高中数学:函数与导数专题相关知识点总结例题答案与解析_0

合集下载

高考数学压轴专题最新备战高考《函数与导数》知识点总复习有答案解析

高考数学压轴专题最新备战高考《函数与导数》知识点总复习有答案解析

新数学《函数与导数》高考复习知识点一、选择题1.在平面直角坐标系中,若P ,Q 满足条件:(1)P ,Q 都在函数f (x )的图象上;(2)P ,Q 两点关于直线y=x 对称,则称点对{P ,Q}是函数f(x)的一对“可交换点对”.({P ,Q}与{Q,P}看作同一“可交换点”.试问函数2232(0)(){log (0)x x x f x x x ++≤=>的“可交换点对有( )A .0对B .1对C .2对D .3对【答案】C 【解析】试题分析:设p (x ,y )是满足条件的“可交换点”,则对应的关于直线y=x 的对称点Q 是(y ,x ),所以232x x ++=2x ,由于函数y=232x x ++和y=2x 的图象由两个交点,因此满足条件的“可交换点对”有两个,故选C. 考点:函数的性质2.已知()(1)|ln |xf x x x =≠,若关于x 方程22[()](21)()0f x m f x m m -+++=恰有4个不相等的实根,则实数m 的取值范围是( ) A .1,2(2,)e e⎛⎫⋃ ⎪⎝⎭B .11,e e ⎛⎫+⎪⎝⎭C .(1,)e e -D .1e e ⎛⎫ ⎪⎝⎭,【答案】C 【解析】 【分析】由已知易知()f x m =与()1f x m =+的根一共有4个,作出()f x 图象,数形结合即可得到答案. 【详解】由22[()](21)()0f x m f x m m -+++=,得()f x m =或()1f x m =+,由题意()f x m =与()1f x m =+两个方程的根一共有4个,又()f x 的定义域为(0,1)(1,)⋃+∞,所以()|ln |ln x x f x x x ==,令()ln x g x x=,则'2ln 1()(ln )x g x x -=,由'()0g x >得x e >, 由'()0g x <得1x e <<或01x <<,故()g x 在(0,1),(1,)e 单调递减,在(,)e +∞上单调递 增,由图象变换作出()f x 图象如图所示要使原方程有4个根,则1m em e<<⎧⎨+>⎩,解得1e m e-<<.故选:C【点睛】本题考查函数与方程的应用,涉及到方程根的个数问题,考查学生等价转化、数形结合的思想,是一道中档题.3.函数22()41xxxf x⋅=-的图像大致为( )A.B.C.D.【答案】A【解析】∵函数()2 2? 41 xxxf x=-的定义域为(,0)(0,)-∞+∞U∴222()2()()4114x xx xx xf x f x--⋅-⋅-===---∴函数()f x为奇函数,故排除B,C.∵2(1)03f=>,故排除D.点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.4.已知直线2y kx =-与曲线ln y x x =相切,则实数k 的值为( ) A .ln 2 B .1C .1ln2-D .1ln2+【答案】D 【解析】由ln y x x =得'ln 1y x =+,设切点为()00,x y ,则0ln 1k x =+,000002ln y kx y x x =-⎧⎨=⎩,0002ln kx x x ∴-=,002ln k x x ∴=+,对比0ln 1k x =+,02x ∴=,ln 21k ∴=+,故选D.5.已知函数()32f x x x x a =--+,若曲线()y f x =与x 轴有三个不同交点,则实数a的取值范围为( ) A .11,27⎛⎫-∞- ⎪⎝⎭B .()1,+?C .5,127⎛⎫-⎪⎝⎭D .11,127⎛⎫-⎪⎝⎭【答案】C 【解析】 【分析】根据曲线()y f x =与x 轴有三个不同交点,可转化为函数()32g x x x x =-++与y a =的图象有三个不同的交点,即可求出实数a 的取值范围. 【详解】Q 函数()32f x x x x a =--+与x 轴有三个不同交点,可转化为函数()32g x x x x =-++与y a =的图象有三个不同的交点.又()2321(31)(1)g x x x x x '=-++=-+-Q ,∴在1,,(1,)3⎛⎫-∞-+∞ ⎪⎝⎭上,()0g x '<;在1,13⎛⎫- ⎪⎝⎭上,()0g x '>.∴()15327g x g ⎛⎫=-=- ⎪⎝⎭极小值,()()11g x g ==极大值,5127a ∴-<<. 故选:C本题考查函数的零点及导数与极值的应用,考查了转化思想和数形结合思想,属于中档题.6.在二项式26()2a x x+的展开式中,其常数项是15.如下图所示,阴影部分是由曲线2y x =和圆22x y a +=及x 轴围成的封闭图形,则封闭图形的面积为( )A .146π+B .146π- C .4π D .16【答案】B 【解析】 【分析】用二项式定理得到中间项系数,解得a ,然后利用定积分求阴影部分的面积. 【详解】(x 2+a 2x )6展开式中,由通项公式可得122r 162rr r r a T C x x --+⎛⎫= ⎪⎝⎭, 令12﹣3r =0,可得r =4,即常数项为4462a C ⎛⎫ ⎪⎝⎭,可得4462a C ⎛⎫ ⎪⎝⎭=15,解得a =2.曲线y =x 2和圆x 2+y 2=2的在第一象限的交点为(1,1)所以阴影部分的面积为()1223100111-x-x |442346dx x x πππ⎛⎫=--=- ⎪⎝⎭⎰. 故选:B 【点睛】本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.7.函数()1ln f x x x ⎛⎫=-⎪⎝⎭的图象大致是( ) A . B .C .D .【答案】B 【解析】 【分析】通过函数在2x =处函数有意义,在2x =-处函数无意义,可排除A 、D ;通过判断当1x >时,函数的单调性可排除C ,即可得结果. 【详解】当2x =时,110x x-=>,函数有意义,可排除A ; 当2x =-时,1302x x -=-<,函数无意义,可排除D ; 又∵当1x >时,函数1y x x=-单调递增, 结合对数函数的单调性可得函数()1ln f x x x ⎛⎫=- ⎪⎝⎭单调递增,可排除C ; 故选:B. 【点睛】本题主要考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合与分类讨论的思维能力,属于中档题.8.已知定义在R 上的函数()f x 满足()01f =,且()f x 的导函数'()f x 满足'()1f x >,则不等式()()ln ln f x ex <的解集为( ) A .()0,1 B .()1,eC .()0,eD .(),e +∞【答案】A 【解析】 【分析】设()()g x f x x =-,由题得()g x 在R 上递增,求不等式()()ln ln f x ex <的解集,即求不等式(ln )(0)g x g <的解集,由此即可得到本题答案. 【详解】设()()g x f x x =-,则(0)(0)01g f =-=,()()1g x f x '='-, 因为()1f x '>,所以()0g x '>,则()g x 在R 上递增,又(ln )ln()1ln f x ex x <=+,所以(ln )ln 1f x x -<,即(ln )(0)g x g <, 所以ln 0x <,得01x <<.故选:A 【点睛】本题主要考查利用导数研究函数的单调性,以及利用函数的单调性解不等式,其中涉及到构造函数.9.函数()xe f x x=的图象大致为( )A .B .C .D .【答案】B 【解析】函数()xe f x x=的定义域为(,0)(0,)-∞+∞U ,排除选项A ;当0x >时,()0f x >,且()2(1)'xx e f x x-= ,故当()0,1x ∈时,函数单调递减,当()1,x ∈+∞时,函数单调递增,排除选项C ;当0x <时,函数()0xe f x x=<,排除选项D ,选项B 正确.选B .点睛:函数图象的识别可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置; (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的周期性,判断图象的循环往复; (5)从函数的特征点,排除不合要求的图象.10.如图,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器.当这个正六棱柱容器的底面边长为( )时,其容积最大.A .34B .23C .13D .12【答案】B 【解析】 【分析】设正六棱柱容器的底面边长为x ,则正六棱柱容器的高为()312x -,则可得正六棱柱容器的容积为()()()()3233921224V x x x x x x x =+⋅⋅-=-+,再利用导函数求得最值,即可求解. 【详解】设正六棱柱容器的底面边长为x ,则正六棱柱容器的高为()31x -, 所以正六棱柱容器的容积为()()()()32339214V x x x x x x x =+⋅⋅-=-+, 所以()227942V x x x '=-+,则在20,3⎛⎫⎪⎝⎭上,()0V x '>;在2,13⎛⎫ ⎪⎝⎭上,()0V x '<, 所以()V x 在20,3⎛⎫ ⎪⎝⎭上单调递增,在2,13⎛⎫⎪⎝⎭上单调递减, 所以当23x =时,()V x 取得最大值, 故选:B 【点睛】本题考查利用导函数求最值,考查棱柱的体积,考查运算能力.11.已知函数在区间上有最小值,则函数在区间上一定( )A .有最小值B .有最大值C .是减函数D .是增函数【答案】D 【解析】 【分析】 由二次函数在区间上有最小值得知其对称轴,再由基本初等函数的单调性或单调性的性质可得出函数在区间上的单调性.【详解】 由于二次函数在区间上有最小值,可知其对称轴,.当时,由于函数和函数在上都为增函数,此时,函数在上为增函数;当时,在上为增函数;当时,由双勾函数的单调性知,函数在上单调递增,,所以,函数在上为增函数.综上所述:函数在区间上为增函数,故选D.【点睛】本题考查二次函数的最值,同时也考查了型函数单调性的分析,解题时要注意对的符号进行分类讨论,考查分类讨论数学思想,属于中等题.12.设奇函数()f x 在[]11-,上为增函数,且()11f =,若[]11x ∃∈-,,使[]11a ∀∈-,,不等式()221f x t at ≤--成立,则t 的取值范围是( )A .22t -≤≤B .1122t -≤≤ C .2t ≥或2t ≤-或0t = D .12t ≥或12t ≤-或0t =【答案】C 【解析】 【分析】()f x 在[]11x ∈-,上为增函数,[]11x ∃∈-,,使[]11a ∀∈-,,不等式()221f x t at ≤--成立,只需对于[]11a ∀∈-,,()2121f t at -≤--即可.【详解】∵奇函数()f x 在[]11x ∈-,上为增函数,且()11f =, ∴函数在[]11x ∈-,上的最小值为()()111f f -=-=-,又∵[]11x ∃∈-,,使[]11a ∀∈-,,不等式()221f x t at ≤--成立,∴()22111t at f --≥-=-,即220t at -≥, ①0t =时,不等式成立;②0t >时,()2220t at t t a -=-≥恒成立,从而2t a ≥,解得2t ≥;③0t <时,()2220t at t t a -=-≥恒成立,从而2t a ≤,解得2t ≤-故选:C. 【点睛】本题考查了含参数不等式恒成立问题,需要将不等式问题转化为函数最值问题,考查了理解辨析能力、运算求解能力和分类讨论思想,是中档题.13.设函数()f x 在R 上存在导数()f x ',x R ∀∈有()()22f x f x x +-=,在()0+∞,上()2f x x '<,若()()4168f m f m m --≥-,则实数m 的取值范围是( )A .[)2+∞,B .[)0+∞,C .[]22-,D .(][)22-∞-⋃+∞,, 【答案】A 【解析】 【分析】通过x R ∀∈有()()22f x f x x +-=,构造新函数()()2g x f x x =-,可得()g x 为奇函数;利用()2f x x '<,求()g x 的导函数得出()g x 的单调性,再将不等式()()4168f m f m m --≥-转化,可求实数m 的取值范围.【详解】设()()2g x f x x =-,∵()()()()220g x g x f x x f x x +-=-+--=,∴函数()g x 为奇函数,∵在()0,x ∈+∞上,()2f x x '<,即()20f x x '-<, ∴()()20g x f x x ''=-<,∴函数()g x 在()0,x ∈+∞上是减函数, ∴函数()g x 在(),0x ∈-∞上也是减函数, 且()00g =,∴函数()g x 在x ∈R 上是减函数, ∵()()4168f m f m m --≥-,∴()()()2244168g m m g m m m ⎡⎤⎡⎤-+--+≥-⎣⎦⎣⎦, ∴()()4g m g m -≥, ∴4m m -≤, 即2m ≥. 故选:A. 【点睛】本题考查函数的奇偶性、单调性的应用,考查运算求解能力、转化与化归的数学思想,是中档题.14.若点1414(log 7,log 56)在函数()3f x kx =+的图象上,则()f x 的零点为( ) A .1 B .32C .2D .34【答案】B 【解析】 【分析】将点的坐标代入函数()y f x =的解析式,利用对数的运算性质得出k 的值,再解方程()0f x =可得出函数()y f x =的零点.【详解】141414141414log 56log 4log 1412log 212(1log 7)32log 7=+=+=+-=-Q ,2k ∴=-,()2 3.f x x =-+故()f x 的零点为32,故选B.【点睛】本题考查对数的运算性质以及函数零点的概念,解题的关键在于利用对数的运算性质求出参数的值,解题时要正确把握零点的概念,考查运算求解能力,属于中等题.15.若函数f (x )=()x 1222a x 1log x 1x 1⎧++≤⎪⎨+⎪⎩,,>有最大值,则a 的取值范围为( ) A .()5,∞-+ B .[)5,∞-+C .(),5∞--D .(],5∞-- 【答案】B【分析】分析函数每段的单调性确定其最值,列a 的不等式即可求解. 【详解】由题()xf x 22a,x 1=++≤,单调递增,故()()f x f 14a,;≤=+()()12f x log x 1,x 1,=+>单调递减,故()()f x f 11>=-,因为函数存在最大值,所以4a 1+≥-,解a 5≥-. 故选B. 【点睛】本题考查分段函数最值,函数单调性,确定每段函数单调性及最值是关键,是基础题.16.函数()3ln xf x x=的部分图象是( ) A . B .C .D .【答案】A 【解析】 【分析】根据奇偶性排除B ,当1x >时,()3ln 0xf x x=>,排除CD ,得到答案. 【详解】()()()33ln ln ,x xf x f x f x x x=-==--, ()f x 为奇函数,排除B 当1x >时,()3ln 0xf x x=>恒成立,排除CD【点睛】本题考查了函数图像的判断,通过奇偶性,特殊值法排除选项是解题的关键.17.三个数0.377,0.3,ln 0.3a b c ===大小的顺序是( ) A .a c b >> B .a b c >>C .b a c >>D .c a b >>【答案】B 【解析】试题分析:根据指数函数和对数函数的单调性知:0.30771a =>=,即1a >;7000.30.31b <=<=,即01b <<;ln0.3ln10c =<=,即0c <;所以a b c >>,故正确答案为选项B .考点:指数函数和对数函数的单调性;间接比较法.18.()f x 是定义在R 上的奇函数,对任意x ∈R 总有3()()2f x f x +=-,则9()2f -的值为( ) A .0 B .3C .32D .92-【答案】A 【解析】 【分析】首先确定函数的周期,然后结合函数的周期性和函数的奇偶性求解92f ⎛⎫- ⎪⎝⎭的值即可. 【详解】函数()f x 是定义在R 上的奇函数,对任意x R ∈总有()32f x f x ⎛⎫+=- ⎪⎝⎭,则函数的周期3T =, 据此可知:()993360002222f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+==+=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 本题选择A 选项. 【点睛】本题主要考查函数的周期性,函数的奇偶性,奇函数的性质等知识,意在考查学生的转化能力和计算求解能力.19.设123log 2,ln 2,5a b c -===则 A .a b c << B .b c a <<C .c a b <<D .c b a <<【答案】C 【解析】由ln 2ln 2ln 3a b =<=及311log ,22a c >==<=可比较大小. 【详解】∵2031a ln ln =>,>,∴ln 2ln 2ln 3a b =<=,即a b <.又3311log 2log ,22a c =>==<=.∴a c >.综上可知:c ab << 故选C. 【点睛】本题主要考查了指数与对数的运算性质及对数函数的单调性比较大小,属于中档题.20.曲线3πcos 02y x x ⎛⎫=≤≤ ⎪⎝⎭与x 轴以及直线3π2x =所围图形的面积为( ) A .4 B .2C .52D .3【答案】B 【解析】 【分析】 【详解】试题分析:()332222(0cos )sin 2S x dx x ππππ=-=-=⎰,选B.考点:定积分的几何意义。

高中数学导数知识点归纳总结及例题

高中数学导数知识点归纳总结及例题

高中数学导数知识点归纳总结及例题导数考试知识要点1. 导数(导函数的简称)的定义:设x0是函数y f(x)定义域的一点,如果自变量x在x0处有增量x,则函数值y也引起相应的增量y f(x0x)f(x0);比值yf(x0x)f(x0)称为函数y f(x)在点x0到x0x之间的平均变化率;如果极限x xf(x0x)f(x0)y存在,则称函数y f(x)在点x0处可导,并把这个极限叫做lim x0x x0xlim记作f’(x0)或y’|x x0,即f’(x0)=limy f(x)在x0处的导数,f(x0x)f(x0)y. lim x0x x0x注:①x是增量,我们也称为“改变量”,因为x可正,可负,但不为零.②以知函数y f(x)定义域为A,y f’(x)的定义域为B,则A与B关系为A B.2. 函数y f(x)在点x0处连续与点x0处可导的关系:⑴函数y f(x)在点x0处连续是y f(x)在点x0处可导的必要不充分条件.可以证明,如果y f(x)在点x0处可导,那么y f(x)点x0处连续.事实上,令x x0x,则x x0相当于x0.1于是limf(x)limf(x0x)lim[f(x x0)f(x0)f(x0)] x x0x0x0 lim[x0f(x0x)f(x0)f(x0x)f(x0)x f(x0)]lim lim limf( x0)f’(x0)0f(x0)f(x0).x0x0x0x xy|x|,当x>0时,x x⑵如果y f(x)点x0处连续,那么y f(x)在点x0处可导,是不成立的. 例:f(x)|x|在点x00处连续,但在点x00处不可导,因为y y y不存在. 1;当x<0时,1,故lim x0x x x注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数.3. 导数的几何意义:函数y f(x)在点x0处的导数的几何意义就是曲线y f(x)在点(x0,f(x))处的切线的斜率,也就是说,曲线y f(x)在点P(x0,f(x))处的切线的斜率是f’(x0),切线方程为y y0f’(x)(x x0).4. 求导数的四则运算法则:(u v)’u’v’y f1(x)f2(x)...fn(x)y’f1’(x)f2’(x)...fn’(x) (uv)’vu’v’u(cv)’c’v cv’cv’(c为常数)vu’v’u u(v0) 2v v’注:①u,v必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导. 例如:设f(x)2sinx22,g(x)cosx,则f(x),g(x)在x0处均不可导,但它们和xx f(x)g(x)sinx cosx在x0处均可导.5. 复合函数的求导法则:fx’((x))f’(u)’(x)或y’x y’u u’x复合函数的求导法则可推广到多个中间变量的情形.6. 函数单调性:⑴函数单调性的判定方法:设函数y f(x)在某个区间内可导,如果f’(x)>0,则y f(x)为增函数;如果f’(x)<0,则y f(x)为减函数.⑵常数的判定方法;如果函数y f(x)在区间I内恒有f’(x)=0,则y f(x)为常数.注:①f(x)0是f(x)递增的充分条件,但不是必要条件,如y2x3在(,)上并不是都有f(x)0,有一个点例外即x=0时f(x)= 0,同样f(x)0是f(x)递减的充分非必2要条件.②一般地,如果f(x)在某区间(sinx)cosx (arcsinx)’1 x2(xn)’nxn1(n R)(cosx)’sinx (arccosx)’ 1x2 1’11’(arctanx)II. (lnx)(logax)logae xxx21’(ex)’ex (ax)’axlna (arccotx)’III. 求导的常见方法:①常用结论:(ln|x|)’1x2 1 (x a1)(x a2)...(x an)1.②形如y(x a1)(x a2)...(x an)或y两(x b1)(x b2)...(x bn)x边同取自然对数,可转化求代数和形式.③无理函数或形如y xx这类函数,如y xx取自然对数之后可变形为lny xlnx,对两边y’1lnx x y’ylnx y y’xxlnx xx. 求导可得yx 3导数中的切线问题例题1:已知切点,求曲线的切线方程曲线y x33x21在点(1,1)处的切线方程为()例题2:已知斜率,求曲线的切线方程与直线2x y40的平行的抛物线y x2的切线方程是()注意:此题所给的曲线是抛物线,故也可利用法加以解决,即设切线方程为y2x b,代入y x2,得x22x b0,又因为0,得b1,故选D.例题3:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法.求过曲线y x32x上的点(1,1)的切线方程.例题4:已知过曲线外一点,求切线方程1求过点(2,0)且与曲线y相切的直线方程.x4练习题:已知函数y x33x,过点A(016) ,作曲线y f(x)的切线,求此切线方程.看看几个高考题1.(2009全国卷Ⅱ)曲线y x在点1,1处的切线方程为2x 122.(2010江西卷)设函数f(x)g(x)x,曲线y g(x)在点(1,g(1))处的切线方程为y2x1,则曲线y f(x)在点(1,f(1))处切线的斜率为3.(2009宁夏海南卷)曲线y xe2x1在点(0,1)处的切线方程为。

导数知识点总结及答案

导数知识点总结及答案

导数知识点总结及答案一、导数的定义在数学中,函数f(x)在某一点x=a处的导数定义为:f'(a) = lim (h→0) [f(a+h) - f(a)] / h其中,f'(a)表示函数f(x)在x=a处的导数,lim表示极限运算,h表示自变量x的增量。

导数的定义可以理解为当自变量x在x=a处发生一个很小的变化h时,函数f(x)在此点的增量f(a+h) - f(a)与自变量的增量h的比值。

当h趋向于0时,这个比值就是函数f(x)在x=a处的导数。

二、导数的性质1. 可加性:如果函数f(x)和g(x)在某一点x=a处有导数,那么它们的和、差、积、商函数在此点处也有导数,并且导数的值可以进行相应的运算。

2. 连续性:如果函数f(x)在某一点x=a处有导数,那么函数f(x)在该点处是连续的。

3. 导数与函数的关系:如果函数f(x)在某一点x=a处有导数,那么函数f(x)在该点处是可微的,反之亦然。

4. 导数与函数的图像关系:函数f'(x)在某一点x=a处的导数值,可以描述函数f(x)在该点处的切线的斜率。

5. 高阶导数:如果函数f(x)在某一点x=a处有导数,那么它的导数f'(x)也可以求导,进而得到f''(x),称为函数f(x)的二阶导数,依此类推,可以求得函数f(x)的任意阶导数。

三、常见函数的导数1. 幂函数:f(x) = x^n,其导数为f'(x) = nx^(n-1)。

2. 指数函数:f(x) = a^x,其中a为常数且a>0,a≠1,其导数为f'(x) = a^x*ln(a)。

3. 对数函数:f(x) = ln(x),其导数为f'(x) = 1/x。

4. 三角函数:f(x) = sin(x),其导数为f'(x) = cos(x);f(x) = cos(x),其导数为f'(x) = -sin(x)。

5. 反三角函数:f(x) = arcsin(x),其导数为f'(x) = 1/√(1-x^2);f(x) = arccos(x),其导数为f'(x) = -1/√(1-x^2)。

(完整版)高考导数专题(含详细解答)

(完整版)高考导数专题(含详细解答)

导数及其应用导数的运算1. 几种常有的函数导数:①、 c( c 为常数); ②、( x n )( n R ); ③、 (sin x) = ;④、 (cos x) =;⑤、( a x ); ⑥、 ( ex); ⑦、 (log a x ) ; ⑧、 (ln x ).2. 求导数的四则运算法规:(u v)u v ; (uv) u vu'u v ' uv 'u ( v0 ) 注:① u, v 必定是可导函数 .uv ; (u)vuvvvv 223. 复合函数的求导法规:f x ( ( x))f (u) ? ( x) 或 y xy u ? u x一、求曲线的切线(导数几何意义)导数几何意义: f (x 0 ) 表示函数 y f (x) 在点 ( x 0 , f (x 0 ) )处切线 L 的斜率;函数 y f (x) 在点 ( x 0 , f (x 0 ) )处切线 L 方程为 y f (x 0 )f (x 0 )(x x 0 )1. 曲线在点 处的切线方程为( )。

A:B:C:D:答案详解 B 正确率 : 69%, 易错项 : C解析 :本题主要观察导数的几何意义、导数的计算以及直线方程的求解。

对 求导得,代入 得 即为切线的斜率, 切点为,因此切线方程为即。

故本题正确答案为B 。

2.3. 设函数f ( x) g( x) x2,曲线 y g(x) 在点 (1,g(1)) 处的切线方程为 y 2x 1,则曲线 y f ( x) 在点 (1, f (1))处切线的斜率为( )A .41C.21B . D .4 24. 已知函数 f ( x) 在R上满足 f ( x) 2 f (2 x) x28x 8,则曲线y f (x) 在点 (1, f (1)) 处的切线方程是()A . y2x 1 B. y x C. y3x 2 D. y2x 3变式二:5. 在平面直角坐标系xoy 中,点P在曲线C : y x310 x 3 上,且在第二象限内,已知曲线 C 在点 P 处的切线的斜率为 2,则点 P 的坐标为.6. 设曲线 yx n 1 (n N * ) 在点( 1,1)处的切线与 x 轴的交点的横坐标为 x n ,令 a n lg x n ,则 a 1 a 2 L a 99 的值为.7. 已知点 P 在曲线 y=4 上, 为曲线在点 P 处的切线的倾斜角,则的取值范围是e x1, 3]D 、 [ 3,A 、 [0, )B 、 [, ) C 、 ( )44 22 4 4变式三:8. 已知直线y =x+ 1 与曲线y ln( x a) 相切,则α的值为( )A . 1 B. 2 C. - 1 D. - 29. 若存在过点 (1,0)的直线与曲线 yx 3 和 y ax 2 15 x 9 都相切,则 a 等于4( )A . 1或 -25B . 1或21C . 7 或 - 25D .7或 76444 6441 110. 若曲线 yx 2 在点 a, a 2 处的切线与两个坐标围成的三角形的面积为18,则 aA 、64B 、 32C 、 16D 、811. (本小题满分 13 分) 设 f ( x)ae x 1b( a 0) . ( I )求 f ( x) 在 [0, ) 上的最小值;ae x3x ;求 a,b 的值 .( II )设曲线 yf ( x) 在点 (2, f (2)) 的切线方程为 y212. 若曲线 f x ax2Inx 存在垂直于y轴的切线,则实数 a 的取值范围是.二、求单调性或单调区间1、利用导数判断函数单调性的方法:设函数y f (x) 在某个区间 D 内可导,若是 f ( x) >0,则y f (x) 在区间D上为增函数;若是 f ( x) <0,则y f (x) 在区间 D 上为减函数;若是 f ( x) =0恒成立,则y f (x) 在区间 D 上为常数 .2、利用导数求函数单调区间的方法:不等式 f ( x) >0的解集与函数y f (x) 定义域的交集,就是y f ( x) 的增区间;不等式 f ( x) <0的解集与函数y f (x) 定义域的交集,就是y f (x) 的减区间 .1、函数f (x) ( x 3)e x的单调递加区间是( )A . ( ,2) B. (0,3) C. (1,4) D . (2, )2. 函数f (x)x315x233x 6 的单调减区间为.3. 已知函数,,谈论的单调性。

高考数学必做题--函数与导数 (后附参考答案与详解)

高考数学必做题--函数与导数 (后附参考答案与详解)

1 23 4 56 7 8 9 10 1112 13 14 15 1617 18 19 20 212223,且关于的方的取值范围是.24252627 28 29 30123,4.567解析式最值奇偶性二次函数二次函数的概念、图象和性质导数及其应用导数概念及其几何意义导数的运算数列数列的应用数列与不等式数列的概念数列的递推公式数列的前n项和89恒成立,则有即恒成立,,令,解得.得:,,或,时矛盾.函数的模型及其应用导数及其应用利用导数研究函数的单调性10如图点在的下方,∴得.再根据当与相切时,设切点坐标为,则,∴,此时,此时与有个交点,∴.故选.函数与导数函数分段函数图象函数与方程方程根的个数函数图象的交点11函数与导数函数单调性函数与方程函数的零点导数及其应用导数与零点导数与分类讨论导数的运算利用导数研究函数的单调性利用导数求函数的极值与最值利用导数证明不等式1213解析几何直线与方程直线的倾斜角与斜率14又图象可知交点为∴解得.∵,∴,由()知,当时,在故要证原不等式成立,只需要证明:当时,令,则,∴在上为增函数,∴,即,∴,即.函数与导数函数与方程函数图象的交点导数及其应用导数概念及其几何意义导数的运算利用导数研究函数的单调性利用导数求函数的极值与最值利用导数证明不等式解析几何直线与方程直线的倾斜角与斜率直线的方程15对应的点坐标的最高点为最低点为,此两点也是函数的最高和最低点,由此可知.同理可得时,取得最大值.依理,当时,取得最小值,即.16在上至少有三个零点可化为少有三个交点,在上单调递减,则,解得:.函数与导数函数奇偶性二次函数二次函数的概念、图象和性质对数函数对数函数的概念、图象及其性质函数与方程方程根的个数函数的零点B. C.,关于的不等式只有两个整数解,则实数17C函数的定义域为,则,当得,即即,即,由得,得即,即,即当时,函数取得极大值,同时也是最大值即当时,有一个整数解当时,有无数个整数解,若,则得若,则由得或当时,不等式由无数个整数解,不满足条件.当时,由得当时,没有整数解,则要使当有两个整数解,∵,,∴当时,函数有两个整数点,∴要使有两个整数解,则,即.故选.函数与导数二次函数二次型函数导数及其应用导数与零点导数的运算利用导数研究函数的单调性18单调性19复合函数20易知共有个交点.函数与导数函数分段函数奇偶性周期性函数与方程函数图象的交点2122,则,恰好是正方形的面积,所以23,且关于的方的取值范围是.,如图所示,2425函数与导数导数及其应用导数与恒成立导数的运算利用导数研究函数的单调性利用导数求函数的极值与最值利用导数证明不等式不等式与线性规划解不等式分式不等式2627正弦函数的图象与性质282930。

高考数学压轴专题新备战高考《函数与导数》知识点总复习含答案

高考数学压轴专题新备战高考《函数与导数》知识点总复习含答案

【高中数学】《函数与导数》知识点汇总一、选择题1.若定义在R 上的偶函数()f x 满足()()20f x f x +-=.当[]0,1x ∈,()21f x x =-,则( )A .()1235log 2log 32f f f ⎛⎫⎛⎫>> ⎪⎪⎝⎭⎝⎭B .()1235log 2log 32f f f ⎛⎫⎛⎫>> ⎪⎪⎝⎭⎝⎭C .()1235log 2log 32f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭D .()2135log 3log 22f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭【答案】A 【解析】 【分析】推导出函数()y f x =的周期为4,根据题意计算出51022f f ⎛⎫⎛⎫=-<⎪ ⎪⎝⎭⎝⎭,()224log 3log 03f f ⎛⎫=-< ⎪⎝⎭,()133log 2log 20f f ⎛⎫=> ⎪⎝⎭,再利用函数()y f x =在区间[]0,1上的单调性可得出结论. 【详解】因为定义在R 上的偶函数()y f x =满足()()20f x f x +-=,即()()20f x f x +-=,即()()2f x f x =--,()()()24f x f x f x ∴=--=-, 所以,函数()y f x =的周期为4,因为当[]0,1x ∈时,()21f x x =-单调递减,因为5110222f f f ⎛⎫⎛⎫⎛⎫=--=-<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()224log 3log 03f f ⎛⎫=-< ⎪⎝⎭, ()()1333log 2log 2log 20f f f ⎛⎫=-=> ⎪⎝⎭, 因为2410log 132<<<,所以241log 32f f ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭, 所以,12314log 2log 23f f f ⎛⎫⎛⎫⎛⎫>->- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即()1235log 2log 32f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭,故选:A . 【点睛】本题主要考查函数值的大小比较,根据函数奇偶性和单调性之间的关系是解决本题的关键,属于中等题.2.36ax ⎛⎫- ⎪ ⎪⎝⎭的展开式中,第三项的系数为1,则11a dx x =⎰( ) A .2ln 2 B .ln 2 C .2 D .1【答案】A 【解析】 【分析】首先根据二项式定理求出a ,把a 的值带入11adx x⎰即可求出结果. 【详解】解题分析根据二项式36ax ⎛- ⎝⎭的展开式的通项公式得221213()4aT C ax x +⎛== ⎝⎭. Q 第三项的系数为1,1,44aa ∴=∴=,则4411111d d ln 2ln 2a x x x x x ===⎰⎰.故选:A 【点睛】本题考查二项式定理及定积分. 需要记住二项式定理展开公式:1C k n k kk n T a b -+=.属于中等题.3.已知函数()f x 是偶函数,当0x >时,()ln 1f x x x =+,则曲线()y f x =在1x =-处的切线方程为( ) A .y x =- B .2y x =-+C .y x =D .2y x =-【答案】A 【解析】 【分析】首先根据函数的奇偶性,求得当0x <时,()f x 的解析式,然后求得切点坐标,利用导数求得斜率,从而求得切线方程. 【详解】因为0x <,()()ln()1f x f x x x =-=--+,()11f -=,()ln()1f x x '=---,(1)1f '-=-,所以曲线()y f x =在1x =-处的切线方程为()11y x -=-+,即y x =-.故选:A 【点睛】本小题主要考查根据函数奇偶性求函数解析式,考查利用导数求切线方程,属于基础题.4.设定义在(0,)+∞的函数()f x 的导函数为()f x ',且满足()()3f x f x x'->,则关于x 的不等式31(3)(3)03x f x f ⎛⎫---< ⎪⎝⎭的解集为( )A .()3,6B .()0,3C .()0,6D .()6,+∞【答案】A 【解析】 【分析】根据条件,构造函数3()()g x x f x =,利用函数的单调性和导数之间的关系即可判断出该函数在(,0)-∞上为增函数,然后将所求不等式转化为对应函数值的关系,根据单调性得出自变量值的关系从而解出不等式即可. 【详解】解:Q 3(1)(3)(3)03x f x f ---<,3(3)(3)27x f x f ∴---(3)0<, 3(3)(3)27x f x f ∴--<(3),Q 定义在(0,)+∞的函数()f x ,3x ∴<,令3()()g x x f x =,∴不等式3(3)(3)27x f x f --<(3),即为(3)g x g -<(3),323()(())3()()g x x f x x f x x f x '='=+',Q()()3f x f x x'->, ()3()xf x f x ∴'>-, ()3()0xf x f x ∴'+>,32()3()0x f x x f x ∴+>,()0g x ∴'>, ()g x ∴单调递增,又因为由上可知(3)g x g -<(3), 33x ∴-<,3x <Q , 36x ∴<<.故选:A . 【点睛】本题主要考查不等式的解法:利用条件构造函数,利用函数单调性和导数之间的关系判断函数的单调性,属于中档题.5.已知()(1)|ln |xf x x x =≠,若关于x 方程22[()](21)()0f x m f x m m -+++=恰有4个不相等的实根,则实数m 的取值范围是( ) A .1,2(2,)e e⎛⎫⋃ ⎪⎝⎭B .11,e e ⎛⎫+⎪⎝⎭C .(1,)e e -D .1e e ⎛⎫ ⎪⎝⎭,【答案】C 【解析】 【分析】由已知易知()f x m =与()1f x m =+的根一共有4个,作出()f x 图象,数形结合即可得到答案. 【详解】由22[()](21)()0f x m f x m m -+++=,得()f x m =或()1f x m =+,由题意()f x m =与()1f x m =+两个方程的根一共有4个,又()f x 的定义域为(0,1)(1,)⋃+∞,所以()|ln |ln x x f x x x ==,令()ln x g x x=,则'2ln 1()(ln )x g x x -=,由'()0g x >得x e >, 由'()0g x <得1x e <<或01x <<,故()g x 在(0,1),(1,)e 单调递减,在(,)e +∞上单调递 增,由图象变换作出()f x 图象如图所示要使原方程有4个根,则01m em e<<⎧⎨+>⎩,解得1e m e -<<.故选:C 【点睛】本题考查函数与方程的应用,涉及到方程根的个数问题,考查学生等价转化、数形结合的思想,是一道中档题.6.函数f (x )=x ﹣g (x )的图象在点x =2处的切线方程是y =﹣x ﹣1,则g (2)+g '(2)=( ) A .7B .4C .0D .﹣4【答案】A 【解析】()()()(),'1'f x x g x f x g x =-∴=-Q ,因为函数()()f x x g x =-的图像在点2x =处的切线方程是1y x =--,所以()()23,'21f f =-=-,()()()()2'2221'27g g f f ∴+=-+-=,故选A .7.在二项式26()2a x x+的展开式中,其常数项是15.如下图所示,阴影部分是由曲线2y x =和圆22x y a +=及x 轴围成的封闭图形,则封闭图形的面积为( )A .146π+B .146π- C .4π D .16【答案】B 【解析】 【分析】用二项式定理得到中间项系数,解得a ,然后利用定积分求阴影部分的面积. 【详解】(x 2+a 2x )6展开式中,由通项公式可得122r 162rr r ra T C x x --+⎛⎫= ⎪⎝⎭, 令12﹣3r =0,可得r =4,即常数项为4462a C ⎛⎫ ⎪⎝⎭,可得4462a C ⎛⎫ ⎪⎝⎭=15,解得a =2.曲线y =x 2和圆x 2+y 2=2的在第一象限的交点为(1,1) 所以阴影部分的面积为()1223100111-x-x |442346dx x x πππ⎛⎫=--=- ⎪⎝⎭⎰. 故选:B 【点睛】本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.8.设复数z a bi =+(i 为虚数单位,,a b ∈R ),若,a b 满足关系式2a b t =-,且z 在复平面上的轨迹经过三个象限,则t 的取值范围是( )A .[0,1]B .[1,1]-C .(0,1)(1,)⋃+∞D .(1,)-+∞【答案】C 【解析】 【分析】首先根据复数的几何意义得到z 的轨迹方程2xy t =-,再根据指数函数的图象,得到关于t 的不等式,求解.【详解】由复数的几何意义可知,设复数对应的复平面内的点为(),x y ,2ax ay b t=⎧⎨==-⎩ ,即2x y t =- , 因为z 在复平面上的轨迹经过三个象限, 则当0x =时,11t -< 且10t -≠ , 解得0t >且1t ≠ ,即t 的取值范围是()()0,11,+∞U . 故选:C 【点睛】本题考查复数的几何意义,以及轨迹方程,函数图象,重点考查数形结合分析问题的能力,属于基础题型.9.函数()2sin 2xf x x x x=+-的大致图象为( ) A . B .C .D .【答案】D 【解析】 【分析】利用()10f <,以及函数的极限思想,可以排除错误选项得到正确答案。

高考数学压轴专题新备战高考《函数与导数》知识点总复习附答案解析

高考数学压轴专题新备战高考《函数与导数》知识点总复习附答案解析

【高中数学】数学《函数与导数》期末复习知识要点一、选择题1.若函数f (x )=()x 1222a x 1log x 1x 1⎧++≤⎪⎨+⎪⎩,,>有最大值,则a 的取值范围为( ) A .()5,∞-+ B .[)5,∞-+ C .(),5∞-- D .(],5∞-- 【答案】B 【解析】 【分析】分析函数每段的单调性确定其最值,列a 的不等式即可求解. 【详解】由题()xf x 22a,x 1=++≤,单调递增,故()()f x f 14a,;≤=+()()12f x log x 1,x 1,=+>单调递减,故()()f x f 11>=-,因为函数存在最大值,所以4a 1+≥-,解a 5≥-. 故选B. 【点睛】本题考查分段函数最值,函数单调性,确定每段函数单调性及最值是关键,是基础题.2.已知直线2y kx =-与曲线ln y x x =相切,则实数k 的值为( ) A .ln 2 B .1C .1ln2-D .1ln2+【答案】D 【解析】由ln y x x =得'ln 1y x =+,设切点为()00,x y ,则0ln 1k x =+,000002ln y kx y x x =-⎧⎨=⎩,0002ln kx x x ∴-=,002ln k x x ∴=+,对比0ln 1k x =+,02x ∴=,ln 21k ∴=+,故选D.3.已知函数f (x )=(k +4k )lnx +24x x-,k ∈[4,+∞),曲线y =f (x )上总存在两点M (x 1,y 1),N (x 2,y 2),使曲线y =f (x )在M ,N 两点处的切线互相平行,则x 1+x 2的取值范围为A .(85,+∞) B .(165,+∞) C .[85,+∞) D .[165,+∞) 【答案】B 【解析】【分析】利用过M 、N 点处的切线互相平行,建立方程,结合基本不等式,再求最值,即可求x 1+x 2 的取值范围. 【详解】 由题得f′(x )=4k k x +﹣24x ﹣1=﹣2244x k x k x ⎛⎫-++ ⎪⎝⎭=﹣()24x k x k x ⎛⎫-- ⎪⎝⎭,(x >0,k >0)由题意,可得f′(x 1)=f′(x 2)(x 1,x 2>0,且x 1≠x 2),即21144k k x x +-﹣1=24k k x +﹣224x ﹣1,化简得4(x 1+x 2)=(k+4k)x 1x 2, 而x 1x 2<212()2x x +, 4(x 1+x 2)<(k+4k )212()2x x +, 即x 1+x 2>164k k+对k ∈[4,+∞)恒成立, 令g (k )=k+4k, 则g′(k )=1﹣24k =()()222k k k+->0对k ∈[4,+∞)恒成立, ∴g (k )≥g (4)=5, ∴164k k+≤165, ∴x 1+x 2>165, 故x 1+x 2的取值范围为(165,+∞). 故答案为B 【点睛】本题运用导数可以解决曲线的切线问题,函数的单调性、极值与最值,正确求导是我们解题的关键,属于中档题.4.已知函数()lg f x x =,0a b >>,()()f a f b =,则22a b a b+-的最小值等于( ).A .5B .23C .23+D .22【答案】D 【解析】试题分析:因为函数()lg f x x =,0a b >>,()()f a f b = 所以lg lg a b =- 所以1a b=,即1ab =,0a b >> 22a b a b+-22()2()22()a b ab a b a b a b a b a b -+-+===-+---22()22a b a b ≥-⨯=- 当且仅当2a b a b-=-,即2a b -=时等号成立 所以22a b a b +-的最下值为22故答案选D考点:基本不等式.5.如图,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器.当这个正六棱柱容器的底面边长为( )时,其容积最大.A .34B .23C .13D .12【答案】B 【解析】 【分析】设正六棱柱容器的底面边长为x ,)31x -,则可得正六棱柱容器的容积为()())()32339214V x x x x x x x =+-=-+,再利用导函数求得最值,即可求解. 【详解】设正六棱柱容器的底面边长为x ,则正六棱柱容器的高为)312x -,所以正六棱柱容器的容积为()()()()3233921224V x x x x x x x =+⋅⋅-=-+, 所以()227942V x x x '=-+,则在20,3⎛⎫ ⎪⎝⎭上,()0V x '>;在2,13⎛⎫ ⎪⎝⎭上,()0V x '<,所以()V x 在20,3⎛⎫ ⎪⎝⎭上单调递增,在2,13⎛⎫⎪⎝⎭上单调递减, 所以当23x =时,()V x 取得最大值, 故选:B 【点睛】本题考查利用导函数求最值,考查棱柱的体积,考查运算能力.6.函数()2log ,0,2,0,x x x f x x ⎧>=⎨≤⎩则函数()()()2384g x f x f x =-+的零点个数是( )A .5B .4C .3D .6【答案】A 【解析】 【分析】通过对()g x 式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数. 【详解】 函数()()()2384g x f x f x =-+=()()322f x f x --⎡⎤⎡⎤⎣⎦⎣⎦的零点即方程()23f x =和()2f x =的根, 函数()2log ,0,2,0xx x f x x ⎧>=⎨≤⎩的图象如图所示:由图可得方程()23f x =和()2f x =共有5个根, 即函数()()()2384g x f x f x =-+有5个零点,故选:A.【点睛】本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.7.函数()2sin f x x x x =-的图象大致为( )A .B .C .D .【答案】A 【解析】 【分析】分析函数()y f x =的奇偶性,并利用导数分析该函数在区间()0,+∞上的单调性,结合排除法可得出合适的选项. 【详解】因为()()()()()22sin sin f x x x x x x x f x -=----=-=,且定义域R 关于原点对称,所以函数()y f x =为偶函数,故排除B 项;()()2sin sin f x x x x x x x =-=-,设()sin g x x x =-,则()1cos 0g x x ='-≥恒成立,所以函数()y g x =单调递增,所以当0x >时,()()00g x g >=, 任取120x x >>,则()()120g x g x >>,所以,()()1122x g x x g x >,()()12f x f x ∴>,所以,函数()y f x =在()0,+∞上为增函数,故排除C 、D 选项. 故选:A. 【点睛】本题考查利用函数解析式选择图象,一般分析函数的定义域、奇偶性、单调性、函数零点以及函数值符号,结合排除法得出合适的选项,考查分析问题和解决问题的能力,属于中等题.8.已知函数()0,1ln ,1x f x x x <⎧=⎨≥⎩,若不等式()≤-f x x k 对任意的x ∈R 恒成立,则实数k 的取值范围是( ) A .(],1-∞ B .[)1,+∞C .[)0,1D .(]1,0-【答案】A 【解析】 【分析】先求出函数()f x 在(1,0)处的切线方程,在同一直角坐标系内画出函数()0,1ln ,1x f x x x <⎧=⎨≥⎩和()g x x k =-的图象,利用数形结合进行求解即可.【详解】当1x ≥时,()''1ln ,()(1)1f x x f x f x=⇒=⇒=,所以函数()f x 在(1,0)处的切线方程为:1y x =-,令()g x x k =-,它与横轴的交点坐标为(,0)k . 在同一直角坐标系内画出函数()0,1ln ,1x f x x x <⎧=⎨≥⎩和()g x x k =-的图象如下图的所示:利用数形结合思想可知:不等式()≤-f x x k 对任意的x ∈R 恒成立,则实数k 的取值范围是1k ≤. 故选:A 【点睛】本题考查了利用数形结合思想解决不等式恒成立问题,考查了导数的应用,属于中档题.9.已知函数f (x )(x ∈R )满足f (x )=f (2−x ),若函数 y=|x 2−2x−3|与y=f (x )图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=mi i x =∑A .0B .mC .2mD .4m【答案】B 【解析】试题分析:因为2(),23y f x y x x ==--的图像都关于1x =对称,所以它们图像的交点也关于1x =对称,当m 为偶数时,其和为22mm ⨯=;当m 为奇数时,其和为1212m m -⨯+=,因此选B. 【考点】 函数图像的对称性 【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b+.10.已知函数()ln xf x x=,则使ln ()()()f x g x a f x =-有2个零点的a 的取值范围( ) A .(0,1) B .10,e ⎛⎫ ⎪⎝⎭C .1,1e ⎛⎫ ⎪⎝⎭D .1,e ⎛⎫-∞ ⎪⎝⎭【答案】B 【解析】 【分析】令()ln xt f x x==,利用导数研究其图象和值域,再将ln ()()()f x g x a f x =-有2个零点,转化为ln ta t=在[),e +∞上只有一解求解. 【详解】 令()ln x t f x x ==,当01x <<时,()0ln xt f x x==<, 当1x >时,()2ln 1()ln x t f x x -''==,当1x e <<时,0t '<,当x e >时,0t '>,所以当x e =时,t 取得最小值e ,所以t e ≥, 如图所示:所以ln ()()()f x g x a f x =-有2个零点,转化为ln ta t=在[),e +∞上只有一解, 令ln t m t =,21ln 0t m t -'=≤,所以ln tm t=在[),e +∞上递减, 所以10m e <≤, 所以10a e <≤,当1a e=时,x e =,只有一个零点,不合题意,所以10a e<< 故选:B本题主要考查导数与函数的零点,还考查了数形结合的思想和运算求解的能力,属于中档题.11.已知函数())lnf x x =,设()3log 0.2a f =,()0.23b f -=,()1.13c f =-,则( )A .a b c >>B .b a c >>C .c b a >>D .c a b >>【答案】D 【解析】∵())lnf x x =∴())f x x ==∴())f x x -=∵当0x >1x >;当0x <时,01x <∴当0x >时,())))f x x x x ==-=,())f x x -=;当0x <时()))f x x x ==;()))f x x x -=-=.∴()()f x f x =- ∴函数()f x 是偶函数∴当0x >时,易得())f x x =为增函数∴33(log 0.2)(log 5)a f f ==, 1.1 1.1(3)(3)c f f =-=∵31log 52<<,0.2031-<<, 1.133>∴ 1.10.23(3)(log 5)(3)f f f ->>∴c a b >> 故选D.12.已知ln 3ln 4ln ,,34a b e c e===(e是自然对数的底数),则,,a b c 的大小关系是( ) A .c a b <<B .a c b <<C .b a c <<D .c b a <<【解析】 【分析】根据ln 3ln 4ln ,,34a b e c e===的结构特点,令()ln xf x x =,求导()21ln xf x x -'=,可得()f x 在()0,e 上递增,在(),+e ∞上递减,再利用单调性求解.【详解】令()ln xf x x=,所以()21ln xf x x -'=,当0x e <<时, ()0f x '>,当x e >时,()0f x '<, 所以()f x 在()0,e 上递增,在(),+e ∞上递减. 因为34e <<,所以 ()()()34>>f e f f , 即b a c <<. 故选:C 【点睛】本题主要考查导数与函数的单调性比较大小,还考查了推理论证的能力,属于中档题.13.已知函数()2814f x x x =++,()()2log 4g x x =,若[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立,则a 的最大值为( )A .-4B .-3C .-2D .-1【答案】C 【解析】 【分析】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立得:()f x 的值域为()g x 的值域的子集,从而28142a a ++≤,故可求a 的最大值为2-.【详解】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立, 得:()f x 的值域为()g x 的值域的子集,由()()2log 4g x x =(]20,1x ∈()2g x ⇒≤ ,所以(](),2g x ∈-∞ 当43a --≤≤ 时,()21f x-#-,此时()f x 的值域为()g x 的值域的子集成立.当3a >-时,()22814f x a a -≤≤++,须满足()f x 的值域为()g x 的值域的子集,即28142a a ++≤,得62a -≤≤-所以a 的最大值为2-.故选:C.【点睛】本题主要考查恒成立和存在性问题,注意把两类问题转化为函数值域的包含关系,此问题属于中档题目.14.若关于x 的不等式220x ax -+>在区间[1,5]上有解,则a 的取值范围是( )A .)+∞B .(,-∞C .(,3)-∞D .27(,)5-∞ 【答案】D【解析】【分析】把220x ax -+>在区间[]1,5上有解,转化为存在一个[]1,5x ∈使得22x 2ax x a x+>⇒+>,解出()f x 的最大值. 【详解】 220x ax -+>在区间[]1,5上有解,转化为存在一个[]1,5x ∈使得22x 2ax x a x +>⇒+>,设()2f x x x=+,即是()f x 的最大值a >,()f x 的最大值275=,当5x =时取得,故选D 【点睛】15.40cos2d cos sin x x x xπ=+⎰( )A .1)B 1C 1D .2【答案】C【解析】【分析】利用三角恒等变换中的倍角公式,对被积函数进行化简,再求积分.【详解】 因为22cos2cos sin cos sin cos sin cos sin x x x x x x x x x-==-++,∴4400cos 2d (cos sin )d (sin cos )14cos sin 0x x x x x x x x x πππ=-=+=+⎰⎰,故选C . 【点睛】本题考查三角恒等变换知与微积分基本定理的交汇.16.若函数()f x 的定义域为R ,其导函数为()f x '.若()3f x '<恒成立,()20f -=,则()36f x x <+ 解集为( )A .(),2-∞-B .()2,2-C .(),2-∞D .()2,-+∞【答案】D【解析】【分析】设()()36g x f x x =--,求导后可得()g x 在R 上单调递减,再结合()20g -=即可得解.【详解】设()()36g x f x x =--, Q ()3f x '<,∴()()30g x f x ''=-<,∴()g x 在R 上单调递减,又()()22660g f -=-+-=,不等式()36f x x <+即()0g x <,∴2x >-,∴不等式()36f x x <+的解集为()2,-+∞.故选:D.【点睛】本题考查了导数的应用,关键是由题意构造出新函数,属于中档题.17.已知函数()f x 是定义在R 上的偶函数,当0x ≥,3()3f x x x =+,则32(2)a f =,31(log )27b f =,c f =的大小关系为( ) A .a b c >>B .a c b >>C .b a c >>D .b c a >>【答案】C【解析】【分析】 利用导数判断3()3f x x x =+在[0,)+∞上单调递增,再根据自变量的大小得到函数值的大小.【详解】 Q 函数()f x 是定义在R 上的偶函数,31(log )(3)(3)27b f f f ∴==-=,32023<<=<Q ,当0x ≥,'2()330f x x =+>恒成立,∴3()3f x x x =+在[0,)+∞上单调递增,3231(log )(2)27f f f ∴>>,即b a c >>. 故选:C.【点睛】 本题考查利用函数的性质比较数的大小,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意将自变量化到同一个单调区间中.18.曲线3πcos 02y x x ⎛⎫=≤≤⎪⎝⎭与x 轴以及直线3π2x =所围图形的面积为( ) A .4B .2C .52D .3【答案】B【解析】【分析】【详解】 试题分析:()332222(0cos )sin 2S x dx x ππππ=-=-=⎰,选B.考点:定积分的几何意义19.函数()()()log 5,0,1a f x ax a a =->≠在()1,3上是减函数,则a 的取值范围是( ) A .5,3⎛⎫+∞ ⎪⎝⎭B .1,15⎛⎫ ⎪⎝⎭C .51,3⎛⎫ ⎪⎝⎭D .51,3⎛⎤ ⎥⎝⎦【答案】D【解析】【分析】根据0a >可知5y ax =-在定义域内单调递减,若使得函数()()()log 5,0,1a f x ax a a =->≠在()1,3上是减函数,则需1530a a >⎧⎨-≥⎩,解不等式即可. 【详解】0a >Q5y ax ∴=-在定义域内单调递减若使得函数()()()log 5,0,1a f x ax a a =->≠在()1,3上是减函数则需1530a a >⎧⎨-≥⎩,解得513a <≤ 故选:D【点睛】本题考查对数函数的单调性,属于中档题.20.已知函数()2ln 2xx f x e x =+-的极值点为1x ,函数()2x g x e x =+-的零点为2x ,函数()ln 2x h x x=的最大值为3x ,则( ) A .123x x x >>B .213x x x >>C .312x x x >>D .321x x x >> 【答案】A【解析】【分析】根据()f x '在()0,∞+上单调递增,且11024f f ⎛⎫⎛⎫''⋅< ⎪ ⎪⎝⎭⎝⎭,可知导函数零点在区间11,42⎛⎫ ⎪⎝⎭内,即()f x 的极值点111,42x ⎛⎫∈ ⎪⎝⎭;根据()g x 单调递增且11024g g ⎛⎫⎛⎫⋅< ⎪ ⎪⎝⎭⎝⎭可知211,42x ⎛⎫∈ ⎪⎝⎭;通过判断()()12g x g x >,结合()g x 单调性可得12x x >;利用导数可求得()max 1124h x e =<,即314x <,从而可得三者的大小关系. 【详解】 ()1x f x e x x'=+-Q 在()0,∞+上单调递增 且1213022f e ⎛⎫'=-> ⎪⎝⎭,14115044f e ⎛⎫'=-< ⎪⎝⎭ 111,42x ⎛⎫∴∈ ⎪⎝⎭且11110x e x x +-= Q 函数()2x g x e x =+-在()0,∞+上单调递增 且1213022g e ⎛⎫=-> ⎪⎝⎭,14112044g e ⎛⎫=+-< ⎪⎝⎭ 211,42x ⎛⎫∴∈ ⎪⎝⎭ 又()()11111211112220x g x e x x x g x x x ⎛⎫=+-=-+-=->= ⎪⎝⎭ 且()g x 单调递增 12x x ∴>由()21ln 2x h x x -'=可得:()()max 12h x h e e ==,即31124x e =< 123x x x ∴>>本题正确选项:A【点睛】本题考查函数极值点、零点、最值的判断和求解问题,涉及到零点存在定理的应用,易错点是判断12,x x 大小关系时,未结合()g x 单调性判断出()()12g x g x >,造成求解困难.。

高二数学函数与导数试题答案及解析

高二数学函数与导数试题答案及解析

高二数学函数与导数试题答案及解析1.设函数,,当时,取得极值;(1) 求的值,并判断是函数的极大值还是极小值;(2) 当时,函数与的图象有两个公共点,求的取值范围;【答案】是函数的极小值;,【解析】解:(1)由题意当时,取得极值,即此时当时,,当时,,是函数的极小值; ---------------------4分(2)设,则,设,,令解得或,列表如下:4__0+函数在和上是增函数,在上是减函数;当时,有极大值;当时,有极小值;函数与的图象有两个公共点,函数与的图象有两个公共点或 ---------------------14分..2.若幂函数的图象经过点(4,2),则函数的单调递增区间为。

【答案】(0,+)【解析】略3.设函数若曲线的斜率最小的切线与直线平行。

(1)求的值;(2)求函数的单调区间。

【答案】(1)(2)当,所以为单调增区间.当,所以为单调减区间.【解析】略4.设是奇函数,对任意的实数,有则在区间上()A.有最大值B.有最小值C.有最大值D.有最小值【答案】A【解析】任取,所以是单调递减函数,所以函数最大值为【考点】抽象函数单调性与最值5.已知函数的导数为,()A.B.C.D.【答案】C【解析】因为,故选C.【考点】导数公式应用研究.6.(本小题满分12分)已知函数,是函数的导函数,有且只有四个单调区间.(Ⅰ)设的导数为,分别求和(两个结果都含);(Ⅱ)求实数的取值范围;(Ⅲ)设,试比较与的大小.【答案】(Ⅰ),;(Ⅱ);(Ⅲ).【解析】(Ⅰ)由导数公式直接求解即可;(Ⅱ)有且只有四个单调区间关于的方程有三个解,求二阶导数,研究的单调性与极值,由极大值大于,极小值小于可求的范围;(Ⅲ)由在上是增函数可得时,不等式恒成立得,计算,利用放缩比较两个数的大小.试题解析:(Ⅰ)∵,∴的定义域是,且,∴.(Ⅱ)∵有且只有四个单调区间,∴关于的方程有三个解.∴关于的方程有两个不同实根,设这两个根为,根据条件,这两个根是正根,且.∵,∴且,解得.下面验证时,.不妨假定,(方法一)由条件得,∴,∵,∴当变化时,函数,变化情况如下表:极大极小∵,∴极大,极小.由于,∴时,.又,令,则时,,即在区间上单调递增,∴时,,∴,∴有三个零点.综上所述,实数的取值范围是.(方法二)∴,.设,则时,,∴是区间上的单调增函数,∴当时,,∴∴,即,.∵,∴当变化时,函数,变化情况如下表:极大值(大于极小值(小于由于,∴时,.又,令,则时,,即在区间上单调递增,∴时,,∴,∴有三个零点.综上所述,实数的取值范围是.(Ⅲ)设,当时,,∴在上是增函数,即时,,即∴.由(Ⅰ)知,,∴.∵,∴∴.【考点】1.导数公式的应用;2.导数与函数单调性、极值;3.函数与方程、不等式.7.函数的零点所在的大致区间是()A.(3,4)B.(2,e)C.(1,2)D.(0,1)【答案】C【解析】判定端点值是否异号,,,,,都是同号,所以不选,,,所以零点必在区间内.【考点】函数的零点8.已知函数,则在点处的线方程为.【答案】【解析】根据题意,可知点,而,所以,所以在点处的线方程为,即.【考点】导数的几何意义,切线方程的求法,直线方程的点斜式,商函数的求导法则.9.函数在上的极小值点为()A.0B.C.D.【答案】C【解析】因为所以,令,则或由得:;由得:或所以函数在区间上为减函数,在区间和区间上均为增函数,所以函数的极小值点为.故选C.【考点】1、导数在研究函数性质中的应用.10.函数在上的最大值为1,最小值为,则.【答案】【解析】由题意,,则;时,,不成立.【考点】函数的最值及其几何意义.11.定义区间的区间长度为,如图是某圆拱形桥一孔圆拱的示意图.这个圆的圆拱跨度,拱高,建造时每间隔需要用一根支柱支撑,求支柱的高度所处的区间.(要求区间长度为)【答案】支柱的高度大约为,从而得出其对应的区间,答案不唯一.【解析】该题让球支柱的高度所处的区间,只要求出的高度的大约值即可,而其高度需要借助于坐标来完成,所以在解题的过程中,需要建立相应的坐标系,求得圆拱桥对应的圆拱所在的抛物线方程,根据题中所给的有关长度,确定出点的横坐标,将其代入,求得对应的纵坐标,求得大约值,从而确定出其所在的相应的区间,答案是不唯一的.试题解析:建系如图:,则设圆拱所在的圆半径为,利用勾股定理,,圆心坐标为,故圆方程为:,点的横坐标为,故代入圆方程求出纵坐标为.故.注:答案不唯一哈.最后的答案估算占分.【考点】利用曲线方程,求点的坐标,解决实际问题.12.(本题12分)已知函数,(1)当时,解不等式;(2)比较的大小;(3)解关于x的不等式.【答案】(1)(2)当时,当时,有当时,(3)【解析】(1)将代入不等式,结合二次函数图像求解;(2)比较大小一般采用作差法,将结果与0比较,求解时注意分情况讨论;(3)中首先将不等式化为,通过讨论的大小得到不等式的解集试题解析:(1)当时,有不等式,∴,∴不等式的解集为:;(2)∵且∴当时,有当时,有当时,;(3)∵不等式当时,有,∴不等式的解集为;当时,有,∴不等式的解集为;当时,不等式的解集为.【考点】1.一元二次不等式解法;2.分情况讨论13.设函数,若,则()A.B.C.D.【答案】D【解析】,当即时,,解得,舍;当即时,,所以,解得.综上可得.故D正确.【考点】分段函数.14.已知函数.(1)求的单调区间;(2)若方程有四个不等实根,求实数的取值范围.【答案】(1)的单调递减区间是和,单调递增区间是;(2).【解析】(1)根据绝对值的含义,分区间把绝对值符号去掉,写成分段函数的形式,分离常数,再由反比例函数研究每个区间上的单调性即可;(2)分讨论,结合函数的图象特点,分段讨论,结合二次方程根的分布原理,可求的取值范围.试题解析:(1).由反比例函数的单调性知:的单调递减区间是和,单调递增区间是.(2)①若,则方程,即,由(1)知,仅唯一零点,不合题意;②若,有四个实根即函数与开口向下的抛物线有四个交点.当时,单调递减,单调递增,故最多一个交点,当时,,,仅有一个交点,这与他们有四个交点不符;③若,由知,是其一根.当时,有,即.因为,所以该方程在实数范围有两根,而,故方程在上仅有一根,因此在上有两实数根,即在上有两实数根,等价于有两个不等的负实根,令,又,故,此时由韦达定理知有两个不等负根,且均不等于.综上可知的取值范围是.【考点】1.分段函数的表示及单调性;2.函数与方程.15.函数在处有极值10,则.【答案】7【解析】对原函数求导可得,由题得,当时,,此时不是极值点,不合题意,经检验符合题意,所以【考点】函数的极值16.已知二次函数的图象如图所示,则其导函数的图象大致形状是()【答案】B【解析】由的图象可知,在上是增函数,在上是减函数,从而在上恒成立,在上恒成立,从而知的图象应如图B所示.故选B.【考点】导数在研究函数的应用.17.在R上可导的函数f(x)的图象如图示,f′(x)为函数f(x)的导数,则关于x的不等式x·f′(x)<0的解集为()A.B.C.D.【答案】A【解析】根据图像,的解集是或,的解集是,所以的解集是或,所以不等式组的解集是或,故选A.【考点】导数的应用【方法点睛】主要考察了利用导数与函数的图像,属于基础题型,导数与函数单调性的关系是在某一区间内,函数单调递增,,函数单调递减,,所以由函数的图像就能确定导函数大于或小于0的区间,最后再解不等式.18.若曲线在处的切线与曲线在处的切线互相垂直,则实数的值为________.【答案】【解析】分别求出两个函数的导函数,求得两函数在x=1处的导数值,由题意知两导数值的乘积等于-1,由此求得a的值.根据在处的切线与曲线在处的切线互相垂直,可得.【考点】利用导数研究曲线上某点处的切线方程【方法点睛】函数f(x)在点x0处的导数f′(x)的几何意义是在曲线y=f(x)上点P(x,y)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y=f′(x0)(x-x).求曲线切线时,要分清在点P处的切线与过P点的切线的不同.19.已知曲线上一点,则过点的切线的倾斜角为()A.30°B.45°C.135°D.165°【答案】B【解析】由,因此,由导数的几何意义知,曲线上过点的切线的斜率为,因此过点的切线的倾斜角为45°【考点】导数的几何意义;20.已知f(x)=x3+x2-6x+c,若x[0,2]都有f(x)>2c-恒成立,则c的取值范围是【答案】【解析】,令,解得(舍)或,所以当时;当时,所以函数在上单调递减,在上单调递增.所以上,要使都有恒成立,只需,解得.【考点】1用导数求最值;2恒成立问题.21.设,函数的导函数是,且是奇函数,则的值为()A.1B.C.D.-1【答案】A【解析】求导数可得,是奇函数,,解得,故选A.【考点】1、函数的求导法则;2、函数的奇偶性.22.直线y=kx+1与曲线y=x3+ax+b相切于点A(1,3),则b的值为.【答案】3【解析】由于切点在直线与曲线上,将切点的坐标代入两个方程,得到关于a,b,k 的方程,再求出在点(1,3)处的切线的斜率的值,即利用导数求出在x=1处的导函数值,结合导数的几何意义求出切线的斜率,再列出一个等式,最后解方程组即可得.从而问题解决.解:∵直线y=kx+1与曲线y=x3+ax+b相切于点A(1,3),∴…①又∵y=x3+ax+b,∴y'=3x2+ax,当x=1时,y'=3+a得切线的斜率为3+a,所以k=3+a;…②∴由①②得:b=3.故答案为:3.【考点】利用导数研究曲线上某点切线方程.x的图象是()23.当0<a<1时,在同一坐标系中,函数y=a﹣x与y=loga【答案】C【解析】先将函数y=a﹣x化成指数函数的形式,再结合函数的单调性同时考虑这两个函数的单调性即可判断出结果解:∵函数y=a﹣x与可化为函数y=,其底数大于1,是增函数,x,当0<a<1时是减函数,又y=loga两个函数是一增一减,前增后减.故选C.【考点】对数函数的图象与性质;指数函数的图象与性质.24.二次函数f(x)的图像经过点,且,则不等式的解集为()A.(-3,1)B.(-lg3,0)C.D.(-∞,0)【答案】D【解析】设,则,并且,由于,所以,所以,由,可得,解得所以不等式的解集为,故选D.【考点】1、二次函数及二次不等式;2、指数函数.【思路点睛】本题是一个二次函数、导数以及二次不等式的综合应用问题,属于中档题.解决本题的基本思路是,首先要设出二次函数的一般式,再根据题目条件确定二次函数的解析式,这样就得到一个关于的二次不等式,最后解这个关于的不等式,就可得出不等式的解集,使问题得以解决.25.已知函数,.⑴求函数的极大值和极小值;⑵求函数图象经过点的切线的方程;⑶求函数的图象与直线所围成的封闭图形的面积.【答案】(1)极大值1,极小值;(2)y=1或;(3)【解析】(1)f′(x)=x(x-1),分别令f′(x)>0,f′(x)<0,可得其单调性与极值;(2)由(1)可得,由点为切点时,可得切线方程;若点不为切点时,设切点为P,则切线方程为:把点代入解得,即可得出切线方程;(3)由,解得x=0或.可得函数的图象与直线y=1所围成的封闭图形的面积为:,利用微积分基本定理即可得出试题解析:(1),令,解得x=0或x=1,令,得x<0或x>1,,解得0<x<1,∴函数f(x)在上单调递增,在(0,1)上单调递减,在上单调递增∴x=0是其极大值点,x=1是极小值点,所以f(x)的极大值为f(0)=1;f(x)的极小值为(2)设切点为P,切线斜率∴曲线在P点处的切线方程为,把点代入,得,所以切线方程为y=1或;(3)由,所以所求的面积为.【考点】利用导数研究函数的极值;定积分;定积分在求面积中的应用;利用导数研究曲线上某点切线方程26.设函数是奇函数的导函数,,当x>0时,,则使得成立的的取值范围是( )A.B.C.D.【答案】A【解析】设,则g(x)的导数为:,∵当x>0时总有xf′(x)<f(x)成立,即当x>0时,g′(x)恒小于0,∴当x>0时,函数为减函数,又∵,∴函数g(x)为定义域上的偶函数又∵,∴函数g(x)的图象性质类似如图:数形结合可得,不等式f(x)>0⇔x g(x)>0⇔或,【考点】函数的单调性与导数的关系27.函数,若对,求实数的最小值.【答案】【解析】任意存在型命题关键转化为对应函数最值问题:再分别求出对应函数最值,,最好解对应不等式即可试题解析:解:由题意,在递减,在递增,所以,在单调递增,,;【考点】恒成立问题28.已知函数在单调递增,则实数的取值范围是_______________.【答案】【解析】依题意在区间上恒成立,,所以.【考点】函数导数与单调性.29.已知直线与曲线相切,则的值为()A.B.C.D.【答案】C【解析】设切点为,,所以切线方程为,依题意,切线过点,代入切线方程得,解得,故.【考点】利用导数求切线.30.若偶函数,当,满足,且,则的解集是 .【答案】【解析】由得,因为,所以,设,则,所以时,,即在上单调递增,因为,所以时,,当时,,又是偶函数,则是奇函数,因此当时,也有,所以不等式的解集是.【考点】导数与函数的单调性.构造法解函数不等式.31.某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中,为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求的值;(2)若该商品的成品为3元/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大.【答案】(1)(2)【解析】(Ⅰ)由f(5)=11代入函数的解析式,解关于a的方程,可得a值;(Ⅱ)商场每日销售该商品所获得的利润=每日的销售量×销售该商品的单利润,可得日销售量的利润函数为关于x的三次多项式函数,再用求导数的方法讨论函数的单调性,得出函数的极大值点,从而得出最大值对应的x值试题解析:(1)因为时,所以∴;(2)由(1)知该商品每日的销售量,所以商场每日销售该商品所获得的利润:;.令得.当时,,当时,函数在上递增,在上递减,所以当时函数取得最大值答:当销售价格时,商场每日销售该商品所获得的利润最大,最大值为42.【考点】函数模型的选择与应用;利用导数研究函数的单调性32.如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000,四周空白的宽度为10cm,两栏之间的中缝空白的宽度为5cm,怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?【答案】.【解析】通过假设广告矩形栏目的长、宽,表达广告栏目的矩形面积,进而利用基本不等式求解面积的最小值.试题解析:解法1:设矩形栏目的高为a cm,宽为b cm,则ab="9000." ①广告的高为a+20,宽为2b+25,其中a>0,b>0.广告的面积S=(a+20)(2b+25)=2ab+40b+25a+500=18500+25a+40b≥18500+2=18500+当且仅当25a=40b时等号成立,此时b=,代入①式得a=120,从而b=75.即当a=120,b=75时,S取得最小值24500.故广告的高为140 cm,宽为175 cm时,可使广告的面积最小.解法2:设广告的高为宽分别为x cm,y cm,则每栏的高和宽分别为x-20,其中x>20,y>25两栏面积之和为2(x-20),由此得y=广告的面积S=xy=x()=x,整理得S=因为x-20>0,所以S≥2当且仅当时等号成立,此时有(x-20)2=14400(x>20),解得x=140,代入y=+25,得y=175,即当x=140,y=175时,S取得最小值24500,故当广告的高为140 cm,宽为175 cm时,可使广告的面积最小.【考点】基本不等式的应用.【思路点睛】本题主要考查函数表达式及基本不等式的应用.由题已知,可通过假设矩形的长与宽,进而表示广告面积的表达式,利用基本不等式,求出面积的最小值.在应用不等式求最值时,需要满足一正二定三相等的原则,即①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.若使用基本不等式时,等号取不到,可以通过“对勾函数”,利用单调性求最值.33.如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000,四周空白的宽度为10cm,两栏之间的中缝空白的宽度为5cm,怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?【答案】.【解析】通过假设广告矩形栏目的长、宽,表达广告栏目的矩形面积,进而利用基本不等式求解面积的最小值.试题解析:解法1:设矩形栏目的高为a cm,宽为b cm,则ab="9000." ①广告的高为a+20,宽为2b+25,其中a>0,b>0.广告的面积S=(a+20)(2b+25)=2ab+40b+25a+500=18500+25a+40b≥18500+2=18500+当且仅当25a=40b时等号成立,此时b=,代入①式得a=120,从而b=75.即当a=120,b=75时,S取得最小值24500.故广告的高为140 cm,宽为175 cm时,可使广告的面积最小.解法2:设广告的高为宽分别为x cm,y cm,则每栏的高和宽分别为x-20,其中x>20,y>25两栏面积之和为2(x-20),由此得y=广告的面积S=xy=x()=x,整理得S=因为x-20>0,所以S≥2当且仅当时等号成立,此时有(x-20)2=14400(x>20),解得x=140,代入y=+25,得y=175,即当x=140,y=175时,S取得最小值24500,故当广告的高为140 cm,宽为175 cm时,可使广告的面积最小.【考点】基本不等式的应用.【思路点睛】本题主要考查函数表达式及基本不等式的应用.由题已知,可通过假设矩形的长与宽,进而表示广告面积的表达式,利用基本不等式,求出面积的最小值.在应用不等式求最值时,需要满足一正二定三相等的原则,即①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.若使用基本不等式时,等号取不到,可以通过“对勾函数”,利用单调性求最值.34.已知函数.(I)求函数的单调区间;(II)若函数上是减函数,求实数a的最小值.【答案】(I)当时,,所以函数的增区间是,当且时,,所以函数的单调减区间是;(II)【解析】(I)先求出函数的定义域为, 再求出,由,得到函数的增区间,由,可得函数的单调减区间(II)因f(x)在上为减函数,在上恒成立,可得当时,.从而可得a的最小值试题解析:(I)由已知得函数的定义域为,函数,当时,,所以函数的增区间是;当且时,,所以函数的单调减区间是,(II)因f(x)在上为减函数,且.故在上恒成立.所以当时,.又,故当,即时,.所以于是,故a的最小值为.【考点】函数的单调性及导数的关系,求参数的取值范围【方法点睛】(1)函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质的基础,因此,我们一定要树立函数的定义域优先意识;(2)可导函数在指定的区间上单调递增(减),求参数问题,可转化为恒成立,从而构建不等式,要注意“=”是否可以取到. (3)对于恒成立的问题,常用到以下两个结论:(1),(2)35.设是定义在R上的奇函数,当x≤0时,=,则 .【答案】【解析】由函数是奇函数可得【考点】函数奇偶性与函数求值36.已知函数的图象如图所示,则不等式的解集为()A.(-∞,)∪(,2)B.(-∞,0)∪(,2)C.(-∞,∪(,+∞)D.(-∞,)∪(2,+∞)【答案】B【解析】由的图象可知,在上,在上,,所以等价于或,即或或,解得或,故选B.【考点】导数与函数单调性的关系.37.已知f(x)为偶函数,当时,,则曲线y=f(x)在点(1,−3)处的切线方程是_______________.【答案】【解析】当时,,则.又因为为偶函数,所以,所以,则切线斜率为,所以切线方程为,即.【考点】函数的奇偶性与解析式,导数的几何意义.【知识拓展】本题题型可归纳为“已知当时,函数,则当时,求函数的解析式”.有如下结论:若函数为偶函数,则当时,函数的解析式为;若为奇函数,则函数的解析式为.38.f(x)的定义域为(0,+∞),且对一切x>0,y>0都有f=f(x)-f(y),当x>1时,有f(x)>0.(1)求f(1)的值;(2)判断f(x)的单调性并证明;(3)若f(6)=1,解不等式.【答案】(1)0;(2)证明见解析;(3)0<x<4.【解析】(1)应用已知不等式,令则(2)应用单调性的定义判断.(3)对于解析式不清楚的抽象函数,当单调递增时当单调递减时试题解析:(1)f(1)=f=f(x)-f(x)=0,x>0.(2)f(x)在(0,+∞)上是增函数.证明:设0<x1<x2,则由f=f(x)-f(y),得f(x2)-f(x1)=f,∵>1,∴f>0.∴f(x2)-f(x1)>0,即f(x)在(0,+∞)上是增函数.(3)∵f(6)=f=f(36)-f(6),又f(6)=1,∴f(36)=2,原不等式化为:f(x2+5x)<f(36),又∵ f(x)在(0,+∞)上是增函数,∴解得0<x<4.【考点】1、函数的单调性;2、函数单调性的应用.39.已知函数,为常数,且函数的图象过点.(1)求的值;(2)若,且,求满足条件的的值.【答案】(1);(2).【解析】(1)由函数过点,代入表达式可得值;(2)由将两函数表代入,转化为关于的指数型复合方程.利用换元法,将指数型方程化为一元二次方程,解一元二次方程后再解指数方程,可得值.试题解析:(1)由已知得,解得.(2)由(1)知,又,则,即,即,令,则,即,又,故,即,解得.【考点】1.指数运算;2.一元二次方程的解法;3.换元法.40.设定义在上的函数,且对任意有,且当时,.(1)求证:,且当时,有;(2)判断在上的单调性;(3)设集合,集合,若,求的取值范围.【答案】(1)证明见解析;(2)在上单调递减;(3).【解析】(1)由所给函数满足的条件,用特殊值法令,可得,再利用,可得与之间的关系,由时,范围,可得时,范围;(2)由函数单调性的定义出发,可判断函数单调性;(3)结合条件由可得,由可得,由,将两式联立可得一元二次不等式无解,可得关于的不等式,解可得的范围. 试题解析:(1)由题意知,令,则,因为当时,,所以,设,则,所以即当时,有.(2)设是上的任意两个值,且,则,所以,因为,且,所以,即,即.所以在上单调递减.(3)因为,所以,由(2)知在上单调递减,则,又,所以,因为,又由得,由题可知上式无解即,即,解得:,故的取值范围为.【考点】1.函数单调性;2.一元二次不等式;3.集合的交集.41.已知函数(Ⅰ)讨论函数的单调性;(Ⅱ)若对任意的,都存在使得不等式成立,求实数的取值范围。

高考数学压轴专题新备战高考《函数与导数》全集汇编含答案解析

高考数学压轴专题新备战高考《函数与导数》全集汇编含答案解析

高中数学《函数与导数》知识点归纳一、选择题1.函数()()2ln 43f x x x =+-的单调递减区间是( )A .3,2⎛⎤-∞ ⎥⎝⎦B .32⎡⎫+∞⎪⎢⎣⎭,C .31,2⎛⎤- ⎥⎝⎦D .342⎡⎫⎪⎢⎣⎭,【答案】D 【解析】 【分析】先求函数定义域,再由复合函数单调性得结论. 【详解】由2430x x +->得14x -<<,即函数定义域是(1,4)-,2232543()24u x x x =+-=--+在3(1,]2-上递增,在3[,4)2上递减,而ln y u =是增函数,∴()f x 的减区间是3[,4)2. 故选:D . 【点睛】本题考查对数型复合函数的单调性,解题时先求出函数的定义域,函数的单调区间应在定义域内考虑.2.函数()2sin f x x x x =-的图象大致为( )A .B .C .D .【答案】A 【解析】 【分析】分析函数()y f x =的奇偶性,并利用导数分析该函数在区间()0,+∞上的单调性,结合排除法可得出合适的选项. 【详解】因为()()()()()22sin sin f x x x x x x x f x -=----=-=,且定义域R 关于原点对称,所以函数()y f x =为偶函数,故排除B 项;()()2sin sin f x x x x x x x =-=-,设()sin g x x x =-,则()1cos 0g x x ='-≥恒成立,所以函数()y g x =单调递增,所以当0x >时,()()00g x g >=, 任取120x x >>,则()()120g x g x >>,所以,()()1122x g x x g x >,()()12f x f x ∴>,所以,函数()y f x =在()0,+∞上为增函数,故排除C 、D 选项. 故选:A. 【点睛】本题考查利用函数解析式选择图象,一般分析函数的定义域、奇偶性、单调性、函数零点以及函数值符号,结合排除法得出合适的选项,考查分析问题和解决问题的能力,属于中等题.3.336ax ⎛⎫- ⎪ ⎪⎝⎭的展开式中,第三项的系数为1,则11a dx x =⎰( ) A .2ln 2 B .ln 2 C .2 D .1【答案】A 【解析】 【分析】首先根据二项式定理求出a ,把a 的值带入11adx x⎰即可求出结果. 【详解】解题分析根据二项式3ax ⎛- ⎝⎭的展开式的通项公式得221213()4a T C ax x +⎛== ⎝⎭. Q 第三项的系数为1,1,44aa ∴=∴=,则4411111d d ln 2ln 2a x x x x x ===⎰⎰.故选:A 【点睛】本题考查二项式定理及定积分. 需要记住二项式定理展开公式:1C k n k kk n T a b -+=.属于中等题.4.已知全集U =R ,函数()ln 1y x =-的定义域为M ,集合{}2|0?N x x x =-<,则下列结论正确的是 A .M N N =I B .()U M N =∅I ð C .M N U =U D .()U M N ⊆ð【答案】A 【解析】 【分析】求函数定义域得集合M ,N 后,再判断. 【详解】由题意{|1}M x x =<,{|01}N x x =<<,∴M N N =I . 故选A . 【点睛】本题考查集合的运算,解题关键是确定集合中的元素.确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代表元决定.5.已知函数f (x )=e b ﹣x ﹣e x ﹣b +c (b ,c 均为常数)的图象关于点(2,1)对称,则f (5)+f (﹣1)=( ) A .﹣2 B .﹣1C .2D .4【答案】C 【解析】 【分析】根据对称性即可求出答案.【详解】解:∵点(5,f (5))与点(﹣1,f (﹣1))满足(5﹣1)÷2=2, 故它们关于点(2,1)对称,所以f (5)+f (﹣1)=2, 故选:C . 【点睛】本题主要考查函数的对称性的应用,属于中档题.6.函数f (x )=x ﹣g (x )的图象在点x =2处的切线方程是y =﹣x ﹣1,则g (2)+g '(2)=( ) A .7 B .4C .0D .﹣4【答案】A 【解析】()()()(),'1'f x x g x f x g x =-∴=-Q ,因为函数()()f x x g x =-的图像在点2x =处的切线方程是1y x =--,所以()()23,'21f f =-=-,()()()()2'2221'27g g f f ∴+=-+-=,故选A .7.已知定义在R 上的可导函数()f x ,对于任意实数x ,都有()()2f x f x x -+=成立,且当()0,x ∈+∞时,都有()'f x x >成立,若()()112f a f a a -≥+-,则实数a 的取值范围为( ) A .1,2⎛⎤-∞ ⎥⎝⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .(],2-∞D .[)2,+∞【答案】A 【解析】 【分析】构造函数21()()2g x f x x =-,可判断函数()g x 为奇函数且在R 上是增函数,由函数的性质可得a 的不等式,解不等式即可得答案. 【详解】 令21()()2g x f x x =-,则()()g x f x x ''=-, ()0,x ∈+∞Q 时,都有()'f x x >成立,即有()0g x '>,∴在()0,∞+,()g x 单调递增,Q 定义在R 上的函数()f x ,对于任意实数x ,都有()()2f x f x x -+=成立,所以(0)0f =,2222111()()()()()222g x f x x x f x x x f x g x ⎡⎤∴-=--=--=-=-⎣⎦, ()g x ∴是定义在R 上的奇函数,又(0)(0)0g f ==∴在R 上()g x 单调递增.又()()112f a f a a -≥+-Q ()()()2211111222g a a g a a a ∴-+-≥++-, 即()()1112g a g a a a a -≥⇒-≥⇒≤. 因此实数a 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦.故选:A 【点睛】本题考查构造函数、奇函数的判断,及导数与单调性的应用,且已知条件构造出21()()2g x f x x =-是解决本题的关键,考查了理解辨析能力与运算求解能力,属于中档题.8.已知函数f (x )=(k +4k )lnx +24x x-,k ∈[4,+∞),曲线y =f (x )上总存在两点M (x 1,y 1),N (x 2,y 2),使曲线y =f (x )在M ,N 两点处的切线互相平行,则x 1+x 2的取值范围为A .(85,+∞) B .(165,+∞) C .[85,+∞) D .[165,+∞) 【答案】B 【解析】 【分析】利用过M 、N 点处的切线互相平行,建立方程,结合基本不等式,再求最值,即可求x 1+x 2的取值范围. 【详解】 由题得f′(x )=4k k x +﹣24x ﹣1=﹣2244x k x k x ⎛⎫-++ ⎪⎝⎭=﹣()24x k x k x ⎛⎫-- ⎪⎝⎭,(x >0,k >0)由题意,可得f′(x 1)=f′(x 2)(x 1,x 2>0,且x 1≠x 2),即21144k k x x +-﹣1=24k k x +﹣224x ﹣1,化简得4(x 1+x 2)=(k+4k)x 1x 2,而x 1x 2<212()2x x +, 4(x 1+x 2)<(k+4k )212()2x x +, 即x 1+x 2>164k k+对k ∈[4,+∞)恒成立, 令g (k )=k+4k, 则g′(k )=1﹣24k =()()222k k k+->0对k ∈[4,+∞)恒成立, ∴g (k )≥g (4)=5, ∴164k k+≤165, ∴x 1+x 2>165, 故x 1+x 2的取值范围为(165,+∞). 故答案为B 【点睛】本题运用导数可以解决曲线的切线问题,函数的单调性、极值与最值,正确求导是我们解题的关键,属于中档题.9.函数()xe f x x=的图象大致为( )A .B .C .D .【解析】函数()xe f x x=的定义域为(,0)(0,)-∞+∞U ,排除选项A ;当0x >时,()0f x >,且()2(1)'xx e f x x-= ,故当()0,1x ∈时,函数单调递减,当()1,x ∈+∞时,函数单调递增,排除选项C ;当0x <时,函数()0xe f x x=<,排除选项D ,选项B 正确.选B .点睛:函数图象的识别可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置; (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的周期性,判断图象的循环往复; (5)从函数的特征点,排除不合要求的图象.10.已知函数()322f x x ax bx a =+++在1x =处取极值10,则a =( )A .4或3-B .4或11-C .4D .3-【答案】C 【解析】分析:根据函数的极值点和极值得到关于,a b 的方程组,解方程组并进行验证可得所求. 详解:∵322()f x x ax bx a =+++, ∴2()32f x x ax b '=++. 由题意得2(1)320(1)110f a b f a b a =++=⎧⎨=+++='⎩, 即2239a b a b a +=-⎧⎨++=⎩,解得33a b =-⎧⎨=⎩或411a b =⎧⎨=-⎩. 当33a b =-⎧⎨=⎩时,22()3633(1)0f x x x x '=-+=-≥,故函数()f x 单调递增,无极值.不符合题意. ∴4a =.点睛:(1)导函数的零点并不一定就是函数的极值点,所以在求出导函数的零点后一定要注意分析这个零点是不是函数的极值点.(2)对于可导函数f (x ),f ′(x 0)=0是函数f (x )在x =x 0处有极值的必要不充分条件,因此在根据函数的极值点或极值求得参数的值后需要进行验证,舍掉不符合题意的值.11.若函数f (x )=()x 1222a x 1log x 1x 1⎧++≤⎪⎨+⎪⎩,,>有最大值,则a 的取值范围为( ) A .()5,∞-+ B .[)5,∞-+ C .(),5∞-- D .(],5∞-- 【答案】B 【解析】 【分析】分析函数每段的单调性确定其最值,列a 的不等式即可求解. 【详解】由题()xf x 22a,x 1=++≤,单调递增,故()()f x f 14a,;≤=+()()12f x log x 1,x 1,=+>单调递减,故()()f x f 11>=-,因为函数存在最大值,所以4a 1+≥-,解a 5≥-. 故选B. 【点睛】本题考查分段函数最值,函数单调性,确定每段函数单调性及最值是关键,是基础题.12.若函数321()1232b f x x x bx ⎛⎫=-++ ⎪⎝⎭在区间[3,1]-上不是单调函数,则函数()f x 在R 上的极小值为( ).A .423b -B .3223b - C .0D .2316b b -【答案】A 【解析】 【分析】求出函数的导数,根据函数的单调性,求出b 的范围,从而求出函数的单调区间,得到(2)f 是函数的极小值即可.【详解】解:2()(2)2()(2)f x x b x b x b x '=-++=--, ∵函数()f x 在区间[3,1]-上不是单调函数,31b ∴-<<,由()0f x '>,解得:2x >或x b <,由()0f x '<,解得:2b x <<,()f x ∴的极小值为()84(2)424233f b b b =-++=-,故选:A. 【点睛】本题考查了函数的单调性、极值问题,考查导数的应用,是一道中档题.13.已知函数())lnf x x =,设()3log 0.2a f =,()0.23b f -=,()1.13c f =-,则( )A .a b c >>B .b a c >>C .c b a >>D .c a b >>【答案】D 【解析】∵())lnf x x =∴())f x x ==∴())f x x -=∵当0x >1x >;当0x <时,01x <∴当0x >时,())))f x x x x ==-=,())f x x -=;当0x <时()))f x x x ==;()))f x x x -=-=.∴()()f x f x =- ∴函数()f x 是偶函数∴当0x >时,易得())f x x =为增函数∴33(log 0.2)(log 5)a f f ==, 1.1 1.1(3)(3)c f f =-=∵31log 52<<,0.2031-<<, 1.133>∴ 1.10.23(3)(log 5)(3)f f f ->>∴c a b >> 故选D.14.三个数0.377,0.3,ln 0.3a b c ===大小的顺序是( )A .a c b >>B .a b c >>C .b a c >>D .c a b >>【答案】B 【解析】试题分析:根据指数函数和对数函数的单调性知:0.30771a =>=,即1a >;7000.30.31b <=<=,即01b <<;ln0.3ln10c =<=,即0c <;所以a b c >>,故正确答案为选项B .考点:指数函数和对数函数的单调性;间接比较法.15.已知ln 3ln 4ln ,,34a b e c e===(e是自然对数的底数),则,,a b c 的大小关系是( ) A .c a b << B .a c b <<C .b a c <<D .c b a <<【答案】C 【解析】 【分析】根据ln 3ln 4ln ,,34a b e c e===的结构特点,令()ln x f x x =,求导()21ln xf x x -'=,可得()f x 在()0,e 上递增,在(),+e ∞上递减,再利用单调性求解.【详解】令()ln xf x x=,所以()21ln xf x x -'=,当0x e <<时, ()0f x '>,当x e >时,()0f x '<, 所以()f x 在()0,e 上递增,在(),+e ∞上递减. 因为34e <<,所以 ()()()34>>f e f f , 即b a c <<. 故选:C 【点睛】本题主要考查导数与函数的单调性比较大小,还考查了推理论证的能力,属于中档题.16.已知函数()f x 的导函数为()f x '且满足()()21ln f x x f x '=⋅+,则1f e ⎛⎫'= ⎪⎝⎭( ) A .12e- B .2e - C .1-D .e【解析】 【分析】对函数求导得到导函数,代入1x =可求得()11f '=-,从而得到()f x ',代入1x e=求得结果. 【详解】由题意得:()()121f x f x''=+令1x =得:()()1211f f ''=+,解得:()11f '=-()12f x x '∴=-+12f e e ⎛⎫'∴=- ⎪⎝⎭本题正确选项:B 【点睛】本题考查导数值的求解,关键是能够通过赋值的方式求得()1f ',易错点是忽略()1f '为常数,导致求导错误.17.已知函数()2814f x x x =++,()()2log 4g x x =,若[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立,则a 的最大值为( )A .-4B .-3C .-2D .-1【答案】C 【解析】 【分析】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立得:()f x 的值域为()g x 的值域的子集,从而28142a a ++≤,故可求a 的最大值为2-.【详解】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立, 得:()f x 的值域为()g x 的值域的子集,由()()2log 4g x x =(]20,1x ∈()2g x ⇒≤ ,所以(](),2g x ∈-∞ 当43a --≤≤ 时,()21f x-#-,此时()f x 的值域为()g x 的值域的子集成立.当3a >-时,()22814f x a a -≤≤++,须满足()f x 的值域为()g x 的值域的子集,即28142a a ++≤,得62a -≤≤- 所以a 的最大值为2-. 故选:C.本题主要考查恒成立和存在性问题,注意把两类问题转化为函数值域的包含关系,此问题属于中档题目.18.函数22cos x xy x x--=-的图像大致为( ).A .B .C .D .【答案】A 【解析】 【分析】 本题采用排除法: 由5522f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭排除选项D ; 根据特殊值502f π⎛⎫>⎪⎝⎭排除选项C; 由0x >,且x 无限接近于0时, ()0f x <排除选项B ; 【详解】对于选项D:由题意可得, 令函数()f x = 22cos x xy x x--=-,则5522522522f ππππ--⎛⎫-= ⎪⎝⎭,5522522522f ππππ--⎛⎫=⎪⎝⎭;即5522f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭.故选项D 排除; 对于选项C :因为55225220522f ππππ--⎛⎫=> ⎪⎝⎭,故选项C 排除;对于选项B:当0x >,且x 无限接近于0时,cos x x -接近于10-<,220x x -->,此时()0f x <.故选项B 排除;故选项:A 【点睛】本题考查函数解析式较复杂的图象的判断;利用函数奇偶性、特殊值符号的正负等有关性质进行逐一排除是解题的关键;属于中档题.19.函数()()()log 5,0,1a f x ax a a =->≠在()1,3上是减函数,则a 的取值范围是( ) A .5,3⎛⎫+∞ ⎪⎝⎭B .1,15⎛⎫ ⎪⎝⎭C .51,3⎛⎫ ⎪⎝⎭D .51,3⎛⎤ ⎥⎝⎦【答案】D 【解析】 【分析】根据0a >可知5y ax =-在定义域内单调递减,若使得函数()()()log 5,0,1a f x ax a a =->≠在()1,3上是减函数,则需1530a a >⎧⎨-≥⎩,解不等式即可.【详解】0a >Q5y ax ∴=-在定义域内单调递减若使得函数()()()log 5,0,1a f x ax a a =->≠在()1,3上是减函数 则需1530a a >⎧⎨-≥⎩,解得513a <≤故选:D 【点睛】本题考查对数函数的单调性,属于中档题.20.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“n 次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( ).(取lg30.4771≈,lg 20.3010≈)A .16B .17C .24D .25【答案】D 【解析】 【分析】由折线长度变化规律可知“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭,由此得到410003n⎛⎫≥ ⎪⎝⎭,利用运算法则可知32lg 2lg 3n ≥⨯-,由此计算得到结果.【详解】记初始线段长度为a ,则“一次构造”后的折线长度为43a ,“二次构造”后的折线长度为243a ⎛⎫ ⎪⎝⎭,以此类推,“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭, 若得到的折线长度为初始线段长度的1000倍,则410003na a ⎛⎫≥ ⎪⎝⎭,即410003n⎛⎫≥ ⎪⎝⎭,()()44lg lg lg 4lg32lg 2lg3lg1000333nn n n ⎛⎫∴==-=-≥= ⎪⎝⎭,即324.0220.30100.4771n ≥≈⨯-,∴至少需要25次构造.故选:D . 【点睛】本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.。

(完整版)高中导数经典知识点及例题讲解

(完整版)高中导数经典知识点及例题讲解

§ 1.1 变化率与导数 1.1.1 变化率问题自学引导1.通过实例分析,了解平均变化率的实际意义.2.会求给定函数在某个区间上的平均变化率. 课前热身1.函数f (x )在区间[x 1,x 2]上的平均变化率为ΔyΔx=________. 2.平均变化率另一种表示形式:设Δx =x -x 0,则ΔyΔx=________,表示函数y =f (x )从x 0到x 的平均变化率.1.f (x 2)-f (x 1)x 2-x 1答 案2.f (x 0+Δx )-f (x 0)Δx名师讲解1.如何理解Δx ,Δy 的含义Δx 表示自变量x 的改变量,即Δx =x 2-x 1;Δy 表示函数值的改变量,即Δy =f (x 2)-f (x 1).2.求平均变化率的步骤求函数y =f (x )在[x 1,x 2]内的平均变化率. (1)先计算函数的增量Δy =f (x 2)-f (x 1). (2)计算自变量的增量Δx =x 2-x 1.(3)得平均变化率Δy Δx =f x 2-f x 1x 2-x 1.对平均变化率的认识函数的平均变化率可以表现出函数在某段区间上的变化趋势,且区间长度越小,表现得越精确.如函数y =sin x 在区间[0,π]上的平均变化率为0,而在[0,π2]上的平均变化率为sin π2-sin0π2-0=2π.在平均变化率的意义中,f (x 2)-f (x 1)的值可正、可负,也可以为零.但Δx =x 2-x 1≠0.典例剖析题型一求函数的平均变化率例1 一物体做直线运动,其路程与时间t的关系是S=3t-t2.(1)求此物体的初速度;(2)求t=0到t=1的平均速度.分析t=0时的速度即为初速度,求平均速度先求路程的改变量ΔS=S(1)-S(0),再求时间改变量Δt=1-0=1.求商ΔSΔt就可以得到平均速度.解(1)由于v=St=3t-t2t=3-t.∴当t=0时,v0=3,即为初速度.(2)ΔS=S(1)-S(0)=3×1-12-0=2 Δt=1-0=1∴v=ΔSΔt=21=2.∴从t=0到t=1的平均速度为2.误区警示本题1不要认为t=0时,S=0.所以初速度是零.变式训练1 已知函数f(x)=-x2+x的图像上一点(-1,-2)及邻近一点(-1+Δx,-2+Δy),则ΔyΔx=( )A.3 B.3Δx-(Δx)2 C.3-(Δx)2D.3-Δx 解析Δy=f(-1+Δx)-f(-1)=-(-1+Δx)2+(-1+Δx)-(-2)=-(Δx)2+3Δx.∴ΔyΔx=-Δx2+3ΔxΔx=-Δx+3答案D题型二平均变化率的快慢比较例2 求正弦函数y=sin x在0到π6之间及π3到π2之间的平均变化率.并比较大小.分析用平均变化率的定义求出两个区间上的平均变化率,再比较大小.解设y=sin x在0到π6之间的变化率为k1,则k 1=sinπ6-sin0π6-0=3π.y =sin x 在π3到π2之间的平均变化率为k 2,则k 2=sin π2-sin π3π2-π3=1-32π6=32-3π.∵k 1-k 2=3π-32-3π=33-1π>0,∴k 1>k 2.答:函数y =sin x 在0到π6之间的平均变化率为3π,在π3到π2之间的平均变化率为32-3π,且3π>32-3π.变式训练2 试比较余弦函数y =cos x 在0到π3之间和π3到π2之间的平均变化率的大小.解 设函数y =cos x 在0到π3之间的平均变化率是k 1,则k 1=cos π3-cos0π3-0=-32π.函数y =cos x 在π3到π2之间的平均变化率是k 2,则k 2=cosπ2-cos π3π2-π3=-3π.∵k 1-k 2=-32π-(-3π)=32π>0,∴k 1>k 2.∴函数y =cos x 在0到π3之间的平均变化率大于在π3到π2之间的平均变化率.题型三 平均变化率的应用例3 已知一物体的运动方程为s (t )=t 2+2t +3,求物体在t =1到t =1+Δt 这段时间内的平均速度.分析 由物体运动方程―→写出位移变化量Δs ―→ΔsΔt解 物体在t =1到t =1+Δt 这段时间内的位移增量 Δs =s (1+Δt )-s (1)=[(1+Δt )2+2(1+Δt )+3]-(12+2×1+3) =(Δt )2+4Δt .物体在t =1到t =1+Δt 这段时间内的平均速度为Δs Δt =(Δt )2+4ΔtΔt=4+Δt .变式训练3 一质点作匀速直线运动,其位移s 与时间t 的关系为s (t )=t 2+1,该质点在[2,2+Δt ](Δt >0)上的平均速度不大于5,求Δt 的取值范围.解 质点在[2,2+Δt ]上的平均速度为v -=s 2+Δt -s 2Δt=[2+Δt 2+1]-22+1Δt=4Δt +Δt2Δt=4+Δt .又v -≤5,∴4+Δt ≤5. ∴Δt ≤1,又Δt >0,∴Δt 的取值范围为(0,1]. § 1.1 函数的单调性与极值 1.1.2 导数的概念自学引导1.经历由平均变化率过渡到瞬时变化率的过程,了解导数概念建立的一些实际背景.2.了解瞬时变化率的含义,知道瞬时变化率就是导数.3.掌握函数f (x )在某一点x 0处的导数定义,并且会用导数的定义求一些简单函数在某一点x 0处的导数.课前热身1.瞬时速度.设物体的运动方程为S =S (t ),如果一个物体在时刻t 0时位于S (t 0),在时刻t 0+Δt 这段时间内,物体的位置增量是ΔS =S (t 0+Δt )-S (t 0).那么位置增量ΔS 与时间增量Δt 的比,就是这段时间内物体的________,即v =S t 0+Δt -S t 0Δt.当这段时间很短,即Δt 很小时,这个平均速度就接近时刻t 0的速度.Δt 越小,v 就越接近于时刻t 0的速度,当Δt →0时,这个平均速度的极限v =lim Δt →0ΔS Δt =lim Δt →0S t 0+Δt -S t 0Δt就是物体在时刻t 0的速度即为________. 2.导数的概念.设函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),当Δx 无限趋近0时,比值Δy Δx =f x 0+Δx -f x 0Δx无限趋近于一个常数A ,这个常数A 就是函数f (x )在点x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0.用符号语言表达为f ′(x 0)=lim Δx →0Δy Δx=________1.平均速度 瞬时速度 答 案2.lim Δx →0f (x 0+Δx )-f (x 0)Δx名师讲解1.求瞬时速度的步骤(1)求位移增量ΔS =S (t +Δt )-S (t );(2)求平均速度v =ΔS Δt;(3)求极限limΔt→0ΔSΔt=limΔt→0S t +Δt-S tΔt;(4)若极限存在,则瞬时速度v=limΔt→0ΔS Δt.2.导数还可以如下定义一般地,函数y=f(x)在x=x0处的瞬时变化率是limΔx→0f x+Δx-f x0Δx=limΔx→0ΔyΔx.我们称它为函数y=f(x)在x=x0处的导数.记作f′(x0)或y′|x=x,即f′(x0)=limΔx→0ΔyΔx=limΔx→0f x+Δx-f x0Δx.3.对导数概念的理解(1)“导数”是从现实生活中大量类似问题里,撇开一些量的具体意义,单纯地抓住它们数量上的共性而提取出来的一个概念,所以我们应很自然的理解这个概念的提出与其实际意义.(2)某点导数即为函数在这点的变化率.某点导数概念包含着两层含义:①limΔx→0ΔyΔx存在,则称f(x)在x=x0处可导并且导数即为极限值;②limΔx→0ΔyΔx不存在,则称f(x)在x=x0处不可导.(3)Δx称为自变量x的增量,Δx可取正值也可取负值,但不可以为0.(4)令x=x0+Δx,得Δx=x-x0,于是f′(x)=limx→x0f x-f xx-x与定义中的f′(x0)=limΔx→0f x+Δx-f x0Δx意义相同.4.求函数y=f(x)在点x0处的导数的步骤(1)求函数的增量:Δy=f(x0+Δx)-f(x0);(2)求平均变化率:ΔyΔx=f x+Δx-f x0Δx;(3)取极限,得导数:f′(x0)=limΔx→0Δy Δx.典例剖析题型一物体运动的瞬时速度例1 以初速度v0(v0>0)竖直上抛的物体,t秒时高度为s(t)=v0t-12gt2,求物体在时刻t0处的瞬时速度.分析先求出Δs,再用定义求ΔsΔt,当Δt→0时的极限值.解∵Δs=v0(t0+Δt)-12g(t+Δt)2-(v0t0-12gt2)=(v0-gt0)Δt-12g(Δt)2,∴ΔsΔt=v0-gt0-12g·Δt.∴当Δt→0时,ΔsΔt→v0-gt0.故物体在时刻t0处的瞬时速度为v0-gt0.规律技巧瞬时速度v是平均速度v在Δt→0时的极限.因此,v=limΔt→0v=limΔt→0ΔsΔt.变式训练1 一作直线运动的物体,其位移s与时间t的关系是s=5t-t2,求此物体在t=2时的瞬时速度。

高中数学函数与导数章节知识点总结

高中数学函数与导数章节知识点总结

高中数学函数与导数章节知识点总结高中数学的函数与导数章节是数学课程中的重要部分。

它深入研究了函数的性质和变化规律,以及导数的概念和应用。

本文将从函数的基本概念、函数的性质、函数的几何意义、导数的定义和基本性质以及导数的应用等方面总结高中数学函数与导数章节的知识点。

一、函数的基本概念1.函数的定义:函数是一个具有输入和输出的关系,通常用f(x)表示。

2.定义域:函数能够取值的变量的集合。

3.值域:函数所有可能的输出值的集合。

4.图像:函数在坐标系中的表示,由点(x,f(x))组成。

二、函数的性质1.奇偶性:如果对于函数f(x),有f(-x)=f(x),则函数是偶函数;如果有f(-x)=-f(x),则函数是奇函数。

2.周期性:如果对于函数f(x),存在正数T,使得f(x+T)=f(x),则函数具有周期性。

3.单调性:一个函数在定义域上递增或递减。

4.有界性:一个函数是否存在上界或下界。

5.奇点和极限:函数在定义域上的不连续点和趋于无穷大的点。

三、函数的几何意义1.函数的图像:函数在坐标系中的表示,可用于分析函数的性质和变化规律。

2.函数的对称轴:函数的奇偶性可用于确定函数的对称轴。

3.零点:函数的图像与x轴交点的横坐标值。

4.极值:函数的最大值和最小值。

5.拐点:函数图像由凸变凹或由凹变凸的点。

四、导数的定义和基本性质1. 导数的定义:函数f(x)在点x处的导数定义为f'(x) = lim(h->0) [(f(x+h)-f(x))/h]。

2.导数的几何意义:导数表示函数的斜率,即函数在特定点处的切线斜率。

3.导数的基本性质:导数可以用于求函数的变化率、斜率、切线方程等。

4.高阶导数:函数的导数再次求导,可以得到高阶导数。

五、导数的应用1.函数的极值:导数可以用来求函数的极大值和极小值。

2.函数的单调性:导数可以用来确定函数的递增区间和递减区间。

3.函数的最大值和最小值:导数可以用来确定函数的最大值和最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档