插补原理
数控技术第3章插补原理
![数控技术第3章插补原理](https://img.taocdn.com/s3/m/1ea8c9a20029bd64783e2c7f.png)
5. 运算举例(第Ⅰ 象限逆圆弧) 运算举例( 象限逆圆弧) 加工圆弧AE 起点(4,3) AE, (4,3), 终点(0,5) E=(4-0)+(5加工圆弧AE,起点(4,3), 终点(0,5) ,E=(4-0)+(53)=6 插补过程演示
三.逐点比较法的进给速度 逐点比较法的进给速度
逐点比较法除能插补直线和圆弧之外,还能插补椭圆、 逐点比较法除能插补直线和圆弧之外,还能插补椭圆、 抛物线和双曲线等二次曲线。此法进给速度平稳, 抛物线和双曲线等二次曲线。此法进给速度平稳, 精度较高。在两坐标联动机床中应用普遍. 精度较高。在两坐标联动机床中应用普遍. 对于某一坐标而言, 对于某一坐标而言,进给脉冲的频率就决定了进给速 度 :
插补是数控系统最重要的功能; 插补是数控系统最重要的功能; 插补实际是数据密集化的过程; 插补实际是数据密集化的过程; 插补必须是实时的; 插补必须是实时的; 插补运算速度直接影响系统的控制速度; 插补运算速度直接影响系统的控制速度; 插补计算精度影响到整个数控系统的精度。 插补计算精度影响到整个数控系统的精度。 插补器按数学模型分类,可分为一次插补器、 插补器按数学模型分类,可分为一次插补器、二次插补器及高 次曲线插补器; 次曲线插补器; 根据插补所采用的原理和计算方法不同, 根据插补所采用的原理和计算方法不同,分为软件插补和硬件 插补。目前大多采用软件插补或软硬件结合插补。 插补。目前大多采用软件插补或软硬件结合插补。 根据插补原理可分为:脉冲增量插补和数字采样插补。 根据插补原理可分为:脉冲增量插补和数字采样插补。
脉冲当量: 脉冲当量:每一个脉冲使执行件按指令要求方向移动的直线 距离,称为脉冲当量, 表示。一般0.01mm 0.001mm。 0.01mm~ 距离,称为脉冲当量,用δ表示。一般0.01mm~0.001mm。 脉冲当量越小, 脉冲当量越小,则机床精度越高
插补原理
![插补原理](https://img.taocdn.com/s3/m/1f91ca886529647d27285299.png)
插补原理:在实际加工中,被加工工件轮廓形状千差万别,严格说来,为了满足几何尺寸精度要求,刀具中心轨迹应该准确地依照工件轮廓形状来生成,对于简单曲线数控系统可以比较容易实现,但对于较复杂形状,若直接生成会使算法变得很复杂,计算机工作量也相应地大大增加,因此,实际应用中,常采用一小段直线或圆弧去进行拟合就可满足精度要求(也有需要抛物线和高次曲线拟合情况),这种拟合方法就是“插补”,实质上插补就是数据密化过程。
插补任务是根据进给速度要求,在轮廓起点和终点之间计算出若干个中间点坐标值,每个中间点计算所需时间直接影响系统控制速度,而插补中间点坐标值计算精度又影响到数控系统控制精度,因此,插补算法是整个数控系统控制核心。
插补算法经过几十年发展,不断成熟,种类很多。
一般说来,从产生数学模型来分,主要有直线插补、二次曲线插补等;从插补计算输出数值形式来分,主要有脉冲增量插补(也称为基准脉冲插补)和数据采样插补[26]。
脉冲增量插补和数据采样插补都有个自特点,本文根据应用场合不同分别开发出了脉冲增量插补和数据采样插补。
1数字积分插补是脉冲增量插补一种。
下面将首先阐述一下脉冲增量插补工作原理。
2.脉冲增量插补是行程标量插补,每次插补结束产生一个行程增量,以脉冲方式输出。
这种插补算法主要应用在开环数控系统中,在插补计算过程中不断向各坐标轴发出互相协调进给脉冲,驱动电机运动。
一个脉冲所产生坐标轴移动量叫做脉冲当量。
脉冲当量是脉冲分配基本单位,按机床设计加工精度选定,普通精度机床一般取脉冲当量为:0.01mm,较精密机床取1或0.5 。
采用脉冲增量插补算法数控系统,其坐标轴进给速度主要受插补程序运行时间限制,一般为1~3m/min。
脉冲增量插补主要有逐点比较法、数据积分插补法等。
逐点比较法最初称为区域判别法,或代数运算法,或醉步式近似法。
这种方法原理是:计算机在控制加工过程中,能逐点地计算和判别加工偏差,以控制坐标进给,按规定图形加工出所需要工件,用步进电机或电液脉冲马达拖动机床,其进给方式是步进式,插补器控制机床。
第3章-插补原理
![第3章-插补原理](https://img.taocdn.com/s3/m/66ae81df4b73f242326c5fcf.png)
Y积分器
计t数 器JVX为(XeJ)E,JR均X 为溢三出位Jvy(Ye) JRy 溢出
终点计 数器
JE
备注
二0进制1存01 放器00。0
011 000
000
初始状态
1
101 101
011 011
001 第一次迭代
2
101 010
1
011 110
010
X溢出
3
101 111
011 001
1
011
Y溢出
∑=8-1=7
4
F<0
+Y
F4=F3+xe=-2+6=4
∑=7-1=6
5
F>0
+X
F5=F4-ye=4-4=0
∑=6-1=5
6
F=0
+X
F6=F5-ye=0-4=-4
∑=5-1=4
7
F<0
+Y
F7=F6+xe=-4+6=2
∑=4-1=3
8
F>0
+X
F8=F7-ye=2-4=-2
∑=3-1=2
9
F<0
4
101 100
1
011 100
100
X溢出
5
101 001
1
011 111
101
X溢出
6
101 110
011 010
1
110
Y溢出
7
101 011
1
011 101
111
件加工的要求,现在的数控系统已很少采用这类算法 了。
4
*
4.3插补原理与程序设计
![4.3插补原理与程序设计](https://img.taocdn.com/s3/m/2a2fc2a5284ac850ad0242e8.png)
y
… N12 G00 X12 Y24 56
N13 G01 X24 Y56
…
24
0
12
24
x
2
§4.3 插补原理与程序设计
一、插补概念
第 插补需要解决的问题(1)让单独的坐标分别运动合成理想的 轨迹;(2)几个坐标同时进给,还是每次单坐标进给; 四 (3)判断进给哪一个坐标可使误差更小;(4)每次插补 章 进给多少;(5)如果同时进给,各个坐标进给的比例是 多少;(6)选用什么样的实际轨迹合成后与理想轨迹误 数 差最小。 控 系 插补的基本要求(1)插补所需的原始数据要少;(2)插补 结果没有累计误差;(3)进给速度的变化要小;(4)插 统 补计算速度要快。 软 件 技 术
进给方向
+Y -Y
偏差计算
Fm+1= Fm+xe
10
a.看成是第I象限,起点A,终点B,输出为+x,+y 第 四 章 数 控 系 统 软 件 技 术 b.看成是第Ⅱ象限,起点B,终点C,输出为-x,+y c.看成是第Ⅲ象限,起点C,终点D,输出为-x,-y d.看成是第IV象限,起点D,终点A,输出为+x,-y
F≥0 都沿x方向步进, F<0均沿y方向步进,无 (-xe,ye) 无论+x,-x,|x|总是 论+y,-y,|y|增大, 增大, 走+x或-x由象 走+y或-y由象限标志 限标志控制(随xe的+、 控制(随ye的+, -X -) -)。 终点坐标用绝对值代入 L1偏差计算公式,进给 坐标和方向根据直线线 (-xe,-ye) 型确定
1
§4.3 插补原理与程序设计
一、插补概念
第 一、插补概念 插补:根据给定轨迹方程(直线、圆弧或高次函数)和已知 四 点坐标(起点、终点、圆心坐标)计算中间点坐标的过程。 章 数控装臵根据输入的零件程序的信息,将程序段所描述的曲 数 控 系 统 软 件 技 术 线的起点、终点之间的空间进行数据密化,用一个个输出脉 冲把这一空间填补起来,从而形成要求的轮廓轨迹。
第四章 插补原理
![第四章 插补原理](https://img.taocdn.com/s3/m/dd51603a3968011ca300916d.png)
y L2 F0 F<0 F<0 F0 L3
四象限直线偏差符号和进给方向
L1 F0 F<0 x F<0 F0 L4
由图可见,靠近Y轴区域偏差大等于零,靠近X轴区域偏差小于零。F≥0时,进 给都是沿X轴,不管是+X向还是-X向,X的绝对值增大;F<0时,进给都是沿Y轴, 不论+Y向还是-Y向,Y的绝对值增大。
v y 60f y
式中 δ—脉冲当量(mm/脉冲)。合成进给速度为
v v x 2 v y 2 60 f x2 f y2
若fx=0或fy=0时,也就是刀具沿平行于坐标轴的方向切削,这时对 应轴切削速度最大
第四章 插补原理
3.1 数字积分法的基本原理
第 三 节 数 字 积 分 法
F5 F4 2Y4 1 3 F6 F5 2 X 5 1 4
F7 F6 2Y6 1 1
F8 F7 2Y7 1 0
5. 四个象限中圆弧插补 第一象限逆圆弧CD:即Fi≥0时,走—X轴, 动点的偏差函数为
Fi 1=Fi 2 X i 1
第四章 插补原理
2.3 逐点比较法圆弧插补
第 二 节 逐 点 比 较 法
第一象限圆弧插补 流程图
例3 现欲加工第一象限顺圆弧AB,如图所示,起点A(0,4),终点B(4,0), 试用逐点比较法进行插补。
Y 4 3 2 1 B(4,0) O 1 2 3 4 X A(0,4)
表3 圆弧插补过程
步数 起点 偏差判别 坐标进给 偏差计算 坐标计算 终点判别
如图4-14所示,从t=0时
刻到t时刻,函数y=f(t) 曲线所包围的面积可表示
Y
Y=f(t)
YO
第四章 插补、刀具补偿与速度控制
![第四章 插补、刀具补偿与速度控制](https://img.taocdn.com/s3/m/72050fc09ec3d5bbfd0a7402.png)
被积函数寄存器
根据上面几个公式,可以建立一 个数学模型——数字积分器。
Δt
+ 累加器 Δx
数字积分器模型
例子:求在区间设被积函数为5(二进制101B),取累加器 为3位二进制,容量为23=8。
101
101
101
101
101
101
101
101
) 000 )101 ) 010 )111 )100 ) 001 )110 ) 011 101
1 010
111
1 100
1 001
110
1 011
1 000
(2) 线段插补
如右图所示,线段位于第一象限,起点与 坐标原点重合,终点坐标A(Xe,Ye)。设有 一动点,以速度V在线段上匀速运动,其 在X、Y方向的分速度分别为Vx、Vy。则 动点在Δt时间内沿X、Y轴移动的微小位移 量为: ΔX=VxΔt
Δx
Δy
KX
i
m
e
KmX
e
Xe
Y
KY
i
m
K 1
e
Δt
m
n
+
KmY
e
Ye
m 2
Y被积函数寄存器(KYe)
2
n
K 1
线段插补数字积分器
例3. 用数字积分法插补下图所示线段,起点坐标 O(0,0),终点坐标为A(5,7),写出插补该线段的过程。
数字积分插补实例
脉 冲 当 量
插补的任务就是在一段零件轮廓的起点和终点之间,根 据给定的进给速度要求,计算出若干个中间点的坐标值。
加工直线的程序
N3G01X-45000Y-75000F150
第4章插补原理刀补原理与速度控制
![第4章插补原理刀补原理与速度控制](https://img.taocdn.com/s3/m/86ee6ecdad51f01dc281f198.png)
Fi ,i 1 F X e
X e 1
Fi 1,i F Ye F (Ye )
Ye 1
插补前将坐标数据符号与数据本体分离,用数据本体进行插补计算,由 数据符号确定坐标进给方向。
插补工作寄存器:
FR:偏差函数寄存器 LR:X坐标偏差函数递推项寄存器,存放(-Ye) MR:Y坐标偏差函数递推项寄存器,存放Xe LC: X坐标终点判别寄存器,存放X坐标应输出的脉冲总数 MC:Y坐标终点判别寄存器,存放Y坐标应输出的脉冲总数 RL: X坐标进给方向寄存器,存放X坐标数据的符号 RM:Y坐标进给方向寄存器,存放Y坐标数据的符号
贵州大学机械工程学院
第四章 插补,刀具补偿与速度控制
贵州大学机械工程学院
第一节 插补原理与程序设计 一. 插补及其算法 插补的任务就是在一段零件轮廓的起点和终点之间,计算 出若干个中间点的坐标值。 直线和圆弧是构成工件轮廓的基本线条,大多数CNC系统 都具有直线和圆弧的插补功能。高档CNC系统还具有抛物 线、螺旋线等插补功能。
若F<0, 下一步应该向+Y方向走,则: Fi,i1 X eYi 1 X iYe X eYi X iYe X e F X e Yi 1 Yi 1
插补开始
逐点比较法直线插补,每进一步需要四个节拍: 偏差判别 1,偏差判别; 2,坐标进给; 3, 偏差计算;4, 终点判别
动点沿OA匀速移动, V,Vx,Vy, 均为常数。
V V V X Y K OA X e Ye
X Vx t KX e t, Y Vy t KYe t,
直线积分插补近似表达式
X ( KX e )t , Y ( KYe )t
i 1 i 1 m m
第四部分插补原理与速度控制
![第四部分插补原理与速度控制](https://img.taocdn.com/s3/m/2a233ac882d049649b6648d7c1c708a1284a0ad1.png)
(3)迭代法偏差函数F的推导
①设加工点P在圆弧外侧或圆弧上,则加工偏差F≥0, 刀具需向X坐标负方向进给一步,即移动到新的加工点
P(Xi+1,Yi)。新加工点的偏差为: Fi+1,i = (Xi – 1)2 +Yi2 -(X02 + Y02)
=Xi2-2Xi+1-X02+Yi2-Y02 =F-2Xi+1 ②设加工点P在圆弧内侧,则加工偏差F<0,刀具需向
①偏差判别 根据偏差值确定刀具相对加工直线的位置。
②坐标进给 根据偏差判别的结果,决定控制沿哪个坐标 进给一步,以接近直线。
③偏差计算 计算新加工点相对直线的偏差,作为下一步 偏差判别的依据。
④终点判别 判断是否到达终点,未到达终点则返回第一 步,继续插补,到终点,则停止本程序段的插补。终 点判别可采用两种方法:一是每走一步判断Xi-Xe≥0及 Yi-Ye≥0是否成立,如成立,则插补结束否则继续。二 是把每个程序段中的总步数求出来,即n=|Xe | + | Ye | , 每走一步n-1,直到n=0为止。
线 型 偏差判别
象
1
2
限
3
4
F≥0
-Y
+X
+Y
-X
G02
F<0
+X
+Y
-X
-Y
F≥0
-X
-Y
+X
+Y
G03
F<0
+Y
-X
-Y
+X
(3)圆弧插补自动过象限处理
为了加工二个象限或二个以上象限的圆弧,圆弧插 补程序必须具有自动过象限功能。自动过象限程序包 括象限边界处理、过象限判断及数据处理等模块。
第三章 插补原理及控制方法
![第三章 插补原理及控制方法](https://img.taocdn.com/s3/m/ac864dd176eeaeaad1f33078.png)
逼近误差(直线逼近曲线)、计算误差和圆整误差
要求:综合效应(轨迹误差)不大于系统的最小运动指令或脉冲当量。
3。合成速度的均匀性指标
合成速度的均匀性——插补运算输出的各轴进给量,经运动合成的实际速度与给定的进给速度的符合程度。
(3)偏差计算 根据递推公式算出新加工点的偏差值。
(4)终点判别 用来确定加工点是否到达终点。
若已到达,则应发出停机或转换新程序段信号。一般用X和Y坐标所要走的总步数J来判别。令J=Xe+Ye,每走一步则了减1,直至J=0。
实际加工中零件形状各式各样:
由直线、圆弧组成的零件轮廓;
由诸如自由曲线、曲面、方程曲线和曲面体构成的零件轮廓,对这些复杂的零件轮廓最终还是要用直线或圆弧进行逼近以便数控加工。
为满足几何尺寸精度要求,刀具中心轨迹应与零件轮廓形状一致,但实际应用时往往用一小段直线或圆弧去逼近,从而使得控制算法简单,计算量减少。
综上所述,系统的刀补工作状态,始终存有三个程序段的信息。
刀具补偿的转接处理是对所有的编程轨迹作矢量处理,
综上所述,逐点比较法直线插补每走一步都要完成四个步骤(节拍),即:
(1)位置判别 根据偏差值Fi,j大于零、等于零、小于零确定当前加工点的位置。
(2)坐标进给 根据偏差值Fi,j大于零、等于零、小于零确定沿哪个方向进给一步。
数字积分器的工作原理
求函数y=f(t)在区间[t0,tn]的定积分
即求
若将积分区间[t0,tn]等分成很多小区间△t(其中△t=ti+1,ti),则面积S可近似看成为很多小长方形面积之和,即
如将△t取为一个最小单位时间(即一个脉冲周期时间),即△t=1,则
插补原理及控制方法
![插补原理及控制方法](https://img.taocdn.com/s3/m/d5dc1d1c227916888486d70e.png)
因为插补运算是实时性很强的运算,若算法太复杂,计算机的每次插补运算的时间必然加长,从而限制进给速度指标和精度指标的提高。
3.插补方法的分类❑脉冲增量插补(行程标量插补)特点:✓每次插补的结果仅产生一个单位的行程增量(一个脉冲当量)。
以一个一个脉冲的方式输出给步进电机。
其基本思想是:用折线来逼近曲线(包括直线)。
✓插补速度与进给速度密切相关。
因而进给速度指标难以提高,当脉冲当量为10μm时,采用该插补算法所能获得最高进给速度是3-4 m/min。
✓脉冲增量插补的实现方法较简单,通常仅用加法和移位运算方法就可完成插补。
因此它比较容易用硬件来实现,而且,用硬件实现这类运算的速度很快的。
但是也有用软件来完成这类算法的。
✓这类插补算法有:逐点比较法;最小偏差法;数字积分法;目标点跟踪法;单步追综法等✓它们主要用早期的采用步进电机驱动的数控系统。
✓由于此算法的速度指标和精度指标都难以满足现在零件加工的要求,现在的数控系统已很少采用这类算法了。
❑数字增量插补(时间标量插补)❑特点:插补程序以一定的时间间隔定时(插补周期)运行,在每个周期内根据进给速度计算出各坐标轴在下一插补周期内的位移增量(数字量)。
其基本思想是:用直线段(内接弦线,内外均差弦线,切线)来逼近曲线(包括直线)。
插补运算速度与进给速度无严格的关系。
因而采用这类插补算法时,可达到较高的进给速度(一般可达10m/min以上)。
数字增量插补的实现算法较脉冲增量插补复杂,它对计算机的运算速度有一定的要求,不过现在的计算机均能满足要求。
这类插补方法有:数字积分法(DDA)、二阶近似插补法、双DDA插补法、角度逼近插补法、时间分割法等。
这些算法大多是针对圆弧插补设计的。
这类插补算法主要用于交、直流伺服电机为伺服驱动系统的闭环,半闭环数控系统,也可用于以步进电机为伺服驱动系统的开环数控系统,而且,目前所使用的CNC系统中,大多数都采用这类插补方法。
插补原理及控制方法
![插补原理及控制方法](https://img.taocdn.com/s3/m/d7033d292af90242a895e517.png)
P点在圆弧外侧时,则OP大于圆弧半径R,即
X i Yj R2 0
2 2
P点在圆弧内侧时,则OP小于圆弧半径R,即
X i Yj R2 0
2 2
用F表示P点的偏差值,定义圆弧偏差函数判别式为
Fi , j X i Y j R 2
2 2
(3-5)
当动点落在圆弧上时,一般约定将其和F>0一并考虑。
1、 插补原理 一般来说,逐点比较法插补过程可按以下四个步 骤进行。
开始 偏差判别 坐标进给 偏差计算
3 2 1 终点判别 O 1 2 3 N 4 x y
E(4,3)
Y 给结束
图5-3
偏差判别:根据刀具当前位置,确定进 给方向。 坐标进给:使加工点向给定轨迹趋进, 即向减少误 差方向移动。 偏差计算:计算新加工点与给定轨迹之 间的偏差,作为下一步判别依据。 终点判别:判断是否到达终点,若到达 ,结束插补;否则,继续以上四个步骤( 如图3-3所示)。
二、基准脉冲插补
(一)、逐点比较法 加工图3-1所示圆弧AB,如果刀具在起始点A,假设 让刀具先从A点沿-Y方向走一步,刀具处在圆内1点 。为使刀具逼近圆弧,同时又向终点移动,需沿+X 方向走一步,刀具到达2点,仍位于圆弧内,需再沿 +X方向走一步,到达圆弧外3点,然后再沿-Y方向 走一步,如此继续移动,走到终点。
第五章 插补原理及控制方法
一、概述
在数控加工中,一般已知运动轨迹的起点坐标 、终点坐标和曲线方程,如何使切削加工运动沿 着预定轨迹移动呢?数控系统根据这些信息实时 地计算出各个中间点的坐标,通常把这个过程称 为“插补”。
数控系统根据这些信息实时地计算出各个中间点 的坐标,通常把这个过程称为“插补”。 插补实质上是根据有限的信息完成“数据点的 密化”工作。
数控技术-第3讲-插补原理
![数控技术-第3讲-插补原理](https://img.taocdn.com/s3/m/0a8b0cdb360cba1aa911da0c.png)
xi2 y 2 j
2 2 x0 y0
F>0
2 2 圆弧外 xi2 y 2 x y j 0 0
圆弧内
xi2 y 2 j
2 2 x0 y0
o
F<0
P(x0,y0)
x
0点在圆弧上 2 2 偏差判别函数 Fij ( xi2 x0 ) ( y2 y j 0 ) 0点在圆弧外 0点在圆弧内
44
6.数字积分法
数字积分器具有运算速度快、脉冲分配 均匀、易于实现多坐标联动,进行空间直线 插补及描给平面各种函数曲线的特点。其缺 点是速度调节不便,插补精度需要采取一定
措施才能满足要求。
ห้องสมุดไป่ตู้
45
6.数字积分法
函数 y = f (t) ,从时刻 t=0 到 t 求函数 y = f (t) 积 分可用如下积分公式计算:
35
5.插逐点比较法
1)逐点比较法直线插补的象限处理:
A2 (Xe ,Ye )
Y
F 0
F 0
A1 ( X e , Y e )
F 0
F 0
F 0
F 0 F 0
F 0
F 0
O
F 0
F 0
X
F 0
F 0 F 0
F 0 F 0
A3 ( X e ,Ye )
A4 ( X e ,Ye )
插补(Interpolation):数控装置依据 编程时的有限数据,按照一定计算方 法,用基本线型(直线、圆弧等)拟合出 所需要轮廓轨迹。边计算边根据计算 结果向各坐标发出进给指令。
机床导轨是互相垂直的,并且单个导轨只能走直 线,因此,加工平面斜线、曲线时就需要两个导轨 按照一定的一一对应关系协调进给;若要求加工曲 面时就需要三个或三个以上导轨协调进给。
插补的原理
![插补的原理](https://img.taocdn.com/s3/m/e281d02c26d3240c844769eae009581b6ad9bd6f.png)
插补的原理插补是数控加工中的重要概念,它是指在机床进行加工过程中,根据加工轨迹的要求,通过控制机床的运动轴进行插补运动,从而实现复杂曲线的加工。
插补的原理是数控加工中的核心内容之一,下面将从插补的基本原理、插补的分类以及插补的应用等方面进行详细介绍。
首先,插补的基本原理是数控加工中的基础知识,它包括直线插补和圆弧插补两种基本插补方式。
直线插补是指机床在直线轨迹上进行插补运动,而圆弧插补则是指机床在圆弧轨迹上进行插补运动。
在数控加工中,插补运动是通过控制机床各个坐标轴的运动来实现的,通过对各个坐标轴的速度、加速度和位置进行合理的控制,可以实现复杂曲线的加工。
其次,插补可以根据其运动方式的不同进行分类,主要包括直线插补、圆弧插补、螺旋线插补等。
直线插补是最简单的插补方式,它是通过控制机床的各个坐标轴,使其在直线轨迹上进行插补运动。
圆弧插补则是在圆弧轨迹上进行插补运动,它需要通过对圆弧的半径、起点和终点等参数进行合理的控制。
螺旋线插补则是在三维空间中进行插补运动,它需要对螺旋线的半径、螺距、起点和终点等参数进行合理的控制。
不同的插补方式可以实现不同形状的曲线加工,从而满足不同加工要求。
最后,插补在数控加工中有着广泛的应用,它可以实现复杂曲线的加工,提高加工精度和效率。
在实际加工中,通过合理的插补运动,可以实现各种复杂曲线的加工,如汽车零部件、航空航天零部件、模具等领域的加工。
同时,插补运动还可以实现多轴联动,从而实现更加复杂的加工要求,如五轴联动加工、六轴联动加工等。
因此,插补在数控加工中具有非常重要的意义,它是实现复杂曲线加工的关键技术之一。
综上所述,插补是数控加工中的重要概念,它通过合理的运动控制,实现复杂曲线的加工。
插补的基本原理包括直线插补和圆弧插补,可以根据其运动方式的不同进行分类。
插补在数控加工中有着广泛的应用,可以实现各种复杂曲线的加工,提高加工精度和效率。
因此,深入理解插补的原理对于提高数控加工的质量和效率具有重要意义。
插补原理及控制方法课件
![插补原理及控制方法课件](https://img.taocdn.com/s3/m/6572fc9885254b35eefdc8d376eeaeaad1f31694.png)
基于机器学习的插补是 利用机器学习算法,对 已知数据进行训练和学 习,然后用训练得到的 模型来预测缺失值。例 如,利用决策树、神经 网络等来估计缺失值。
基于深度学习的插补是 利用深度学习算法,对 大量数据进行学习,得 到一个复杂的非线性模 型,然后用该模型来预 测缺失值。例如,利用 循环神经网络(RNN)、 卷积神经网络(CNN) 等来估计缺失值。
基于支持向量机(SVM)的参数优化
利用SVM分类能力,根据历史数据将参数分类,找到最优参数,提高插补控制的精度。
基于决策树算法的参数优化
利用决策树算法的分类能力,根据历史数据将参数分类,找到最优参数,提高插补控制的 精度。
通过硬件升级提升插补性能和精度
采用更高性能的处理器
升级处理器性能,提高插补运算速度和精度。
位置插补优点
简单易行,控制精度高, 适用于直线运动或简单曲 线运动。
位置插补缺点
在复杂曲线运动或高速运 动时,容易出现轨迹畸变 或冲击现象。
基于速度的插补控制
速度插补原理
基于当前速度和目标速度,通过 计算速度变化的曲线,进行运动
规划。
速度插补优点
适用于高速运动或复杂曲线运动, 能够减少轨迹畸变和冲击现象。
一种常见的实现方法是使用参数方程,通过设置 起始点和终点,以及需要插入的点数,计算出各 点的坐标值。
直线插补原理
通过计算两个点之间的斜率和截距,确定直线方 程,然后根据需要插入的点数,计算出各点的坐 标值。
直线插补优化
对于复杂图形,需要优化直线插补算法,以减少 计算量和提高效率。一种常见的方法是使用样条 曲线插补,将直线分成若干段,每段使用不同的 斜率和截距。
基于粒子群优化算法的路径规划
02
插补原理及控制方法
![插补原理及控制方法](https://img.taocdn.com/s3/m/562562a918e8b8f67c1cfad6195f312b3169ebb7.png)
插补原理及控制方法插补原理是指在数控机床运动控制系统中,通过对多个轴同时进行定长或定角度的运动控制,实现复杂曲线的加工。
插补控制方法包括线性插补和圆弧插补两种。
一、线性插补线性插补是指在工件加工中,沿直线轨迹进行直线段的插补控制方法。
线性插补的原理是通过控制系统对多个轴的运动速度和方向进行精确控制,使得工件能够沿着设定的直线路径进行加工。
线性插补的控制方法包括点位控制和连续控制两种。
1.点位控制点位控制是将每个插补段分解成多个线性插补点,通过对每个点的坐标进行控制,实现工件的加工。
点位控制方式适用于工件形状简单、精度要求不高的情况下。
2.连续控制连续控制是通过对每个时间段内的轴位置进行插补计算,实现工件的连续运动。
此命令适用于工件形状复杂、精度要求较高的场景。
在连续控制中,通常使用插补算法进行计算,将每个时间段内需要插补的线性段分割成多个小段,并根据小段的长度和速度来确定每个小段的运动规律。
二、圆弧插补圆弧插补是指在数控机床加工中,通过对多个轴的运动进行控制,实现工件上圆弧曲线的加工。
圆弧插补的原理是通过对多个轴进行同步运动,控制圆弧路径的切线和加工速度,使得工件能够按照设定的半径和圆弧角度进行加工。
圆弧插补的控制方法包括圆心插补法和半径插补法。
1.圆心插补法圆心插补法是通过控制系统中的插补算法,计算每个时间段内轴的位置和速度,实现工件画圆弧的加工。
在圆心插补中,需要手动指定圆心的坐标位置和圆弧的半径、角度来实现加工。
2.半径插补法半径插补法是指通过在控制系统中指定圆弧的起点、终点和半径来实现工件圆弧的加工。
在半径插补中,插补算法会根据起始点和终点的位置,计算出圆心的位置和圆弧的角度,从而实现工件的加工。
总结:插补原理及控制方法是数控机床系统中非常重要的部分,通过对多个轴的运动进行精确控制,实现工件曲线轨迹的加工。
线性插补适用于直线段的加工,圆弧插补适用于曲线段的加工。
掌握插补原理及控制方法,对于数控机床加工精度的提高和加工效率的提高具有重要意义。
第二讲 插补原理
![第二讲 插补原理](https://img.taocdn.com/s3/m/565af9376edb6f1aff001f88.png)
不同象限,顺逆不同,插补公式也不一样。
例.用DDA法进行圆弧插补,半圆弧AE起点A(0,5),
终点E(5,0),半径r=5。 解:溢出基值
m=r=5
Δx=y0=5
y
A
x轴增量值
y轴增量值
Δy=x0=0 0
∑x=∑y=0
插补过程如下: E
x
三、提高积分法插补的精度
减小DDA圆弧插补轮廓误差的措施
以控制各轴从而形成要求的轮廓轨迹,这种“数据
密化”机能就称为“插补”。 插入 补充 数据点 得到具体控制方法 加密 数据点
零件程序 … N12 G00 X12 Y24 N13 G01 X24 Y56 …
y
56
24
0
12
24
x
二.软件插补算法 Ⅰ.脉冲增量插补
原理
产生的单个行程增量,以一个个脉冲
方式输入给伺服系统。
y
56
24
脉冲当量: 一个控制脉 冲所对应的 控制坐标轴 的移动量 (转动量)。
12
24
0
x
应用
步进电机为驱动装置的开环数控系统。
机 床
计算机 数控柜
步进电机 驱动电源
步进 电机 滚珠丝杆
Ⅱ.数字采样插补(时间标量插补)
插补程序每调用一次,算出坐标轴在一个周期 中的增长段(不是脉冲),得到坐标轴相应的指令 位置,与通过位置采样所获得的坐标轴的现时的实
0
Fi+1 = Fi -Ye
2.若沿+y向走一步,即
, yi1 yi 1 xi1 xi F x y x y i1 e i1 i1 e
于是有
y Pi+ 1
E(xe,ye)
第四章 插补原理与速度控制
![第四章 插补原理与速度控制](https://img.taocdn.com/s3/m/1c32aa8602d276a200292e0c.png)
n=6=N完
四象限直线插补
A2(-Xe,Ye)
A1(Xe,Ye)
A3(-Xe,-Ye) 直线插补各象限偏差符号和相应的进给方向
A4(Xe,-Ye)
(二)圆弧插补(第一象限顺圆插补)
1、偏差判别函数 2、偏差计算与进给方向 3、终点判别 4、举例
1、偏差判别函数
用P(x,y)表示某 一时刻刀具的位 置,则偏差函数 为: F=x2+y2-R2 F>0 在圆外 F<0 在圆内 F=0 在圆上
X11= X10=7 Y11= Y10+1=8
n=11<N
X12 =X11 -1=6 n=12=N Y12 = Y11=8 到达终 点
Y 8 6
B(6,8)
4
2
2
4
6
8
10
四个象限圆弧插补
F>0
F>0 F>0 F<0 F<0 F<0 F<0
F>0
F<0
F>0 F<0 F>0
F<0
F<0
F>0 F>0
+X +X,+Y +X
20-16=4 24-16=8 18-16=2 20-16=4
+X,+Y +X
+X,+Y +X +X,+Y +X +X,+Y
22-16=6 16-16=0
20-16=4 24-16=8 18-16=2 22-16=6 16-16=0
19-16=3
18-16=2
17-16=1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
插补开放分类:技术数控技术高新技术数控装置根据输入的零件程序的信息,将程序段所描述的曲线的起点、终点之间的空间进行数据密化,从而形成要求的轮廓轨迹,这种“数据密化”机能就称为“插补”。
编辑摘要插补- 概述机构按预定的轨迹运动。
一般情况是一致运动轨迹的起点坐标、终点坐标和轨迹的曲线方程,由数控系统实施地算出各个中间点的坐标。
在数控机床中,刀具不能严格地按照要求加工的曲线运动,只能用折线轨迹逼近所要加工的曲线。
机床数控系统依照一定方法确定刀具运动轨迹的过程。
也可以说,已知曲线上的某些数据,按照某种算法计算已知点之间的中间点的方法,也称为“数据点的密化”。
数控装置根据输入的零件程序的信息,将程序段所描述的曲线的起点、终点之间的空间进行数据密化,从而形成要求的轮廓轨迹,这种“数据密化”机能就称为“插补”。
插补计算就是数控装置根据输入的基本数据,通过计算,把工件轮廓的形状描述出来,边计算边根据计算结果向各坐标发出进给脉冲,对应每个脉冲,机床在响应的坐标方向上移动一个脉冲当量的距离,从而将工件加工出所需要轮廓的形状。
插补- 分类1、直线插补直线插补(Llne Interpolation)这是车床上常用的一种插补方式,在此方式中,两点间的插补沿着直线的点群来逼近,沿此直线控制刀具的运动。
一个零件的轮廓往往是多种多样的,有直线,有圆弧,也有可能是任意曲线,样条线等. 数控机床的刀具往往是不能以曲线的实际轮廓去走刀的,而是近似地以若干条很小的直线去走刀,走刀的方向一般是x和y方向. 插补方式有:直线插补,圆弧插补,抛物线插补,样条线插补等所谓直线插补就是只能用于实际轮廓是直线的插补方式(如果不是直线,也可以用逼近的方式把曲线用一段段线段去逼近,从而每一段线段就可以用直线插补了).首先假设在实际轮廓起始点处沿x方向走一小段(一个脉冲当量),发现终点在实际轮廓的下方,则下一条线段沿y方向走一小段,此时如果线段终点还在实际轮廓下方,则继续沿y方向走一小段,直到在实际轮廓上方以后,再向x方向走一小段,依次循环类推.直到到达轮廓终点为止.这样,实际轮廓就由一段段的折线拼接而成,虽然是折线,但是如果我们每一段走刀线段都非常小(在精度允许范围内),那么此段折线和实际轮廓还是可以近似地看成相同的曲线的--------这就是直线插补.2、圆弧插补圆弧插补(Circula : Interpolation)这是一种插补方式,在此方式中,根据两端点间的插补数字信息,计算出逼近实际圆弧的点群,控制刀具沿这些点运动,加工出圆弧曲线。
3、刀具半径补偿刀具半径补偿(Cutter Compensation)垂直于刀具轨迹的位移,用来修正实际的刀具半径与编程的刀具半径的差异。
数控系统刀具半径补偿的含义是将刀具中心轨迹,沿着程编轨迹偏置一个距离,加工程序与刀具半径大小无关,它的功能是仅用一个程序就可以完成粗、精加工,或采用不同刀具直径加工时,可以不要重写加工程序。
通常刀具半径补偿功能仅适用于二维编程加工,数控系统中规定沿着刀具加工方向向右偏置,称为右补,采用指令G42;向左偏置,称为左补,采用指令G41。
插补- 原理在实际加工中,被加工工件的轮廓形状千差万别,严格说来,为了满足几何尺寸精度的要求,刀具中心轨迹应该准确地依照工件的轮廓形状来生成,对于简单的曲线数控系统可以比较容易实现,但对于较复杂的形状,若直接生成会使算法变得很复杂,计算机的工作量也相应地大大增加,因此,实际应用中,常采用一小段直线或圆弧去进行拟合就可满足精度要求(也有需要抛物线和高次曲线拟合的情况),这种拟合方法就是“插补”,实质上插补就是数据密化的过程。
数控车床的运动控制中,工作台(刀具)X、Y、Z轴的最小移动单位是一个脉冲当量。
因此,刀具的运动轨迹是具有极小台阶所组成的折线(数据点密化)。
例如,用数控车床加工直线OA、曲线OB,刀具是沿X轴移动一步或几步(一个或几个脉冲当量Dx),再沿Y轴方向移动一步或几步(一个或几个脉冲当量Dy),直至到达目标点。
从而合成所需的运动轨迹(直线或曲线)。
数控系统根据给定的直线、圆弧(曲线)函数,在理想的轨迹上的已知点之间,进行数据点密化,确定一些中间点的方法,称为插补。
插补的任务是根据进给速度的要求,在轮廓起点和终点之间计算出若干个中间点的坐标值,每个中间点计算所需时间直接影响系统的控制速度,而插补中间点坐标值的计算精度又影响到数控系统的控制精度,因此,插补算法是整个数控系统控制的核心。
插补- 算法插补算法经过几十年的发展,不断成熟,种类很多。
一般说来,从产生的数学模型来分,主要有直线插补、二次曲线插补等;从插补计算输出的数值形式来分,主要有脉冲增量插补(也称为基准脉冲插补)和数据采样插补。
1、数字积分插补数字积分插补是脉冲增量插补的一种。
下面将首先阐述一下脉冲增量插补的工作原理。
2、脉冲增量插补脉冲增量插补是行程标量插补,每次插补结束产生一个行程增量,以脉冲的方式输出。
这种插补算法主要应用在开环数控系统中,在插补计算过程中不断向各坐标轴发出互相协调的进给脉冲,驱动电机运动。
一个脉冲所产生的坐标轴移动量叫做脉冲当量。
脉冲当量是脉冲分配的基本单位,按机床设计的加工精度选定,普通精度的机床一般取脉冲当量为:0.01mm,较精密的机床取1 或0.5 。
采用脉冲增量插补算法的数控系统,其坐标轴进给速度主要受插补程序运行时间的限制,一般为1~3m/min。
脉冲增量插补主要有逐点比较法、数据积分插补法等。
逐点比较法最初称为区域判别法,或代数运算法,或醉步式近似法。
这种方法的原理是:计算机在控制加工过程中,能逐点地计算和判别加工偏差,以控制坐标进给,按规定图形加工出所需要的工件,用步进电机或电液脉冲马达拖动机床,其进给方式是步进式的,插补器控制机床。
逐点比较法既可以实现直线插补也可以实现圆弧等插补,它的特点是运算直观,插补误差小于一个脉冲当量,输出脉冲均匀,速度变化小,调节方便,因此在两个坐标开环的CNC系统中应用比较普遍。
但这种方法不能实现多轴联动,其应用范围受到了很大限制。
[1]数控装置的插补原理2008年3月17日22:32:28 发布:sunlight数控装置CNC的插补原理一、插补的概念为了加工零件的轮廓,在加工过程中,需要保证刀具相对工件时刻运动的位置是在零件轮廓的轨迹上,这就需要知道不同时刻刀具相对工件运动的位置坐标,以便实现位置控制。
而在零件加工程序中仅提供了描述轮廓线形所必须的参数:直线—起点和终点坐标;圆弧—起点、终点坐标以及顺圆或逆圆。
这就需要在加工(运动)过程中,实时地根据给定轮廓线形和给定进给速度要求计算出不同时刻刀具相对工件的位置,即起点和终点之间的若干个中间点。
这就是插补的概念。
插补定义:插补就是根据给定进给速度给定轮廓线形的要求,在轮廓已知点之间,确定一些中间点的方法,称为插补方法或插补原理。
每种线形的插补方法,有可以有不同的计算方法来实现,那么,具体实现插补原理的计算方法称为插补算法。
插补算法的优劣直接影响CNC系统的性能指标。
二、评价插补算法的指标1.稳定性指标插补运算是一种迭代运算,即由上一次计算结果求得本次的计算结果:X i=X i-1+Δi。
作为数值计算,每次计算会存在计算误差和舍入误差。
计算误差:指由于采用近似计算而产生的误差;舍入误差:指计算结果圆整时所产生的误差。
对于某一算法,误差可能不随迭代次数的增加而积累,而另一算法误差可能随迭代的次数增加而积累,那么,一种算法对计算误差和舍入误差有没有积累效应,就是算法的稳定性。
为了确保轮廓加工精度,插补算法必须是稳定的。
插补算法稳定的充分必要条件是,在插补计算过程中,其舍入误差和计算误差不随迭代次数的增加而积累。
2.插补精度指标插补精度指插补轮廓与给定轮廓的符合程度,可用插补误差来评价。
插补误差包括:逼近误差δa、计算误差δc、圆整误差δr。
逼近误差和计算误差与插补算法密切相关。
要求:插补误差(轨迹误差)不大于系统的最小运动指令或脉冲当量。
3.合成速度的均匀性指标合成速度的均匀性是指插补运算输出的各轴进给量,经运动合成的实际速度与给定的进给速度的符合程度,由速度不均匀系数描述:式中,F—给定的进给速度;Fc—实际合成进给速度。
合成进给速度F c是给定进给速度经过一系列变换得到的,变化过程必产生误差,后果是F c 偏离F或F c在F上下波动。
若偏离或波动过大,势必会影响零件的加工质量和生产率。
波动过大,严重时造成加工过程中的过大振动和噪声,降低刀具、机床的使用寿命。
4.插补算法要尽可能简单,要便于编程三、插补方法的分类1.脉冲增量插补(行程标量插补)这类算法的特点是:(1)每次插补的结果仅产生一个单位的位移增量(一个脉冲当量),以一个脉冲的方式输出给步进电机。
基本思想是:用折线逼近曲线。
(2)插补速度与进给速度密切相关。
还受步进电机最高运行频率的限制。
(3)脉冲增量插补的实现方法比较简单(通常只用加法和移位运算)用于采用步进电机驱动的CNC系统。
2. 数字增量法(时间标量插补)这类算法的特点是:(1)插补程序以一定的时间间隔(插补周期)运行,在每个插补周期内,根据进给速度计算出各坐标轴在下一插补周期内的位移增量(数字量)。
基本思想是:用直线段(内接弦线、内外均差弦线、切线)来逼近曲线。
(2)插补运算速度与进给速度无严格的关系。
可达到较高进给速度。
(3)实现算法较脉冲增量插补复杂,对计算机运算速度有一定要求。
主要用于交、直流伺服电机驱动的闭环、半闭环CNC系统。
也可用于步进电机开环系统。
数控系统读书笔记-----插补原理发布时间:2008-11-07 19:25:17技术类别:工业控制1.插补的基本概念说白了,插补就是如何移动(刀具,工件)以生成相应的形状的方法。
很多算法是图形学中的算法的变体而已。
决定坐标轴联动过程中各坐标轴的运动顺序、位移、方向和速度的协调过程即为插补。
(interpolation)在CNC中,插补功能由软件或者软硬件结合来实现,称为插补器。
插补器基本要求:(1)插补所需的原始数据较少。
(2)有较高的插补精度,插补结果没有累计误差,局部偏差不能超过允许的误差(一般应保证小于规定的分辨率)。
(3)沿进给路线,进给速度恒定且符合加工要求。
(4)硬件实现简单可靠,软件算法简洁,计算速度快。
2.插补方法的分类A: 按软硬件完成的工作,可分为硬件插补器和软件插补器或者软硬结合。
B: 按数学模型来分,有一次(直线)插补器,二次(圆,抛物线等)插补器及高次曲线插补器等,大多数数控机床的数控装置都具有直线插补器和圆弧插补器。
C: 根据插补所采用的原理和计算方法的不同,可有许多插补方法,可分为脉冲增量插补和数字增量插补两类。