能性是 C .(A) 1 (B) 1/2(C) 1/3(D) 1/68.已知某对夫妇有四个小孩,但不知道他们的具体性别。

设他们有Y 个儿子,如果生男孩的概率为0.5,则Y 服从 B 分布. (A) (01)- 分布 (B) (4,0.5)B (C) (2,1)N(D) (2)π9.假设某市公安机关每天接到的110报警电话次数X 可以用泊松(Poisson)分布()πλ来描述.已知{99}{100}.P X P X ===则该市公安机关平均每天接到的110报警电话次数为 C 次. (A) 98 (B) 99(C) 100(D) 10110.指数分布又称为寿命分布,经常用来描述电子器件的寿命。

2)《概率统计》试题A卷答案

2)《概率统计》试题A卷答案

广州大学2008-2009学年第二学期考试卷概率论与数理统计(A 卷)参考解答与评分标准一、选择题(在各小题四个备选答案中选出一个正确答案,填在题末的括号中,本大题共5个小题,每小题3分,总计15分)1.对于任意两个事件A 与B,若A ⊆B,则P(A −B)= ( B )。

A. P(A)−P(B) B. 0 C. 1 D. P(A)2.设B A ,是两个概率不为0且互不相容的事件,则下列成立的是( D )。

A. A 与B 互不相容 B. A 与B 独立C.)(B A P = )()(B P A PD. )(B A P = )(A P3.设)(x f 为某连续型随机变量的概率密度函数, 则必有( B )。

A .1)(0≤≤x f B. 1)(=⎰+∞∞-dx x fC. 在定义域内单调不减D.1)(lim =+∞→x f x4.设一个连续型随机变量的分布函数为⎪⎩⎪⎨⎧≥<≤+<=a x a x k x x x F 1000)(则( C )。

A. 21,0==a kB. 21,21==a kC. 1,0==a kD. 1,21==a k学院专业班 级 姓 名学号5.设二维随机变量()的联合分布概率为若X 与Y 独立,则}3{=+Y X P =( A )。

A. 1/3 B. 5/6 C. 1/6 D. 2/3二、填空题(本大题共5小题,每小题3分,总计15分)(1) 三阶方阵⎪⎪⎪⎭⎫ ⎝⎛=c b a A 000000中的c b a ,,取3,2,1,0的概率都相同,则该阵为可逆阵的概率为_27/64____。

(2) 某人射击某一个目标的命中率为0.6,现不停的射击,直到命中为止,则第3次才命中目标的概率为_0.096__。

(3)设)6,1(~U X ,则方程012=++Xx x 有实数根的概率为__5/6 。

(4)设X 和Y 是相互独立的两个随机变量,且)3,2(~-U X ,)4,1(~N Y ,则=+)(Y X E __1.5__。

《概率统计》期末考试题(有答案)

《概率统计》期末考试题(有答案)

《概率论》期末 A 卷考试题一 填空题(每小题 2分,共20 分)1.甲、乙两人同时向一目标射击,已知甲命中的概率为0.7,乙命中的概率为0。

8,则目标被击中的概率为( ).2.设()0.3,()0.6P A P AB ==,则()P AB =( ).3.设随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤<=2,120,sin 0,0)(ππx x x a x x F ,则=a ( ),()6P X π>=( ).4.设随机变量X 服从参数为2=λ的泊松分布,则=-)1(2X E ( )。

5.若随机变量X的概率密度为236()x X p x -=,则(2)D X -=( )6.设Y X 与相互独立同服从区间 (1,6)上的均匀分布,=≥)3),(max(Y X P ( )。

7.设二维随机变量(X ,Y )的联合分布律为X Y 1 2 •i p0 a 121 61 131b 则 ( ), ( ).a b ==8.设二维随机变量(X ,Y )的联合密度函数为⎩⎨⎧>>=--其它00,0),(2y x ae y x f yx ,则=a ( )9.若随机变量X 与Y 满足关系23X Y =-,则X 与Y 的相关系数XY ρ=( )。

10。

设二维随机变量)0,4,3,2,1(~),(N Y X ,则=-)52(Y X D ( ).二.选择题(每小题 2分,共10 分)1.设当事件C B 和同时发生时事件A 也发生,则有( )。

)()()(1)()()()(1)()()()()()()(C B P A P d C P B P A P c C P B P A P b BC P A P a =-+≤-+≥=2.假设事件B A 和满足1)|(=B A P ,则( ). (a ) B 是必然事件 (b )0)(=-A B P (c) B A ⊂ (d ) 0)|(=B A P 3.下列函数不是随机变量密度函数的是( ).(a )sin 0()20 x x p x π⎧<<⎪=⎨⎪⎩,,其它 (b ) ⎩⎨⎧<<=其它0102)(x x x p(c) sin 0()0 x x p x π<<⎧=⎨⎩,,其它 (d) ⎩⎨⎧<<=其它103)(2x x x p4.设随机变量X 服从参数为2=λ的泊松分布,则概率==)(EX X P ( ).112211()()2 () ()222a eb ec ede ---- 5.若二维随机变量(X ,Y )在区域{(,)/01,01}D x y x y =<<<<内服从均匀分布,则1()2P X Y X ≥>=( )。

(完整版)大学概率论与数理统计试题库及答案a

(完整版)大学概率论与数理统计试题库及答案a

<概率论>试题一、填空题1.设 A 、B 、C 是三个随机事件。

试用 A 、B 、C 分别表示事件1)A 、B 、C 至少有一个发生2)A 、B 、C 中恰有一个发生3)A 、B 、C 不多于一个发生2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。

则P(B)A = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,则α=4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)k P X k A k ===⋅⋅⋅则A=______________7. 已知随机变量X 的密度为()f x =⎩⎨⎧<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为8081,则该射手的命中率为_________10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥=,4{0}{0}7P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<=13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<=14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,则(x,y )关于X 的边缘概率密度在x = 1 处的值为 。

南京工业大学《概率统计》课程试题A及参考答案

南京工业大学《概率统计》课程试题A及参考答案

南京工业大学概率统计课程考试试题(A 、闭)(江浦)(第二学期)1.假设P (A )=0.4, P (A ∪B )=0.7,那么(1)若A 与B 互不相容,则P (B )= ______ ;(2)若A 与B 相互独立,则P (B )= ____ 。

2.将英文字母C,C,E,E,I,N,S 随机地排成一行,那么恰好排成英文单词SCIENCE 的概率为____________。

3.设随机变量X 的概率密度为442e 1)(-+-=x xx f π,则=2EX 。

4.设随机变量X 与Y 相互独立,且均服从参数为0.6的0-1分布,则{}Y X p ==______。

5.某人有外观几乎相同的n 把钥匙,只有一把能打开门,随机地取出一把开门,记X 为直到把门打开时的开门次数,则平均开门次数为__________。

6.设随机变量X 服从)21,8(B (二项分布), Y 服从参数为3的泊松分布,且X 与Y 相互独立,则)32(--Y X E =__________;)32(--Y X D =__________。

7.设总体X ~),(2σμN , (X 1,X 2,…X n )是来自总体X 的样本,已知2111)(∑-=+-⋅n i i i X Xc 是2σ的无偏估计量,则=c 。

二、选择题(每题3分,计9分)1.当事件A 和B 同时发生时,必然导致事件C 发生,则下列结论正确的是( )。

(A )P (C )≥ P (A )+ P (B )1- (B )P (C )≤P (A )+ P (B )1- (C )P (C )=P (A ⋃B ) (D )P (C )= P (AB )2.设X 是一随机变量,C 为任意实数,E X 是X 的数学期望,则( )。

(A )E (X -C )2=E (X -E X )2 (B ) E (X -C )2≥E (X -E X )2 (C ) E (X -C )2 <E (X -E X )2 (D ) E (X -C ) 2 = 03.设总体X ~),(2σμN , (X 1,X 2, X 3)是来自总体X 的样本,则下列估计总体X 的均值μ的估计量中最好的是( )。

4概率论与数理统计试卷A及答案

4概率论与数理统计试卷A及答案

概率论与数理统计试卷A一、 单项选择(每小题3分,共18分) 1.事件表达式AB 的意思是 ( )A . 事件A 与事件B 同时发生B. 事件A 与B 都不发生C . 事件A 与B 至少一个不发生 D. 事件A 与事件B 至少有一个发生2、设A B ⊂,则下面正确的等式是 ( )A .)(1)(A P AB P -= B. )()()(A P B P A B P -=-C .)()|(B P A B P = D. )()|(A P B A P =.3. 随机变量(X , Y )的联合分布函数为(,)F x y ,则(X , Y )关于X 的边缘分布函数)(x F X 为( ) A .(,)F x +∞ B .(,)F x -∞C .(,)F y -∞D .(,)F y +∞4. 把3个球随机地放入3个盒子中,每个球放入各个盒子的可能性是相同的,设X 、Y 分别表示放入第一个、第二个盒子中的球的个数,则在1=Y 的条件下1=X 的概率为 ( ) A .21 B .31 C .41D .32 5. 已知12,,,n X X X L 是来自总体2~(,)X N μσ的样本,其中μ未知,而0σ>已知,则下列关于12,,,n X X X L 的函数不是统计量的是( )A .()222121n X X X n +++L B.()2221221n X X X σ+++L C. ()()()22212n X X X μμμ-+-++-L D. 12max{,,,}n X X X L6. 设X 为总体)4,3(~N X 中抽取的样本(4321,,,X X X X )的均值, 则)51(<<-X P =( ) A .)4(Φ B .)4()2(-Φ-ΦC .)4()2(Φ-ΦD .以上都不对学院 专业 级 班 姓 名 学 号二.填空题(每空2分,共32分)1. 两人相约于8时至9时之间在某地会面,先到者等候另一个人20分钟后即可离开,则两人能够会面的概率为 .2. 设随机变量X 的分布函数为()1xAF x e-=+,则A = ; X 的概率密度为_______; ()0P X ≤=_______3.将一根长为a 的细绳随意剪成两段,则有一段长度是另一段长度3倍以上的概率为_______.4.设随机变量(X , Y )的联合概率密度为 (),0,0(,)0,x y e x y f x y -+⎧>>=⎨⎩其它则2YX Z +=的概率密度为________________. 5.设随机变量n X X X ,,,21Λ相互独立,并且服从同一分布,数学期望为μ,方差为2σ,令11ni i X X n ==∑,则)(X E = , )(X D = 。

《概率统计》试卷(A)

《概率统计》试卷(A)

《概率统计》试卷(A)学习形式____________班级__________姓名_________学号_________-------------------密---------封----------线------------------一、 填空题 (1—7题,每空1分,共20分;8—10题,每空2分,共10分;总共30分)1、在自然界与社会生活的一切活动中,存在着两种现象,一种是_______________,另一种是____________________,概率统计就是研究_____________________统计规律的学科。

2、随机试验的三个特点:________________ 、________________、________________。

3、A ,B ,C 是三个事件,则A 发生而B 与C 都不发生表示为____________;A 与B 都发生而C 不发生表示为_____________;所有事件发生表示为________;三个事件恰好发生一个表示为______________________; 三个事件至少发生一个表示为______________________.4、若X 服从正态分布),(2σμN ,则EX=___________,DX=____________.5、估计量的评价标准有________________、___________________、__________________.6、统计推断包括_______________________、________________________.7、假设检验的两类错误,第一类为____________________,第二类为__________________。

8、5对夫妇参加宴会,围同一圆桌而坐,有___________种坐法;若要求每对夫妇必须相邻有_______________种坐法,同时又要求女士必须坐在男士右边有_______________种坐法。

概率论与数理统计考试a(含答案)

概率论与数理统计考试a(含答案)

深圳大学期末考试试卷参考解答及评分标准开/闭卷 闭卷A/B 卷A 课程编号 2219002801-2219002811课程名称概率论与数理统计学分3命题人(签字) 审题人(签字) 年 月 日 基本题6小题,每小题5分,满分30分。

在每小题给出的四个选项中,只有一(每道选择题选对满分,选0分)事件表达式A B 的意思是 ( ) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 事件B 发生但事件A 不发生 (D) 事件A 与事件B 至少有一件发生 D ,根据A B 的定义可知。

假设事件A 与事件B 互为对立,则事件A B ( ) 是不可能事件 (B) 是可能事件 发生的概率为1 (D) 是必然事件 A ,这是因为对立事件的积事件是不可能事件。

已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 自由度为1的F 分布 (D) 自由度为2的F 分布选B ,因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为n 的2分布。

已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( ) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3) 选C ,因为相互独立的正态变量相加仍然服从正态分布,而E (X +Y )=E (X )+E (Y )=2-2=0, (X +Y )=D (X )+D (Y )=4+1=5, 所以有X +Y ~N (0,5)。

样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计B ,因为样本均值是总体期望的无偏估计,其它三项都不成立。

青岛理工大学概率统计期末试卷—A(附答案)

青岛理工大学概率统计期末试卷—A(附答案)

学号:姓名:班级:..........................................................密.......................................................封...........................................................线..........................................................专业本科各专业年级2007级班2008~2009学年第 1 学期概率论与数理统计课程期末试卷试卷类型:A 卷)(B P =服从正态分布(C) μ1 <μ试题要求:1、试题后标注本题得分;2、试卷应附有评卷用标准答案,并有每题每步得分标准;3、试卷必须装订,拆散无效;4、试卷必须用碳素笔楷书,以便誉印;5、考试前到指定地点领取试卷。

学号: 姓名: 班级:..........................................................密.......................................................封..........................................................线..........................................................)C1. 设A, B, C 是三个随机事件. 事件:A 不发生, B , C 中至少有一个发生表示为(空1) .2. 口袋中有3个黑球、2个红球, 从中任取一个, 放回后再放入同颜色的球1个. 设B i ={第i 次取到黑球},i =1,2,3,4. 则1234()P B B B B =(空2) .解 用乘法公式得到)|()|()|()()(32142131214321B B B B P B B B P B B P B P B B B B P =.32ar b a r a r b r a r b a b r b b +++⋅++⋅+++⋅+==3/703. 在三次独立的重复试验中, 每次试验成功的概率相同, 已知至少成功一次的概率为1927. 则每次试验成功的概率为(空3) ..解 设每次试验成功的概率为p , 由题意知至少成功一次的概率是2719,那么一次都没有成功的概率是278. 即278)1(3=-p , 故 p =31.4. 设随机变量X , Y 的相关系数为5.0, ,0)()(==Y E X E 22()()2E X E Y ==, 则2[()]E X Y +=(空4) .解 222[()]()2()()42[Cov(,)()()]E X Y E X E XY E Y X Y E X E Y +=++=++42420.52 6.ρ=+=+⨯⨯=5. 设随机变量X 的方差为2, 用切比雪夫不等式估计{||}P X E X -()≥3=(空5) .解 由切比雪夫不等式, 对于任意的正数ε, 有2(){()}D X P X E X εε-≥≤,所以 2{||}9P X E X -()≥3≤.6. 设总体X 的均值为0, 方差2σ存在但未知, 又12,X X 为来自总体X 的样本, 212()k X X -为2σ的无偏估计. 则常数k =(空6) .解 由于222121122[()][(2)]E k X X kE X X X X -=-+22211222[()2()()]2k E X E X X E X k σσ=-+==,所以k =12为2σ的无偏估计. 二、单项选择题:每小题2分,共18分. 请将各题号对应的正确选项代号填写在下列表格内.1. 若两个事件A 和B 同时出现的概率P (AB )=0, 则下列结论正确的是( ).(A) A 和B 互不相容. (B) AB 是不可能事件. (C) P (A )=0或P (B )=0.. (D) 以上答案都不对. 解 本题答案应选(D).2. 在5件产品中, 只有3件一等品和2件二等品. 若从中任取2件, 那么以0.7为概率的事件是( ).(A) 都不是一等品. (B) 至多有1件一等品. (C) 恰有1件一等品. (D) 至少有1件一等品. 解 至多有一件一等品包括恰有一件一等品和没有一等品, 其中只含有一件一等品的概率为113225C C C ⨯, 没有一等品的概率为023225C C C ⨯, 将两者加起来即为0.7. 答案为(B ).3. 设事件A 与 B 相互独立, 且0<P (B )<1, 则下列结论中错误的是( ).(A) A 与B 一定互斥. (B) ()()()P AB P A P B =.(C) (|)()P A B P A =. (D) ()()()()()P AB P A P B P A P B =+-.解 因事件A 与B 独立, 故AB 与也相互独立, 于是(B)是正确的. 再由条件概率及一般加法概率公式可知(C)和(D)也是正确的. 从而本题应选(A).4. 设随机变量X 服从正态分布2(,)N μσ,Y 服从正态分布2(,)N μσ,且{1}{1},P X P Y μμ-<>-< 则下列各式中正确的是解 由正态分布函数的性质可知本题应选(C).6. 设X 与Y 相互独立,且都服从2(,)N μσ, 则下列各式中正确的是( ). (A) ()()()E X Y E X E Y -=+. (B) ()2E X Y μ-=.(C) ()()()D X Y D X D Y -=-. (D) 2()2D X Y σ-=.解 注意到0)()()(=-=-Y E X E Y X E .由于X 与Y 相互独立,所以22)()()(σ=+=-Y D X D Y X D . 选(D).7. 设(X , Y )服从二元正态分布, 则下列结论中错误的是( ).(A) (X , Y )的边缘分布仍然是正态分布.(B) X 与Y 相互独立等价于X 与Y 不相关. (C) (X , Y )的分布函数唯一确定边缘分布函数.(D) 由(X , Y )的边缘概率密度可完全确定(X , Y )的概率密度. 解 仅仅由(X , Y )的边缘概率密度不能完全确定(X , Y )的概率密度. 选(D)8. 设z α,2αχ(n ),()t n α,12(,)F n n α分别是标准正态分布N (0,1)、2χ(n )分布、t 分布和F 分布的上α分位点, 在下列结论中错误的是( ).(A) 1z z αα-=-. (B) 2αχ(n )=1-21αχ-(n ).(C) 1()()t n t n αα-=-. (D) 121211(,)(,)F n n F n n αα-=.解 应选(B).9. 设随机变量21~()(1),X t n n Y X >=, 则下列关系中正确的是( ). (A) 2~()Y n χ. (B) 2~(1)Y n χ-. (C) ~(,1)Y F n . (D) ~(1,)Y F n解 由题设知,X =, 其中2~(0,1),~()U N V n χ. 于是21Y X ==221UV V n n U =,这里22~(1)U χ, 根据F 分布的定义知21~(,1).Y F n X =故应选(C).三、(10分)某厂甲、乙、丙三个车间生产同一种产品, 其产量分别占全厂总产量的40%, 38%, 22%, 经检验知各车间的次品率分别为0.04, 0.03, 0.05. 现从该种产品中任意抽取一件进行检查. (1) 求这件产品是次品的概率;(2) 已知抽得的产品是次品, 问此产品来自乙车间的概率是多少?解 设A 表示“取到的产品是一件次品”, i B (i =1, 2, 3)分别表示“所取到的产品来自甲、乙、丙车间”. 易知, 123,,B B B 是样本空间S 的一个划分, 且122()0.4,()0.38,()0.22P B P B P B ===,12(|)0.04,(|)0.03P A B P A B ==,3(|)0.05P A B =. .... 4分(1) 由全概率公式可得112233()(|)()(|)()(|)()P A P A B P B P A B P B P A B P B =++0.40.040.380.030.220.050.0384.=⨯+⨯+⨯= ................................... 4分(2) 由贝叶斯公式可得 222(|)()0.380.0319(|)()0.0384640.297P A B P B P B A P A ⨯====. ............................. 2分四、(10分)设随机变量X 的概率密度为1(1),02,()40,x x f x ⎧⎪⎨⎪⎩+<<=其它, 对X 独立观察3次, 求至少有2次的结果大于1的概率.解 根据概率密度与分布函数的关系式{P a X <≤}()()()d bab F b F a f x x =-=⎰,可得15五、(12分) 随机变量(X ,Y )的概率密度为(,)1(6),02,24,80,.f x y x y x y =⎧--<<<<⎪⎨⎪⎩其它 求: (1) {4}P X Y +≤;(2) 关于X 的边缘分布和关于Y 的边缘分布;(3) X 与Y 是否独立?并说明理由.解 (1) {P X Y +≤4}4(,)d d x y f x y x y +=⎰⎰≤4421d (6)d 8x y x y x -=--⎰⎰4422011(6)d 82xy x x y -=--⎡⎤⎢⎥⎣⎦⎰23=. .......................................................... 4分 (2) 当02x <<时, 421()(,)d (6)81d (3)4X f x f x y y x y y x +∞-∞==--=-⎰⎰; 当x ≤0时或x ≥2时, ()0X f x =.故 ,02,()0,1(3)4X x f x x <<=⎧-⎪⎨⎪⎩其它. .................................................... 3分当2<y <4时,21()(,)d (6)81d (5)4Y f y f x y x x y y y +∞-∞==--=-⎰⎰; 当y ≤2时或y ≥4时, ()0Y f y =.故 (5),24,()0,.14Y y y f y -<<=⎧⎪⎨⎪⎩其它 ...................................................... 3分(3) 因为(,)()()X Y f x y f x f y ≠,所以X 与Y 不相互独立. ......................................................... 2分六、(10分)设某种商品每周的需求量X 是服从区间[10,30]上均匀分布的随机变量,而经销商店进货量为区间[10,30]中的某一整数. 该经销商店每销售一单位该种商品可获利500元; 若供大于求则削价处理, 每处理一单位该种商品亏损100元; 若供不应求, 则可从外部调剂供应, 此时每一单位商品仅获利300元. 为实现该商店所获利润期望值不小于9280元的目标, 试确定该经销商店对该种商品的进货量范围.解 设进货量为a 单位, 则经销商店所获利润为500300()300200,30,500100()600100,10.a a X a X a a X M X a X X a X a +-=+<=--=-⎧⎨⎩≤≤≤ ........................... 4分 需求量X 的概率密度为()1,1030,200,.f x x =⎧<<⎪⎨⎪⎩其它 .......................................................... 2分 由此可得利润的期望值为30301010111()(600100)(300200)202020a a a aE M M dx x a dx x a dx =-++=⎰⎰⎰ ...............................2分 21535052502a a =-++依题意, 有21535052502a a -++≥9280,即21535040302a a -+≤0, 解得623≤a ≤26. 故期望利润不少于9280元的进货量范围为21单位~26单位. ....................................................................................................................................... 2分七、(10分)设总体X 的概率密度为(1),01,(;)0, x x f x θθθ+<<=⎧⎨⎩其它.其中θ>-1是未知参数, X 1,X 2,…,X n 是来自总体X 的容量为n 的简单随机样本. 求: (1) θ的矩估计量;(2) θ的极大似然估计量. 解 总体 X 的数学期望为1101()()d (1)d 2E X xf x x x x θθθθ+∞+-∞+==+=+⎰⎰. θ21X -。

福州大学《概率统计》期末试卷A及答案

福州大学《概率统计》期末试卷A及答案

福州大学《概率统计》期末试卷A一、单项选择(共15分,每小题3分) 1. 设()0,(|)1P B P A B >=,则必有 。

(A )()()P A B P A ⋃> (B )()()P A B P B ⋃> (C )()()P A B P A ⋃=(D )()()P A B P B ⋃=2. 设随机变量X 的方差为16,根据契比雪夫不等式有{}10)(<-X E X P 。

(A )16.0≤ (B )16.0≥ (C )84.0≤ (D )84.0≥3. 设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{||1}{||1},P X P Y μμ-<>-< 则必有 。

(A )12σσ< (B )12σσ>(C )12μμ<(D )12μμ>4.设~(1,4)X N ,2~(1)Y n χ-,X 与Y 独立,( ).(A) 自由度为1-n 的t 分布 (B) 自由度为n 的2χ分布 (C) 自由度为n 的t 分布 (D) 自由度为1-n 的2χ分布5.设0,1,0,1,1为来自两点分布总体(1,)B p 的样本观察值,则p 的矩估计值( ) (A) 4/5; (B)3/5; (C)2/5; (D)1/5.二.填空题(每空3分,共30分)1. 已知随机事件A 的概率5.0)(=A P ,随机事件B 的概率6.0)(=B P ,条件概率8.0)(=A B P ,则)(B A P 为____2. . 设随机变量)1.0,3(~B X ,则12-=X Y 的数学期望为 .3. 随机变量,X Y 相互独立且服从同一分布,3/)1()()(+====k k Y P k X P ,1,0=k ,则()P X Y ==.4. 设一个汽车站上,某路公共汽车每5分钟有一辆车到达,乘客在5分钟内任一时间到达汽车站是等可能的,求在汽车站候车的5个乘客中有3个乘客等待时间超过4分钟的概率为____5.设n X X X ,...2,1是来自正态分布),(2σμN 的样本,且2σ未知,X 是样本均值,则检验假设0100:;:μμμμ≠=H H 所用统计量是 ,它服从 分布。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010―2011―2概率统计试题及答案 一、选择题(每题3分,共30分) 1.已知41)()()(===C P B P A P ,161)()(==BC P AC P ,0)(=AB P 求事件CB A ,,全不发生的概率______.31)(A 83)(B 157)(C 52)(D 2.设A 、B 、C 为3个事件.运算关系C B A 表示事件______.(A ) A 、B 、C 至少有一个发生 (B ) A 、B 、C 中不多于—个发生 (C ) A ,B ,C 不多于两个发生 (D ) A ,月,C 中至少有两个发生 3.设X 的分布律为),2,1(2}{ ===k k X P k λ,则=λ__________.0)(>λA 的任意实数 3)(=λB31)(=λC 1)(=λD 4.设X 为一个连续型随机变量,其概率密度函数为)(x f ,则)(x f 必满足______.(A ) 1)(0≤≤x f (B ) 单调不减 (C )1)(=⎰∞+∞-dx x f (D ) 1)(lim =+∞→x f x5.对正态总体的数学期望μ进行假设检验,如果在显著性水平α=0.05下接受00:μμ=H ,那么在显著性水平 α=0.01下,下列结论正确的是______. (A ) 必接受0H (B )可能接受也可能拒绝0H (C ) 必拒绝0H (D )不接受,也不拒绝0H6.设随机变量X 和Y 服从相同的正态分布)1,0(N ,以下结论成立的是______. (A ) 对任意正整数k ,有)()(k k Y E X E = (B ) Y X +服从正态分布)2,0(N (C ) 随机变量),(Y X 服从二维正态分布(D ) )()()(Y E X E Y X E ⋅=7.若正态总体X 的方差2)(σ=X D 未知,检验期望0)(μ=X E 用的统计量是______.(A ) ()()21120)1(⎪⎪⎭⎫⎝⎛---∑=n k k x x n n x μ (B )()()21120⎪⎪⎭⎫ ⎝⎛--∑=n k k x x nx μ(C )()()21120)1(⎪⎪⎭⎫ ⎝⎛---∑=n k k x x n x μ (D )()21120⎪⎪⎭⎫ ⎝⎛--∑=n k k x x x μ8.设二维随机变量),(Y X 服从G 上的均匀分布,G 的区域由曲线2x y =与x y =所围,则),(Y X 的联合概率密度函数为_______.)(A ⎩⎨⎧∈=他其,0),(,6),(G y x y x f )(B ⎩⎨⎧∈=他其,0),(,6/1),(Gy x y x f)(C ⎩⎨⎧∈=他其,0),(,2),(G y x y x f )(D ⎩⎨⎧∈=他其,0),(,2/1),(Gy x y x f9.样本n X X X , , ,21 来自总体) ,(2σμN , 则总体方差2σ的无偏估计为_____.( A )∑=--=n i i X X n S 1221)(21 ( B ) ∑=--=n i i X X n S 1222)(11 ( C )∑=-=n i i X X n S 1223)(1 ( D ) ∑=-+=n i i X X n S 1224)(11 10.设)ˆ,ˆ(21θθ是参数θ 的置信度为α-1的区间估计,则以下结论正确的是 _____.( A ) 参数θ落在区间)ˆ,ˆ(21θθ之内的概率为α-1 ( B ) 参数θ落在区间)ˆ,ˆ(21θθ之外的概率为α ( C ) 区间)ˆ,ˆ(21θθ包含参数θ 的概率为α-1 ( D ) 对不同的样本观测值,区间)ˆ,ˆ(21θθ的长度相同. 二、填空题(每题3分,共30分)1.设21)(,31)()(===B A P B P A P ,则=)(B A P __________. 2.设一批产品共10件,其中8件正品,2件次品,从中任意抽取3件,则恰有1件是次品的概率是__________.3.已知随机变量X 在],[a a -上服从均匀分布,且31}1{=>X P ,则=a ________.设随机变量X 服从(0,3)上的均匀分布,则随机变量 Y=X 2 在(0,9)的概率密度函数为__________.4.设)4,3(~N X ,)6,5(~-N Y ,且X 与Y 相互独立,则~2Y X -__________.5.设随机变量X 的数学期望为μ=)(X E 、方差2)(σ=X D ,则由切比雪夫不等式有⎭⎬⎫⎩⎨⎧≥-45σμX P __________ .6. 设随机变量X 的分布律为则=+)12(X E __________.7.已知4.0),(,36)(,25)(===Y X Y D X D ρ,则__________)(=-Y X D . 8.设总体X 服从参数为λ 的泊松分布,01021,,,X X X 为来自总体的一个样本,则λ 矩估计量为_________.9.设总体X 服从正态分布N (μ , σ 2), X 1,X 2,X 3是来自总体X 的一个样本,则X 1,X 2,X 3的联合概率密度为_________.10.设总体X 服从正态分布N (μ , σ 2),其中σ 2 未知,现从总体中抽取一容量为n 的样本,则总体均值μ的置信度为α-1的置信区间为________.三、设1021,,,X X X 是来自总体X 的一个样本且)5.0,0(~2N X 求⎭⎬⎫⎩⎨⎧>∑=10124i i P X .(16(9)20.05≈χ,,16)10(210.0≈χ) 四、从一正态总体中抽取容量为10的样本,假定有2%的样本均值与总体均值之差的绝对值在4以上,求总体的标准差.(已知:99.0)33.2(=Φ,89.0)06.2(=Φ,0.261)9(8.0=t ,0.26)10(8.0=t ) 五、在肝癌诊断中,有一种甲胎蛋白法,用这种方法能够检查出95%的真实患者,但也有可能将10%的人误诊。

根据以往的记录,每10 000人中有4人患有肝癌,试求:(1)某人经此检验法诊断患有肝癌的概率;(2)已知某人经此检验法检验患有肝癌,而他确实是肝癌患者的概率.六、设总体X 有分布律 ⎪⎪⎭⎫ ⎝⎛--a a a 413512,其中25.00<<a 为待估参数, X 1 ,X 2 , …, X n 为来自总体X 的样本,求a 的矩估计量.七、某工厂生产一种产品,每件标准重量为100 kg , 设机器生产的产品重量服从正态分布, 且由长期经验知道σ = 0.9 kg .且保持不变,某天开工后 , 为检查机器工作是否正常, 随机抽取 9件,称得其净重为 (单位:kg ) :99.3,98.7,100.5,101.2,98.3,99.7,105.1,102.6,100.5,问该天机器工作是否正常?(α = 0.05) .(已知:65.105.0=u ,96.1025.0=u ,306.2)8(025.0=t ,86.1)8(05.0=t ,262.2)9(025.0=t ,833.1)9(05.0=t )答案: 一、二、三、}16{5.045.014211012221012≥=⎭⎬⎫⎩⎨⎧≥=⎭⎬⎫⎩⎨⎧≥∑∑==Y P X P X P i i i i ⋯⋯⋯⋯⋯⋯⋯⋯⋯4分 查表得 :,16)10(210.0≈χ ⋯⋯⋯⋯⋯⋯⋯⋯⋯6分由此得所求概率得10.041012=⎭⎬⎫⎩⎨⎧≥∑=i i X P . ⋯⋯⋯⋯⋯⋯⋯⋯⋯8分四、由已知,设),N(~X 2σμ,且02.0}4{=>-μX P ,)10,N(~X 2σμ ⋯⋯⋯⋯⋯⋯⋯⋯⋯2分⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>-=>-=10/410/}4{02.0σσμμX P X P ⋯⋯⋯⋯⋯⋯⋯⋯⋯4分⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--=σσμ10410/1X P ⎪⎪⎭⎫ ⎝⎛-=σΦ10422,⋯⋯⋯⋯⋯⋯⋯⋯⋯6分 99.0104=⎪⎪⎭⎫⎝⎛σΦ 99.0)33.2(=Φ,33.2104=σ, 43.5=σ ⋯⋯⋯⋯⋯⋯⋯⋯⋯8分五、令=B “被检验者患有肝癌”, =A “用该检验法诊断被检验者患有肝癌”那么,0004.0)(,10.0)|(,95.0)|(===B P B A P B A P⋯⋯⋯⋯⋯⋯⋯⋯⋯3分(1))|()()|()()(B A P B P B A P B P A P +=10034.01.09996.095.00004.0=⨯+⨯=⋯⋯⋯⋯⋯5分 (2))|()()|()()|()()|(B A P B P B A P B P B A P B P A B P +=0038.01.09996.095.00004.095.00004.0=⨯+⨯⨯=⋯⋯⋯⋯⋯8分 六、X a a a a X E =-=⨯+-⨯+⨯-=515)41(132)( ⋯⋯⋯⋯⋯⋯⋯⋯4分则a 的矩估计量为 51ˆXa-= ⋯⋯⋯⋯⋯⋯⋯⋯⋯8分 七、设产品重量为X , 由已知,)9.0,(~2μN X提出假设:100:;100:100≠==μμμH H ⋯⋯⋯⋯⋯⋯⋯⋯⋯2分 检验统计量:)1,0(~/0N nX U σμ-=⋯⋯⋯⋯⋯⋯⋯⋯⋯4分拒绝域:}96.1{}{}{025.02>=>=>=U u U u U W α66.10095.1007.983.99,9≈+++== x n ⋯⋯⋯⋯⋯⋯⋯⋯⋯6分96.12.23.066.09/9.010066.100/0>==-=-=n X U σμ所以拒绝H 0,即机器工作不正常要停机调整. ⋯⋯⋯⋯⋯⋯⋯⋯⋯8分。

相关文档
最新文档