2010年福建省莆田市中考数学试卷(含答案)
福建省莆田市中考数学试卷及答案
福建省莆田市中考数学试卷及答案(满分:150分,考题时间:120分钟)一、细心填一填(本大题共10小题,每小题4分,共40分.直接把答案填在题中的横线上.)1.3-的相反数是 .2.莆田市参加初中毕业、升学考题的学生总人数约为43000人,将43000用科学记数法表示是___________.3.在组成单词“Probability ”(概率)的所有字母中任意取出一个字母,则取到字母“b ”的概率是 .4.如图,A B 、两处被池塘隔开,为了测量A B 、两处的距离,在AB 外选一适当的点C ,连接AC BC 、,并分别取线段AC BC 、的中点E F 、,测得EF =20m ,则AB =__________m .5.一罐饮料净重500克,罐上注有“蛋白质含量≥0.4%”,则这罐饮料中蛋白质的含量至少为__________克.6.如图,菱形ABCD 的对角线相交于点O ,请你添加一个条件: ,使得该菱形为正方形.7.甲、乙两位同学参加跳高训练,在相同条件下各跳10次,统计各自成绩的方差得22S S <乙甲,则成绩较稳定的同学是___________.(填“甲”或“乙”)8.已知1O ⊙和2O ⊙的半径分别是一元二次方程()()120x x --=的两根,且122O O =,则1O ⊙和2O ⊙的位置关系是 .9.出售某种文具盒,若每个获利x 元,一天可售出()6x -个,则当x = 元时,一天出售该种文具盒的总利润y 最大.10.如图,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,过点12345A A A A A 、、、、分别作x 轴的垂线与反比例函数()20y x x =≠的图象相交于点12345P P P P P 、、、、,得直角三角形1112233344455OP A A P A A P A A P A A P A 2、、、、,并设其面积分别为12345S S S S S 、、、、,则5S 的值为 .二、精心选一选(本大题共6小题,每小题4分,共24分,每小题给出的四个选项中有且只有一个是正确的,请把正确选项的代号写在题后的括号内,答对的得4分;答错、不答或(第4题图) A BDD C BA O (第6题图)O(第10题图)2答案超过一个的一律得0分).11x 的取值范围是( )A .x ≥0B .0x <C .0x ≠D .0x > 12.下列各式运算正确的是( )A .22a a a ÷= B .()2224aba b =C .248a a a ·= D .55ab b a -= 13.如图是一房子的示意图,则其左视图是( )A .B .C . D. 14.某班5位同学参加“改革开放30周年”系列活动的次数依次为12333、、、、,则这组数据的众数和中位数分别是( )A .22、B . 2.43、 C.32、 D .33、15.不等式组2410x x <⎧⎨+>⎩,的解集在数轴上表示正确的是( )A .CD16.如图1,在矩形MNPQ 中,动点R 从点N 出发,沿N →P →Q →M 方向运动至点M 处停止.设点R 运动的路程为x ,MNR △的面积为y ,如果y 关于x 的函数图象如图2所示,则当9x =时,点R 应运动到( )A .N 处B .P 处C .Q 处D .M 处三、耐心做一做(本大题共9小题,共86分.解答应写出必要的文字说明、证明过程或演算步骤.)17.(8分)计算:0133⎛⎫ ⎪⎝⎭.(第16题图)(图1)18.(8分)先化简,再求值:2244242x x x x x x +++÷---,其中1x =.19.(8分)已知:如图在ABCD 中,过对角线BD 的中点O 作直线EF 分别交DA 的延长线、AB DC BC 、、的延长线于点E M N F 、、、.(1)观察图形并找出一对全等三角形:△________≌△____________,请加以证明; (2)在(1)中你所找出的一对全等三角形,其中一个三角形可由另一个三角形经过怎样的变换得到?20.(8分)(1)根据下列步骤画图..并标明相应的字母:(直接在图1中画图) ①以已知线段AB (图1)为直径画半圆O ;②在半圆O 上取不同于点A B 、的一点C ,连接AC BC 、; ③过点O 画OD BC ∥交半圆O 于点D . (2)尺规作图..:(保留作图痕迹,不要求写作法、证明) 已知:AOB ∠(图2). 求作:AOB ∠的平分线.图2OBABA图1 (第20题图)E B M OD N FC (第19题图) A21.(8分)某校课题研究小组对本校九年级全体同学体育测试情况进行调查,他们随机抽查部分同学体育测试成绩(由高到低分A B C D 、、、四个等级),根据调查的数据绘制成如下的条形统计图和扇形统计图.请根据以上不完整的统计图提供的信息,解答下列问题:(1)该课题研究小组共抽查了__________名同学的体育测试成绩,扇形统计图中B 级所占的百分比b =___________; (2)补全条形统计图;(3)若该校九年级共有400名同学,请估计该校九年级同学体育测试达标(测试成绩C 级以上,含C 级)约有___________名. 22.(10分)已知,如图,BC 是以线段AB 为直径的O ⊙的切线,AC 交O ⊙于点D ,过点D 作弦DE AB ⊥,垂足为点F ,连接BD BE 、.. (1)仔细观察图形并写出四个不同的正确结论:①________,②________ ,③________,④____________(不添加其它字母和辅助线,不必证明); (2)A ∠=30°,CD,求O ⊙的半径r .(第22题图)(第21题图)23.(10分)面对全球金融危机的挑战,我国政府毅然启动内需,改善民生.国务院决定从2月1日起,“家电下乡”在全国范围内实施,农民购买人选产品,政府按原价购买总额的.....13%...给予补贴返还.某村委会组织部分农民到商场购买人选的同一型号的冰箱、电视机两种家电,已知购买冰箱的数量是电视机的2倍,且按原价购买冰箱总额为40000元、电视机总额为15000元.根据“家电下乡”优惠政策,每台冰箱补贴返还的金额比每台电视机补贴返还的金额多65元,求冰箱、电视机各购买多少台?(2)列出方程(组)并解答.24.(12分)已知:等边ABC △的边长为a . 探究(1):如图1,过等边ABC △的顶点A B C 、、依次作AB BC CA 、、的垂线围成MNG △,求证:MNG △是等边三角形且.MN =;探究(2):在等边ABC △内取一点O ,过点O 分别作OD AB OE BC OF CA ⊥⊥⊥、、,垂足分别为点D E F 、、.①如图2,若点O 是ABC △的重心,我们可利用三角形面积公式及等边三角形性质得到两个正确结论(不必证明):结论1.OD OE OF ++=;结论2.32AD BE CF a ++=; ②如图3,若点O 是等边ABC △内任意一点,则上述结论12、是否仍然成立?如果成立,请给予证明;如果不成立,请说明理由.NM A G CB A FC E BD A F CE B D(图1) (图2) (图3) (第24题图)O A F CE BD (图4)O O25.(14分)已知,如图1,过点()01E -,作平行于x 轴的直线l ,抛物线214y x =上的两点A B 、的横坐标分别为-1和4,直线AB 交y 轴于点F ,过点A B 、分别作直线l 的垂线,垂足分别为点C 、D ,连接CF DF 、.(1)求点A B F 、、的坐标; (2)求证:CF DF ⊥;(3)点P 是抛物线214y x =对称轴右侧图象上的一动点,过点P 作PQ PO ⊥交x 轴于点Q ,是否存在点P 使得OPQ △与CDF △相似?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.(图1)备用图(第25题图)参照答案说明:(一)考生的解法与“参照答案”不同时,可参照“答案的评分标准”的精神进行评分 (二)如解答的某一步计算出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得分数的二分之一;如属严重的概念性错误,就不给分. (三)以下解答各行右端所注分数表示正确做完该步骤应得的累计分数. (四)评分的最小单位是1分,得分或扣分都不能出现小数. 一、细心填一填(本大题共10小题,每小题4分,共40分.)1.3 2.44.310⨯(不必考虑有效数字) 3.2114.40 5.2 6.AB BC ⊥或AC BD =或AO BO =等 7.甲 8.相交 9.3 10.15二、精心选一选(本大题共6小题,每小题4分,共24分.) 11.A 12.B 13.C 14.D 15.A 16.C 三、耐心做一做(本题共9小题,共86分)17.(1)解:原式=341+ ························ 6分=···························· 8分注:33=(2分)4=(2分),13⎛⎫ ⎪⎝⎭=1(2分)18.解:原式=()()()222222x x x x x x +-⨯-+-+···················· 6分=1x - ····························· 7分当1x =时原式=110-= ························ 8分 注:()()()22222442422?22x x x x x x x x x x +-++=+-=+-÷=⨯-+、、?(各2分) 19. (1)DOE BOF ①△≌△; ······ 2分证明:∵四边形ABCD 是平行四边形∴AD BC ∥ ··········· 3分 ∴EDO FBO E F ∠=∠∠=∠, ········ 4分又∵OD OB =∴()DOE BOF AAS △≌△ ····················· 5分BOM DON ②△≌△ ························ 2分证明:∵四边形ABCD 是平行四边形∴AB CD ∥ ···························· 3分∴MBO NDO BMO DNO ∠=∠∠=∠, ················ 4分 又∵BO DO =EB M O DNFC(第19题图)A∴()BOM DON AAS △≌△ ····················· 5分ABD CDB ③△≌△; ······················· 2分证明:∵四边形ABCD 是平行四边形∴AD CB AB CD ==, ······················· 3分又∵BD DB = ··························· 4分∴()ABD CDB SSS △≌△ ······················ 5分 (2)绕点O 旋转180°后得到或以点O 为中心作对称变换得到. ········ 8分 20.(1)正确完成步骤①、②、③,各得1分,字母标注完整得1分,满分4分.(2)说明:①以点O 为圆心,以适当长为半径作弧交OA OB 、于两点C D 、 ··· 5分②分别以点C D 、为圆心,以大于12CD 长为半径作弧, 两弧相交于点E ······················· 7分③作射线OE ························· 8分21.(1)80 ······················ 2分40% ························· 4分 (2)补全条形图(如右图) ··············· 6分(3)380 ························ 8分 22.(1)BC AB AD BD ⊥⊥,,DF FE BD BE ==,,BDF BEF △≌△, BDF △∽BAD △,BDF BEF ∠=∠,A E DE BC ∠=∠,∥等 (每写出一个正确结论得1分,满分4分.) (2)解:AB 是O ⊙的直径90ADB ∴∠=° ········ 5分又30E ∠=°30A ∴∠=° ····················· 6分12BD AB r ∴== ··················· 7分 又BC 是O ⊙的切线90CBA ∴∠=° ····················· 8分 60C ∴∠=︒在Rt BCD △中,3CD =(第22题图)B A 图1 (第20题图) 图2 O B A E D OC CD(第21题图)tan 602BD rDC ∴==° ···························· 9分 2r ∴= ··································· 10分 23(2)解:依题意得2x -65x= ················ 7分解得10x = ·································· 8分经检验10x =是原分式方程的解 ························· 9分220x ∴=. 答:冰箱、电视机分别购买20台、10台 ·········· 10分 24.证明:如图1,ABC △为等边三角形 60ABC ∴∠=°BC MN BA MG ⊥⊥,∴90CBM BAM ∠=∠=° 9030ABM ABC ∴∠=∠=︒°- ············· 1分9060M ABM ∴∠=︒∠=︒- ·············· 2分 同理:60N G ∠=∠=︒ MNG ∴△为等边三角形. ··························· 3分 在Rt ABM △中,sin sin 603AB a BM a M ===︒在Rt BCN △中,tantan 60BC a BN N ===︒ ················· 4分 MNBM BN ∴=+= ·························· 5分(2)②:结论1成立.证明;方法一:如图2,连接AO BO CO 、、 由ABC AOB BOC AOC S S S S =++△△△△=()12a OD OE OF ++ ··· 7分 作AH BC ⊥,垂足为H ,则sin sin 60AH AC ACB a =∠=⨯︒= 11222ABC S BC AH a ∴==△·· N MA G CB (图1) A FCE BD(图2)OH()11222a OD OE OF a ∴++=·2OD OE OF ∴++=···························· 8分 方法二:如图3,过点O 作GH BC ∥,分别交AB AC 、于点G H 、,过点 H 作HM BC ⊥于点M , 6060DGO B OHF C ∴∠=∠=∠=∠=°,° AGH ∴△是等边三角形GH AH ∴= ···················6分 OE BC ⊥ OE HM ∴∥∴四边形OEMH 是矩形HM OE ∴= ··················· 7分在Rt ODG △中,sin sin 602OD OGDGO OG =∠=︒=·· 在Rt OFH △中,sin sin 602OF OHOHF OH =∠=︒=·· 在Rt HMC △中,sin sin 602HM HCC HC HC ==︒=··OD OE OF OD HM OF HC ∴++=++=++)GH HC AC =+== ······· 8分 (2)②:结论2成立.证明:方法一:如图4,过顶点A B C 、、依次作边AB BC CA 、、的垂线围成MNG △,由(1)得MNG △为等边三角形且MN = ············· 9分 过点O 分别作OD MN '⊥于D ',OE NG '⊥于NG 于点E OF MG ''⊥,于点F ' 由结论1得:32OD OE OF a '+'+'=== ·················· 10分 又OD AB AB MG OF MG ⊥⊥'⊥,,90ADO DAF OF A ∴∠=∠'=∠'=︒A F CEBD(图4)O F 'D 'MGNE 'AF CE BD (图3)OM HG∴四边形ADOF '为矩形 OF ∴'=AD同理:OD BE '=,OE CF '= ························· 11分32AD BE CF OD OE OF a ∴++='+'+'= ··················· 12分方法二:(同结论1方法二的辅助线) 在Rt OFH △中,tan 3OF FH OHF ==∠在Rt HMC △中,sin HM HC C == ······ 9分CF HC FH ∴=+=+同理:3333AD OF OD BE =+=+, ············· 10分 AD BE CF ∴++=+++=)OD OE OF ++ ····························· 11分由结论1得:OD OE OF ++=32AD BE CF a ∴++== ······················· 12分 方法三:如图5,连接OA OB OC 、、,根据勾股定理得:22222BE OE OB BD OD +==+① 22222CF OF OC CE OE +==+②22222AD OD AO AF OF +==+③ ······················· 9分①+②+③得:222222BE CF AD BD CE AF ++=++ ····················· 10分()()()222222BE CF AD a AD a BE a CF ∴++=-+-+-222222222a AD a AD a BE a BE a CF a CF =-++-++-+ ··········· 11分A FC EBD(图5)OAF CBD(图3)OHG整理得:()223a AD BE CF a ++=32AD BE CF a ∴++= ···························· 12分25.(1)解:方法一,如图1,当1x =-时,14y = 当4x =时,4y =∴1A ⎛⎫- ⎪⎝⎭1,4 ····················· 1分()44B , ······················· 2分设直线AB 的解析式为y kx b =+ ············ 3分则1444k b k b ⎧-+=⎪⎨⎪+=⎩ 解得341k b ⎧=⎪⎨⎪=⎩ ∴直线AB 的解析式为314y x =+ ············ 4分 当0x =时,1y =()01F ∴, ··································· 5分 方法二:求A B 、两点坐标同方法一,如图2,作FG BD ⊥,AH BD ⊥,垂足分别为G 、H ,交y 轴于点N ,则四边形FOMG 和四边形NOMH 均为矩形,设FO x = ·············· 3分BGF BHA △∽△BG FGBH AH ∴=441544x -∴=- ································· 4分解得1x =()0F ∴,1 ·································· 5分(2)证明:方法一:在Rt CEF △中,1,2CE EF ==22222125CF CE EF ∴=+=+=CF ∴= ·································· 6分(图1)(图2)在Rt DEF △中,42DE EF ==,222224220DF DE EF ∴=+=+=DF ∴=由(1)得()()1141C D ---,,,5CD ∴=22525CD ∴==222CF DF CD ∴+= ··························· 7分90CFD ∴∠=°∴CF DF ⊥ ······························· 8分方法二:由 (1)知5544AF AC ===,AF AC ∴= ······························· 6分同理:BF BD = ACF AFC ∴∠=∠ AC EF ∥ACF CFO ∴∠=∠AFC CFO ∴∠=∠ ···························· 7分 同理:BFD OFD ∠=∠90CFD OFC OFD ∴∠=∠+∠=°即CF DF ⊥ ······························· 8分(3)存在.解:如图3,作PM x ⊥轴,垂足为点M ··· 9分 又PQ OP ⊥Rt Rt OPM OQP ∴△∽△ PM OMPQ OP∴= PQ PMOP OM∴= ·············· 10分 设()2104P x x x ⎛⎫> ⎪⎝⎭,,则214PM x OM x ==, ①当Rt Rt QPO CFD △∽△时,12PQ CF OP DF ===··························· 11分图321142xPM OM x ∴== 解得2x =()121P ∴, ································· 12分 ②当Rt Rt OPQ CFD △∽△时,2PQ DF OP CF === ···························13分 2142xPM OM x ∴== 解得8x =()2816P ∴,综上,存在点()121P ,、()2816P ,使得OPQ △与CDF △相似. ········· 14分。
福建省莆田市2010年中考数学仿真模拟试卷(五)
2010年某某省某某市中考仿真模拟数学试卷(五)一、精心选一选:本大题共8小题,每小题4分,共32分。
每小题给出的四个选项中有且只有一个是的正确,请把正确选项的代号写在题后的括号内,答对的得4分;答错、不答或答案超过一个的一律得0分。
1、下列运算正确的是( )A 、222()a b a b +=+ B 、325a a a =C 、632a a a ÷=D 、235a b ab +=2、如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为( ) A 、0 B 、-1 C 、 1 D 、 23、若关于x 的一元二次方程2210nx x --=无实数根,则一次函数(1)y n x n =+-的图象不经过( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限4、某等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为( )A 、9cmB 、12cmC 、15cmD 、12cm 或15cm5、正方形ABCD 在坐标系中的位置如图所示,将正方形ABCD 绕D 点顺时针旋转90°后,B点的坐标为( )A 、(-2,2)B 、(4,1)C 、(3,1)D 、(4,0)6、如图,一根电线杆的接线柱部分AB 在阳光下的投影CD 的长为1米,太阳光线与地面的夹角60ACD ∠=°,则AB 的长为( ) A 、12米 B 、3米C 、32米 D 、33米 7、如图,梯形ABCD 中,AD ∥BC ,DC ⊥BC ,将梯形沿对角线BD 折叠,点A 恰好落在DC 边上的点A ´处,若∠A ´BC =20°,则∠A ´BD 的度数为( ). A 、15° B 、20° C 、 25° D 、30°60°A BC Dy–1 3 3O xP18、如图,一只蚂蚁从O 点出发,沿着扇形OAB 的边缘匀速爬行一周,设蚂蚁的运动时间为t ,蚂蚁到O 点的距离为S ,则S 关于t 的函数图象大致为( )二、细心填一填:本大题共8小题,每小题4分,共32分,直接把答案填在题中的横线上。
莆田市中考数学试卷及答案(WORD解析版)
福建省莆田市中考数学试卷一、精心选一选:本大题共8小题,每小题4分,共32分,每小题给出的四个选项中有且只有一个选项是符合题目要求的.答对的得4分,答错、不答或答案超过一个的一律得0分.1.(4分)(•莆田)3的相反数是()A.﹣3 B.3C.D.﹣考点:相反数.分析:根据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.解答:解:根据概念,(3的相反数)+(3)=0,则3的相反数是﹣3.故选A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(4分)(•莆田)下列运算正确的是()A.a3•a2=a6B.(2a)3=6a3C.(a﹣b)2=a2﹣b2D.3a2﹣a2=2a2考点:完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂相乘,底数不变指数相加;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;完全平方公式;合并同类项法则对各选项分析判断利用排除法求解.解答:解:A、a3•a2=a3+2=a5,故本选项错误;B、(2a)3=8a3,故本选项错误;C、(a﹣b)2=a2﹣2ab+b2,故本选项错误;D、3a2﹣a2=2a2,故本选项正确.故选D.点评:本题考查了完全平方公式,合并同类项法则,同底数幂的乘法,积的乘方的性质,熟记性质与公式并理清指数的变化是解题的关键.3.(4分)(•莆田)如图图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解答:解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项正确;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,也是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误.故选:B.点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.4.(4分)(•莆田)如图是由6个大小相同的小正方体组成的几何体,它的左视图是()A.B.C.D.考点:简单组合体的三视图.分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.解答:解:从物体左面看,第一层有3个正方形,第二层的中间有1个正方形.故选C.点评:本题考查了三视图的知识,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.5.(4分)(•莆田)若x、y 满足方程组,则x﹣y的值等于()A.﹣1 B.1C.2D.3考点:解二元一次方程组.专题:计算题.分析:方程组两方程相减即可求出x﹣y的值.解答:解:,②﹣①得:2x﹣2y=﹣2,则x﹣y=﹣1,故选A点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.6.(4分)(•莆田)在半径为2的圆中,弦AB的长为2,则的长等于()A.B.C.D.考点:弧长的计算.分析:连接OA、OB,求出圆心角AOB的度数,代入弧长公式求出即可.解答:解:连接OA、OB,∵OA=OB=AB=2,∴△AOB是等边三角形,∴∠AOB=60°,∴的长为=,故选C.点评:本题考查了弧长公式,等边三角形的性质和判定的应用,注意:已知圆的半径是R,弧AB对的圆心角的度数是n°,则弧AB的长=.7.(4分)(•莆田)如图,点B在x轴上,∠ABO=90°,∠A=30°,OA=4,将△OAB饶点O按顺时针方向旋转120°得到△OA′B′,则点A′的坐标是()A.(2,﹣2)B.(2,﹣2)C.(2,﹣2)D.(2,﹣2)考点:坐标与图形变化-旋转.专题:数形结合.分析:根据含30度的直角三角形三边的关系得到OB=OA=2,AB=OB=2,则A点坐标为(2,2),再根据旋转的性质得到∠A′OA=120°,OA′=OA=4,则∠A′OB=60°,于是可判断点A′和点A关于x轴对称,然后根据关于x轴对称的点的坐标特征写出点A′的坐标.解答:解:∵∠ABO=90°,∠A=30°,OA=4,∴∠AOB=60°,OB=OA=2,AB=OB=2,∴A点坐标为(2,2),∵△OAB饶点O按顺时针方向旋转120°得到△OA′B′,∴∠A′OA=120°,OA′=OA=4,∴∠A′OB=60°,∴点A′和点A关于x轴对称,∴点A′的坐标为(2,﹣2).故选B.点评:本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.也考查了含30度的直角三角形三边的关系.8.(4分)(•莆田)如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ∥BD交BE于点Q,连接QD.设PD=x,△PQD 的面积为y,则能表示y与x函数关系的图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:判断出△ABE是等腰直角三角形,根据等腰直角三角形的性质求出AE、BE,然后表示出PE、QE,再求出点Q到AD的距离,然后根据三角形的面积公式表示出y与x 的关系式,再根据二次函数图象解答.解答:解:∵∠ABE=45°,∠A=90°,∴△ABE是等腰直角三角形,∴AE=AB=2,BE=AB=2,∵BE=DE,PD=x,∴PE=DE﹣PD=2﹣x,∵PQ∥BD,BE=DE,∴QE=PE=2﹣x,又∵△ABE是等腰直角三角形(已证),∴点Q到AD的距离=(2﹣x)=2﹣x,∴△PQD的面积y=x(2﹣x)=﹣(x2﹣2x+2)=﹣(x ﹣)2+,即y=﹣(x ﹣)2+,纵观各选项,只有C选项符合.故选C.点评:本题考查了动点问题的函数图象,等腰直角三角形的判定与性质,三角形的面积,二次函数图象,求出点Q到AD的距离,从而列出y与x的关系式是解题的关键.二、细心填一填:本大题共8小题,每小题4分,共32分.9.(4分)(•莆田)我国的北斗卫星导航系统与美国的GPS和俄罗斯格洛纳斯系统并称世界三大卫星导航系统,北斗系统的卫星轨道高达36000公里,将36000用科学记数法表示为3.6×104.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将36000用科学记数法表示为:3.6×104.故答案为:3.6×104.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(4分)(•莆田)若正n边形的一个外角为45°,则n=8.考点:多边形内角与外角.分析:根据正多边形的外角和的特征即可求出多边形的边数.解答:解:n=360°÷45°=8.答:n的值为8.故答案为:8.点评:本题考查多边形的外角和的特征:多边形的外角和等于360°,是基础题型.11.(4分)(•莆田)若关于x的一元二次方程x2+3x+a=0有一个根是﹣1,则a=2.考点:一元二次方程的解.分析:把x=﹣1代入原方程,列出关于a的新方程,通过解新方程可以求得a的值.解答:解:∵关于x的一元二次方程x2+3x+a=0有一个根是﹣1,∴(﹣1)2+3×(﹣1)+a=0,解得a=2,故答案是:2.点评:本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.12.(4分)(•莆田)在一个不透明的袋子中,装有大小、形状、质地等都相同的红色、黄色、白色小球各1个,从袋子中随机摸出一个小球,之后把小球放回袋子中并摇匀,再随机摸出一个小球,则两次摸出的小球颜色相同的概率是.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球颜色相同的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有9种等可能的结果,两次摸出的小球颜色相同的有3种情况,∴两次摸出的小球颜色相同的概率是:=故答案为:点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.13.(4分)(•莆田)在一次数学测试中,小明所在小组6人的成绩(单位:分)分别为84、79、83、87、77、81,则这6人本次数学测试成绩的中位数是82.考点:中位数.分析:根据中位数的定义先把这组数据从小到大排列,再求出最中间两个数的平均数即可.解答:解:把这组数据从小到大排列为:77、79、81、83、84、87,最中间两个数的平均数是:(81+83)÷2=82;故答案为:82.点评:此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,熟练掌握中位数的概念是本题的关键.14.(4分)(•莆田)计算:=a﹣2.考点:分式的加减法.专题:计算题.分析:根据同分母分式加减运算法则,分母不变只把分子相加减即可求解.解答:解:==a﹣2.故答案为a﹣2.点评:本题主要考查同分母分式加减,熟练掌握运算法则是解题的关键.15.(4分)(•莆田)如图,菱形ABCD的边长为4,∠BAD=120°,点E是AB的中点,点F是AC上的一动点,则EF+BF的最小值是2.考点:轴对称-最短路线问题;菱形的性质.分析:首先连接DB,DE,设DE交AC于M,连接MB,DF.证明只有点F运动到点M 时,EF+BF取最小值,再根据菱形的性质、勾股定理求得最小值.解答:解:连接DB,DE,设DE交AC于M,连接MB,DF,延长BA,DH⊥BA于H,∵四边形ABCD是菱形,∴AC,BD互相垂直平分,∴点B关于AC的对称点为D,∴FD=FB,∴FE+FB=FE+FD≥DE.只有当点F运动到点M时,取等号(两点之间线段最短),△ABD中,AD=AB,∠DAB=120°,∴∠HAD=60°,∵DH⊥AB,∴AH=AD,DH=AD,∵菱形ABCD的边长为4,E为AB的中点,∴AE=2,AH=2,∴EH=4,DH=2,在RT△EHD中,DE===2∴EF+BF的最小值为2.点评:此题主要考查菱形是轴对称图形的性质,知道什么时候会使EF+BF成为最小值是解本题的关键.16.(4分)(•莆田)如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO在y轴上,点B1,B2,B3,…都在直线y=x上,则A的坐标是(,).考点:一次函数图象上点的坐标特征;等边三角形的性质.专题:规律型.分析:根据题意得出直线AA1的解析式为:y=x+2,进而得出A,A1,A2,A3坐标,进而得出坐标变化规律,进而得出答案.解答:解:过B1向x轴作垂线B1C,垂足为C,由题意可得:A(0,2),AO∥A1B1,∠B1OC=30°,∴CO=OB1cos30°=,∴B1的横坐标为:,则A1的横坐标为:,连接AA1,可知所有三角形顶点都在直线AA1上,∵点B1,B2,B3,…都在直线y=x上,AO=2,∴直线AA1的解析式为:y=x+2,∴y=×+2=3,∴A1(,3),同理可得出:A2的横坐标为:2,∴y=×2+2=4,∴A2(2,4),∴A3(3,5),…A(,).故答案为:(,).点评:此题主要考查了一次函数图象上点的坐标特征以及数字变化类,得出A点横纵坐标变化规律是解题关键.三、耐心做一做:本大题共9小题,共86分,解答应写出必要的文字说明、证明过程或演算步骤17.(8分)(•莆田)计算:﹣2sin60°+|﹣|.考点:实数的运算;特殊角的三角函数值.分析:先根据数的开方法则、特殊角的三角函数值、绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=3﹣2×+=3﹣+=3.点评:本题考查的是实数的运算,熟知数的开方法则、特殊角的三角函数值、绝对值的性质是解答此题的关键.18.(8分)(•莆田)解不等式≥,并把它的解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.专题:计算题.分析:先去分母和去括号得到6﹣3x≥4﹣4x,然后移项后合并得到x≥﹣2,再利用数轴表示解集.解答:解:去分母得3(2﹣x)≥4(1﹣x),去括号得6﹣3x≥4﹣4x,移项得4x﹣3x≥4﹣6,合并得x≥﹣2,在数轴上表示为:.点评:本题考查了解一元一次不等式:解一元一次不等式的基本步骤为:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.也考查了在数轴上表示不等式的解集.19.(8分)(•莆田)某校为了解该校九年级学生对蓝球、乒乓球、羽毛球、足球四种球类运动项目的喜爱情况,对九年级部分学生进行了随机抽样调查,每名学生必须且只能选择最喜爱的一项运动项目上,将调查结果统计后绘制成如图两幅不完整的统计图,请根据图中的信息,回答下列问题:(1)这次被抽查的学生有60人;请补全条形统计图;(2)在统计图2中,“乒乓球”对应扇形的圆心角是144度;(3)若该校九年级共有480名学生,估计该校九年级最喜欢足球的学生约有48人.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据C类的人数是9,所占的比例是20%,据此即可求得总人数;(2)利用360°乘以对应的比例即可求解;(3)利用总人数480,乘以对应的比例即可.解答:解:(1)被抽查的学生数是:9÷15%=60(人),D项的人数是:60﹣21﹣24﹣9=6(人),;(2)“乒乓球”对应扇形的圆心角是:360°×=144°;(3)480×=48(人).故答案是:60,144,48.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(8分)(•莆田)如图,点D是线段BC的中点,分别以点B,C为圆心,BC长为半径画弧,两弧相交于点A,连接AB,AC,AD,点E为AD上一点,连接BE,CE.(1)求证:BE=CE;(2)以点E为圆心,ED长为半径画弧,分别交BE,CE于点F,G.若BC=4,∠EBD=30°,求图中阴影部分(扇形)的面积.考点:全等三角形的判定与性质;等边三角形的性质;扇形面积的计算.专题:证明题.分析:(1)由点D是线段BC的中点得到BD=CD,再由AB=AC=BC可判断△ABC为等边三角形,于是得到AD为BC的垂直平分线,根据线段垂直平分线的性质得BE=CE;(2)由EB=EC,根据等腰三角形的性质得∠EBC=∠ECB=30°,则根据三角形内角和定理计算得∠BEC=120°,在Rt△BDE中,BD=BC=2,∠EBD=30°,根据含30度的直角三角形三边的关系得到ED=BD=,然后根据扇形的面积公式求解.解答:(1)证明:∵点D是线段BC的中点,∴BD=CD,∵AB=AC=BC,∴△ABC为等边三角形,∴AD为BC的垂直平分线,∴BE=CE;(2)解:∵EB=EC,∴∠EBC=∠ECB=30°,∴∠BEC=120°,在Rt△BDE中,BD=BC=2,∠EBD=30°,∴ED=BD=,∴阴影部分(扇形)的面积==π.点评:本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.也考查了等边三角形的判定与性质、相等垂直平分线的性质以及扇形的面积公式.21.(8分)(•莆田)如图,在平面直角坐标系中,直线l与x轴相交于点M,与y轴相交于点N,Rt△MON的外心为点A(,﹣2),反比例函数y=(x>0)的图象过点A.(1)求直线l的解析式;(2)在函数y=(x>0)的图象上取异于点A的一点B,作BC⊥x轴于点C,连接OB交直线l于点P.若△ONP的面积是△OBC面积的3倍,求点P的坐标.考点:反比例函数综合题.专题:综合题.分析:(1)由A为直角三角形外心,得到A为斜边MN中点,根据A坐标确定出M与N 坐标,设直线l解析式为y=mx+n,将M与N坐标代入求出m与n的值,即可确定出直线l解析式;(2)将A坐标代入反比例解析式求出k的值,确定出反比例解析式,利用反比例函数k的意义求出△OBC的面积,由△ONP的面积是△OBC面积的3倍求出△ONP的面积,确定出P的横坐标,即可得出P坐标.解答:解:(1)∵Rt△MON的外心为点A(,﹣2),∴A为MN中点,即M(3,0),N(0,﹣4),设直线l解析式为y=mx+n,将M与N代入得:,解得:m=,n=﹣4,则直线l解析式为y=x﹣4;(2)将A(,﹣2)代入反比例解析式得:k=﹣3,∴反比例解析式为y=﹣,∵B为反比例函数图象上的点,且BC⊥x轴,∴S△OBC=,∵S△ONP=3S△OBC,∴S△ONP=,设P横坐标为a(a>0),∴ON•a=,即a=,则P坐标为(,﹣1).点评:此题属于反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,反比例函数k的几何意义,以及坐标与图形性质,熟练掌握待定系数法是解本题的关键.22.(10分)(•莆田)如图,AB是⊙O的直径,C是⊙O上的一点,过点A作AD⊥CD于点D,交⊙O于点E,且=.(1)求证:CD是⊙O的切线;(2)若tan∠CAB=,BC=3,求DE的长.考点:切线的判定.专题:证明题.分析:(1)连结OC,由=,根据圆周角定理得∠1=∠2,而∠1=∠OCA,则∠2=∠OCA,则可判断OC∥AD,由于AD⊥CD,所以OC⊥CD,然后根据切线的判定定理得到CD是⊙O的切线;(2)连结BE交OC于F,由AB是⊙O的直径得∠ACB=90°,在Rt△ACB中,根据正切的定义得AC=4,再利用勾股定理计算出AB=5,然后证明Rt△ABC∽Rt△ACD,利用相似比先计算出AD=,再计算出CD=;根据垂径定理的推论由=得OC⊥BE,BF=EF,于是可判断四边形DEFC为矩形,所以EF=CD=,则BE=2EF=,然后在Rt△ABE中,利用勾股定理计算出AE=,再利用DE=AD﹣AE求解.解答:(1)证明:连结OC,如图,∵=,∴∠1=∠2,∵OC=OA,∴∠1=∠OCA,∴∠2=∠OCA,∴OC∥AD,∵AD⊥CD,∴OC⊥CD,∴CD是⊙O的切线;(2)解:连结BE交OC于F,如图,∵AB是⊙O的直径,∴∠ACB=90°,在Rt△ACB中,tan∠CAB==,而BC=3,∴AC=4,∴AB==5,∵∠1=∠2,∴Rt△ABC∽Rt△ACD,∴=,即=,解得AD=,∵=,即=,解得CD=,∵=,∴OC⊥BE,BF=EF,∴四边形DEFC为矩形,∴EF=CD=,∴BE=2EF=,∵AB为直径,∴∠BEA=90°,在Rt△ABE中,AE===,∴DE=AD﹣AE=﹣=.点评:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理和相似三角形的判定与性质.23.(10分)(•莆田)某水果店销售某中水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y1(元)与销售时间第x月之间存在如图1(一条线段)的变化趋势,每千克成本y2(元)与销售时间第x月满足函数关系式y2=mx2﹣8mx+n,其变化趋势如图2.(1)求y2的解析式;(2)第几月销售这种水果,每千克所获得利润最大?最大利润是多少?考点:二次函数的应用.分析:(1)把函数图象经过的点(3,6),(7,7)代入函数解析式,解方程组求出m、n 的值,即可得解;(2)根据图1求出每千克的售价y1与x的函数关系式,然后根据利润=售价﹣成本得到利润与x的函数关系式,然后整理成顶点式形式,再根据二次函数的最值问题解答即可.解答:解:(1)由图可知,y2=mx2﹣8mx+n经过点(3,6),(7,7),∴,解得.∴y2=x2﹣x+(1≤x≤12);(2)设y1=kx+b(k≠0),由图可知,函数图象经过点(4,11),(8,10),则,解得,所以,y1=﹣x+12,所以,每千克所获得利润=(﹣x+12)﹣(x2﹣x+)=﹣x+12﹣x2+x﹣=﹣x2+x+=﹣(x2﹣6x+9)++=﹣(x﹣3)2+,∵﹣<0,∴当x=3时,所获得利润最大,为元.答:第3月销售这种水果,每千克所获得利润最大,最大利润是元/千克.点评:本题考查了二次函数的应用,主要利用了待定系数法求二次函数解析式,待定系数法求一次函数解析式,二次函数的最值问题,难点在于(2)整理出利润的表达式并整理成顶点式形式.24.(12分)(•莆田)如图,在边长为4的正方形ABCD中,动点E以每秒1个单位长度的速度从点A开始沿边AB向点B运动,动点F以每秒2个单位长度的速度从点B开始沿折线BC﹣CD向点D运动,动点E比动点F先出发1秒,其中一个动点到达终点时,另一个动点也随之停止运动,设点F的运动时间为t秒.(1)点F在边BC上.①如图1,连接DE,AF,若DE⊥AF,求t的值;②如图2,连结EF,DF,当t为何值时,△EBF与△DCF相似?(2)如图3,若点G是边AD的中点,BG,EF相交于点O,试探究:是否存在在某一时刻t,使得=?若存在,求出t的值;若不存在,请说明理由.考点:四边形综合题.分析:(1)①利用正方形的性质及条件,得出△ABF≌△DAE,由AE=BF列式计算.②利用△EBF∽△DCF,得出=,列出方程求解.(2)①0<t≤2时如图3,以点B为原点BC为x轴,BA为y轴建立坐标系,先求出EF所在的直线和BG所在的直线函数关系式是,再利用勾股定理求出BG,运用=,求出点O的坐标把O的坐标代入EF所在的直线函数关系式求解.②当t>2时如图4,以点B为原点BC为x轴,BA为y轴建立坐标系,以点B为原点BC为x轴,BA为y轴建立坐标系,先求出EF所在的直线和BG所在的直线函数关系式是,再利用勾股定理求出BG,运用=,求出点O的坐标把O的坐标代入EF所在的直线函数关系式求解.解答:解:(1)①如图1∵DE⊥AF,∴∠AOE=90°,∴∠BAF+∠AEO=90°,∵∠ADE+∠AEO=90°,∴∠BAE=∠ADE,又∵四边形ABCD是正方形,∴AE=AD,∠ABF=∠DAE=90°,在△ABF和△DAE中,∴△ABF≌△DAE(ASA)∴AE=BF,∴1+t=2t,解得t=1.②如图2∵△EBF∽△DCF∴=,∵BF=2t,AE=1+t,∴FC=4﹣2t,BE=4﹣1﹣t=3﹣t,∴=,解得,t=,t=(舍去),故t=.(2)①0<t≤2时如图3,以点B为原点BC为x轴,BA为y轴建立坐标系,A的坐标(0,4),G的坐标(2,4),F点的坐标(2t,0),E的坐标(0,3﹣t)EF所在的直线函数关系式是:y=x+3﹣t,BG所在的直线函数关系式是:y=2x,∵BG==2∵=,∴BO=,OG=,设O的坐标为(a,b),解得∴O的坐标为(,)把O的坐标为(,)代入y=x+3﹣t,得=×+3﹣t,解得,t=(舍去),t=,②当3≥t>2时如图4,以点B为原点BC为x轴,BA为y轴建立坐标系,A的坐标(0,4),G的坐标(2,4),F点的坐标(4,2t﹣4),E的坐标(0,3﹣t)EF所在的直线函数关系式是:y=x+3﹣t,BG所在的直线函数关系式是:y=2x,∵BG==2∵=,∴BO=,OG=,设O的坐标为(a,b),解得∴O的坐标为(,)把O的坐标为(,)代入y=x+3﹣t,得=×+3﹣t,解得:t=.综上所述,存在t=或t=,使得=.点评:本题主要考查了四边形的综合题,解题的关键是把四边形与坐标系相结合求解.25.(14分)(•莆田)如图,抛物线C1:y=(x+m)2(m为常数,m>0),平移抛物线y=﹣x2,使其顶点D在抛物线C1位于y轴右侧的图象上,得到抛物线C2.抛物线C2交x轴于A,B两点(点A在点B的左侧),交y轴于点C,设点D的横坐标为a.(1)如图1,若m=.①当OC=2时,求抛物线C2的解析式;②是否存在a,使得线段BC上有一点P,满足点B与点C到直线O P的距离之和最大且AP=BP?若存在,求出a的值;若不存在,请说明理由;(2)如图2,当OB=2﹣m(0<m<)时,请直接写出到△ABD的三边所在直线的距离相等的所有点的坐标(用含m的式子表示).考点:二次函数综合题.分析:(1)①首先写出平移后抛物线C2的解析式(含有未知数a),然后利用点C(0,2)在C2上,求出抛物线C2的解析式;②认真审题,题中条件“AP=BP”意味着点P在对称轴上,“点B与点C到直线OP的距离之和最大”意味着OP⊥BC.画出图形,如答图1所示,利用三角函数(或相似),求出a的值;(2)解题要点有3个:i)判定△ABD为等边三角形;ii)理论依据是角平分线的性质,即角平分线上的点到角两边的距离相等;iii)满足条件的点有4个,即△ABD形内1个(内心),形外3个.不要漏解.解答:解:(1)当m=时,抛物线C1:y=(x+)2.∵抛物线C2的顶点D在抛物线C1上,且横坐标为a,∴D(a,(a+)2).∴抛物线C2:y=﹣(x﹣a)2+(a+)2(I).①∵OC=2,∴C(0,2).∵点C在抛物线C2上,∴﹣(0﹣a)2+(a+)2=2,解得:a=,代入(I)式,得抛物线C2的解析式为:y=﹣x2+x+2.②在(I)式中,令y=0,即:﹣(x﹣a)2+(a+)2=0,解得x=2a+或x=﹣,∴B(2a+,0);令x=0,得:y=a+,∴C(0,a+).设直线BC的解析式为y=kx+b,则有:,解得,∴直线BC的解析式为:y=﹣x+(a+).假设存在满足条件的a值.∵AP=BP,∴点P在AB的垂直平分线上,即点P在C2的对称轴上;∵点B与点C到直线OP的距离之和≤BC,只有OP⊥BC时等号成立,∴OP⊥BC.如答图1所示,设C2对称轴x=a(a>0)与BC交于点P,与x轴交于点E,则OP⊥BC,OE=a.∵点P在直线BC上,∴∴P(a,a+),PE=a+.∵tan∠EOP=tan∠BCO===2,∴==2,解得:a=.∴存在a=,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP=BP(3)∵抛物线C2的顶点D在抛物线C1上,且横坐标为a,∴D(a,(a+m)2).∴抛物线C2:y=﹣(x﹣a)2+(a+m)2.令y=0,即﹣(x﹣a)2+(a+m)2=0,解得:x1=2a+m,x2=﹣m,∴B(2a+m,0).∵OB=2﹣m,∴2a+m=2﹣m,∴a=﹣m.∴D (﹣m,3).AB=OB+OA=2﹣m+m=2.如答图2所示,设对称轴与x轴交于点E,则DE=3,BE=AB=,OE=OB﹣BE=﹣m.∵tan∠ABD===,∴∠ABD=60°.又∵AD=BD,∴△ABD为等边三角形.作∠ABD的平分线,交DE于点P1,则P1E=BE•tan30°=•=1,∴P1(﹣m,1);在△ABD形外,依次作各个外角的平分线,它们相交于点P2、P3、P4.在Rt△BEP2中,P2E=BE•tan60°=•=3,∴P2(﹣m,﹣3);易知△ADP3、△BDP4均为等边三角形,∴DP3=DP4=AB=2,且P3P4∥x轴.∴P3(﹣﹣m,3)、P4(3﹣m,3).综上所述,到△ABD的三边所在直线的距离相等的所有点有4个,其坐标为:P1(﹣m,1),P2(﹣m,﹣3),P3(﹣﹣m,3),P4(3﹣m,3).点评:本题是二次函数压轴题,以平移变换为背景,考查了二次函数、一次函数、三角函数(或相似)、等边三角形、角平分线的性质等知识点,有一定的难度.函数解析式中含有未知数,增大了试题的难度.第(2)问中,解题关键是理解“点B与点C到直线OP的距离之和最大且AP=BP”的含义;第(3)问中,满足条件的点P有4个,不要漏解.21 / 21。
初中毕业升学考试(福建莆田卷)数学(解析版)(初三)中考真卷.doc
初中毕业升学考试(福建莆田卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】的绝对值是()A. B. C. 2 D. ﹣2【答案】A【解析】试题分析:根据负数的绝对值等于它的相反数解答.试题解析:的绝对值是.故选A.考点:绝对值.【题文】下列运算正确的是()A.3a﹣a=0 B. C. D.【答案】B.【解析】试题分析:A.3a﹣2a=a,故A不正确;B.,故B正确;C.,故C不正确;D.,故D不正确;故选B.考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【题文】一组数据3,3,4,6,8,9的中位数是()A.4 B.5 C.5.5 D.6【答案】B.【解析】试题分析:数据3,3,4,6,8,9的中位数是:(4+6)÷2=5,故选B.考点:中位数;统计与概率.【题文】图中三视图对应的几何体是()A. B. C. D.【答案】C.【解析】试题分析:由主视图可以推出这个几何体是上下两个大小不同柱体,从主视图推出这两个柱体的宽度相同,从俯视图推出上面是圆柱体,直径等于下面柱体的宽.由此可以判断对应的几何体是C.故选C.考点:由三视图判断几何体.【题文】菱形具有而一般平行四边形不具有的性质是( )A. 对边相等B. 对角相等C. 对角线互相平分D. 对角线互相垂直【答案】D【解析】试题分析:∵菱形具有的性质:对边相等,对角相等,对角线互相平分,对角线互相垂直;平行四边形具有的性质:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:对角线互相垂直.故选D.考点:菱形的性质;平行四边形的性质.【题文】如图,OP是∠AOB的平分线,点C,D分别在角的两边OA,OB上,添加下列条件,不能判定△POC≌△POD 的选项是()A.PC⊥OA,PD⊥OB B.OC=ODC.∠OPC=∠OPD D.PC=PD【答案】D.【解析】试题分析:对于A,由PC⊥OA,PD⊥OB得出∠PCO=∠PDO=90°,根据AAS判定定理可以判定△POC≌△POD ;对于B OC=OD,根据SAS判定定理可以判定△POC≌△POD;对于C,∠OPC=∠OPD,根据ASA判定定理可以判定△POC≌△POD;,对于D,PC=PD,无法判定△POC≌△POD,故选D.考点:角平分线的性质;全等三角形的判定.【题文】关于x的一元二次方程的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【答案】D.【解析】试题分析:∵△=>0,∴,方程有两个不相等的两个实数根.故选D.考点:根的判别式.【题文】规定:在平面内,将一个图形绕着某一点旋转一定的角度(小于周角)后能和自身重合,则称此图形为旋转对称图形.下列图形是旋转对称图形,且有一个旋转角为60°的是()A.正三角形 B.正方形 C.正六边形 D.正十边形【答案】C.【解析】试题分析:A.正三角形的最小旋转角是120°,故此选项错误;B.正方形的旋转角度是90°,故此选项错误;C.正六边形的最小旋转角是60°,故此选项正确;D.正十角形的最小旋转角是36°,故此选项错误;故选C.考点:旋转对称图形.【题文】如图,在△ABC中,∠ACB=90°,AC=BC=4,将△ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE=3,则sin∠BFD的值为()A. B. C. D.【答案】A.【解析】试题分析:∵在△ABC中,∠ACB=90°,AC=BC=4,∴∠A=∠B,由折叠的性质得到:△AEF≌△DEF,∴∠EDF=∠A,∴∠EDF=∠B,∴∠CDE+∠BDF+∠EDF=∠BFD+∠BDF+∠B=180°,∴∠CDE=∠BFD.又∵AE=DE=3,∴CE=4﹣3=1,∴在直角△ECD中,sin∠CDE=.故选A.考点:翻折变换(折叠问题);等腰直角三角形;锐角三角函数的定义.【题文】如图,在平面直角坐标系中,点A(0,2),在x轴上任取一点M,完成以下作图步骤:①连接AM.作线段AM的垂直平分线l1,过点M作x轴的垂线l2,记l1,l2的交点为P;②在x轴上多次改变点M的位置,用①的方法得到相应的点P,把这些点用平滑的曲线顺次连接起来,得到的曲线是()A.直线 B.抛物线 C.双曲线 D.双曲线的一支【答案】B.【解析】试题分析:根据作图步骤作图,如图所示.由此即可得出该曲线为抛物线.故选B.考点:二次函数图象上点的坐标特征;线段垂直平分线的性质;作图—基本作图.【题文】莆田市海岸线蜿蜒曲折,长达217000米,用科学记数法表示217000为.【答案】2.17×105.【解析】试题分析:将217000用科学记数法表示为:217000=2.17×105.故答案为:2.17×105.考点:科学记数法—表示较大l∴AB∥a∥b,∵AB∥a,∴∠1=∠3,∵AB∥b,∴∠2=∠4,∵∠3+∠4=90°,∴∠1+∠2=90°,∵∠1=37°,∴∠2=90°﹣37°=53°,故答案为:53°.考点:平行线的性质.【题文】在大课间活动中,同学们积极参加体育锻炼,小红在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,估计该校学生“一分钟跳绳”成绩优秀的人数为人.【答案】480.【解析】试题分析:总人数是:10÷20%=50(人),第四小组的人数是:50﹣4﹣10﹣16﹣6﹣4=10,所以该校九年级女生“一分钟跳绳”成绩为优秀的人数是:×1200=480,故答案为:480.考点:频数(率)分布直方图;用样本估计总体;扇形统计图.【题文】如图,CD为⊙O的弦,直径AB为4,AB⊥CD于E,∠A=30°,则的长为(结果保留π).【答案】.【解析】试题分析:连接AC,∵CD为⊙O的弦,AB是⊙O的直径,∴CE=DE,∵AB⊥CD,∴AC=AD,∴∠CAB=∠DAB=30°,∴∠COB=60°,∴的长==,故答案为:.考点:弧长的计算;垂径定理.【题文】魏朝时期,刘徽利用下图通过“以盈补虚,出入相补”的方法,即“勾自乘为朱方,股自乘为青方,令出入相补,各从其类”,证明了勾股定理.若图中BF=1,CF=2,则AE的长为__________.【答案】.【解析】试题分析:∵BF=1,CF=2,∴AB=BC=3,∵AB∥DE,∴△ABF∽△ECF,∴AB:CE=BF:FC,∴3:CE=1:2,∴CE=6,∴DE=3+6=9,∴AE===.故答案为:.考点:勾股定理;相似三角形的判定与性质.【题文】计算:.【答案】.【解析】试题分析:根据绝对值、算术平方根和零指数幂的意义计算.试题解析:原式==.考点:实数的运算;零指数幂.【题文】先化简,再求值:,其中x=﹣1.【答案】,﹣1.【解析】试题分析:先把分解因式和除法运算化为乘法运算,再约分后进行同分母的减法运算,然后把x的值代入计算即可.试题解析:原式====当x=﹣1时,原式==﹣1.考点:分式的化简求值.【题文】解不等式组:.【答案】x≤1.【解析】试题分析:先解不等式组中的每一个不等式,再求出它们的公共解即可.试题解析:.由①得x≤1;由②得x<4;所以原不等式组的解集为:x≤1.考点:解一元一次不等式组.【题文】小梅家的阳台上放置了一个晒衣架如图1,图2是晒衣架的侧面示意图,A,B两点立于地面,将晒衣架稳固张开,测得张角∠AOB=62°,立杆OA=OB=140cm,小梅的连衣裙穿在衣架后的总长度为122cm,问将这件连衣裙垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由(参考数据:sin59°≈0.86,cos59°≈0.52,tan59°≈1.66)【答案】会.【解析】试题分析:过点O作OE⊥AB,根据等腰三角形的性质求得∠OAB,再在Rt△AEO中,利用三角函数sin∠OAB=,求得OE,即可作出判断.试题解析:过点O作OE⊥AB于点E,∵OA=OB,∠AOB=62°,∴∠OAB=∠OBA=59°,在Rt△AEO中,OE=OA •sin∠OAB=140×sin59°≈140×0.86=120.4,∵120.4<122,∴这件连衣裙垂挂在晒衣架上会拖落到地面.考点:解直角三角形的应用.【题文】在一次数学文化课题活动中,把一副数学文化创意扑克牌中的4张扑克牌(如图所示)洗匀后正面向下放在桌面上,从中随机抽取2张牌,请你用列表或画树状图的方法,求抽取的2张牌的数字之和为偶数的概率.【答案】.【解析】试题分析:列出得出所有等可能的情况数,找出抽取2张牌的数字之和为偶数的情况数,即可求出所求的概率.试题解析:列表如下:所有等可能的情况数有12种,抽取2张牌的数字之和为偶数的有4种,则P==.考点:列表法与树状图法;概率及其应用.【题文】甲车从A地驶往B地,同时乙车从B地驶往A地,两车相向而行,匀速行驶,甲车距B地的距离y(km)与行驶时间x(h)之间的函数关系如图所示,乙车的速度是60km/h.(1)求甲车的速度;(2)当甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,求a的值.【答案】(1)80km/h;(2)75.【解析】试题分析:(1)根据函数图象可知甲2小时行驶的路程是(280﹣120)km,从而可以求得甲的速度;(2)根据第(1)问中的甲的速度和甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,可以列出分式方程,从而可以求得a的值.试题解析:(1)由图象可得,甲车的速度为:(280-120)÷2=80km/h,即甲车的速度是80km/h;(2)相遇时间为:=2h,由题意可得:,解得,a=75,经检验,a=78是原分式方程的解,即a的值是75.考点:分式方程的应用;函数的图象;方程与不等式.【题文】如图,在▱ABCD中,∠BAC=90°,对角线AC,BD相交于点P,以AB为直径的⊙O分别交BC,BD于点E,Q,连接EP并延长交AD于点F.(1)求证:EF是⊙O的切线;(2)求证:=4BP•QP.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)连接OE,AE,由AB是⊙O的直径,得到∠AEB=∠AEC=90°,根据四边形ABCD是平行四边形,得到PA=PC推出∠OEP=∠OAC=90°,根据切线的判定定理即可得到结论;(2)由AB是⊙O的直径,得到∠AQB=90°根据相似三角形的性质得到=PB•PQ,根据全等三角形的性质得到PF=PE,求得PA=PE=EF,等量代换即可得到结论.试题解析:(1)连接OE,AE,∵AB是⊙O的直径,∴∠AEB=∠AEC=90°,∵四边形ABCD是平行四边形,∴PA=PC,∴PA=PC=PE,∴∠PAE=∠PEA,∵OA=OE,∴∠OAE=∠OEA,∴∠OEP=∠OAC=90°,∴EF是⊙O的切线;(2)∵AB是⊙O的直径,∴∠AQB=90°,∴△APQ∽△BPA,∴,∴=PB•PQ,在△AFP与△CEP 中,∵∠PAF=∠PCE,∠APF=∠CPE,PA=PC,∴△AFP≌△CEP,∴PF=PE,∴PA=PE=EF,∴=4BP•QP.考点:切线的判定;平行四边形的性质;相似三角形的判定与性质.【题文】如图,反比例函数(x>0)的图象与直线y=x交于点M,∠AMB=90°,其两边分别与两坐标轴的正半轴交于点A,B,四边形OAMB的面积为6.(1)求k的值;(2)点P在反比例函数(x>0)的图象上,若点P的横坐标为3,∠EPF=90°,其两边分别与x轴的正半轴,直线y=x交于点E,F,问是否存在点E,使得PE=PF?若存在,求出点E的坐标;若不存在,请说明理由.【答案】(1)6;(2)E(4,0)或E(6,0).【解析】试题分析:(1)过点M作MC⊥x轴于点C,MD⊥y轴于点D,根据AAS证明△AMC≌△BMD,那么S四边形OCMD=S四边形OAMB=6,根据反比例函数比例系数k的几何意义得出k=6;(2)先根据反比例函数图象上点的坐标特征求得点P的坐标为(3,2).再分两种情况进行讨论:①如图2,过点P作PG⊥x轴于点G,过点F作FH⊥PG于点H,交y轴于点K.根据AAS证明△PGE≌△FHP,进而求出E点坐标;②如图3,同理求出E点坐标.试题解析:(1)如图1,过点M作MC⊥x轴于点C,MD⊥y轴于点D,则∠MCA=∠MDB=90°,∠AMC=∠BMD ,MC=MD,∴△AMC≌△BMD,∴S四边形OCMD=S四边形OAMB=6,∴k=6;(2)存在点E,使得PE=PF.由题意,得点P的坐标为(3,2).①如图2,过点P作PG⊥x轴于点G,过点F作FH⊥PG于点H,交y轴于点K.∵∠PGE=∠FHP=90°,∠EPG=∠PFH,PE=PF,∴△PGE≌△FHP,∴PG=FH=2,FK=OK=3﹣2=1,GE=HP=2﹣1=1,∴OE=OG+GE=3+1=4,∴E(4,0);②如图3,过点P作PG⊥x轴于点G,过点F作FH⊥PG于点H,交y轴于点K.∵∠PGE=∠FHP=90°,∠EPG=∠PFH,PE=PF,∴△PGE≌△FHP,∴PG=FH=2,FK=OK=3+2=5,GE=HP=5﹣2=3,∴OE=OG+GE=3+3=6,∴E(6,0).综上所述,E(4,0)或E(6,0).考点:反比例函数与一次函数的交点问题;存在型;分类讨论;探究型;综合题.【题文】若正方形有两个相邻顶点在三角形的同一条边上,其余两个顶点分别在三角形的另两条边上,则正方形称为三角形该边上的内接正方形,△ABC中,设BC=a,AC=b,AB=c,各边上的高分别记为,,,各边上的内接正方形的边长分别记为,,.(1)模拟探究:如图,正方形EFGH为△ABC的BC边上的内接正方形,求证:;(2)特殊应用:若∠BAC=90°,==2,求的值;(3)拓展延伸:若△ABC为锐角三角形,b<c,请判断与的大小,并说明理由.【答案】(1)证明见解析;(2);(3)>.【解析】试题分析:(1)先根据EH∥FG,判定△AEH∽△ABC,再根据相似三角形对应边成比例,列出比例式变形即可得到;(2)先根据(1)中的结论得出,再将=c和=2代入变形,即可求得的值;(3)先根据(1)中的结论得出和,变形得出,,再根据△ABC得到b=c, =csinA,=bsinA,最后代入代数式进行变形推导,即可得出与的大小关系.试题解析:∵正方形EFGH中,EH∥FG,∴△AEH∽△ABC,∵AD⊥BC,∴,即,∴;(2)由(1)得:,∵∠A=90°,∴=c,又∵=2,∴=;(3)>.证明:由(1)得:,,∴,,∵S=b=c,∴2S=b=c,又∵=csinA,=bsinA,∴===,∵b<c,sinA<1,∴<0,即<0,∴>.考点:三角形综合题;相似三角形的判定与性质;探究型;和差倍分;压轴题.【题文】如图,抛物线C1:的顶点为A,与x轴的正半轴交于点B.(1)将抛物线C1上的点的横坐标和纵坐标都扩大到原来的2倍,求变换后得到的抛物线的解析式;(2)将抛物线C1上的点(x,y)变为(kx,ky)(|k|>1),变换后得到的抛物线记作C2,抛物线C2的顶点为C,点P在抛物线C2上,满足S△PAC=S△ABC,且∠APC=90°.①当k>1时,求k的值;②当k<﹣1时,请直接写出k的值,不必说明理由.【答案】(1);(2)①k=;②k=.【解析】试题分析:(1)由抛物线C1解析式求出A、B及原点坐标,将三点坐标都扩大到原来的2倍,待定系数求解可得;(2)①如图1中,当k>1时,与(1)同理可得抛物线C2的解析式为及顶点C的坐标,根据S△PAC=S△ABC知BP∥AC,继而可得△ABO是边长为2的正三角形,四边形CEBP是矩形,表示出点P的坐标,将其代入到抛物线C2解析式可求得k的值;②如图2中,当k<﹣1时,作△ABO关于y轴对称的△A′B′O,OE′⊥A′B′,同理可得四边形CEBP是矩形,先求出抛物线C2解析式,表示出点P的坐标,将其代入到抛物线C2解析式可求得k的值;试题解析:(1)∵=,∴抛物线C1经过原点O,点A(1,)和点B(2,0)三点,∴变换后的抛物线经过原点O,(2,)和(4,0)三点,∴变换后抛物线的解析式为;(2)①如图1中,当k>1时,∵抛物线C2经过原点O,(k,k),(2k,0)三点,∴抛物线C2的解析式为,∴O、A、C三点共线,且顶点C为(k,k),如图,∵S△PAC=S△ABC,∴BP∥AC,过点P作PD⊥x轴于D,过点B作BE⊥AO于E,由题意知△ABO是边长为2的正三角形,四边形CEBP是矩形,∴OE=1,CE=BP=2k﹣1,∵∠PBD=60°,∴BD=,PD=(2k﹣1),∴P(k+,(2k﹣1)),∴(2k﹣1)=,解得:k=;②如图2中,当k<﹣1时,∵抛物线C2经过原点O,(k,k),(2k,0)三点,∴抛物线C2的解析式为,∴O、A、C′三点共线,且顶点C′为(k,k),作△ABO关于y轴对称的△A′B′O,OE′⊥A′B′,∵S△PAC′=S△ABC=S△AC′B′,∴A′P∥AC′,由题意四边形PC′OE′是矩形,∴PE′=OC′=﹣2k,B′E′=1,PB′=﹣2k﹣1,在RT△PDB′中,∵∠PDB′=90°,∠PB′D=∠A′B′O=60°,∴DB′=PB′=,DP=(﹣2k﹣1),∴点P坐标[,(2k+1)],∴(2k+1)=,∴k=.考点:二次函数综合题;探究型;压轴题.。
福建中考数学试题及答案解析
福建中考数学试题及答案解析一、选择题(每题3分,共30分)1. 下列哪个数是正整数?A. -2B. 0C. 1.5D. π答案:B解析:正整数是指大于0的整数,选项B中的0不是正整数,因此正确答案应为选项C,即1.5。
2. 已知一个三角形的两边长分别为3cm和4cm,第三边长x的取值范围是?A. 1cm < x < 7cmB. 0cm < x < 7cmC. 1cm < x < 10cmD. 0cm < x < 10cm答案:A解析:根据三角形的三边关系,任意两边之和大于第三边,任意两边之差小于第三边。
因此,第三边x的取值范围为1cm < x < 7cm。
3. 计算下列表达式的值:(-3)^2A. 9B. -9C. 3D. -3答案:A解析:负数的偶数次幂结果为正数,因此(-3)^2 = 9。
4. 一个圆的半径为5cm,其面积是多少?A. 25π cm^2B. 50π cm^2C. 75π cm^2D. 100π cm^2答案:B解析:圆的面积公式为A = πr^2,将半径r=5cm代入公式,得到面积A = π(5cm)^2 = 25π cm^2。
5. 若a和b互为相反数,则a+b的值为?A. 0B. 1C. -1D. 无法确定答案:A解析:相反数是指两个数的和为0,因此若a和b互为相反数,则a+b=0。
6. 下列哪个函数是一次函数?A. y = 2x^2B. y = 3x + 4C. y = 5/xD. y = x^3 - 2答案:B解析:一次函数的一般形式为y = kx + b,其中k和b为常数,且k≠0。
选项B中的函数y = 3x + 4符合一次函数的定义。
7. 已知一个等腰三角形的底边长为6cm,腰长为5cm,其周长是多少?A. 16cmB. 21cmC. 26cmD. 无法确定答案:B解析:等腰三角形的两腰相等,因此周长为底边长加上两倍的腰长,即6cm + 2*5cm = 21cm。
2010福建福州中考数学试题及答案(含答案)
2010年福建省福州市中考数学试卷一、选择题(共10小题,每小题4分,满分40分)1.(2010•福州)2的倒数是()A.B.﹣C.2 D.﹣22.(2010•福州)今年我省规划重建校舍约3 890 000平方米,3 890 000用科学记数法表示为()A.0.389×107 B.3.89×106C.3.89×104D.389×1043.(2010•福州)下面四个图形中,能判断∠1>∠2的是()A.B.C.D.4.(2010•福州)下面四个中文艺术字中,不是轴对称图形的是()A.B.C.D.5.(2010•莆田)式子在实数范围内有意义,则x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤16.(2010•福州)下面四个立体图形中,主视图是三角形的是()A.B.C.D.7.(2010•福州)已知反比例函数y=(k≠0)的图象经过点(1,3),则此反比例函数的图象在()A.第一、二象限 B.第一、三象限 C.第二、四象限 D.第三、四象限8.(2010•福州)有人预测2010年南非世界杯足球赛巴西国家队夺冠的概率是70%,他们的理解正确的是()A.巴西国家队一定夺冠B.巴西国家队一定不会夺冠C.巴西国家队夺冠的可能性比较大 D.巴西国家队夺冠的可能性比较小9.(2010•福州)分式方程的解是()A.x=5 B.x=1 C.x=﹣1 D.x=210.(2010•福州)已知二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A.a>0 B.c<0 C.b2﹣4ac<0 D.a+b+c>0二、填空题(共5小题,每小题4分,满分20分)11.(2010•福州)实数a,b在数轴上对应点的位置如图所示,则a_________b.12.(2011•温州)分解因式:a2﹣1=_________.13.(2010•福州)某校七年(2班)6位女生的体重(单位:千克)是:36,38,40,42,42,45,这组数据的众数为_________.14.(2010•福州)如图,在▱ABCD中,对角线AC、BD相交于点O,若AC=14,BD=8,AB=10,则△OAB的周长为_________.15.(2010•福州)如图,直线,点A1坐标为(1,0),过点A1作x的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2x的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此做法进行下去,点A5的坐标为(_________,_________).三、解答题(共7小题,满分90分)16.(2010•福州)(1)计算:|﹣3|+(﹣1)0﹣.(2)化简:(x+1)2+2(1﹣x)﹣x2.17.(2010•福州)(1)如图1,点B、E、C、F在一条直线上,BC=EF,AB∥DE,∠A=∠D.求证:△ABC≌△DEF.(2)如图2,在矩形OABC中,点B的坐标为(﹣2,3).画出矩形OABC绕点O顺时针旋转90°后的矩形OA1B1C1,并直接写出的坐标A1、B1、C1的坐标.18.(2010•福州)近日从省家电下乡联席办获悉,自2009年2月20日我省家电下乡全面启动以来,最受农户热捧的四种家电是冰箱、彩电、洗衣机和空调,其销售比为5:4:2:1,其中空调已销售了15万台.根据上述销售情况绘制了两个不完整的统计图:请根据以上信息解答问题:(1)补全条形统计图;(2)四种家电销售总量为_________万台;(3)扇形统计图中彩电部分所对应的圆心角是_________度;(4)为跟踪调查农户对这四种家电的使用情况,从已销售的家电中随机抽取一台家电,求抽到冰箱的概率.19.(2010•福州)如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C,(1)求证:CB∥PD;(2)若BC=3,sin∠P=,求⊙O的直径.20.(2010•福州)郑老师想为希望小学四年(3)班的同学购买学习用品,了解到某商店每个书包的价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.(1)每个书包和每本词典的价格各是多少元?(2)郑老师计划用1000元为全班40位同学每人购买一件学习用品(一个书包或一本词典)后,余下不少于100元且不超过120元的钱购买体育用品,共有哪几种购买书包和词典的方案?21.(2010•福州)如图,在△ABC中,∠C=45°,BC=10,高AD=8,矩形EFPQ的一边QP在边上,E、F两点分别在AB、AC上,AD交EF于点H.(1)求证:;(2)设EF=x,当x为何值时,矩形EFPQ的面积最大?并求其最大值;(3)当矩形EFPQ的面积最大时,该矩形EFPQ以每秒1个单位的速度沿射线QC匀速运动(当点Q与点C重合时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,求S与t的函数关系式.22.(2010•福州)如图1,在平面直角坐标系中,点B在直线y=2x上,过点B作x轴的垂线,垂足为A,OA=5.若抛物线过点O、A两点.(1)求该抛物线的解析式;(2)若A点关于直线y=2x的对称点为C,判断点C是否在该抛物线上,并说明理由;(3)如图2,在(2)的条件下,⊙O1是以BC为直径的圆.过原点O作O1的切线OP,P为切点(P与点C不重合),抛物线上是否存在点Q,使得以PQ为直径的圆与O1相切?若存在,求出点Q的横坐标;若不存在,请说明理由.2010年福建省福州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(2010•福州)2的倒数是()A.B.﹣C.2 D.﹣2考点:倒数。
中考数学试题莆田
(第6题图)38D.40πC.24πB.20πA.12π2010年福建省莆田市初中毕业班质量检查试卷数 学(满分:150分;考试时间:120分钟)友情提醒:本试卷分为“试题”和“答题卡”两部分,答题时,请按答题卡中的“注意事项”认真作答,答案写在答题卡上的相应位置。
一、精心选一选:本大题共8小题,每小题4分,共32分,每小题给出的四个选项中有且只有一个选项是正确的, 请把正确选项的代号写在题后的括号内,答对的得4分;答错、不答或答案超过一个的一律得0分. 1.下列运算正确的是( )A .422a a a =+B .326a a a =÷C .623a a a =⋅D .1243)(a a = 2.方程(3)(1)3x x x -+=-的解是( ) A .0x =B .3x =C .3x =或1x =-D .3x =或0x =型号 22 22.5 23 23.5 24 24.5 25 数量(双)351015832鞋店经理最关心的是,哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是( ) A .平均数B .众数C .中位数D .方差4.如图,把直线L 沿x 轴正方向向右平移2个单位得到 直线L′,则直线L /的解析式为( ) A.12+=x y B. 22+-=x y C.42-=x y D. 22--=x y 5.下列说法正确的是( )A .有两个角为直角的四边形是矩形B .矩形的对角线互相垂直C .等腰梯形的对角线相等(第4题图)D .对角线互相垂直的四边形是菱形6.如图,为一个圆锥的三视图,则此圆锥的侧面积是( )7.以半径为1的圆内接正三角形、正方形、正六边形的边心距为三边作三角形,则( )A.不能构成三角形B.这个三角形是等腰三角形C.这个三角形是直角三角形D.这个三角形是钝角三角形8.如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P 在运动过程中速度大小不变,则以点A 为圆心,线段AP 长为半径的圆的周长c 与点P 的运动时间t 之B E D CAA 4⋅⋅⋅A 3A 2A 1D CB Aoy x(第11题图)D CBA。
2010年福建省福州市数学中考真题(word版含答案)
二○一○年福州市初中毕业会考、高级中等学校招生考试数 学 试 卷(全卷共4页,三大题,共22小题;满分150分;考试时间120分钟)友情提示:所有答案都必须填涂在答题卡相应字的位置上,答在本试卷上一律无效.毕业学校 姓名 考生号一、选择题 (共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂) 1.2的倒数是( ) A .12 B .12- C .2 D .2- 2.今年我省规划重建校舍约3890000平方米,3890000用科学记数法表示为( ) A .70.38910⨯ B .63.8910⨯ C .43.8910⨯ D .438910⨯ 3.下面四个图形中,能判断12∠>∠的是( )4.下面四个中文艺术字中,不是..轴对称图形的是( )5x 的取值范围为( )A .1x ≠B .1x ≥C .1x <D .全体实数 6.下面四个立体图形中,主视图是三角形的是( )7.已知反比例函数ky x=的图象过点P (13),,则该反比例函数图象位于( ) A .第一、二象限 B .第一、三象限A .B .C .D .A .B .C .D .21212121A . B . C . D .C .第二、四象限D .第三、四象限8.有人预测2010年南非世界杯足球赛巴西国家队夺冠的概率是70%,对他的说法理解正确的是( )A .巴西国家队一定会夺冠B .巴西国家队一定不会夺冠C .巴西国家队夺冠的可能性比较大D .巴西国家队夺冠的可能性比较小9.分式方程312x =-的解是 ( ) A .5x = B .1x = C .1x =- D .2x =10.已知二次函数2y ax bx c =++的图象如图所示,下列结论正确的是( ) A .0a > B .0c < C .240b ac -< D .0a b c ++>二、填空题(共5小题,每题4分,满分20分.请将答案填入答题卡的相应位置)11.实数a 、b 在数轴上对应点的位置如图所示, 则a b (填“>”、“<”或“=”).12.因式分解:21x -= .13.某校七年级(2)班6位女生的体重(单位:千克)是: 36,38,40,42,42,45,这组数据的众数为 . 14.如图,在□ABCD 中,对角线AC 、BD 相交于点O ,若14AC =,8BD =,10AB =,则OAB ∆的周长为 .15.如图,直线y =,点1A 坐标为(1,0),过点1A 作x 轴 的垂线交直线于点1B ,以原点O 为圆心,1OB 长为半径画弧交x 轴于 点2A ;再过点2A 作x 轴的垂线交直线于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于点3A ,…,按此做法进行下去,点5A的坐标为( , ).三、解答题 (满分90分.请将答案填入答题卡的相应位置)16. (每小题7分,共14分) (1)计算:03(1)-+- . (2)化简:22(1)2(1)x x x ++--.(第10题)AO D CB(第14题)(第15题)17. (每小题7分,共14分)(1)如图,点B 、E 、C 、F 在一条直线上,BC EF =,AB ∥DE ,A D ∠=∠. 求证:ABC ∆≌DEF ∆.(2)如图,在矩形OABC 中,点B 的坐标为(2-,3).画出矩形OABC 绕点O 顺时针旋转90后的矩形111OA B C ,并直接写出点1A 、1B 、1C 的坐标..18.(满分12分)近日从省家电下乡联席办获悉,自2009年2月20日我省家电下乡全面启动以来,最受农户热捧的四种家电是冰箱、彩电、洗衣机和空调,其销售量比为5︰4︰2︰1,其中空调已销售了15万台.根据上述销售情况绘制了两个不完整的统计图:请根据以上信息解答问题: (1)补全条形统计图;(2)四种家电销售总量为 万台;(3)扇形统计图中彩电部分所对应的圆心角是 度; (4)为跟踪调查农户对这四种家电的使用情况,从已销售的家电中随机抽取一台..家电,求抽到冰箱的概率. 19.(满分11分)如图,AB 是O 的直径,弦CD AB ⊥于点E , 点P 在O 上,1C ∠=∠.四种家电销售量扇形统计图 四种家电销售量条形统计图(第17(2)题) FE D C B A (第17(1)题)A(1)求证:CB ∥PD ; (2)若3BC =,3sin 5P =,求O 的直径. 20.(满分12分)郑老师想为希望小学四年(3)班的同学购买学习用品,了解到某商店每个书包价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典. (1)每个书包和每本词典的价格各是多少元?(2)郑老师计划用1000元为全班40位学生每人购买一件学习用品(一个书包或一本词典)后,余下不少于100元且不超过120元的钱购买体育用品.共有哪几种购买书包和词典的方案? 21.(满分13分)如图,在△ABC 中,45C ∠=,10BC =,高8AD =,矩形EFPQ 的一边QP 在BC 边上,E 、F 两点分别在AB 、AC 上,AD 交EF 于点H . (1)求证:AH EFAD BC=; (2)设EF x =,当x 为何值时,矩形EFPQ 的面积最大?并求其最大值;(3)当矩形EFPQ 的面积最大时,该矩形EFPQ 以每秒1个单位的速度沿射线QC 匀速运动(当点Q 与点C 重合时停止运动), 设运动时间为t 秒,矩形EFPQ 与△ABC 重叠部分的面积为S , 求S 与t 的函数关系式. 22.(满分14分)如图1,在平面直角坐标系中,点B 在直线2y x =上,过B 点作x 轴的垂线,垂足为A , OA =5.若抛物线216y x bx c =++过点O 、A . (1)求该抛物线的解析式;(2)若A 点关于直线2y x =的对称点为C ,判断点C 是否在该抛物线上,并说明理由; (3)如图2,在(2)的条件下,1O 是以BC 为直径的圆.过原点O 作1O 的切线OP ,P 为切点(点P 与点C 不重合).抛物线上是否存在一点Q ,使得以PQ 为直径的圆与1O 相切?若存在,求出点Q 的横坐标,若不存在,请说明理由.Q PHFEDCB A(第21题)二○一○年福州市初中毕业会考、高级中等学校招生考试数学试卷参考答案一、选择题(每小题4分,共40分)1.A 2.B 3.D 4.C 5.B 6.C 7.B 8.C 9.A 10.D 二、填空题(每小题4分,共20分)11.<; 12.(1)(1)x x +-; 13.42; 14.21; 15.(16,0). 三、解答题(满分90分)16.(每小题7分,共14分)(1)解:原式 313=+- …………6分1=. …………7分 (2)解:原式222122x x x x =+++-- …………6分3=. …………7分17.(每小题7分,共14分)(1)证明:∵AB ∥DE ,∴B DEF ∠=∠. ………3分 在ABC ∆和DEF ∆中,.B DEF A D BC EF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ………5分 ∴ABC ∆≌DEF ∆. ………7分(2)如图所示,矩形111OA B C 就是所就作的.……4分 1A (0,2)1B (3,2)1C (3,0)。
2010年福建福州中考数学试题word版含答案doc下载
0 一 0年福州市初中毕业会考、高级中等学校招生考试数学试卷(全卷共4页,三大题,共 22小题,满分150分,考试时间120分钟)友情提示:所有答案都必须填涂在答题卡相应的位置上,答在本卷上一律无效。
_______ 毕业学校__________________ 姓名 ____________________ 考生号 _____________一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填 涂) 1. 2的倒数是11A. B.C. 2D. — 2222.今年我省规划重建校舍约 3890000平方米,3890000用科学记数法表示为A. 0.389 107B. 3.89 106C. 3.89 104D. 389 1043•下面四个图形中,能判断/1 > / 2的是4. 下面四个中文艺术字中,不是 轴对称图形的是一日千里 民H. C D.5. 若二次根式'-X-1有意义,则x 的取值范围为A. X =1B. X -1C. X :: 16. 下面四个立体图形中,主视图是三角形的是k 7. 已知反比例函数 y=—的图像过点P (1, 3),贝阪比例函数图像位于xA.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限8. 有人预测2010年南非世界杯足球赛巴西国家队夺冠的概率是70%他们的理解正确的是A.巴西国家队一定夺冠B.巴西国家队一定不会夺冠C.巴西国家队夺冠的可能性比较大D.巴西国家队夺冠的可能性比较小亠9. 分式方程=1的解是A. X =5B. X =1C. X = TD. X = 210. 已知二次函数y =ax 2,bx c 的图像如图所示,则下列结论正确的是2A. a 0 B . c 0 C.b -4ac :: 0 D . a b c 0D.全体实数A.、填空题(共5小题,每题4分,满分20分。
请将答案填入答题卡相应的位置) 11.实数a 、b 在数轴上对应点的位置如图所示,则 a b (填“ >”、“ <”或“=”)。
福建省莆田市中考数学试卷及答案(Word解析版)
福建省莆田市中考数学试卷一、精心选一选:本大题共8小题,每小题4分,共32分。
每小题给出的四个选项中有且只有一个选项是符合题目要求的,答对的得4分,答错、不答或答案超过一个的一律得0分。
1.(4分)(•莆田)的相反数是()A.B.﹣C.D.﹣考点:相反数.分析:直接根据相反数的定义求解.解答:解:的相反数为﹣.故选B.点评:本题考查了相反数:a的相反数为﹣a.2.(4分)(•莆田)下列运算正确的是()A.(a+b)2=a2+b2B.3a2﹣2a2=a2C.﹣2(a﹣1)=﹣2a﹣1D.a6÷a3=a2考点:完全平方公式;合并同类项;去括号与添括号;同底数幂的除法.专题:计算题分析:A、原式利用完全平方公式化简得到结果,即可作出判断;B、原式合并得到结果,即可作出判断;C、原式去括号得到结果,即可作出判断;D、原式利用同底数幂的除法法则计算得到结果,即可作出判断.解答:解:A、原式=a2+2ab+b2,本选项错误;B、3a2﹣2a2=a2,本选项正确;C、﹣2(a﹣1)=﹣2a+2,本选项错误;D、a6÷a3=a3,本选项错误,故选B点评:此题考查了完全平方公式,合并同类项,去括号与添括号,以及同底数幂的除法,熟练掌握公式及法则是解本题的关键.3.(4分)(•莆田)对于一组统计数据:2,4,4,5,6,9.下列说法错误的是()A.众数是4 B.中位数是5 C.极差是7 D.平均数是5考点:极差;加权平均数;中位数;众数分析:根据平均数、众数、中位数和极差的定义分别进行计算,即可求出答案.解答:解:4出现了2次,出现的次数最多,则众数是4;共有6个数,中位数是第3,4个数的平均数,则中位数是(4+5)÷2=4.5;极差是9﹣2=7;平均数是:(2+4+4+5+6+9)÷6=5;故选B.点评:此题考查了平均数、众数、中位数和极差,求极差的方法是用一组数据中的最大值减去最小值,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),众数是一组数据中出现次数最多的数.4.(4分)(•莆田)如图,一次函数y=(m﹣2)x﹣1的图象经过二、三、四象限,则m 的取值范围是()A.m>0 B.m<0 C.m>2 D.m<2考点:一次函数图象与系数的关系.分析:根据一次函数图象所在的象限得到不等式m﹣2<0,据此可以求得m的取值范围.解答:解:如图,∵一次函数y=(m﹣2)x﹣1的图象经过二、三、四象限,∴m﹣2<0,解得,m<2.故选D.点评:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.5.(4分)(•莆田)如图是一个圆柱和一个长方体的几何体,圆柱的下底面紧贴在长方体的上底面上,那么这个几何体的俯视图可能是()A.B.C.D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可.解答:解:从上面可看到一个长方形里有一个圆.故选C.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.6.(4分)(•莆田)如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.55°B.70°C.125°D.145°考点:旋转的性质.分析:根据直角三角形两锐角互余求出∠BAC,然后求出∠BAB′,再根据旋转的性质对应边的夹角∠BAB′即为旋转角.解答:解:∵∠B=35°,∠C=90°,∴∠BAC=90°﹣∠B=90°﹣35°=55°,∵点C、A、B1在同一条直线上,∴∠BAB′=180°﹣∠BAC=180°﹣55°=125°,∴旋转角等于125°.故选C.点评:本题考查了旋转的性质,直角三角形两锐角互余的性质,熟练掌握旋转的性质,明确对应边的夹角即为旋转角是解题的关键.7.(4分)(•莆田)如图,△ABC内接于⊙O,∠A=50°,则∠OBC的度数为()A.40°B.50°C.80°D.100°考点:圆周角定理.分析:连接OC,利用圆周角定理即可求得∠BOC的度数,然后利用等腰三角形的性质即可求得.解答:解:连接OC.则∠BOC=2∠A=100°,∵OB=OC,∴∠OBC=∠OCB==40°.故选A.点评:本题考查了圆周角定理以及等腰三角形的性质定理,正确理解定理是关键.8.(4分)(•莆田)下列四组图形中,一定相似的是()A.正方形与矩形B.正方形与菱形C.菱形与菱形D.正五边形与正五边形考点:相似图形.分析:根据相似图形的定义和图形的性质对每一项进行分析,即可得出一定相似的图形.解答:解:A、正方形与矩形,对应角相等,对应边不一定成比例,故不符合题意;B、正方形与菱形,对应边成比例,对应角不一定相等,不符合相似的定义,故不符合题意;C、菱形与菱形,对应边不值相等,但是对应角不一定相等,故不符合题意;D、正五边形与正五边形,对应角相等,对应边一定成比例,符合相似的定义,故符合题意.故选:D.点评:本题考查了相似形的定义,熟悉各种图形的性质和相似图形的定义是解题的关键.二、细心填一填:本大题共8小题,每小题4分,共32分)9.(4分)(•莆田)不等式2x﹣4<0的解集是x<2.考点:解一元一次不等式.专题:计算题.分析:利用不等式的基本性质,将两边不等式同时加4再除以2,不等号的方向不变.解答:解:不等式2x﹣4<0移项得,2x<4,系数化1得,x<2.点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.10.(4分)(•莆田)小明同学在“百度”搜索引擎中输入“中国梦”,搜索到相关的结果个数约为8650000,将这个数用科学记数法表示为8.65×106.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:8 650 000=8.65×106,故答案为:8.65×106.点评:此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(4分)(•莆田)如图,点B、E、C、F在一条直线上,AB∥DE,BE=CF,请添加一个条件AB=DE,使△ABC≌△DEF.考点:全等三角形的判定.专题:开放型.分析:可选择利用AAS或SAS进行全等的判定,答案不唯一,写出一个符合条件的即可.解答:解:添加AB=DE.∵BE=CF,∴BC=EF,∵AB∥DE,∴∠B=∠DEF,∵在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).故答案可为:AB=DE.点评:本题考查了全等三角形的判定,解答本题的关键是熟练掌握全等三角形的几种判定定理.12.(4分)(•莆田)已知在Rt△ABC中,∠C=90°,sinA=,则tanB的值为.考点:互余两角三角函数的关系.分析:根据题意作出直角△ABC,然后根据sinA=,设一条直角边BC为5,斜边AB为13,根据勾股定理求出另一条直角边AC的长度,然后根据三角函数的定义可求出tnaB.解答:解:∵sinA=,∴设BC=5,AB=13,则AC==12,故tanB==.故答案为:.点评:本题考查了互余两角三角函数的关系,属于基础题,解题的关键是掌握三角函数的定义和勾股定理的运用.13.(4分)(•莆田)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是10.考点:勾股定理.分析:根据正方形的面积公式,结合勾股定理,能够导出正方形A,B,C,D的面积和即为最大正方形的面积.解答:解:根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S2,S1+S2=S3,于是S3=S1+S2,即S3=2+5+1+2=10.故答案是:10.点本题考查了勾股定理的应用.能够发现正方形A,B,C,D的边长正好是两个直角评:三角形的四条直角边,根据勾股定理最终能够证明正方形A,B,C,D的面积和即是最大正方形的面积.14.(4分)(•莆田)经过某个路口的汽车,它可能继续直行或向右转,若两种可能性大小相同,则两辆汽车经过该路口全部继续直行的概率为.考点:可能性的大小.分析:列举出所有情况,看两辆汽车经过这个十字路口全部继续直行的情况占总情况的多少即可.解答:解:画树状图得出:∴一共有4种情况,两辆汽车经过这个十字路口全部继续直行的有一种,∴两辆汽车经过这个十字路口全部继续直行的概率是:.故答案为:.点评:本题主要考查用列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.15.(4分)(•莆田)如图,正方形ABCD的边长为4,点P在DC边上且DP=1,点Q 是AC上一动点,则DQ+PQ的最小值为5.考点:轴对称-最短路线问题;正方形的性质.分析:要求DQ+PQ的最小值,DQ,PQ不能直接求,可考虑通过作辅助线转化DQ,PQ 的值,从而找出其最小值求解.解答:解:如图,连接BP,∵点B和点D关于直线AC对称,∴QB=QD,则BP就是DQ+PQ的最小值,∵正方形ABCD的边长是4,DP=1,∴CP=3,∴BP==5,∴DQ+PQ的最小值是5.故答案为:5.点评:此题考查了正方形的性质和轴对称及勾股定理等知识的综合应用,得出DQ+PQ的最小时Q点位置是解题关键.16.(4分)(•莆田)统计学规定:某次测量得到n个结果x1,x2,…,x n.当函数y=++…+取最小值时,对应x的值称为这次测量的“最佳近似值”.若某次测量得到5个结果9.8,10.1,10.5,10.3,9.8.则这次测量的“最佳近似值”为10.1.考点:方差.专题:新定义.分析:根据题意可知“量佳近似值”x是与其他近似值比较,根据均值不等式求平方和的最小值知这些数的底数要尽可能的接近,求出x是所有数字的平均数即可.解答:解:根据题意得:x=(9.8+10.1+10.5+10.3+9.8)÷5=10.1;故答案为:10.1.点评:此题考查了一组数据的方差、平均数,掌握新定义的概念和平均数的平方和最小时要满足的条件是解题的关键.三、耐心做一做:本大题共9小题,共86分。
2010年莆田市中考数学仿真模拟试卷(一)
2010年某某市中考数学仿真模拟试卷(一)一、精心选一选:本大题共8小题,每小题4分,共32分,每小题给出四 个选项中有且只有一个是正确的,请把正确选项的代号写在题后括号内,答对的得4分; 答错、不答或答案超过一个的一律得0分。
1、下列运算正确的是( )A 、632a a a=⋅B 、532)(a a =C 、a a a 532=+D 、23a a a =- 2、不等式组312840x x ->⎧⎨-⎩,≤的解集在数轴上表示为( )3、与如图所示的三视图对应的几何体是( )4、如图所示的两个转盘分别被均匀地分成3个和4个扇形,每个扇形上都标有一个实数。
同时自由转动两个转盘,转盘停止后(若指针指在分格线上,则重转),两个指针都落在无理数上的概率是( ) A 、12B 、13C 、16D 、1125、直角三角形纸片的两直角边长分别为6,8,现将ABC △如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan CBE ∠的值是( ) A 、247B 、73C 、724D 、131 0 2A12B1 02C1 02D6 8CEABDπ(12)-382273.14o sin 60 56、如图,在周长为20cm 的□ABCD 中,AB ≠AD ,AC 、BD 相交于点O , OE ⊥BD 交AD 于E ,则△ABE 的周长为( )A 、4 cmB 、6cmC 、8cmD 、10cm7、如图,AB O 是⊙的直径,弦CD ⊥AB 于E, ∠CDB= 30°,⊙Ocm, 则弦CD 的长为( ) A 、3cm 2B 、3cm C、 D 、9cm8、如图,A ,B ,C ,D 为圆O 的四等分点,动点P 从圆心O 出发,沿O —C —D —O 路线作匀速运动,设运动时间为x (秒),∠APB =y (度),右图函数图象表示y 与x 之间函数关系,则点M 的横坐标应为( ) A 、2 B 、12π+C 、2πD 、2π+2二、细心填一填:本大题共8小题,每小题4分,共32分,直接把答案填在题中的横线上。
2010年莆田市初中毕业、升学考试试卷
2010年莆田市初中毕业、升学考试试卷物理试题(满分:100分;考试时间:90分钟)注意:本试卷分为“试题”和“答题卡”两部分.答题时请按答题卡中的“注意事项”要求认真作答.答案写在答题卡上的相应位置。
一、单项选择题(每小题2分-共20分)1.下列四幅图中的现象,由于光的直线传播造成的是( )2.关于电磁波,下列说法中正确的是( )A.电磁波可以用来传递信息B.电磁波不会造成环境污染C.电磁波的频率都是一样的D.电磁波不能在真空中传播3.下列是对一枚一元硬币的有关物理量进行估测,你认为合理的是( )A.体积大约是2 .5m3B.质量大约是2 .5kgC.直径大约是2 .5cm D.物重大约是2 .5N4.有些老师上课时使用便携扩音设备,使声音更加宏亮,这是为了增大声音的( )A.音调B.音色C.频率D.响度5.下列做法是为了加快液体蒸发的是( )A.酒精灯不用时要盖上灯帽B.洗头后用电吹风把头发吹干C.农业灌溉中用管道输水代替沟渠输水D.蔬菜用保鲜膜包好后放人冰箱冷藏室6.下列做法符合安全用电要求的是( )A.未断开电源时,直接更换灯泡B.发现有人触电时,直接用手把触电者拉开C.发现导线的绝缘部分有破损时一定要及时更换D.把用电器三脚插头中接地的脚弄掉后插入两孔插座使用7.下列关于内能的说法中正确的是( )A.静止的物体没有内能B.00C以下的物体没有内能C.内能和机械能是同一种形式的能量D.内能与物体的温度有关8.下列四个事例中,其中与另外三个力所产生的作用效果不同的是( )A.人对拉力器的作用力可使弹簧伸长B.杆对台球的作用力可使台球由静止开始运动C.守门员对足球的作用力可使运动的足球静止D.拦网队员对排球的作用力可使排球改变运动方向9.在家庭电路中,下列有关插座、螺口灯泡、开关的连线正确的是( )10.如图,电源电压不变,R为定值电阻,闭合开关S,向左移动滑片P的过程中A.电压表示数变大.电流表示数变小B.电压表示数变小,电流表示数变大C.电压表示数变大,电流表示数变大D.电压表示数不变,电流表示数变小二、填空、作图题(每空格1分,作图题2分,共30分)11.原子是由原子核和_________组成的,而原子核又是由中子和________组成的。
福建省莆田市中考数学仿真模拟试卷(四)
2010年福建省莆田市中考仿真模拟数学试卷(四)一、精心选一选:本大题共8小题,每小题4分,共32分。
每小题给出的四个选项中有且只有一个是正确的,请把正确选项的代号写在题后的括号内,答对的得4分;答错、不答或答案超过一个的一律得0分。
1、下列计算中,正确的是( )A 、x+2y=3xyB 、x ·x 2=x 2C 、(x 3y)2=x 3y 2D 、x 6÷x 2=x 42、如果点(12)P m m -,在第四象限,那么m 的取值范围是( ). A 、102m <<B 、102m -<<C 、0m <D 、12m > 3、如图所示,在平面直角坐标系中,点A 、B 的坐标分别为(﹣2,0)和(2,0).月牙①绕点B 顺时针旋转900得到月牙②,则点A 的对应点A ’的坐标为( ) A 、(2,2) B 、(2,4) C 、(4,2) D 、(1,2)4、一个三角形的两边长为3和6,第三边的边长是方程x 2-6x+8=0 的周长是( ) A 、11 B 、11 或 13 C 、13 D 、11 和135、如图,在平行四边形ABCD 中,E 为AD 的中点,DEF △的面积为1,则BCF △的面积为( )A 、1B 、2C 、3D 、46、如图,AB 是O ⊙的直径,O ⊙交BC 的中点于D ,DE AC ⊥于E ,连接AD ,则下列结论正确的个数是( )AD BC ⊥① EDA B ∠=∠② 12OA AC =③ ④DE 是O ⊙的切线 A 、1个 B 、2个 C 、3个 D 、4个7、王师傅在楼顶上的点A 处测得楼前一棵树CD 的顶端C 的俯角为60 o, 又知水平距离BD=10m ,楼高AB = 24m ,则树高CD 为( )A 、()31024-m B 、⎪⎪⎭⎫ ⎝⎛-331024m C 、()3524-m D 、9m8、如图,ABC △和的DEF △是等腰直角三角形,90C F ∠=∠=,24AB DE ==,.点B 与点D 重合,点A B D E ,(),在同一条直线上,将ABC △沿D E →方向平移,至点A与点E 重合时停止.设点B D ,之间的距离为x ,ABC △与DEF △重叠部分的面积为y,B A E DC FB则准确反映y 与x 之间对应关系的图象是( )二、细心填一填:本大题共8小题,每小题4分,共32分,直接把答案填在题中的横线上。
福建省莆田市中考数学仿真模拟试卷(三)
2010年福建省莆田市中考仿真模拟数学试卷(三)一、精心选一选:本大题共8小题,每小题4分,共32分。
每小题给出的四个选项中有且只有一个是正确的,请把正确选项的代号写在题后的括号内,答对的得4分;答错、不答或答案超过一个的一律得0分。
1、下列运算正确的是( )A 、x 2+x 3=2x 5B 、(-2x)2·x 3=4x 5C 、(x -y)2=x 2–y 2D 、x 3y 2÷x 2y 3=xy 2、方程2x =x 的解是( )A 、x=1B 、x=0C 、 x 1=1 x 2=0D 、 x 1=﹣1 x 2=0这组同学引体向上个数的众数与中位数依次是( )A 、9和10B 、9.5和10C 、10和9D 、10和9.54、抛物线5422---=x x y 经过平移得到22x y -=,平移方法是( )A 、向左平移1个单位,再向下平移3个单位B 、向左平移1个单位,再向上平移3个单位C 、向右平移1个单位,再向下平移3个单位D 、向右平移1个单位,再向上平移3个单位 5、边长为a 的正六边形的内切圆的半径为( ) A 、2a B 、a C D 、12a 6、一个几何体的三视图如图所示,那么这个几何体是( )7、如图,已知D 、E 分别是ABC ∆的AB 、 AC 边上的点,,DE BC //且1ADEDBCE S S :=:8,四边形那么:AE AC 等于( )A 、1 : 9 B、1 :3 C、1 : 8 D 、1 : 28、如图1,在直角梯形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止.设图1 D 图2 A B C D B A DExy A 0B 1A 1A 2B 2 B 3 A 3点P 运动的路程为x ,ABP △的面积为y ,如果y 关于x 的函数图象如图2所示,则BCD △的面积是( )A 、3B 、4C 、5D 、6二、细心填一填:本大题共10小题,每小题4分,共40分,直接把答案填在题中的横线上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年莆田市初中毕业、升学考试试卷数学试题(满分:150分;考试时间:120分钟)注意:本试卷分为“试题”和“答题卡”两部分,答题时请按答题卡中的“注意事项”要求认真作答,答案写在答题卡上的相应位置.一、精心选一选:本大题共8小题,每小题4分,共32分.每小题给出的四个选项中有且只有一个选项是符合题目要求的.答对的得40分.1.2-的倒数是().A .2B .12 C .12- D .-2有意义,则x 的取值范围是( ).A .1x ≥B .1x ≤C .0x >D .1x >3.下列图形中,是中心对称图形的是( ).4.下列计算正确的是( ).A .325()a a = B .23a a a +=C .33a a a ÷=D .235a a a =·5.已知1O ⊙和2O ⊙的半径分别是3cm 和5cm ,若12O O =1cm ,则1O ⊙与2O⊙的位置关系是().A .相交B .相切C .相离D .内含 6.如图是由五个小正方体搭成的几何体,它的左视图...是( ).第3题 第6题7.在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x 人参加这次聚会,则列出方程正确的是( ).A .(1)10x x -=B .(1)102x x -= C .(1)10x x += D .(1)102x x += 8.11()A x y ,、22()B x y ,是一次函数2(0)y kx k =+>图象上不同的两点,若1212()()t x x y y =--,则( ).A .0t <B .0t =C .0t >D .0t ≤ 二、细心填一填:本大题共8小题,每小题4分,共32分. 9.化简:22(1)(1)a a +--=________.10.2009年我国全年国内生产总值约335000亿元,用科学记数法表示为________亿元. 11.如图,D 、E 分别是ABC △边AB 、AC 的中点,BC =10,计算:22|2.-解不等式213436x x --≤,并把它的解集在数轴上表示出来.19.(本小题满分8分)如图,四边形ABCD 的对角线AC 、DB 相交于点O ,现给出如下三个条件:AB DC AC DB OBC OCB ==∠=∠①②③.(1)请你再增加一个..条件:________,使得四边形ABCD 为矩形(不添加其它字母和辅助线,只填一个即可,不必证明);(2)请你从①②③中选择两个条件________(用序号表示,只填一种情况),使得AOB DOC △≌△,并加以证明.第19题如图,在边长为1的小正方形组成的网格中,AOB △的三个顶点均在格点上,点A 、B 的坐标分别为(23)31.A B --,、(,)(1)画出AOB △绕点O 顺时针...旋转90°后的11AOB △; (2)点1A 的坐标为_______; (3)四边形11AOA B 的面积为_______.21.(本小题满分8分)如图,A 、B 是O ⊙上的两点,120AOB ∠=°,点D 为劣弧 AB 的中点.(1)求证:四边形AOBD 是菱形;(2)延长线段BO 至点P ,交O ⊙于另一点C ,且BP =3OB ,求证:AP 是O ⊙的切线.第20题第21题在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.(1)用列表法表示出(x,y)的所有可能出现的结果;(2)求小明、小华各取一次小球所确定的点(x,y)落在反比例函数4yx=的图象上的概率;(3)求小明、小华各取一次小球所确定的数x、y满足4yx<的概率.23.(本小题满分10分)一方有难,八方支援.2010年4月14日青海玉树发生地震,全国各地积极运送物资支援灾区.现在甲、乙两车要从M地沿同一公路运输救援物资往玉树灾区的N地,乙车比甲车先行1小时,设甲车与乙车之间的路程..........为y(km),甲车行驶时间为t(h),y(km)与t(h)之间函数关系的图象如图所示.结合图象解答下列问题(假设甲、乙两车的速度始终保持不变):(1)乙车的速度是_________km/h;(2)求甲车的速度和a的值.第23题如图1,在Rt ABC △中,9068ACB AC BC ∠===°,,,点D 在边AB 上运动,DE平分CDB ∠交边BC 于点E ,CM BD ⊥垂足为M EN CD ⊥,,垂足为N.(1)当AD=CD 时,求证:DE AC ∥;(2)探究:AD 为何值时,BME △与CNE △相似?(3)探究:AD 为何值时,四边形MEND 与BDE △的面积相等?第24题如图1,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =1,OC =2,点D 在边OC 上且54OD =. (1)求直线AC 的解析式;(2)在y 轴上是否存在点P ,直线PD 与矩形对角线AC 交于点M ,使得DMC △为等腰三角形?若存在,直接写出....所有符合条件的点P 的坐标;若不存在,请说明理由. (3)抛物线2y x =-经过怎样平移,才能使得平移后的抛物线过点D 和点E (点E 在y 轴正半轴上),且ODE △沿DE 折叠后点O 落在边AB 上O ′处?第25题2010年莆田市初中毕业、升学考试试卷数学参考答案及评分标准说明:(一)考生的解法与“参考答案”不同时,可参照“答案的评分标准”的精神进行评分. (二)如解答的某一步计算出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步骤应得的累计分数. (四)评分的最小单位1分,得分或扣分都不能出现小数点. 一、精心选一选(本大题共8小题,每小题4分,共32分) 1.C 2.A 3.B 4.D 5.D 6.A 7.B 8.C二、细心填一填(本大题共8小题,每小题4分,共32分)9.4a 10. 53.3510⨯ 11. 5 12. 6 13. 2 14. 1 15.40217.(本小题满分8分)解:原式=2·························· 6分 =2- ························································ 8分注:2|24(2)=分18.(本小题满分8分)解:去分母,得2(21)x -·························· 2分去括号,得4234x x --≤ ··················································································· 4分 移项,合并同类项,得2x -≤ ∴不等式的解集为2x -≤ ····················································································· 6分 该解集在数轴上表示如下:································································································································· 8分 19.(本小题满分8分) (1)AD BC =(或AO OC =或BO OD =或90ABC ∠=°等) 3分 (2)解法1:②③ ··················································· 4分 证明:OBC OCB ∠=∠ OB OC ∴= ····························································· 5分第19题又AC DB OA OD =∴= ················································································ 6分 又AOB DOC ∠=∠ AOB DOC ∴△≌△ ······························································································ 8分 解法2:①② ··········································································································· 4分 证明:∵AB=DC ,DB=AC ,AD=DA ∴ABD DCA △≌△ ····························································································· 6分 ∴∠ABO=∠DCO ········································································································· 7分又∵∠AOB=∠DOC A O B D O C ∴△≌△ ······················································· 8分(注:若选①③第(2)小题得0分) 20.(本小题满分8分) (1)正确画出1OA 、1OB 、11A B 各得1分 ·························································· 3分 (2)(3,2) ·········································································································· 5分 (3)8 ······················································································································ 8分 21.(本小题满分8分) 证明:(1)连接OD . ·································· 1分D 是劣弧 AB 的中点,120AOB ∠=°60AOD DOB ∴∠=∠=° ························· 2分 又∵OA=OD ,OD=OB∴△AOD 和△DOB 都是等边三角形 ·········· 3分 ∴AD=AO=OB=BD∴四边形AOBD 是菱形 ······························· 4分(2)连接AC.∵BP =3OB ,OA=OC=OB ∴PC=OC=OA ········································································································· 5分12060AOB AOC ∠=∴∠= °°OAC ∴△为等边三角形∴PC=AC=OC ········································································································· 6分 ∴∠CAP =∠CP A又∠ACO =∠CP A +∠CAP 30CAP ∴∠=°90PAO OAC CAP ∴∠=∠+∠=° ······································································ 7分 又OA 是半径AP ∴是O ⊙的切线 ································································································ 8分 22.(本小题满分10分) 解:(1)第21题································································································································· 3分 (2)可能出现的结果共有16个,它们出现的可能性相等. ································· 4分 满足点(x ,y )落在反比例函数4y x=的图象上(记为事件A )的结果有3个,即(1,4),(2,2),(4,1),所以P (A )=316. ····································································· 7分 (3)能使x ,y 满足4y x<(记为事件B )的结果有5个,即(1,1),(1,2),(1,3),(2,1),(3,1),所以P (B )=516·········································································· 10分23.(本小题满分10分) (1)40 ···················································································································· 3分 (2)解法1:设甲车的速度为x km/h ,依题意得12(121)40200x =+⨯+ ······················································································· 5分解得x =60 ················································································································· 6分 又(1)4060a a +⨯=⨯ ··························································································· 8分 ∴a =2 ························································································································ 9分 答:甲车的速度为每小时60千米,a 的值为2. ················································ 10分 解法2:设甲车的速度为x km/h ,依题意得40(1)(12)(40)200ax a a x =+⎧⎨--=⎩ ························································································ 7分 解得602.x a =⎧⎨=⎩··········································································································· 9分答:甲车的速度为每小时60千米,a 的值为2. ················································ 10分 24.(本小题满分12分) (1)证明:AD CD DAC DCA =∴∠=∠2BDC DAC ∴∠=∠ ································· 1分又∵DE 是∠BDC 的平分线 ∴∠BDC=2∠BDE∴∠DAC =∠BDE ········································· 2分∴DE ∥AC ···················································· 3分 (2)解:(Ⅰ)当BME CNE △∽△时,得MBE NCE ∠=∠ ∴BD=DC∵DE 平分∠BDC ∴DE ⊥BC ,BE=EC.又∠ACB =90° ∴DE ∥AC . ···················································································· 4分 ∴BE BD BC AB =即152BD AB === ∴AD =5 ···················································································································· 5分第24题(Ⅱ)当BME ENC △∽△时,得EBM CEN ∠=∠∴EN ∥BD又∵EN ⊥CD∴BD ⊥CD 即CD 是△ABC 斜边上的高 ································································· 6分 由三角形面积公式得AB ·CD=AC ·BC ∴CD=245∴185AD == ·················································································· 7分 综上,当AD =5或185时,△BME 与△CNE 相似. (3)由角平分线性质易得12MDE DEN S S DM ME ==△△· BDE MEND S S = △四边形12BD EM DM EM ∴=·· 即12DM BD = ······················································ 8分 ∴EM 是BD的垂直平分线.∴∠EDB=∠DBE∵∠EDB =∠CDE ∴∠DBE =∠CDE又∵∠DCE =∠BCD∴CDE CBD △∽△ ······················· 9分CD CE DE BC CD BD∴==① ············ 10分 2CD BE BE BC BD BM ∴== 即4BE CD = 5454=⨯= ······························································ 11分 25843939cos 5810B =⨯= 39112105-⨯= ······························································ 12分 25.(本小题满分14分)解:(1)OA =1,OC =2则A 点坐标为(0,1),C 点坐标为(2,0)设直线AC 的解析式为y=kx+b0120b k b +=⎧∴⎨+=⎩ 第24题解得121k b ⎧=-⎪⎨⎪=⎩∴直线AC 的解析式为112y x =-+ ······································································ 2分 (2)123555(0)(0)(02))384P P P --,,,,,或3(0P (正确一个得2分) ······························································································· 8分(3)如图,设(1)O x ′,过O ′点作O F OC ⊥′于F 222251()4O D O F DF x ='+=+-′ 由折叠知OD O D =′ 22551()()44x ∴+-= 12x ∴=或2············································· 10分第25题。