初一数学找规律习题

合集下载

初一数学找规律练习题

初一数学找规律练习题

初一数学找规律练习题一、数字规律1. 观察下列数列,找出规律,并写出下一个数:2, 4, 8, 16, 32, ____1, 3, 6, 10, 15, ____1, 4, 9, 16, 25, ____二、图形规律1. 观察下列图形,找出规律,并画出下一个图形:(图形:△ △△ △△△ △△△△)(图形:○□○□○□○□)3. 观察下列图形,找出规律,并画出下一个图形:(图形:□■□■■□■■■)三、数列与图形结合规律1. 观察下列数列与图形的结合,找出规律,并写出下一个数和画出对应的图形:数列:1, 2, 3, 4, 5图形:(△)(△△)(△△△)(△△△△)数列:1, 3, 6, 10, 15图形:(○)(□□)(△△△)(■■■■)四、应用题1. 小明发现一个有趣的现象,从1开始,连续几个自然数的和等于这几个自然数的个数乘以(个数加1)除以2。

请你找出这个规律,并计算1到100的和。

2. 小华在纸上画了一排正方形,每个正方形的边长分别为1cm、2cm、3cm、4cm……,请问这排正方形总面积是多少平方厘米?3. 一个数字三角形,第一行有1个数字,第二行有2个数字,以此类推,第n行有n个数字。

求这个数字三角形前10行的数字总和。

五、数表规律1 2 3 42 3 4 53 4 5 64 5 6 __1 3 6 102 5 9 143 7 12 184 __ __ __六、操作规律A → A + 1B → B + 2C → C + 3D → D + 4(初始值:A=1, B=2, C=3, D=4)A → A × 2B → B × 3C → C × 4D → D × 5(初始值:A=1, B=1, C=1, D=1)七、逻辑推理规律A > B,B > C,C > D那么 A > D 是否成立?如果 P 则 Q,如果 Q 则 R那么如果 P 则 R 是否成立?八、综合应用题1. 一个班级有50名学生,每名学生都有一个唯一的编号,编号从1到50。

7年级找规律的数学题

7年级找规律的数学题

7年级找规律的数学题一、数字规律1. 观察下列数字:1,3,5,7,9,…- 请写出第n个数的表达式。

- 解析:- 这组数字是连续的奇数。

- 第1个数是1 = 2×1 - 1;第2个数是3=2×2 - 1;第3个数是5 = 2×3 - 1;以此类推。

- 所以第n个数的表达式为2n - 1。

2. 有一组数:2,4,8,16,32,…- 求第n个数的表达式。

- 解析:- 观察这组数字,第1个数是2 = 2¹;第2个数是4 = 2²;第3个数是8 = 2³;第4个数是16=2⁴;第5个数是32 = 2⁵。

- 所以第n个数的表达式为2ⁿ。

二、图形规律1. 用火柴棒按如下方式搭三角形:- 搭1个三角形需要3根火柴棒;搭2个三角形需要5根火柴棒;搭3个三角形需要7根火柴棒。

- 搭n个三角形需要多少根火柴棒?- 解析:- 当n = 1时,火柴棒数量为3=2×1 + 1;- 当n = 2时,火柴棒数量为5 = 2×2+1;- 当n = 3时,火柴棒数量为7 = 2×3+1;- 所以搭n个三角形需要2n + 1根火柴棒。

2. 观察下列图形的排列规律(其中△是三角形,□是正方形,○是圆):- □○△□□○△□○△□□○△□…- 若第一个图形是正方形,则第2023个图形是什么形状?- 解析:- 观察这组图形的排列规律,可发现7个图形为一组循环,即“□○△□□○△”。

- 2023÷7 = 289(组)……0(个),这里余数为0表示刚好循环完289组。

- 所以第2023个图形是这一组的最后一个图形,即三角形。

七年级找规律经典题汇总带

七年级找规律经典题汇总带
25.n×n26.?27.(2n-1)/n
×n1.n2
-n+1
.(

2
2n-1
3.302 4.121
5.49
6.152n+5 7.360
(n-2)nBiblioteka 19.3n+1 10

2n+211.181 12.欢
8.4
欢13
.3n+114.
88
15.20 16.4n-4 17.2n
(n+1)
18.65
19.37 20
表一:
表二:
表三:
..
20、如 所示的
..
案是由正六
..
形密 而成,黑
..
色正六 形周..
..
..
..
..
第一 有六
个白色正六 形, 第n有个白色正六 形.
21、把3的正三角形各 三均分,切割获取①, 中含有1个 是1的正六 形;把4
的正三角形各 四均分,切割获取②, 中含有3个 是1的正六 形;把5的正三角形
14.先 察
1
1
2
1
=(1
1)
(1
1)=1-1=2
2
3
1
2
2
3
3
3
1
2
2
1
3
1
=(1 1)
(1 1) (1
1)=1-1=3
1
3
4
1
2
2
3
3
4
4
4
再 算
1
1
1
1
的 .
1
2
2
3
3
4

初一找规律经典题带答案

初一找规律经典题带答案

初一找规律经典题带答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN一、数字排列1、观察下列各算式: 1+3=4=22,1+3+5=9=23,1+3+5+7=16=24… 按此规律 (1)试猜想:1+3+5+7+…+2005+2007的值 (2)(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __3、请填出下面横线上的数字。

1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个( )二、几何图形变化1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球 个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称). 三、数、式计算 1、已知下列等式:① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ;由此规律知,第⑤个等式是 . 2、观察下面的几个算式:1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____.3、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+=+⨯=+b a aba b 则符合前面式子的规律,,若 (21010)规律发现……1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n )个图案中有白色..地砖 块。

(完整)初中数学找规律专项练习题(有答案)

(完整)初中数学找规律专项练习题(有答案)

1、观察规律:1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,则2+6+10+14+…+2014的值是。

2、用四舍五入法对31500取近似数,并精确到千位,用科学计数法可表示为.3、观察下面的一列数:0,﹣1,2,﹣3,4,﹣5,6…请你找出其中排列的规律,并按此规律填空.(1)第10个数是,第21个数是.(2)﹣40是第个数,26是第个数.4、一组按规律排列的数:,,,,…请你推断第9个数是.5、计算:__________;(-2)100+(-2)101= .6、若,则=__________.7、大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成__________个。

8、猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是9、10、若与|b+5|的值互为相反数,则 =____ ____11、在计数制中,通常我们使用的是“十进位制”,即“逢十进一”.而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为1天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据.已知二进位制与十进位制的比较如下表:0 1 2 3 4 5 6 …十进位制二进制0 1 10 11 100 101 110 …请将二进位制10101010(二)写成十进位制数为 .12、为求值,可令S=,则2S=,因此2S-S=,所以=。

仿照以上推理计算出的值是_________________。

二、选择题(每空?分,共?分)13、的值是……………………………………………【】A.﹣2 B.﹣1 C.0 D.114、已知8.62=73.96,若x2=0.7396,则x的值等于()A 86. 2B 862C ±0.862D ±86215、计算:(-2)100+(-2)101的是()A.2100B.-1C.-2D.-210016、计算等于( ) .A.B.C.D.17、已知a、b互为相反数,c、d互为倒数,m的绝对值为1, p是数轴到原点距离为1的数,那么的值是 ( ).A.3 B.2 C.1 D.018、若,则的大小关系是 ( ).A. B. C. D.19、观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2 187,….解答下列问题:3+32+33+34+…+32 013的末尾数字是( )A.0B.1C.3D.720、计算机是将信息转化成二进制进行处理的,二进制即“逢二进一”。

(word版)七年级数学找规律练习题和答案

(word版)七年级数学找规律练习题和答案

找律1.用黑白两种色的正六形地按如下所示的律拼成假设干个案:第(4)个案中有黑色地4;那么第(n)个案中有白色地。

..⋯⋯2.我国著名数学家庚曾:“数形合百般好,隔裂分家万事非。

〞如,在一个1的正方形版上,依次上面1,1,1,⋯,1的矩第3题2482n形彩色片〔n大于1的整数〕。

你用“数形合〞的思想,依数形化的律,算11112482n=。

3.有一列数:第一个数x=1,第二个数x=3,第三个数开始依次x,x,⋯,x ;从第二个数开始,每个数是它相1234n 两个数和的一半。

〔如:x2=x1x3〕2(1 )求第三、第四、第五个数,并写出算程;(2)根据〔1〕的果,推x8=;(3 )探索一列数的律,猜测第k个数xk=.〔k是大于2的整数〕4.将一方形的折,如所示可得到一条折痕〔中虚〕折三次后,可以得到7条折痕,那么折四次可以得到痕._.折,折每次折痕与上次的折痕保持平行,条折痕.如果折n次,可以得到条折5.察下面一列有律的数1,2,3,4,5,6,,根据个律可知第n个数是〔n是正整数〕38152435486.古希腊数学家把数1,3,6,10,15,21,⋯⋯,叫做三角形数,它有一定的律性,第24个三角形数与第22个三角形数的差。

按照一定序排列的一列数叫数列,一般用a1,a2,a3,⋯,an表示一个数列,可{an}.有数列{an}足一个关系式:a=an-n a,a,a的,然后行猜测n n的代数n+121234式表示〕8.察下面一列数:-1,2,-3,4,-5,6,-7,...,将列-12-34数排成以下形式10行从左第9个数是.-56-7-9按照上述律排下去,那么第10-1112-1314-1516......第8题1察以下等式9-1=816-4=1225-9=1636-16=20 ⋯⋯⋯⋯些等式反映自然数的某种律,n(n≥1)表示自然数,用关于n的等式表示个律.10.如是阳光广告公司某种商品的商案,中阴影局部色。

(完整)初一找规律练习题

(完整)初一找规律练习题

精心整理初一数学找规律一、数字排列规律题1、下面数列后两位应该填上什么数字呢?23581217 ___2、请填出下面横线上的数字。

112358 ____ 213、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个数是什么?4、有一串数字36101521_ 第6个是什么数?|| 75、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,吊门心八H I,1那么第2005个数是().A. 1 B . 2 C. 3 D . 46、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1 , 0,那么这100个数中“0”的个数为_________ .7、一组按规律排列的数:1, 3, 7, 13, 21,……请你推断第9个数是.4 9 16 25 36&已知下列等式:① 13= 12;② 13+ 23= 32;③ 13+ 23+ 33= 62;④13+ 23+ 33+ 43= 102; .... 由此规律知,第⑤个等式是.9、观察下列各式;①、12+1 = 1X2;②、22+2=2X 3;③、32+3=3X4; ....... 请把你猜想到的规律用自然数n表示出来。

10、观察下面的几个算式:①、1+2+仁4;②、1+2+3+2+仁9③、1+2+3+4+3+2+1 = 16 ④、1+2+3+4+5+4+3+2+1=25 ……根据你所发现的规律,请你直接写出第n个式子11、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,精心整理那么第2005个数是()A. 1B. 2 C . 3 D. 412、把数字按如图所示排列起来,从上开始,依次为第一行、第二行、第三行、……,中间用虚线围的一列,从上至下依次为1、5、13、25、……,则第10个数为________ 。

七年级数学找规律题(含答案)

七年级数学找规律题(含答案)

七年级数学找规律题(含答案)1.观察下图,寻找规律,在“?”处填上的数字是( ). A.128 B.136 C.162 D.188 【答案】C2.寻找规律计算1 - 2+3 - 4+5 - 6+…+2015 - 2016等于 ( ) A.0 B.- 1 C.- 1008D.1008【答案】C3.找规律:21-20=20 ;22-21=21 ;23-22=2 2;………利用你的发现,求20+21+22+23+…+22018+22019的值是( ) A .22019 -1 B .22019 +1C .22020 -1D .22020 +1【答案】C4.先找规律,再填数:1111122+-=,111134212+-=,111156330+-=,111178456+-=,…,1120132014+-( )=()12014⨯.【答案】11007,2013. 5.找规律填上合适的数:﹣2,4,﹣8,16, ,64,… 【答案】﹣32.6.寻找规律,根据规律填空:31,152-,353,634-,995, ,…,第n 个数是 . 【答案】1436-14)1(21--+n n n (或:当n 时奇数时,142-n n;当n 时偶数时,142--n n )7.先找规律,再填数: 111111*********1,,,,122342125633078456............111+_______.2011201220112012+-=+-=+-=+-=-=⨯则 【答案】8.找规律填数:﹣1,2,﹣4,8,________ 【答案】﹣169.先找规律,再填数:11+12-1=12,13+14-12=112,15+16-13=130,17+18-14=156,12011+12012-________=120112012⨯ 【答案】10.已知C 32=3×21×2=3, C 53=5×4×31×2×3=10,C 64 =6×5×4×31×2×3×4=15,…观察以上计算过程,寻找规律计算C 85=_____. 【答案】56.11.已知:3212323=⨯⨯=C ,1032134535=⨯⨯⨯⨯=C ,154321345646=⨯⨯⨯⨯⨯⨯=C ,…,观察上面的计算过程,寻找规律并计算=610C .【答案】21012.观察下列各式并找规律,再猜想填空:()()()()223322332248a b a ab b a b x y x xy y x y +-+=++-+=+, ,则()()2223469a b a ab b +-+= ______ .【答案】33827a b + 13.观察下列计算:,,,……从计算结果中找规律,利用规律计算_______________ 【答案】14.已知: 233212C ⨯=⨯=3,35543123C ⨯⨯=⨯⨯=10,3565431234C ⨯⨯⨯=⨯⨯⨯=15,…,观察上面的计算过程,寻找规律并计算:34C =_____. 【答案】4. 15.已知:2332312C ⨯==⨯,3554310123C ⨯⨯==⨯⨯,466543151234⨯⨯⨯==⨯⨯⨯C ,…,观察上面的计算过程,寻找规律并计算C 106=_____. 【答案】21016.找规律:﹣12,2,﹣92,8,﹣252 ,18…,则第7个数为_____;第n 个数为_____(n 为正整数)【答案】﹣492 (﹣1)nn 22.17.观察烟花燃放图形,找规律:依此规律,第n 个图形中共有_________个★. 【答案】2+2n18.找规律,并按规律填上第五个数:,169,87,45,23-- . 【答案】-113219.观察下面的一列数,从中寻找规律,然后按规律填写接下去的3个数.12,34-,56,78-,910,________,________,________,… 【答案】1112-1314 1516- 20.观察表一,寻找规律,表二、表三、表四分别是从表一中截取的一部分,则a b m -+=_____.【答案】4321.观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a+b+c 的值为 .【答案】7622.观察下面的一列数,从中寻找规律,然后按规律写出接下去的三个数.12 ,-34 ,56 ,-78 ,910,… ________,…【答案】-1112;1314;−1516. 23.找规律.下列图中有大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第n 幅图中共有________个.【答案】2n -124.观察下列各组勾股数,并寻找规律:①4,3,5; ②6,8,10; ③8,15,17; ④10,24,26 …… 请根据你发现的规律写出第⑦组勾股数:____________. 【答案】16,63,6525.用火柴棒按以下方式搭“小鱼” .…………搭1条“小鱼”需用8根火柴棒,搭2条“小鱼”需用14根火柴棒,搭3条“小鱼”需用20根火柴棒……观察并找规律,搭10条“小鱼”需用火柴棒的根数为 . 【答案】62 26.观察下列计算111122=-⨯ ,1112323=-⨯,1113434=-⨯,1114545=-⨯,……, (1)第n 个式子是_____________________________________; (2)从计算结果中找规律,利用规律计算:112⨯+123⨯+134⨯+145⨯+…+120092010⨯ 【答案】(1)()11111n n n n =-++;(2)20092010. 27.探究:()21112222122-=⨯-⨯=, () 3222? 2-==, ()4322? 2-==,……(1)请仔细观察,写出第4个等式; (2)请你找规律,写出第n 个等式;(3)计算:012201620172018222222+++⋅⋅⋅⋅⋅⋅++-. 【答案】(1)544442222122-=⨯-⨯=;(2)12222122n n n n n +-=⨯-⨯=;(3)-128.阅读下文,寻找规律:已知1x ≠时, ()()2111x x x -+=-,()()23111x x x x -++=-, ()()234111x x x x x -+++=-……(1)填空: ()1(x - 5)1x =-. (2)观察上式,并猜想:①()()211n x x x x -+++⋅⋅⋅+= . ②()()10911x x x x -++⋅⋅⋅++= . (3)根据你的猜想,计算:①()()234512122222-+++++= . ②23420161+3+3+3+33⋅⋅⋅⋅⋅⋅=_____________________【答案】(1)2341+x x x x +++(2)11n x+-; 111x -(3)612- (或 -63); 20173-1229.小明同学在一次找规律的游戏中发现如下的数字和规律,请你按照所给的式子,解答下列问题:21342+== 213593++== 21357164+++== 213579255++++==()1试猜想:135791129++++++⋯+=①______.()()135********n n ++++++⋯+-++=②______.()2用上述规律计算:2123255759+++⋯++=______.【答案】(1)①225;②(n+1)²(2)80030.找规律并解答问题.(1)按下图方式摆放黑色围棋子,填一填,每个图共需几枚棋子.(2)根据你发现的规律,算一算第13个图,共需要( )枚棋子.【答案】(1)详见解析;(2)40枚.31.观察表一,寻找规律.表二、表三分别是从表一中选取的一部分,则a=,ba+= .表一表二表三【答案】17=a2372=+ba32.细观察,找规律.下列各图中的1MA与nNA平行.()1图①中的12A A∠+∠=______ 度,图②中的123A A A∠+∠+∠=______ 度,图③中的1234A A A A ∠+∠+∠+∠=______ 度, 图④中的12345A A A A A ∠+∠+∠+∠+∠=______ 度,⋯,第⑩个图中的12311A A A A ∠+∠+∠+⋯+∠=______ 度()2第n 个图中的1231n A A A A +∠+∠+∠+⋯+∠=______ ()3请你证明图②的结论.【答案】(1)180;360;540;720;1800;(2)180n °;(3)详见解析. 33.找规律:(1)填空:41=________;42=______;43=______;44=______;45=________;46=________;…(2)你发现4的幂的个位数字有什么规律? (3)4250的个位数是什么数字?为什么?【答案】(1)4, 16, 64,256,1224,4896;(2)是循环数;(3)6. 34.观察等式找规律: ①第1个等式:22﹣1=1×3; ②第2个等式:42﹣1=3×5; ③第3个等式:62﹣1=5×7; ……(1)写出第5个等式: ; 第6个等式: ;(2)写出第n 个等式(用字母n 表示): ; (3)求111113355740254027++++⨯⨯⨯⨯的值.【答案】(1)102﹣1=9×11;122﹣1=11×13;(2)4n 2﹣1=(2n ﹣1)(2n+1);(3)2013402735.观察表l ,寻找规律.表2是从表l 中截取的一部分,其中a ,b ,c 的值分别为( )A.20,25,24B.25,20,24C.18,25,24D.20,30,25【答案】A36.阅读下文,寻找规律.计算:(1﹣x)(1+x)=1﹣x2,(1﹣x)(1+x+x2)=1﹣x3,(1﹣x)(1+x+x2+x3)=1﹣x4….(1)观察上式,并猜想:(1﹣x)(1+x+x2+…+x n)= .(2)根据你的猜想,计算:1+3+32+33…+3n= .(其中n是正整数)【答案】(1)1﹣x n+1,(2)﹣.37.如图,观察由棱长为1的小立方体摆成的图形,寻找规律:如图①中:共有1个小立方体,其中1个看得见,0个看不见;如图②中:共有8个小立方体,其中7个看得见,1个看不见;如图③中:共有27个小立方体,其中19个看得见,8个看不见;…,则第⑥个图中,看得见的小立方体有_____个.【答案】9138.找规律.一张长方形桌子可坐6人,按下图方式讲桌子拼在一起。

(完整版)七年级找规律经典题汇总带答案

(完整版)七年级找规律经典题汇总带答案

……一、数字排列规律题1、观察下列各算式: 1+3=4=22,1+3+5=9=23,1+3+5+7=16=24… 按此规律 (1)试猜想:1+3+5+7+…+2005+2007的值 ?(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ?2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __3、请填出下面横线上的数字。

1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个( )二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球 个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称).三、数、式计算规律题 1、已知下列等式:① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ;由此规律知,第⑤个等式是 . 2、观察下面的几个算式: 1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,… 根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____.3、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+ =+⨯=+b a aba b 则符合前面式子的规律,,若…21010 规律发现专题训练1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n )个图案中有白色..地砖 块。

初一找规律练习题(优选.)

初一找规律练习题(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改初一数学找规律一、数字排列规律题1、下面数列后两位应该填上什么数字呢?2 3 5 8 12 17 __ __2、请填出下面横线上的数字。

1 1 2 3 5 8 ____ 213、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个数是什么?4、有一串数字 3 6 10 15 21 ___ 第6个是什么数?5、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是( ).A .1B .2C .3D .46、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 _________个.7、一组按规律排列的数:41,93,167,2513,3621,…… 请你推断第9个数是 .8、已知下列等式: ① 13=12; ② 13+23=32; ③ 13+23+33=62;④ 13+23+33+43=102;…………由此规律知,第⑤个等式是 .9、观察下列各式;①、12+1=1×2 ;②、22+2=2×3; ③、32+3=3×4 ;………请把你猜想到的规律用自然数n 表示出来 。

10、观察下面的几个算式:①、1+2+1=4; ②、1+2+3+2+1=9;③、1+2+3+4+3+2+1=16;④、1+2+3+4+5+4+3+2+1=25,……根据你所发现的规律,请你直接写出第n个式子11、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是()A.1 B. 2 C.3D.412、把数字按如图所示排列起来,从上开始,依次为第一行、第二行、第三行、……,中间用虚线围的一列,从上至下依次为1、5、13、25、……,则第10个数为________。

初一找规律练习题

初一找规律练习题

精心整理初一数学找规律一、数字排列规律题1、下面数列后两位应该填上什么数字呢? 23581217____ 2、请填出下面横线上的数字。

 112358____213、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的45、20056、的个数78④19、你猜想到的规律用自然数n表示出来。

10、观察下面的几个算式:①、1+2+1=4;②、1+2+3+2+1=9;③、1+2+3+4+3+2+1=16;④、1+2+3+4+5+4+3+2+1=25,……根据你所发现的规律,请你直接写出第n个式子11、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是()A .1B .2C .3D .412、把数字按如图所示排列起来,从上开始,依次为第一行、第二行、第三行、……,中间用虚线围的一列,从上至下依次为1、5、13、25、……,则第10个数为________。

1314、按此 1 (2(3)小凡在计算时发现,11×11=121,111×111=12321,1111××吗?答案是___________________________。

(4)四个同学研究一列数:1,-3,5,-7,9,-11,13,……照此规律,他们得出第n 个数分别如下,你认为正确的是()A.2n -1B.1-2nC. D.(1)(21)n n --1(1)(21)n n +--(5)有一列数从第二个数开始,每一个数都等于1与它前面那123,,,,,n a a a a ⋅⋅⋅个数的倒数的差,若,则为___________.12a =2007a (6)观察数列1,1,2,3,5,8,x ,21,y ,……,则2x-y=____________(7)观察下列各式:1234567822,24,28,216,232,264,2128,2256,========…,请你根据上述规10(1)求第三、第四、第五个数,并写出计算过程;(2)根据(1)的结果,推测x 8=;(3)探索这一列数的规律,猜想第k 个数x k =.(k 是大于2的整数)17.观察下面一列有规律的数,根据这个规律可知第n 个数是(n 是正整数)L L ,486,355,244,153,82,316.古希腊数学家把数1,3,6,10,15,21,……,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为。

(完整版)七年级找规律经典题汇总带答案

(完整版)七年级找规律经典题汇总带答案

……一、数字排列规律题1、观察下列各算式: 1+3=4=22,1+3+5=9=23,1+3+5+7=16=24… 按此规律 (1)试猜想:1+3+5+7+…+2005+2007的值 ?(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ?2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __3、请填出下面横线上的数字。

1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个( )二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球 个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称).三、数、式计算规律题 1、已知下列等式:① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ;由此规律知,第⑤个等式是 . 2、观察下面的几个算式: 1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,… 根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____.3、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+ =+⨯=+b a aba b 则符合前面式子的规律,,若…21010 规律发现专题训练1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n )个图案中有白色..地砖 块。

七年级上册找规律数学题

七年级上册找规律数学题

七年级上册找规律数学题一、数字规律题。

1. 观察下列数:1,4,9,16,25,…,按此规律,第n个数是()- 解析:- 第1个数是1 = 1^2;- 第2个数是4=2^2;- 第3个数是9 = 3^2;- 第4个数是16=4^2;- 第5个数是25 = 5^2。

- 所以第n个数是n^2。

2. 有一组数:1, - 2,3,-4,5,-6,·s,按此规律,第n个数是()- 解析:- 当n为奇数时,数为正数,即第n个数为n;- 当n为偶数时,数为负数,即第n个数为-n。

- 所以第n个数是( - 1)^n + 1n。

3. 观察数列:2,5,8,11,·s,则第n个数是()- 解析:- 可以发现每一个数都比前一个数大3。

- 第1个数2 = 3×1 - 1;- 第2个数5=3×2 - 1;- 第3个数8 = 3×3-1;- 所以第n个数是3n - 1。

4. 数列1,(1)/(2),(1)/(3),(1)/(4),(1)/(5),·s,第n个数是()- 解析:- 很明显,第n个数是(1)/(n)。

5. 找规律:0,3,8,15,24,·s,第n个数是()- 解析:- 第1个数0 = 1^2-1;- 第2个数3=2^2-1;- 第3个数8 = 3^2-1;- 第4个数15=4^2-1;- 第5个数24 = 5^2-1;- 所以第n个数是n^2-1。

二、图形规律题。

6. 用火柴棒按下图的方式搭三角形:- 照这样的规律搭下去,搭n个这样的三角形需要多少根火柴棒?- 解析:- 搭1个三角形需要3根火柴棒;- 搭2个三角形需要3 + 2=5根火柴棒;- 搭3个三角形需要3+2×2 = 7根火柴棒;- 搭n个三角形需要3 + 2(n - 1)=2n + 1根火柴棒。

7. 观察下列图形的构成规律,根据此规律,第n个图形中有多少个圆?- 第1个图形有1个圆;- 第2个图形有1 + 2 = 3个圆;- 第3个图形有1+2 + 3=6个圆;- 第4个图形有1+2+3 + 4 = 10个圆;- 解析:- 第n个图形中圆的个数为1 + 2+3+·s+n=(n(n + 1))/(2)。

七年级数学找规律专项练习题

七年级数学找规律专项练习题

七年级数学找规律专项练习题一.解答题(共10小题)1.观察下面一列数,探究其中的规律:﹣1,,﹣,,﹣,(1)填空:第11,12,13三个数分别是,,;(2)第2019个数是什么?(3)如果这列数无限排列下去,与哪个数越来越近?2.观察下面的几个算式:1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,……根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+……+99+100+99+……+3+2+1=.3.如图,正方形ABCD内部有若干个点,用这些点以及正方形ABCD的顶点A、B、C、D把原正方形分割成一些三角形(互相不重叠):(1)填写下表:正方形ABCD内点的个数1234…n分割成的三角形的个数46…(2)前5个正方形分割的三角形的个数和为,前n个正方形分割的三角形的个数和为.(3)原正方形能否被分割成2019个三角形?若能,求此时正方形ABCD内部有多少个点?若不能,请说明理由.4.观察以下等式:第1个等式:﹣+=1,第2个等式:﹣+=1,第3个等式:+=1,第4个等式:﹣+=1,……按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n(n为正整数)个等式:(用含n的等式表示),并证明.5.观察以下等式:第1个等式:﹣=2,第2个等式:﹣=2第3个等式:﹣=2,第4个等式:﹣=2……按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.6.阅读材料:求1+2+22+23+24+…+22017首先设S=1+2+22+23+24+...+22017①则2S=2+22+23+24+25+ (22018)②﹣①得S=22018﹣1即1+2+22+23+24+…+22017=22018﹣1以上解法,在数列求和中,我们称之为:“错位相减法”请你根据上面的材料,解决下列问题(1)求1+3+32+33+34+…+32019的值(2)若a为正整数且a≠1,求1+a+a2+a3+a4+..+a20197.阅读并计算填写以下等式(1)22﹣21=2;23﹣22=22;24﹣23=;25﹣24=;…………2n﹣2n﹣1=.(2)请你根据以上规律计算22018﹣22017﹣22016﹣…﹣23﹣22+28.(1)填空:21﹣20==2()22﹣21==2()…23﹣22==2()(2)探索(1)中式子的规律,试写出第n个等式,并说明第n个等式成立;(3)计算20+21+22+..+2100.9.探索规律:观察下面的组成:(1)试猜想1+3+5+7+9+…+29==;(2)第n个等式表示为1+3+5+7+9+…+(2n﹣1)=(用含n的代数式表示);(3)请用上述规律计算:l1+13+15+17+19+ (99)10.用同样规格的黑白两种颜色的正方形瓷砖,按如图的方式铺地面.按照这种规律:(1)第④个图形中需要黑色瓷砖块;(2)第n个图形中需要黑色瓷砖块(用含n的代数式表示);(3)若第n个图形中有6055块黑色瓷砖,求n的值.。

七年级数学找规律题(最新整理)

七年级数学找规律题(最新整理)

七年级数学找规律题(最新整理)归纳—猜想~~~找规律给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论.解题的思路是实施特殊向一般的简化;具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题.一、数字排列规律题1、观察下列各算式:1+3=4=2 的平方,1+3+5=9=3 的平方,1+3+5+7=16=4 的平方…按此规律(1)试猜想:1+3+5+7+…+2005+2007 的值?(2)推广:1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少?2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 173、请填出下面横线上的数字。

1 1 2358214、有一串数,它的排列规律是 1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第 100 个数是什么?5、有一串数字 3 6 10 15 21第 6 个是什么数?6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第 2005 个数是().A.1B.2 C.3 D.47、100 个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这 100 个数的前两个数依次为 1,0,那么这 100 个数中“0”的个数为个.二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第 1 个球起到第 2004 个球止,共有实心球个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是(填图形名称).三、数、式计算规律题1、已知下列等式:① 13=12;② 13+23=32;③ 13+23+33=62;④ 13+23+33+43=102 ;由此规律知,第⑤个等式是.2、观察下面的几个算式:1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果:11+2+3+…+99+100+99+…+3+2+1= .3、1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+ n 1 nn 1,其中n是正整数.现2在我们来研究一个类似的问题:1×2+2×3+… nn 1 =?观察下面三个特殊的等式1 2 1 1 2 3 0 1 232 3 1 2 3 4 1 2 333 4 1 3 4 5 2 3 43 将这三个等式的两边相加,可以得到1×2+2×3+3×4= 1 345 203 读完这段材料,请你思考后回答:⑴1 2 2 3 100 101⑵1 2 3 2 3 4 nn 1n 2⑶1 2 3 2 3 4 nn 1n 24、已知:2 2 22 2 ,3 3 32 3,4 4 42 4 ,5 5 52 53388 1515 2424…,若10 b 102 b 符合前面式子的规律,则a baa参考答案:一、1、(1)1004 的平方(2)n+1 的平方2、23 30。

(完整)初一找规律练习题.docx

(完整)初一找规律练习题.docx
了2个 位,第3次向右跳了3个 位,第4次向左跳了4个 位⋯⋯按以上 律,它共跳了101次,你能确定小虫在数 上的最后落点表示什么数





前4次跳动图
9.察下面一列数:-1,2,-3,4,-5,6,-7,...,将 列数排成下列形

来源网 ,供个人学 参考
精心整理
按照上述 律排下去, 那么第10行从左 第9
5、 察下列一 数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、⋯,
那么第2005个数是().
A.1B.2C.3 D.4
6、100个数排成一行,其中任意三个相 数中,中 一个数都等于它前后
两个数的和,如果100
个数的前两个数依次
1,0,那么100个数中
“0”的个数_________个.
35
48
6.古希腊数学家把数1,3,6,10,15,21,⋯⋯,叫做三角形数,它有一定的 律性, 第24个三角形数与第22个三角形数的差 。
二、几何 形 化 律
1、 察下列球的排列 律(其中●是 心球,○是空心球):
●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○
●⋯⋯⋯⋯
从第1个球起到第2005个球止,共有 心球个.
1
(6
) 察数列1,1,2,3,5,8,x,21,y,⋯⋯,2x-y=____________
(7
) 察下列各式:
21
2, 22
4,23
8,24
16, 25
32, 26
64, 27
128, 28
256,⋯, 你根据上述
律,猜想810
的末位数字是_________.
(8

初一数学找规律专题练习

初一数学找规律专题练习

初一数学找规律专题练习1. 0,3,8,15,24,……。

试按此规律写出的第100个数是2、你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面草图所示。

这样捏合到第次后可拉出64第一次捏合第二次捏合第三次捏合3、如下图,将一张正方形纸片,剪成四个大小形状一样的小正方形,然后将其中的一个小正方形再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环进行下去; (1)填表:(2(3)如果剪了100次,共剪出多少个小正方形? (4)观察图形,你还能得出什么规律?4、现有黑色三角形“▲”和“△”共200个,按照一定规律排列如下: ▲ ▲△△▲△▲▲△△▲△▲▲……则黑色三角形有 个,白色三角形有 个。

5、仔细观察下列图形.当梯形的个数是n 时,图形的周长是.6、用火柴棒按如下方式搭三角形:(1) 填写下表:(2) 照这样的规律搭下去,搭n 个这样的三角形需要______根火柴棒7、把编号为1,2,3,4,…的若干盆花按右图所示摆放,花盆中的花按红、黄、蓝、紫的颜色依次循环排列,则第8行从左边数第6盆花的颜色为___________色.8、已知一列数:1,―2,3,―4,5,―6,7,… 将这列数排成下列形式:第1行 1第2行 -2 3第3行 -4 5 -6第4行 7 -8 9 -10第5行 11 -12 13 -14 15 … …按照上述规律排下去,那么第10行从左边数第5个数等于.9、观察下列算式:23451=+⨯ ,24462=+⨯,25473=+⨯,24846⨯+=,请你在察规律之后并用你得到的规律填空:250___________=+⨯, 第n 个式子呢?___________________10、一张长方形桌子可坐6人,按下列方式讲桌子拼在一起。

①张桌子拼在一起可坐______人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,用你所发现的规律得出22010的末位数字是( )A.2 B.4 C.6 D.826.(10分)根据下列各式回答问题:①11×29=202-92;②12×28=202-82;③13×27=_______;④14×26=202-62;⑤15×25=202-52;⑥16×24=202-42;⑦17×23=_______;⑧18×22=202-22;⑨19×21=202-12;⑩20×20=202-02.(1)请把③和⑦分别写成“□2-○2’(两数平方差)的形式.并将以上10个乘积按照从小到大的顺序排列起来(直接用序号表示);(2)若乘积的两个因数分别用字母a、b表示(a、b均为正数),请通过观察直接写出ab与a+b的关系式(不需要说明理由);(3)若用a1b1,a2b2,…,a n b n表示n个乘积,其中a1,a2,a3,…,a n,b1,b2,b3,…,b n均为正数,请根据(1)中乘积的大小顺序猜测出一个一般结论(不需要说明理由).20.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,依次规律,第n 个图形有________个小圆,17. 如图,下面是按照一定规律画出的“数形图”,经观察可以发现:图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”,……,照此规律,图A6比图A2多出“树枝”().56 C D. 12410.填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m的值是( )A .38B .52C .66D .7428.(本题7分)(1)观察一列数2,4,8,16,32,…,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是_______;根据此规律,如果a n (n 为正整数)表示这个数列的第n 项,那么a 18=_______,a n =_______;(2)如果欲求1+3+32+33+…+320的值,可令S =1+3+32+33+…+320………………………………①将①式两边同乘以3,得______________………………②由②减去①式,得S =_______________.(3)用由特殊到一般的方法知:若数列a l ,a 2,a 3,…,a n ,从第二项开始每一项与前一项之比的常数为q ,则a n =_______(用含a 1,q ,n 的代数式表示),如果这个常数q ≠1,那么a 1+a 2+a 3+…a n =_______(用含a 1,q ,n 的代数式表示).10.一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是( )(A )2014 (B )2013 (C )2012 (D )201127.(本题8分)(1)观察一列数2,4,8,16,32,…,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是 ;根据此规律,如果a n (n 为正整数)表示这个数列的第n 项,那么a 18 = ,a n = ;(2)如果欲求232013333+++++的值,可令232013333S =+++++……………………………………………………①将①式两边同乘以3,得 …………………………②由②减去①式,得S = .(3)用由特殊到一般的方法知:若数列123n a a a a ,,,,,从第二项开始每一项与前一项之比的常数为q ,则n a = (用含1a q n ,,的代数式表示),如果这个常数1q ≠,那么123n a a a a ++++= (用含1a q n ,,的代数式表示).(第10题) … …红 黄 绿 蓝 紫 红 黄 绿 黄 绿 蓝 紫20.a 是不为1的有理数,我们把11a -称为a 的差倒数...。

如:2的差倒数是1112=--,1-的 差倒数是111(1)2=--.已知113a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依此类推,a 2009的差倒数a 2010 = 。

20.观察下列两组算式:(1)21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,(2)84=(23)4=23×4=212 ;由(1)(2)两组算式所揭示的规律,可知:10014的个位数是( )A .2B .4C .8D .65.若n 为整数,则2n+1是A .奇数B .偶数C .素数D .合数19.观察下更算式:1+3=2 2,1+3+5=3 2,1+3+5+7=4 2,1+3+5+7+9=5 2…………,请你猜测1+3+5+……+2n -1=________________.24.(本题6分)回答下列问题:(1)填空:①()223⨯= ② 2223⨯= ③2182⎛⎫-⨯ ⎪⎝⎭= ④22182⎛⎫-⨯ ⎪⎝⎭= ⑤3122⎛⎫-⨯ ⎪⎝⎭= ⑥33122⎛⎫-⨯ ⎪⎝⎭= (2)想一想:(1)中每组中的两个算式的结果是否相等?(3)猜一猜:当n 为正整数时,()n ab 等于什么? (4)试一试:2009200912123⎛⎫⎛⎫⨯- ⎪ ⎪⎝⎭⎝⎭结果是多少?25.(10分)阅读下面的材料:1×2=13(1×2×3-0×1×2), 2×3=13(2×3×4-1×2×3), 3×4=13(3×4×5-2×3×4), 由以上三个等式相加,可得 1×2+2×3+3×4=13×3×4×5=20.根据以上材料,请你计算下列各题:(1)1×2+2×3+3×4+…+10×11(写出过程);(2)1×2+2×3+3×4+…+n ×(n +1)=______________;(3)1×2×3+2×3×4+3×4×5+…+7×8×9=_______.第1列 第 2列 第3列 第4列 第5列 第1行 2 4 6 8 第2行 16 14 12 10 第3行 18 20 22 24 第4行 32 30 28 26······ 18.有这么一个数字游戏:第一步:取一个自然数n 1=5,计算n 12+1得a 1;第二步:算出a 1的各位数字之和,得n 2,计算n 22+1得a 2;第三步:算出a 2的各位数字之和,得n 3,再计算n 32+1得a 3;…….依此类推,则a 2011=______________.27.(本题共6分)从2开始,连续的偶数相加,它们的和的情况如下表:加数m 的个数 和(S)1 ———————————→2=1×22 ————————→2+4=6=2×33 ——————→2+4+6=12=3×44 ————→2+4+6+8=20=4×55 ——→2+4+6+8+10=30=5×6(1)按这个规律,当m =6时,和为_______;(2)从2开始,m 个连续偶数相加,它们的和S 与m 之间的关系,用公式表示出来为: __________________________________________.(3)应用上述公式计算:①2+4+6+…+200 ②202+204+206+…+3009.将正偶数按下表排成5列若干行,根据上述规律,2010应在( )A. 第251行 第4列B.第251行 第5列C. 第252行 第3列D.第252行 第4列是不为1的有理数,我们把11a -称为a 的差倒数....如:2的差倒数是1112=--, 1-的差倒数是111(1)2=--. 已知113a =-,2a 是1a 的差倒数,3a 是2a 的差倒数, 4a 是3a 的差倒数,…,依此类推,则a 2011 = .10、某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时分裂成6个并死去1个,3小时后分裂成10个并死去1个,按此规律,5小时后细胞存活的个数是( )A. 31B. 33C. 35D. 3723、如图,每个正方形点阵均被一直线分成两个三角形点阵,根据图中提供的信息,用含n的等式表示第n 个正方形点阵中的规律 .30、(6分)观察下列等式:111122⨯=-, 1112323⨯=-, 1113434⨯=-。

将以上三个等式两边分别相加得:1111111113111223342233444⨯⨯⨯++=-+-+-=-= (1)猜想并写出:1(1)n n =+ . (2分) (2)直接写出下列各式的计算结果:①111112233420072008++⨯⨯⨯⨯++= ; (1分) ②1111122334(1)n n ++⨯⨯⨯+++= . (1分) (3)探究并计算:111124466820062008++⨯⨯⨯⨯++.(2分)………… 211= 2363+= 26104+= 2132+=。

相关文档
最新文档