塔吊基础计算书及施工方案
塔吊基础计算书

CG5512塔吊基础计算书1.工程概况(略)2.塔吊基础构造塔吊采用CGT5512附着式塔式起重机,工作臂长40米,最大起重量6吨,最大起重力矩为800千牛米。
扶墙设置一道。
塔吊基础采用C30钢筋混凝土基础,基础平面尺寸为6mX6m,基础深度为1.5m。
地基承载力不小于200Kpa。
图1. 塔吊基础构造图3.塔吊基础设计3.1设计规范《塔式起重机混凝土基础工程技术规程》JGJ/T187-2009《混凝土结构设计规范》GB50010-2010《建筑桩基技术规范》JGJ94-2008《建筑地基基础设计规范》GB50007-20113.2设计荷载工作工况:塔机自重标准值Fk1:449kN;起重荷载标准值Fqk(kN):60 kN;竖向荷载标准值Fk:509 kN;水平荷载标准值Fvk:31 kN;倾覆力矩标准值Mk:1039 kN·m。
非工作工况:竖向荷载标准值Fk:449 kN;水平荷载标准值Fvk:71 kN;倾覆力矩标准值Mk:1668 kN·m。
3.2.2.钢筋混凝土容重: 25KN/m34.结构计算4.1工作工况4.1.1荷载数据(1)作用在基础底部中心的荷载基础自重及上部土重标准值: G k = γm×b×l×d = 20.00×6.00×6.00×1.50 = 1080.00kN 基础自重及上部土重设计值: G = 1.35×G k = 1.35×1080.00= 1458.00kN(2)作用在基础底部的荷载标准组合荷载:F k = 509.00kNM kx = -662.30kN.mM ky = 46.50kN.m(3)作用在基础底部的荷载基本组合荷载:F = 687.15kNM x = -894.11kN.mM y = 62.77kN.m4.1.2荷载标准组合下的地基反力基础底面面积: A = b×l = 6.00×6.00=36.00m2荷载在X方向和Y方向都存在偏心基底最小反力标准值:p kmin = F k + G kA-|M kx|W x-|M ky|W y=509.00 + 1080.0036.00-662.3036.00-46.5036.00= 24.45kPa>0kPa 基底最大反力标准值:p kmax = F k + G kA+|M kx|W x+|M ky|W y=509.00 + 1080.0036.00+662.3036.00+46.5036.00= 63.83kPa4.1.3荷载基本组合下的地基反力荷载在X方向和Y方向都存在偏心基底最小反力设计值:p min = F + GA-|M x|W x-|M y|W y=687.15 + 1458.0036.00-894.1136.00-62.7736.00= 33.01kPa>0kPa 基底最大反力设计值:p max = F + GA+|M x|W x+|M y|W y=687.15 + 1458.0036.00+894.1136.00+62.7736.00= 86.17kP4.1.4地基承载验算修正后的地基承载力特征值: f a = 228.00kPa基底平均反力标准值: p k=44.14 kPa≤ f a=228.00kPa,满足要求基底最大反力标准值: p kmax=63.83kPa≤ 1.2f a=1.2×228.00=273.60kPa,满足要求4.1.5基础抗冲切验算(1)冲切验算公式按《建筑地基基础设计规范》(GB50007-2011)下列公式验算:F l≤ 0.7βhp f t a m h0(8.2.8-1)αm = (a t+a b)/2 (8.2.8-2)F l = p j A l(8.2.8-3)冲切力F1根据作用在基底净反力设计值求得,计算时pj取基底最大净反力对于多工况,冲切力为F1为各工况中的最大值验算柱对冲切时,对冲切锥体的每一侧面均按上述公式计算抗冲切力。
塔吊四桩基础的计算书(TC7020)

(TC7020)塔吊四桩基础的计算书依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)。
二. 荷载计算1. 自重荷载及起重荷载1) 塔机自重标准值F k1=1260kN2) 基础以及覆土自重标准值G k=4.5×4.5×1.60×25=810kN3) 起重荷载标准值F qk=160kN2. 风荷载计算1) 工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值 (Wo=0.2kN/m 2)W k=0.8×1.59×1.95×1.2×0.2=0.60kN/m2q sk=1.2×0.60×0.35×2=0.50kN/mb. 塔机所受风荷载水平合力标准值F vk=q sk×H=0.50×46.50=23.25kNc. 基础顶面风荷载产生的力矩标准值M sk=0.5F vk×H=0.5×23.25×46.50=540.62kN.m2) 非工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值 (本地区 Wo=0.35kN/m 2)W k=0.8×1.62×1.95×1.2×0.35=1.06kN/m2q sk=1.2×1.06×0.35×2.00=0.89kN/mb. 塔机所受风荷载水平合力标准值F vk=q sk×H=0.89×46.50=41.46kNc. 基础顶面风荷载产生的力矩标准值M sk=0.5F vk×H=0.5×41.46×46.50=963.93kN.m3. 塔机的倾覆力矩工作状态下,标准组合的倾覆力矩标准值M k=1639+0.9×(1400+540.62)=3385.55kN.m非工作状态下,标准组合的倾覆力矩标准值M k=1639+963.93=2602.93kN.m三. 桩竖向力计算非工作状态下:Q k=(F k+G k)/n=(1260+810.00)/4=517.50kNQ kmax=(F k+G k)/n+(M k+F vk×h)/L=(1260+810)/4+Abs(2602.93+41.46×1.60)/4.95=1056.85kNQ kmin=(F k+G k-F lk)/n-(M k+F vk×h)/L=(1260+810-0)/4-Abs(2602.93+41.46×1.60)/4.95=-21.85kN工作状态下:Q k=(F k+G k+F qk)/n=(1260+810.00+160)/4=557.50kNQ kmax=(F k+G k+F qk)/n+(M k+F vk×h)/L=(1260+810+160)/4+Abs(3385.55+23.25×1.60)/4.95=1249.11kNQ kmin=(F k+G k+F qk-F lk)/n-(M k+F vk×h)/L=(1260+810+160-0)/4-Abs(3385.55+23.25×1.60)/4.95=-134.11kN四. 承台受弯计算1. 荷载计算不计承台自重及其上土重,第i桩的竖向力反力设计值:工作状态下:最大压力 N i=1.35×(F k+F qk)/n+1.35×(M k+F vk×h)/L=1.35×(1260+160)/4+1.35×(3385.55+23.25×1.60)/4.95=1412.92kN 最大拔力 N i=1.35×(F k+F qk)/n-1.35×(M k+F vk×h)/L=1.35×(1260+160)/4-1.35×(3385.55+23.25×1.60)/4.95=-454.42kN 非工作状态下:最大压力 N i=1.35×F k/n+1.35×(M k+F vk×h)/L=1.35×1260/4+1.35×(2602.93+41.46×1.60)/4.95=1153.38kN最大拔力 N i=1.35×F k/n-1.35×(M k+F vk×h)/L=1.35×1260/4-1.35×(2602.93+41.46×1.60)/4.95=-302.88kN2. 弯矩的计算依据《塔式起重机混凝土基础工程技术规程》第6.4.2条其中 M x,M y1──计算截面处XY方向的弯矩设计值(kN.m);x i,y i──单桩相对承台中心轴的XY方向距离(m);N i──不计承台自重及其上土重,第i桩的竖向反力设计值(kN)。
塔吊基础计算书及施工方案

江门海伦湾1#塔吊基础计算书及施工方案编制单位:湖北楚雄建筑工程有限公司【江门海伦湾】项目部2011年08月07日目录一、工程概况…………………………………………………………………。
2二、塔吊平面布置图 (3)三、场区岩土参数及地质情况 (3)四、计算考虑的数据 (4)五、四桩基础计算书 (5)六、施工控制要点…………………………………………………………。
.。
.9七、附图 (12)1#塔吊基础计算及施工方案工程名称:江门外海高新区项目建设单位:江门市泰山房地产发展有限公司勘察单位:江门市建筑设计院设计单位:广东省建筑艺术设计院有限公司监理单位:深圳市宝安区建设监理有限公司施工单位:湖北楚雄建筑工程有限公司一、工程概况本工程由广东省建筑艺术设计院有限公司设计;江门市建筑设计院承接岩土工程勘本工程位于江门市高新技术开发区,东面紧临西江边正对中山古镇,西面目前为鱼塘,临近江海大桥收费站,南北处于轻轨江海站与外海大桥之间,交通十分便利,拟建场的四周为本项目的市政规划道路,项目开工前考虑先行回填作临时施工通道,场地的主出入口设于西北角.场区整体空旷,并且无高层建筑,不影响本塔吊的使用范围。
项目含联排别墅14栋、洋房10栋、高层9栋,幼儿园、会所各一栋、建筑面积144280平米(不含地下室)。
采用钢筋混凝土框架-剪力墙结构,地上高层建筑1~9栋为32层;首层均为架空层,车库顶板上面为园林园建,地下室为车库及设备用房。
二、塔吊平面布置经平面布置分析,本项目共定7台塔吊,分别以1~7#进行编号。
1#塔吊拟定于高层A1栋北侧,供A1A2栋及1#钢筋加工场使用;2#塔吊拟定于3栋东面,供3~4栋使用;3#塔吊位于6栋东面供5~7栋使用;4#塔吊位于8~9栋之间,供8~9栋使用;5~7#分别安置于洋房别墅区,供地下室及低层别墅区使用。
详见(附图:塔吊平面布置图)。
三、场区岩土参数及地质情况根椐《建筑抗震设计规范》GB50011-2010》,本工程建筑物的建筑抗震设防裂度为7度,设计基本地震加速度值为0.10g,设计地震分组为第一组.场地覆盖层厚度为14.1~28.3,等效剪切波速≤150/S。
塔吊基础工程施工方案(桩基)

塔吊基础工程施工方案(桩基)
一、施工准备
在进行塔吊基础工程施工前,需要做好以下准备工作: - 完成地面平整和清理
工作; - 准确定位和标定施工范围; - 准备好所需的施工材料和设备; - 制定详细
的施工计划; - 检查施工人员的安全防护用具。
二、桩基施工步骤
1. 钻孔
根据设计要求,确定桩的直径、深度和布置方式。
使用钻机在确定位置钻孔,
确保孔的直径和深度符合要求。
2. 筒灌
在钻孔内倒入混凝土,同时使用内筒和外筒进行压浆。
根据设计要求确定灌注
混凝土应达到的标高。
3. 钻孔回填
在灌注混凝土达到设计标高后,使用回填料将钻孔回填,确保灌注混凝土的固
结性和稳定性。
4. 桩顶标高调整
根据设计要求,对桩顶标高进行调整和校正,确保桩顶标高符合要求。
三、施工注意事项
在进行塔吊基础工程施工时,需要注意以下事项: - 施工现场应保持整洁,材
料码放整齐,确保施工安全; - 施工人员应按照规范操作,严格遵守施工程序; -
施工过程中应随时监测桩基施工质量,并对施工质量进行检查和验收。
四、施工结束
完成桩基施工后,进行施工进度记录和质量验收。
确保施工质量符合设计要求,达到安全稳定的工程要求。
塔吊基础工程施工方案(桩基)的施工过程中,上述步骤和注意事项是至关重要的,只有严格按照要求进行施工,才能保证工程质量和安全性。
塔吊基础计算书

塔吊分项参数计算塔吊是施工场地最重要的施工机械之一,其使用贯穿了整个工程。
在这过程中间隔时间长,不可预见性因素多,为确保塔吊的安全,以下计算都按极限苛刻条件下能保证塔吊正常工作计算。
即:塔吊设置在最大开挖深度处;型钢柱与混凝土灌注桩连接按光滑面锚固。
(计算详值见计算表格) 1. 基础竖向极限承载力计算F=F1+ F2F ——基础竖向极限承载力kn F1——塔吊自重(包括压重)kn F2最大起吊重量kn 2.单桩抗压承载力、抗拔力计算桩顶竖向力的计算(依据《建筑桩技术规范》JGJ94-94的第条)F 十。
iV V-A- M =1.2 —±士 弱尹2" Z* ("+”计算结果为抗压,“-”为抗拔)其中 N i ——单桩桩顶竖向力设计值kNn 单桩个数,n=4;F ——作用于桩基承台顶面的竖向力设计值TG ——塔吊基础重量KNMx,My 承台底面的弯矩设计值kN.mxi,yi 单桩相对承台中心轴的XY 方向距离mM ——塔吊的倾覆力矩kN.m3.桩长以及桩径计算 桩采用钻孔灌注桩R =f A +U £ f l >R = N xgk 实际 ppp s ii1U P =n d其中Rk 实际一一实际钻孔灌注桩承载能力KN桩端面承载能力KN桩侧摩擦阻力总和IUp£fsliKNR——单桩轴向承力安全值KN孔一一桩安全系数取2d桩直径m4.桩抗拔验算Ok=入RQk八k实际5.桩配筋计算桩身配筋率可取0.20%〜0.65% (计算取上限0.65%),抗压主筋不应少于6①10,箍筋采用不少于①6@3mm的螺旋箍筋,在桩顶5倍桩身直径范围内箍筋①6@1mm,每隔2m设一道2①12焊接加强箍筋。
As = S桩截面*配筋率n = 4As/ (n 巾2)其中n ——竖筋根数根As ——钢筋总截面积m①一一竖筋直径m6.桩上部钢支柱计算钢支柱采用 hxbxtwxt = 350 * 350 x 12 x 19, H 型钢。
塔吊施工专项方案 计算书

塔吊基础计算书一、参数信息塔吊型号:QTZ63,塔吊起升高度H:70.00m,塔身宽度B:2.5m,基础埋深d:2.00m,自重G:1350kN,基础承台厚度hc:1.50m,最大起重荷载Q:60kN,基础承台宽度Bc:6.00m,混凝土强度等级:C30,钢筋级别:RRB400,基础底面配筋直径:18mm额定起重力矩Me:630kN·m,基础所受的水平力P:30kN,标准节长度b:2.8m,主弦杆材料:角钢/方钢,宽度/直径c:120mm,所处城市:广州,基本风压ω0:0.25kN/m2,地面粗糙度类别:B类田野乡村,风荷载高度变化系数μz:1.86。
二、塔吊对交叉梁中心作用力的计算1、塔吊竖向力计算塔吊自重:G=1350kN;塔吊最大起重荷载:Q=60kN;作用于塔吊的竖向力:F k=G+Q=1350+60=1410kN;2、塔吊风荷载计算依据《建筑结构荷载规范》(GB50009-2001)中风荷载体型系数:地处广州,基本风压为ω0=0.25kN/m2;查表得:风荷载高度变化系数μz=1.86;挡风系数计算:φ=[3B+2b+(4B2+b2)1/2]c/(Bb)=[(3×2.5+2×2.8+(4×2.52+2.82)0.5)×0.12]/(2.5×2.8)=0.323;因为是角钢/方钢,体型系数μs=2.354;高度z处的风振系数取:βz=1.0;所以风荷载设计值为:ω=0.7×βz×μs×μz×ω0=0.7×1.00×2.354×1.86×0.25=0.766kN/m2;3、塔吊弯矩计算风荷载对塔吊基础产生的弯矩计算:Mω=ω×φ×B×H×H×0.5=0.766×0.323×2.5×70×70×0.5=1515.435kN·m;M kmax=Me+Mω+P×h c=630+1515.435+30×1.5=2190.44kN·m;三、塔吊抗倾覆稳定验算基础抗倾覆稳定性按下式计算:e=M k/(F k+G k)≤Bc/3式中e──偏心距,即地面反力的合力至基础中心的距离;M k──作用在基础上的弯矩;F k──作用在基础上的垂直载荷;G k──混凝土基础重力,G k=25×6×6×1.5=1350kN;Bc──为基础的底面宽度;计算得:e=2190.44/(1410+1350)=0.794m<6/3=2m;基础抗倾覆稳定性满足要求!四、地基承载力验算依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。
塔吊基础计算书

塔吊桩基础计算书一、参数信息塔吊型号:QZT63(5013),自重(包括压重)F 1=1100.00 kN,最大起重荷载F 2=50.00 kN 。
塔吊倾覆力距M=1600.00kN.m,塔身宽度B=1.60m 。
混凝土强度:C35P8,四边形承台边长Lc=5.00m 。
桩直径d=0.60m,桩间距a=3.00m,承台厚度Hc=1.35m ,桩入土深度为15.00m 。
基础顶标高为车库筏板上平标高,D=0。
二、塔吊基础承台顶面的竖向力与弯矩计算1、塔吊自重(包括压重)F 1=1100.00 kN2、塔吊最大起重荷载F 2=50.00 kN作用于桩基承台顶面的竖向力 F=1.2×(F 1+F 2)=1380.00kN塔吊的倾覆力矩 M=1.4×1600.00=2240.00kN.m三、矩形承台弯矩的计算计算简图:c图中x 轴的方向是随机变化的,设计计算时应按照倾覆力矩M 最不利方向进行验算。
1、 桩顶竖向力的计算(依据《建筑桩技术规范》JGJ94-2008。
其中 n──单桩个数,n=4;F──作用于桩基承台顶面的竖向力设计值,F=1.2×1150.00=1380.00kN;G──桩基承台的自重,G=1.2×(25.0×Bc×Bc×Hc+20.0×Bc×Bc ×D)=1072.50kN;Mx,My──承台底面的弯矩设计值(kN.m);x i,y i──单桩相对承台中心轴的XY方向距离(m);N i──单桩桩顶竖向力设计值(kN)。
经计算得到单桩桩顶竖向力设计值:最大压力:N=(F+G)/4+M*(a/1.414)/[2*(a/1.414)2] (M为塔吊的倾覆力矩,a 为桩间距)N=(1380.00+1072.50)/4+2240.00×(3.00/1.414)/[2×(3.00/1.414) ^2]=1141.02kN2、矩形承台弯矩的计算(依据《建筑桩技术规范》JGJ94-2008。
塔吊基础施工方案及地基承载力计算书(最终版)

目录一、编制依据 (1)二、工程概况 (1)三、塔吊设计参数 (2)四、塔吊基础设计 (4)五、塔吊基础施工技术措施及质量验收 (5)六、塔吊穿地下室处理措施 (7)七、塔吊基础计算书 (9)1. 参数信息 (9)2. 基础最小尺寸确定 (9)3、塔吊基础承台顶面的竖向力和弯矩确定 (9)4、矩形承台弯矩及单桩桩顶竖向力的计算 (10)5、矩形承台截面主筋的计算 (10)6、桩承载力验算 (11)7、桩竖向承载力验算 (12)8、塔吊稳定性验算: (12)附图: (13)高层塔吊基础施工方案一、编制依据1、本工程施工组织设计;2、哈尔滨世茂滨江新城三期三区工程岩土工程勘察报告;3、GB50202-2002《地基与基础施工质量验收规范》;4、GB50205-2001《钢结构工程施工质量验收规范》;5、GB50007-2002《建筑地基基础设计规范》;6、GB50017-2003《钢结构设计规范》;7、JGJ33-2001《建筑机械使用安全技术规程》;8、JGJ94-2008《建筑桩基技术规范》;9、本工程设计图纸;10、长沙中联重工科技发展股份公司生产的QTZ63(TCT5010-4)型平头塔式起重机使用说明书。
二、工程概况1、工程名称:哈尔滨世茂滨江新城三期三区项目2、建设单位:哈尔滨世茂滨江新城开发建设有限公司3、监理单位:北京中建工程顾问有限公司4、施工单位:中建三局第三建设工程有限责任公司5、建设地点:哈尔滨市松北区世茂大道西端。
6、结构形式:地下室部分为框剪结构,主体为剪力墙结构7、建设规模:哈尔滨世茂滨江新城三期三区工程位于哈尔滨市松北区三环路以西,四环以东,世茂大道以南,松花江以北。
本工程拟建11栋高层,其中三栋21层,五栋18层,三栋15层;69栋别墅,层数为2 -3层。
建筑用地面积174545.60㎡,代征半道、绿地等面积22481.77㎡。
各栋高层层数及建筑高度如下表:项目设计使用功能高档住宅及配套地下车库单体数量11建筑层数地上/地下68#-70#(15/1);71#-73#、75#、78#(18/1);74#、79#、80#(21/1)建筑高度68#-70#楼—45.9m;71#、72#楼—55.1m;73#、75#、78#楼—54.6m;74#、79#、80#楼—63.9m本工程11栋高层除78#和79#高层共用一台塔吊外,其余各栋均设置一台塔吊共布置10台塔吊。
塔吊基础计算书

塔吊基础计算书一、编制依据2.1、《塔式起重机使用说明书》2.2《岩土工程勘察报告》2.3《建筑地基基础设计规范》(GB50007-2002)2.6《地基与基础施工及验收规范》(GBJ202-83)2.7《混凝土结构设计规范》(GB50010-2002)2.8《混凝土结构工程施工及验收规范》(GB50204-92)二、工程概况一、计算系数塔吊型号:广西QTZ80(TCT5512)工作幅度:50m;塔吊起升高度:128.50m;塔身宽度B:1.7m;标准节长度b:5.0m;塔吊自重(包括压重)G:777KN,最大起重荷载Q:60KN。
主弦杆材料:角钢/方钢;宽度/直径C:120mm;定额起重力矩Me:885K N·M;基础所受水平力:30KN;基础形式:桩承台;承台宽度Bc: 3.60m;承台高度Hc:1.0m;承台砼强度等级:C30;承台钢筋级别:HPB235,HRB400;所处城市:广西玉林市,基本风压W0:0.25kn/㎡;地面粗糙度类别:C类有密集建筑群的城市郊区,风荷载高度变化系数Hz:1.7。
二、塔吊对基础中心作用力的计算按受力最大的塔吊自由高度44m计算1、塔吊竖向力计算:塔吊自重G: G=523KN塔吊最大起重荷载Q:Q=60KN作用于塔吊基础的竖向力Fk: Fk=Q+G=60+523=583KN2、塔吊风荷载计算:依据《建筑结构荷载规范》(GB5009-2001)中风荷载体型系数:地处广西玉林市,基本风压力W0=0.25KN/㎡查表得风荷载高度变化系数μz: μz=1.178挡风系数计算ψ=[3B+2b+(4B2+b2/4)1/2].C/B.b=[3×1.7+2×5+(4×1.72+52/4) 1/2]×0.12/1.7×5=0.273塔吊主材料是角钢/方钢,体形系数μs =2.481风振系数βz:βz=1.0风荷载设计值为:W=0.8βz×μs×μz×W0=0.8×1.0×2.481×1.178×0.25=0.585KN/㎡3、塔吊基础所受弯矩的计算:风荷载对塔吊基础产生的弯矩计算Mw=W×ψ×B×H×H×0.5=0.585×0.273×1.7×44×44×0.5=262.81KN-mMkmax=Mw+Mc+P×hc=261.81KN.m+989 KN.m+30 KN×1.0m=1280.81 KN.m三、承台内暗置挑梁配筋计算暗梁宽度b: 500mm, 暗梁高度h: 1000mm作用于桩基承台顶面的竖向力F: F=1.2Fk=1.2×583kn=699.6 kn作用于桩基承台顶面的弯矩M: M=Mw+M c=261.81 KN.m +989 KN.m =1250.81 KN.m 暗梁端承受的竖向力Fh: Fh=F/4=699.6kn/4=174.9 KN暗梁端承受的弯矩Mv: Mv=M/2=1250.81 KN.m /2=625.41 KN.m圆桩直径1250mm等效为方桩a: a=1250mm×0.8=1000mm计算简图:不考虑梁另一端竖向力产生的反向力弯矩作用,偏于安全,梁计算截面处的弯矩M1: M1=(Mv+Fn ×0.19m )=(625.41 KN.m +174.9 KN ×0.19m )=658.641 KN.m1、梁截面配筋计算依据《砼结构设计规范》(GB50010-2002)第7.5条受弯构件承载力计算,采用双排配筋。
塔吊基础计算书

塔吊基础计算书一、参数信息塔式起重机型号:QTZ80(5613)新乡克瑞重型机械科技股份有限公司。
最大载重量=6000.00kg(最大),标准节重量=860kg(每节高度1.65米),平衡重=14800kg,塔机自重(40米标准高度):40000kg,塔机基本高度40米。
基础搭设高度为:130.0m。
二、基础尺寸计算考虑到施工现场D轴至E轴交19轴至20轴桩基没有施工,塔吊基础要躲开桩基,所以塔吊基础形状及位置详见后附图。
实际塔吊基础底面积37.06平方米,混凝土基础形状详见后附图,混凝土强度等级:C35,基础厚度1.35米。
三、塔式起重机基础承载力计算(考虑动载、自重误差及风载对基础的影响,取系数n=2):当不考虑附着时的基础设计值计算公式:P=(2N总+1.2G)/基础底面积N总塔式起重机自重G为基础自重N总塔式起重机自重:N总=(N自重+N标准节+N平衡重+N最大起重量)*2=(40*9.8+0.86*9.8*43+14.8*9.8+6*9.8)*2=1916.5KNG=1.2*37.06*1.35*2.5*9.8=1470.92KNP=(2N总+1.2G) /基础底面积=(1916.5+1470.92)/37.06=91.04KPa根据以上计算,此基础需要承受最大承载力P=91.04Kpa。
根据塔吊厂家提供的塔吊基础图(见后附图)要求地基承载力为200KPa,塔吊基础尺寸5.3米*5.3米,基础底面积28.09平方米。
样本要求地基需承受的最大压力为5618KN。
实际施工中本工程依据河南省郑州地质工程勘察院2011年06月提供的《建正东方中心岩土工程勘察报告(详细勘察)》设计。
基础持力层为第8层粉土,天然地基承载力特征值为160kpa。
基础底面积37.06平方米,实际地基可以承受的最大压力为5929.6KN。
综上所述,本工程设计的塔吊基础满足计算需要最大承载力及塔机样本要求的地基需承受的最大压力,计算结论:本塔吊基础符合要求。
塔吊基础计算书(CFG桩复合地基)

塔吊桩基础计算书一. 参数信息塔吊型号: 中联QTZ80(5610)自重(包括压重): F1=694.3kN最大起重荷载: F2=60.00kN 塔吊倾覆力距: M=630.00kN.m塔吊起重高度: H=105.60m 塔身宽度: B=1.60m桩混凝土等级: C20 承台混凝土等级: C30 保护层厚度: 50mm 矩形承台边长: 6.00m承台厚度: Hc=1.350m 承台箍筋间距: S=200mm承台钢筋级别: Ⅱ级承台预埋件埋深: h=0.50m承台顶面埋深: D=5.000m 桩直径: d=0.400m桩间距: a=4.000m 桩钢筋级别: Ⅱ级桩入土深度: 23.0m 桩型与工艺: 干作业钻孔灌注桩二. 基础最小尺寸计算基础的最小厚度取:H=1.35m基础的最小宽度取:Bc=6.00m三. 塔吊基础承载力计算依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。
计算简图:由于偏心距 e=M/(F×1.2+G×1.2)=882.00/(904.8+5778.00)=0.13≤B/6=1.00所以按小偏心计算,计算公式如下:当考虑附着时的基础设计值计算公式:式中 F──塔吊作用于基础的竖向力,它包括塔吊自重,压重和最大起重荷载,F=754.3kN;G──基础自重与基础上面的土的自重,G=25.0×B c×B c×H c+20.0×B c×B c×D =4815.00kN;B c──基础底面的宽度,取B c=6.00m;W──基础底面的抵抗矩,W=B c×B c×B c/6=36.00m3;M──倾覆力矩,包括风荷载产生的力距和最大起重力距,M=1.4×630.00=882.00kN.m;经过计算得到:最大压力设计值 P max=1.2×(754.3+4815.00)/6.002+882.00/36.00=210.14kPa最小压力设计值 P min=1.2×(754,3+4815.00)/6.002-882.00/36.00=161.14kPa有附着的压力设计值 P k=1.2×(754.3+4815.00)/6.002=185.64kPa四. 地基基础承载力验算Quk =Qsk + Q pk = u ∑qsik l i + q pk * Ap=1.257 (0.35*35+1.5*40+1.8*50+6.4*70+3*50+9.95*60) +2500*0.126=2021.06kN按规范安全系数标准计算单桩竖向承载力特征值Ra = Quk/2 =1010.53 kN复合地基承载力计算桩间距4m,采用正方形或矩形布桩m =0.0157取β=0.80fsp,k=m*Ra/Ap+β*(1-m)*fs,k= 0.0157*1010.53/0.1256+0.8*(1-0.0157)*120= 218.81kPa> P K偏心荷载作用:1.2×fsp,k=262.57 kPa >P kmax=210.14kPa满足要求。
塔吊基础计算书

塔吊基础计算书一、塔吊基本参数(按起重臂下自由高度40m计算)1.塔帽、驾驶室、转盘等合计:G1=90KN2.起重臂重合计:G2=75KN3.平衡臂重合计:G3=60KN4.配重合计:G4=120KN5.标准节14节合计:G5=168KN6.起重量1.3—6吨:即Q1=13—60KN7.起升速度:V=1m/秒8.起重机旋转速度:n=0.6r/min9.制动时间:按0.2秒计算10.起重机倾斜按3‰考虑11.Q2 基础自重:5*5*1.35*2450kg*10=827kN12.根据建设单位提供的地质勘察报告地基承载力满足要求二、工作状态下稳定性验算:(倾覆点O1)1、起重机重力矩M1=G4*16.5+G3*9.5+(G1+G5)*2.5-G2*20=120*16.5+60*9.5+(90+168)*2.5+960*2.5-75*20=4095KN.m2、起重力矩M2=870KN.m3、工作力矩M3=M2V/gt=870*1/(900-40*0.62)=770KN.m4、旋转力矩M4=M2n2h/(900-Hn2)=870*0.62*40/(900-40*0.62)=14.14KN.m5、风压力矩M5=10.2*20+5*40=404KN.m6、倾斜力矩M6=(G1+G2+G3+G4+G5+Q2)*3‰*∑G/(Q2+∑G)*40=(90+75+60+120+168+827)*3‰*513/(827+513)*40=61.56KN.m K=(M1-M3-M4-M5-M6)/M2=(4095-770-14.1-404-61.56)/870=3.27>1.15 稳定三、工作状态(倾覆点Q2)1、M=(G1+G5+Q2)*2.5+G2*25-G3*4.5-G4*11.5=2937.5KN.m2、其余同第二节K=(M-M3-M4-M5-M6)/M2=(2937.5-637-14.14-404-61.56)/870=2.09>1.15 稳定四、非工作状态(倾覆点O2)1.M1=2850—2937.5KN.m 取M1=2850KN.m(最低高度)2.M5按0.6KN/m2计算:N1=40.8KN M5=40.8*14.14=576.9KN.m3.M6=61.56KN.m4.K=M1/(M5+M6)=2850/(576.9+61.56)=4.46>1.15 稳定。
塔吊基础计算书

矩形板式基础计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《混凝土结构设计规范》GB50010-20103、《建筑地基基础设计规范》GB50007-2011一、塔机属性塔机型号QTZ80(TC6013A-6)-中联重科塔机独立状态的最大起吊高度H0(m) 46塔机独立状态的计算高度H(m) 48塔身桁架结构方钢管塔身桁架结构宽度B(m) 1.8二、塔机荷载塔机竖向荷载简图1、塔机自身荷载标准值塔身自重G0(kN) 262.15起重臂自重G1(kN) 772、风荷载标准值ωk(kN/m2)3、塔机传递至基础荷载标准值4、塔机传递至基础荷载设计值倾覆力矩设计值M'(kN·m) 1.2×(77×30+3.8××14.1-168×13.6)+1.4×0.5×43.334×48=693.962 三、基础验算基础布置图基础布置基础长l(m) 5.5 基础宽b(m) 5.5 基础高度h(m) 1.6基础参数基础混凝土强度等级C35 基础混凝土自重γc(kN/m3) 25 基础上部覆土厚度h’(m)0 基础上部覆土的重度γ’(kN/m3) 19 基础混凝土保护层厚度δ(mm)50地基参数地基承载力特征值f ak(kPa) 550 基础宽度的地基承载力修正系数ηb0基础及其上土的自重荷载标准值:G k=blhγc=5.5×5.5×1.6×25=1210kN基础及其上土的自重荷载设计值:G=1.2G k=1.2×1210=1452kN荷载效应标准组合时,平行基础边长方向受力:M k''=G1R G1+G2R Qmax-G3R G3-G4R G4+0.9×(M2+0.5F vk H/1.2)=77×30+3.8××14.1-168×13.6+0.9×(1120.8+0.5×24.162×48/1.2)=870.07kN·mF vk''=F vk/1.2=24.162/1.2=20.135kN荷载效应基本组合时,平行基础边长方向受力:M''=1.2×(G1R G1+G2R Qmax-G3R G3-G4R G4)+1.4×0.9×(M2+0.5F vk H/1.2) =1.2×(77×30+3.8××14.1-168×13.6)+1.4×0.9×(1120.8+0.5×24.162×48/1.2)=1332.811kN·mF v''=F v/1.2=33.827/1.2=28.189kN基础长宽比:l/b=5.5/5.5=1≤1.1,基础计算形式为方形基础。
塔吊基础计算书

塔吊基础计算书一、塔吊型号TQZ60本工程根据建筑物高度需要,塔设高度为58m,吊钩有效高度50m,基础表面受力情况如下:工作状态下:基础顶部所受的水平力H=24.5KN,基础所受的垂直力P=555KN,基础所受倾翻力矩M1=1252KN.M基础所受的扭矩M2=67KN.M非工作状态下:H=24.5KN,P=555KN,M1=1796KN.m,M2=0KN.m。
以上数据属生产厂家提供,根据使用说明书要求地基承载力必须达到120KN/m2以上。
而现场地质报告,安装塔吊地基承载力达不到以上要求。
所以本工程拟采用预制管桩基础,单桩承载力为650KN,承台尺寸为600*600*130cm。
二、桩基计算:基础埋深1.4米,基底以上结构及覆土总重量G=γAh=20×6×6×1.4=1008KN桩基数量:n=(N+G)/R=(555+1008)/650=2.4 取n=4 根据地质报告提供资料q工作=45Kpa,q非工作=60KpaΦ500管桩端阻力为500Kpa。
R=(45×2+60×8)×3.14×0.5+3.14×0.52÷4×5000=187.9KN满足要求,设计有效桩长为10米。
187.9>2R=130KN满足要求三、单桩承载力验算:承台底部弯矩(取M1=1796KN·M)M=M1+Hh=1796+24.5×1.3=1827.85 KN·MM max=(F+G)/N+(M x y i)/∑y i=(555+1008)/4+(1827.85×1.75)/4×1.752=651.87KN<125R=812.5KN 满足要求N=(555+1008)/4=390.75<R 满足要求四、承台设计1.承台尺寸为600*600*130cm 砼强度C25f ck=17.0N/mm2f cmk=18.5N/mm2f tk=1.75N/mm2R g=310KN h0=125 桩顶埋入承台5cm承台的冲切、抗剪及抗弯验算的桩净反力为N=N max-G/N=651.87-1008/4=399.87KN2.承台冲切验算:μm=4×(2+3.5)/2=11m h0=1250.75f tkμm h0=0.75×1.75×11×1.25×103=1804.69KNKF c=2.2×555=1221<1804KN 满足要求3.受剪计算:最大剪力V=651KV=1.55×399.87×2=1239.60KN0.07×17.0×2.5×1.25×103=3718.75KN 满足要求4.承台的弯矩及配筋计算:M=∑Nx i=2×399.87×1.75=1399.545KN·MA g=(1.4×1399.545×104)/(0.9×1.25×3100)=28.09cm2取30Φ16=3Ag=2.011×30=40.22 双向配筋Φ16@200 五、底板配筋:底板高度h=400mm,h0=360mm,砼强度C25(f c=12.5N/mm2,f cm=13.5N/mm2),Ⅱ级钢筋f y=310N/mm2。
塔吊基础设计计算书(实例剖析)

塔吊基础设计计算书(实例)**建筑公司**处**施工项目塔吊基础设计计算书计算:闫宗权审核:陈俊一、工程概况施工项目为13层住宅,其中地下室一层,建筑总高为42米,结构形式为框剪;塔吊选用昆明产*** 型塔吊。
二、基础计算1、已知条件:塔吊总重:920KN[=(自重+其他活载)×增大系数],塔吊搭设总高为50米,塔吊基础采用桩上承台基础,桩身混凝土采用C20,钢筋采用一级钢;承台基础混凝土为C30,钢筋采用二级钢;根据工程实际情况,采用工程桩桩径进行塔吊基础桩的施工,即桩采用426桩管,振动沉管灌注,成桩直径不少于450mm。
2、受力分析:从塔式起重设备的工作原理进行分析,该生产设备在以下方面对设备的安全使用关系相当重要:设备的基础,设备结构,设备结构的材料,设备的工作性能和操作系统;在计算中重点求出设备基础的稳定性及设备抗倾覆的能力;因该工程的塔吊设备由生产厂家进行安装和施工中的施工材料垂直运输操作,现只对设备基础进行计算。
根据设备厂家的要求,结合工程实际情况,本设备基础(以下简称基础)不能完全按厂家提供的基础图进行施工,根据基础的受力特点,除求出基础的垂直承载力外,还应求出塔吊在最不利荷载组合下对桩基的抗拔能力。
因此,根据前面的已知条件,同时按由昆明市建筑设计研究院对本施工项目进行的地质勘察报告中第33孔的土层勘察情况对桩基进行设计,该孔土层力学性能指标如下:土层号名称 Li qisk λi ui(1.413)①, 杂填土 1.3②粉质粉土 0.6 35④3 粉土 1.8 45④1 砾砂 4.1 50 0.6⑥粘土 2 42 0.75⑥4 粉砂 1.7 48 0.60⑥1 有机质土 2.4 48 0.75⑥4 粉砂 2 48 0.63、计算为满足塔吊对基础的稳定性要求,采用四桩承台,则:920000÷4=230000 N (即单桩最大承载力)按上述土层力学参数,求单桩极限抗拔力,考虑到本工程基坑开挖3米后对单桩抗拔力的影响,因此,从自然地面下3米开始根据各土层的力学性能指标进行计算:UK=Σλi .qsik .ui li=0.60×50×1.413×4.1+0.75×42×1.413×2.0+0.60×48×1.413×1.7+0.75×48×1.417×2.4+0.6×48×1.417×2=536.05Kqa<230Kpa(满足)桩身配筋计算:不考虑混凝土的抗拉强度,根据已知单桩总抗拔力为23000N计算,如采用一级钢筋,则:As=N/fC=230000/210=1095.24mm2选用8φ14=1231.51>1095.24mm2 (满足) 箍筋φ6@200/100承台计算:设H= 900 b×h=2.3×2.3按上述条件验算承台斜截面极限承载力,得:V=βfcb0h0 先求得β=0.0606按上式求得:V=0.0606×14.3×2300×900=1794KN>γ0V=1.2×230=270KN(安全等级安一级,则γ0=1.2 满足) 单桩极限承载力,与本基础同直径,桩长相近,但按纵向配筋为7φ1 2的工程桩通过静载试验,其极限抗压承载力最低为1600KN,同时已求得本基础承台在没含钢筋的情况下其抗剪能力大大超过实际承载力,固对单桩及承台的极限承载力不再进行计算,所以,承台配筋按设备厂家提供的配筋形式进行,即:Φ14@200双向双层,承台底和承台面均同时按此设置。
63塔吊基础施工方案计算书

塔吊基础设计计算书编制:审核:审批:一、1#塔吊设计:1、塔吊选择:本塔吊采用塔吊生产厂家提供的QTZ63型塔吊,塔吊基础长宽均为5m ,高1m 。
基础砼强度等级采用C35级,钢筋采用HRB400级。
QTZ63型塔式起重机主要性能及参数如下:2、技术参数:Fv=425(KN) M=630KN 。
m Fh=68KN3、确定基础尺寸:由地勘报告知,1#塔机基底所处位置地基承载力为160kpa ,原厂家设计塔吊基础对地基承载力要求不小于200kpa ,大于本工程的160kpa,故需在基础下部设一扩大的钢筋砼平台,以增大基底面积。
暂定平台尺寸为5000×5000×1000,做地基承载力验算。
4、力学演算天然基础尺寸为b ×b ×h=5m ×5m ×1。
3m 砼基础的重力Fg=5×5×1×25=625KN 地面容许压应力[P B ]=160KPa222/57.1,/7.16:35,/360:400mm N f mm N f C mm N f HRB t c y === 4。
1、地基承载力演算地基承载力为:f=25㎡×160KPa/10=400吨 塔吊结构自重:Fv=31吨塔吊基础自重:Fg=25×1.35×2。
5=84。
37吨 f=216吨>F=Fv+Fg=31+84。
37=115.37吨 所以,地基承载力能满足塔吊使用要求。
4.2塔吊抗倾覆演算()()2/751.07.84331035.1686302.12.1m kN F F h F M e g v h =+⨯+⨯=++=e=0。
751m 〈b/3=5/3=1.67m 满足要求 4。
3、偏心荷载下地面压应力验算:()()2/95.87)751.025(537.8433102)2(32m kN e b l F F P g v =-⨯⨯+⨯=-+=〈160kP 满足要求4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江门海伦湾1#塔吊基础计算书及施工方案编制单位:湖北楚雄建筑工程有限公司【江门海伦湾】项目部2011年08月07日目录一、工程概况 (2)二、塔吊平面布置图 (3)三、场区岩土参数及地质情况 (3)四、计算考虑的数据 (4)五、四桩基础计算书 (5)六、施工控制要点 (9)七、附图 (12)1#塔吊基础计算及施工方案工程名称:江门外海高新区项目建设单位:江门市泰山房地产发展有限公司勘察单位:江门市建筑设计院设计单位:广东省建筑艺术设计院有限公司监理单位:深圳市宝安区建设监理有限公司施工单位:湖北楚雄建筑工程有限公司一、工程概况本工程由广东省建筑艺术设计院有限公司设计;江门市建筑设计院承接岩土工程勘本工程位于江门市高新技术开发区,东面紧临西江边正对中山古镇,西面目前为鱼塘,临近江海大桥收费站,南北处于轻轨江海站与外海大桥之间,交通十分便利,拟建场的四周为本项目的市政规划道路,项目开工前考虑先行回填作临时施工通道,场地的主出入口设于西北角。
场区整体空旷,并且无高层建筑,不影响本塔吊的使用范围。
项目含联排别墅14栋、洋房10栋、高层9栋,幼儿园、会所各一栋、建筑面积144280平米(不含地下室)。
采用钢筋混凝土框架-剪力墙结构,地上高层建筑1~9栋为32层;首层均为架空层,车库顶板上面为园林园建,地下室为车库及设备用房。
二、塔吊平面布置经平面布置分析,本项目共定7台塔吊,分别以1~7#进行编号。
1#塔吊拟定于高层A1栋北侧,供A1A2栋及1#钢筋加工场使用;2#塔吊拟定于3栋东面,供3~4栋使用;3#塔吊位于6栋东面供5~7栋使用;4#塔吊位于8~9栋之间,供8~9栋使用;5~7#分别安置于洋房别墅区,供地下室及低层别墅区使用。
详见(附图:塔吊平面布置图)。
三、场区岩土参数及地质情况根椐《建筑抗震设计规范》GB50011-2010》,本工程建筑物的建筑抗震设防裂度为7度,设计基本地震加速度值为0.10g,设计地震分组为第一组。
场地覆盖层厚度为14.1~28.3,等效剪切波速≤150/S。
场地类别为Ⅲ类,特征周期为0.45(S)。
1#塔吊拟定于高层A1栋北侧,位于42号钻探孔附近;42号钻探孔自上而下分别是素填土(Q ml)、细砂(Q al)、淤泥质土(Q mc)、强风化砾岩(∈1),其土工物理试验指标如下:具体见《江门海伦堡外海地块岩土工程勘察报告》42号钻孔柱状图:四、计算考虑的数椐1、本工程建筑承台面标高相当于绝对标高1.55m,初步设计1#塔吊为4桩独立承台:拟采用4根PHCФ500—AB125预应力管桩,桩端持力层为强风化砾岩,有效桩长24米。
根椐工程实际需要,塔吊的安装高度为5.1m(塔吊基础面至±0.000深度)+105m (±0.000至建筑物屋架高度)+6m(塔吊预留活动高度)=116.1m,可使用高度110米。
2、因1#塔吊安装位置紧贴A1A2栋,基础完成面与底板齐平,考虑日后主体基础承台开挖对塔吊基础的影响,故承台需增加侧面挡土墙(做法见1-1剖面)。
3、因塔吊在非工作状况时为最不利情况,故只需计算塔吊非工作状况受力,塔吊使用说明:“塔机固定在基础上,起升高度达到40米,而未采用附着装置时,对基础产生的荷载值时为最大”,。
塔吊安装到超过自由高度40m时要附墙,因此在进行荷载分析时,传到基础的弯矩和剪力取在40m高度时塔吊非工作状态的数值。
混凝土塔吊基础面受力情况(根据塔机QTZ80(中联TC5613-6)塔吊使用说明书):详见下图五、四桩基础计算书本计算书主要依据施工图纸及以下规范及参考文献编制:一、《塔式起重机设计规范》(GB/T13752-1992)二、《地基基础设计规范》(GB50007-2002)三、《建筑结构荷载规范》(GB50009-2001)四、《建筑安全检查标准》(JGJ59-99)五、《混凝土结构设计规范》(GB50010-2002)六、《建筑桩基技术规范》(JGJ94-2008)七、QTZ80(TC5613-6)塔式起重机使用说明书一、塔吊的基本参数信息塔吊型号:QZT80(5613-6),塔吊起升高度H:40.000m(0-2)塔身宽度B:1.65m(说明书0-7页)基础埋深D:1.2 m,自重F1:550kN(说明书1-1页)基础承台厚度Hc:1.5 m,最大起重荷载F2:60kN(说明书0-2页)基础承台宽度Bc:5.000m,桩钢筋级别:RRB400,桩直径:0.500m,桩间距a:4m,承台箍筋间距S:200.000mm,承台混凝土的保护层厚度:40mm,空心桩的空心直径:0.25m。
二、塔吊基础承台顶面的竖向力和弯矩计算塔吊自重F1=550.00kN;塔吊最大起重荷载F2=60.00kN;作用于桩基承台顶面的竖向力F k=F1+F2=610.00kN;风荷载对塔吊基础产生的弯矩计算:M kmax=1729.41kN·m;三、承台弯矩及单桩桩顶竖向力的计算1. 桩顶竖向力的计算依据《建筑桩技术规范》(JGJ94-2008)的第5.1.1条,在实际情况中x、y轴是随机变化的,所以取最不利情况计算。
N ik=((F k+G k)/4)/n±M yk x i/∑x j2±M xk y i/∑y j2;其中n──单桩个数,n=4;F k──作用于桩基承台顶面的竖向力标准值,F k=610.00kN;G k──桩基承台的自重标准值:G k=25×Bc×Bc×Hc=25×5.00×5.00×1.50=937.50kN;M xk,M yk──承台底面的弯矩标准值,取1729.41kN·m;x i,y i──单桩相对承台中心轴的XY方向距离a/20.5=2.83m;N ik──单桩桩顶竖向力标准值;经计算得到单桩桩顶竖向力标准值最大压力:N kmax=(610.00+937.50)/4+1729.41×2.83/(2×2.832)=692.59kN。
最小压力:N kmin=(610.00+937.50)/4-1729.41×2.83/(2×2.832)=81.16kN。
不需要验算桩的抗拔!2. 承台弯矩的计算依据《建筑桩技术规范》(JGJ94-2008)的第5.9.2条。
M x = ∑N i y iM y = ∑N i x i其中M x,M y──计算截面处XY方向的弯矩设计值;x i,y i──单桩相对承台中心轴的XY方向距离取a/2-B/2=1.18m;N i1──扣除承台自重的单桩桩顶竖向力设计值,N i1=1.2×(N kmax-G k/4)=549.86kN;经过计算得到弯矩设计值:M x=M y=2×549.86×1.18=1292.18kN·m。
四、承台截面主筋的计算依据《混凝土结构设计规范》(GB50010-2002)第7.2条受弯构件承载力计算。
αs= M/(α1f c bh02)ζ = 1-(1-2αs)1/2γs = 1-ζ/2A s = M/(γs h0f y)式中,αl──系数,当混凝土强度不超过C50时,α1取为1.0,当混凝土强度等级为C80时,α1取为0.94,期间按线性内插法得1.00;f c──混凝土抗压强度设计值查表得14.30N/mm2;h o──承台的计算高度:H c-40.00=1460.00mm;f y──钢筋受拉强度设计值,f y=300.00N/mm2;经过计算得:αs=1292.18×106/(1.00×14.30×5000.00×1460.002)=0.008;ξ =1-(1-2×0.008)0.5=0.009;γs =1-0.009/2=0.996;A sx =A sy =1292.18×106/(0.996×1460.00×300.00)=2962.79mm2。
由于最小配筋率为0.15%,所以构造最小配筋面积为:5000.00×1500.00×0.15%=11250.00mm2。
建议配筋值:HRB335钢筋,16@85。
承台底面单向根数56根。
实际配筋值11261.6mm2。
五、承台截面抗剪切计算依据《建筑桩技术规范》(JGJ94-2008)的第5.9.9条,承台斜截面受剪承载力满足下面公式:V≤βhsαf t b0h0其中,b0──承台计算截面处的计算宽度,b0=5000mm;λ──计算截面的剪跨比,λ=a/h0,此处,a=0.98m;当λ<0.25时,取λ=0.25;当λ>3时,取λ=3,得λ=0.668;βhs──受剪切承载力截面高度影响系数,当h0<800mm时,取h0=800mm,h0>2000mm时,取h0=2000mm,其间按内插法取值,βhs=(800/1460)1/4=0.86;α──承台剪切系数,α=1.75/(0.668+1)=1.049;0.86×1.049×1.43×5000×1460=9423.997kN≥1.2×692.594=831.113kN;经过计算承台已满足抗剪要求,只需构造配箍筋!六、桩竖向极限承载力验算桩承载力计算依据《建筑桩技术规范》(JGJ94-2008)的第5.2.1条:桩的轴向压力设计值中最大值N k=692.594kN;单桩竖向极限承载力标准值公式:Q uk=u∑q sik l i+q pk(A j+λp A p1)u──桩身的周长,u=1.571m;A j──空心桩桩端净面积,A j=0.147m2;λp──桩端土塞效应系数,λp=0.298;A p1──空心桩敞口面积,A p1=0.049m2;各土层厚度及阻力标准值如下表:由于桩的入土深度为24.00m,所以桩端是在第3层土层。
单桩竖向承载力验算: Q uk=1.571×314.4+5000×(0.147+0.298×0.049)=1303.211kN;单桩竖向承载力特征值:R=R a=Q uk/2=1303.211/2=651.606kN;N k=692.594kN≤1.2R=1.2×651.606=781.927kN;桩基竖向承载力满足要求!七、桩配筋计算1、桩构造配筋计算A s=πd2/4×0.65%=3.14×5002/4×0.65%=1276mm2;2、桩抗压钢筋计算经过计算得到桩顶竖向极限承载力验算满足要求,只需构造配筋!3、桩受拉钢筋计算桩不受拉力,不计算这部分配筋,只需构造配筋!建议配筋值:RRB400钢筋,1710 mm2。