江苏省江阴市第一中学高中数学复数练习题 百度文库
高中数学复数练习题附答案
高中数学复数练习题附答案一、单选题1.已知复数z 满足(12i)43i z -=-(i 为虚数单位),则z =( ) AB .5C D .22.已知复数1i z =-,则2i z z -=( ) A.2 B .3 C .D .3.已知复数12z i =-,则z 在复平面内对应的点关于虚轴对称的点是( ) A .(1,2)- B .(1,2)C .(2,1)-D .(1,2)--4.已知复数113i z =+的实部与复数21i z a =--的虚部相等,则实数a 等于( ) A .-3 B .3 C .-1 D .15.设集合A 实数 ,{}B =纯虚数,{}C =复数,若全集SC ,则下列结论正确的是( ) A .AB C =B .A B =C .()S A B ⋂=∅D .SSABC6.已知复数5i1iz -=+(i 为虚数单位),则z 的共轭复数z =( ) A .23i +B .24i -C .33i +D .24i +7.已知a R ∈,“实系数一元二次方程2904x ax ++=的两根都是虚数”是“存在复数z 同时满足2z =且1z a +=”的( )条件. A .充分非必要 B .必要非充分 C .充分必要 D .既非充分又非必要 8.设复数z 满足i 3i z z --=,则z 的虚部为( )A .2i -B .2iC .2-D .29.设复数21iz =-+,则z 在复平面内对应的点的坐标为( ) A .(1,1)B .(-1,1)C .(1,-1)D .(-1,-1)10.已知i 是虚数单位,复数12iiz -=,则z 的共轭复数z =( ) A .2i --B .2i -+C .2i -D .2i +11.已知复数324i 1iz +=-,则z =( )A B C .D .12.设z 的共轭复数是z ,若4i z z -=,8z z ⋅=,则z =( ) A .22i --B .22i +C .22i -+D .22i +或22i -+13.已知复数23i z =-,则()1i z +=( ) A .3i -B .3+3i -C .3i +D .3i -+14.设i 为虚数单位,()1i 2i z -+=+,则复数z 的虚部是( ) A .12- B .1i 2C .32-D .3i 2-15.设复数53i--的实部与虚部分别为a ,b ,则a b -=( ) A .2-B .1-C .1D .216.已知复数1i z a =+(a R ∈),则1a =是z = ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件17.若5i2iz =+,则||z =( )A.2 B C .D .318.已知复数z 满足z +2i -5=7-i ,则|z |=( )A .12B .3 C.D .919.已知z1,z 2∈C ,|z 1+z 2|=|z 1|=2,|z 2|=2,则|z 1-z 2|等于( ) A .1 B .12 C .2 D .20.若复数i (2i)z m m =++在复平面内对应的点在第二象限,则实数m 的取值范围是( ) A .(1,0)- B .(0,1)C .(,0)-∞D .(1,)-+∞二、填空题21.复数121i,22i z z =+=-,则12_________.z z -=22.已知i 是虚数单位,则202220221i 1i ⎛+⎛⎫+= ⎪ -⎝⎭⎝⎭________.23.若i(,)i+∈a b a b R 与3+4i 互为共轭复数,则a b -=___________.24.18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数,使复数及其运算具有了几何意义,例如,z OZ =,也即复数z 的模的几何意义为z 对应的点Z 到原点的距离,在复数平面内,复数02i1ia z +=+ (i 是虚数单位,)a R ∈是纯虚数,其对应的点为0Z ,Z 为曲线1z =上的动点,则0Z 与Z 之间的最小距离为________________.25.若i 为虚数单位,复数3i z =+,则表示复数1iz+的点在第_______象限. 26.若复数z 满足i 3i=iz -+,则z =________. 27.复数2ii 1+-的共轭复数是_______. 28.写出一个在复平面内对应的点在第二象限的复数z =__________. 29.已知复数i 3i z =+(i 为虚数单位),则z =__________.30.已知复数()()211i z a a =-+-()a R ∈是纯虚数,则=a ___________.31.计算:112i2i-=+___________. 32.已知复数z 满足()1i 42i -=+z ,则z =_________. 33.设复数z =-1-i(i 为虚数单位),z 的共轭复数为z ,则2zz-=________. 34.已知关于x 的方程,()()()221i i 0,,R x x ab a b a b ++++++=∈总有实数解,则a b +的取值范围是__________.35.若2z =,arg 3z π=,则复数z =________.36.已知m R ∈,复平面内表示复数()3i m m --的点位于第三象限内,则m 的取值范围是____________ 37.下列命题:①若a R ∈,则()1i a +是纯虚数;②若()()()22132i x x x x R -+++∈是纯虚数,则1x =±;③两个虚数不能比较大小. 其中正确命题的序号是________.38.已知z =,则22022z z z ++⋅⋅⋅+=___________. 39.已知复数z 满足2i z +∈R ,4zz-是纯虚数,则z 的共轭复数z =______. 40.已知复数1i z =+,则2z z+=____________三、解答题41.已知复数z 满足:i 1i z +=-. (1)求z ; (2)求1iz+的模. 42.数列{}n a 满足1112,1n n na a a a +-==+,试研究数列{}n a 的周期性.43.已知1z ,2z ∈C,1z =2=z12z z +=12z z -. 44.根据复数的几何意义证明:121212z z z z z z -≤+≤+.45.复数()()11i z m m =++-对应的点在直线40x y +-=上,求实数m 的值.【参考答案】一、单选题 1.A 2.D 3.D 4.C 5.D 6.A 7.D 8.C 9.D 10.B 11.B 12.D 13.B 14.C 15.A 16.A 17.B 18.C 19.D20.A 二、填空题 212223.1 24.1 25.四 2627.13i 22-+28.1i -+(答案不唯一)2930.1-31.43i -##3i 4-+ 32.13i +33.-1+2i##2i -1 34.[)2,+∞35.11+ 36.()0,3 37.③ 38.039.22i +##2i 2+ 40.三、解答题41.(1)12i +【解析】 【分析】(1)先求出12z i =-,再求出z ;(2)先利用复数除法法则化简得1i 2i 321z --=+,从而求出模长. (1)12z i =-,12i z =+(2)()()()()2212i 1i 12i 13i 2i 13i 13i 1i 1i 1i 1i 222----+--====--++--,故 22119101i 223442z ⎛⎫⎛⎫=-+-=+=⎪ ⎪+⎝⎭⎝⎭. 42.周期为4 【解析】 【分析】根据通项公式,写出特征方程为210x +=,由方程根的情况求出数列{}n a 的周期. 【详解】数列{}n a 的递归函数为()11x f x x -=+,其特征方程为210x +=. 因为Δ=01440-⨯=-<,解得:i,i m k ==-()1i 36arg arg arg i 1i 24a mc a kc ππ--⎛⎫⎛⎫==-== ⎪ ⎪-+⎝⎭⎝⎭所以数列{}n a 是周期4T =的周期函数. 43.2 【解析】 【分析】设复数1z 对应OA ,2z 对应OB ,OA OB OC +=,利用余弦定理可得6cos 4OAC ∠=-,再利用余弦定理即可得出答案. 【详解】设复数1z 对应OA ,2z 对应OB ,OA OB OC +=, 则222(22)(2)(3)23OAC =+-∠, 解得6cos OAC ∠= ∴6cos AOB ∠=2212(2)(3)223cos 2z z BA AOB ∴-==+-⨯⨯∠.44.证明详见解析 【解析】 【分析】结合三角形两边的和大于第三边、两边的差小于第三边来证得不等式成立. 【详解】当12,z z 方向相同时,121212z z z z z z -<+=+;当12,z z 方向相反时,121212z z z z z z -=+<+;当12,z z 不共线时,1212,,z z z z +满足三角形的三边,根据三角形两边的和大于第三边、两边的差小于第三边可知:121212z z z z z z -<+<+.综上所述,不等式121212z z z z z z -≤+≤+成立. 45.2m = 【解析】 【分析】求得z 对应的点的坐标并代入直线40x y +-=,由此求得m 的值. 【详解】z 对应点为()1,1m m +-,将()1,1m m +-代入直线40x y +-=得1140,2m m m ++--==.。
高中数学复数练习题含答案
高中数学复数练习题含答案一、单选题1.已知复数z 满足(12i)43i z -=-(i 为虚数单位),则z =( ) A .5B .5C .2D .22.已知复数1i z =-,则2i z z -=( ) A .2B .3C .23D .323.已知 i 是虚数单位,复数41322i ⎛⎫+ ⎪ ⎪⎝⎭在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.在复平面内,复数z 满足()1i 3i z -=-+,则复数z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 5.设复数z 满足i 3i z z --=,则z 的虚部为( )A .2i -B .2iC .2-D .26.在复平面中,复数z 对应的点的坐标为()1,2,则()i z z -的对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限7.如图,在复平面内,复数z 对应的点为P ,则复数i=z ⋅( )A .2i -B .12i -C .1+2i -D .2i -- 8.设复数z 满足i 4i 0z ++=,则||z =( )A 17B .4C 7D 59.设复数z 满足()1i 2i z -=,则z 在复平面内对应的点在第几象限.( )A .一B .二C .三D .四10.3i3i-+=+( )A .43i 55+ B .43i 55-+C .43i 55D .43i 55--11.复数1i1i+-(i 为虚数单位)的共轭复数的虚部等于( ) A .1 B .1- C .i D .i - 12.复数2i z =-(i 为虚数单位)的虚部为( )A .2B .1C .iD .1- 13.若复数z 在复平面内对应的点为(1,1),则其共轭复数z 的虚部是( )A .iB .i -C .1D .1-14.设复数53i--的实部与虚部分别为a ,b ,则a b -=( ) A .2- B .1- C .1 D .2 15.复数z 满足:23i 3=+-z z ,则z =( )A .5B C .10D 16.已知34i z =+,则()i z z -=( ) A .1117i +B .1917i +C .1117i -D .1923i +17.已知复数z 满足()21i 24i z -=-,其中i 为虚数单位,则复数z 的虚部为( ) A .2 B .1 C .2- D .i18.向量a =(-2,1)所对应的复数是( )A .z =1+2iB .z =1-2iC .z =-1+2iD .z =-2+i19.设O 为原点,向量OA ,OB 对应的复数分别为2+3i ,-3-2i ,那么向量BA 对应的复数为( )A .-1+iB .1-iC .-5-5iD .5+5i20.已知复数z 满足i 232i z z +=-(i 为虚数单位),则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限二、填空题21.若复数2(1i)34iz +=+,则z =__________.22.若复数z 满足i 3i=iz -+,则z =________. 23.已知复数3i (2i)z =⋅-,则z 的虚部为__________.24.设复数1z ,2z 满足11z =,22z =,121z z -=,则12z z +=________.25.设m ∈R ,复数z =(2+i )m 2-3(1+i )m -2(1-i ),若z 为非零实数,则m =________.26.写出一个在复平面内对应的点在第二象限的复数z =__________. 27.已知2i +是关于x 的方程()20,R x ax b a b ++=∈的根,则b a -=________.28.若复数()2i m m m -+为纯虚数,则实数m 的值为________.29.若i(,)i+∈a b a b R 与3+4i 互为共轭复数,则a b -=___________. 30.若复数1z ,2z 满足112i z =-,234i z =+(i 是虚数单位),则12z z ⋅的虚部为___________. 31.已知复数2i4i ia b +=-,,R a b ∈,则a b +=______. 32.甲、乙、丙、丁四人对复数z 的陈述如下(i为虚数单位):甲:z z +=;乙:2z z -=;丙:26;:4z z z z z ⋅==丁,在甲、乙、丙、丁四人陈述中,有且只有两个人的陈述正确,则z =___________.33.已知复数z 满足()()1i 2i z t t +=∈R,若z =,则t 的值为___________.34.若z 1=a +2i ,z 2=3-4i ,且12z z 为纯虚数,则实数a 的值为________.35.已知关于x 的方程,()()()221i i 0,,R x x ab a b a b ++++++=∈总有实数解,则a b +的取值范围是__________.36i 对应的向量绕原点按逆时针方向旋转90,则所得向量对应的复数为________. 37.计算cos 40isin 40cos10isin10________.38.下列命题:①若a R ∈,则()1i a +是纯虚数;②若()()()22132i x x x x R -+++∈是纯虚数,则1x =±;③两个虚数不能比较大小. 其中正确命题的序号是________. 39.设i是虚数单位,复数z =,则z =___________. 40.设复数z 满足()1i 22i z +=-(i 为虚数单位),则z =______. 三、解答题41.已知()122i z x =+-,()()2234i z y x =++-,其中,x y 均为实数,且12z z =,求,x y .42.(1)设复数z 满足24(1i)(12i)z --=-,求复数z ; (2)若复数z 满足(2i)(1i)1z z ⋅+=⋅-+,求复数z ;(3)已知复数()2256215i m m m m +++--z=,当实数m 为何值时,复数z 对应的点Z 在第四象限.43.复数cos isin 33ππ+经过n 次乘方后,所得的幂等于它的共轭复数,求n 的值.44.根据复数的几何意义证明:121212z z z z z z -≤+≤+. 45.设C z ∈,则满足条件34z <<的点Z 的集合是什么图形?【参考答案】一、单选题 1.A 2.D 3.C 4.C 5.C 6.D 7.D 8.A 9.B 10.B 11.B 12.D 13.D 14.A 15.D 16.B 17.B 18.D 19.D20.A 二、填空题 21.825i 625-2223.-224 25.126.1i -+(答案不唯一) 27.9 28.1 29.1 30.-2 31.6 32.2 33.2或2- 34.8335.[)2,+∞36.1-1-3712i 38.③39.40.2 三、解答题 41.21x y =⎧⎨=-⎩或11x y =-⎧⎨=-⎩【解析】 【分析】根据复数相等条件可构造方程组求得结果. 【详解】12z z =,23242y x x +=⎧∴⎨-=-⎩,解得:21x y =⎧⎨=-⎩或11x y =-⎧⎨=-⎩.42.(1)2;(2)21i 3z =-;(3)25m -<<. 【解析】 【分析】(1)根据复数的四则运算及复数的摸公式即可求解;(2)利用复数的四则运算、两个复数相等及共轭复数即可求解;(3)复数的几何意义得出点Z 的坐标,再根据点在第四象限的特点即可求解. 【详解】(1)()()()()242i 42i 12i 4(1i)10i2i 12i 12i 12i 12i 5z +++--=====---+,∴2z =(2)设i z a b =+()R a ∈、b ,则()()()i 2i i (1i)1a b a b +⋅+=-⋅-+, 化简得(2)(2)i (1)()i a b a b a b a b -++=-+-+,根据对应相等得:212a b a b a b a b-=-+⎧⎨+=--⎩,解得1a =,23b =-,所以21i 3z =-.(3)由()2256215i m m m m +++--z=,得()2256,215m m m m ++--Z ,因为Z 对应的点在第四象限,所以225602150m m m m ⎧++>⎨--<⎩,解得:25m -<<,故而当25m -<<时,复数Z 对应的点在第四象限. 43.()61Z k k -∈. 【解析】 【分析】用共轭复数的概念,以及复数的三角表示即可. 【详解】由题意:cos isin cos isin cos isin 333333nn n ππππππ⎛⎫+=+=- ⎪⎝⎭,可得cos cos ,sin sin 3333n n ππππ==-, ∴()2Z 33n k k πππ=-∈,()61Z n k k =-∈. 44.证明详见解析 【解析】【分析】结合三角形两边的和大于第三边、两边的差小于第三边来证得不等式成立. 【详解】当12,z z 方向相同时,121212z z z z z z -<+=+;当12,z z 方向相反时,121212z z z z z z -=+<+;当12,z z 不共线时,1212,,z z z z +满足三角形的三边,根据三角形两边的和大于第三边、两边的差小于第三边可知:121212z z z z z z -<+<+.综上所述,不等式121212z z z z z z -≤+≤+成立.45.是圆229x y +=与圆2216x y +=之间的圆环(不包括边界) 【解析】 【分析】根据复数模的几何意义得出结论. 【详解】设()i ,R z x y x y =+∈22223,9z x y x y =+=+=,表示圆心在原点,半径为3的圆, 22224,16z x y x y =+=+=,表示圆心在原点,半径为4的圆,所以满足条件34z <<的点Z 的集合是圆229x y +=与圆2216x y +=之间的圆环(不包括边界),如图所示.。
(word完整版)高中数学复数练习题
高中数学《复数》练习题.基本知识:复数的基本概念(1)形如a + bi 的数叫做复数(其中a , b R );复数的单位为i ,它的平方等于一1,即i 2 1. 其中a 叫做复数的实部,b 叫做虚部 实数:当b = 0时复数a + bi 为实数虚数:当b o 时的复数a + bi 为虚数;纯虚数:当a = 0且b o 时的复数a + b i 为纯虚数(2) 两个复数相等的定义:a bi c di a c 且b d (其中,a ,b ,c ,d , R )特别地 a bi 0 a b 0(3) 共轭复数:z a bi 的共轭记作z a bi ;(4) 复平面:z a bi ,对应点坐标为p a,b ;(象限的复习)c dic di a bi za bi a bi a bi 四.例题分析【例1】已知z a 1 b 4 i ,求(1)当a,b 为何值时z 为实数(2)当a,b 为何值时z 为纯虚数(3)当a,b 为何值时z 为虚数(4)当a,b 满足什么条件时z 对应的点在复平面内的第二象限【变式1】若复数z (X 2 1) (x 1)i 为纯虚数,则实数X 的值为 (1) 加法:Z 1 Z 2 a a 2 b1 b2 i ; (2) 减法: z 1a a 2b 1 b 2 i ; (3) 乘法: Z 1 Z 2 a 〔a 2a 2b| a]b 2 i 特另S z z a 2 b 2。
(4) 幕运算: .1 i 2 1 1 1 i 3・ i .4 i 1i 5 ii 61 .复数的基本运算: 设 z 1 a b 1i , z2 a 2 b 2i三.复数的化简(5)复数的模:对于复数z a bi ,把z.a 2 b 2叫做复数z 的模;c dia bi(a,b 是均不为 0的实数);的化简就是通过分母实数化的方法将分母化为实数:ac bd ad bc ia 2A. 1 B . 0 C 1 D . 1 或1 【例2】已知乙3 4i ;Z2 a 3 b 4 i,求当a,b为何值时Z1=z? [例3】已知z 1 i,求z,z z ;(1)求乙Z 2的值;(2)求乙Z 2的值;(3)求z Z 2 .【变式1】已知复数z 满足z 2 i 1 i ,求z 的模.【变式2】若复数1 ai 2是纯虚数,求复数1 ai 的模.【例5】若复数z 口 a R ( i 为虚数单位),1 2i(1) 若z 为实数,求a 的值(2) 当z 为纯虚,求a 的值.【变式1】设a 是实数,且 旦 口 是实数,求a 的值..1 i 2【变式2】若z 口 x,y R 是实数,则实数xy 的值是 _____________________ .________1 xi【变式3】i 是虚数单位,(1 I )4等于()1-iA. iB. -i C . 1 D. -1【变式4】已知_^=2+i,则复数z=()1+ i (A ) -1+3i (B)1-3i (C)3+i (D)3-i【变式5】 i 是虚数单位,若1 7i > i a bi (a, b R),则乘积ab 的值是(A )- 15 (B )- 3 (C ) 3 (D ) 15【例6】复数z 7 i =(3 i )(A ) 2 i (B) 2 i (C) 2 i (D ) 2 i【变式1】 已知i 是虚数单位, 2i 31 i ( )A 1 iB 1 i c 1 i D. 1 i【变式2】 .已知i 是虚数单位, 复数 1 3i =1 i D 1 ( )A2 i B2 i C 1 2i 2i【变式3】 已知i 是虚数单位, 复数 1 3i1 2i ( )(A)1 + i (B)5 + 5i (C)-5-5i (D)-1 —i【变式4】 .已知i 是虚数单位, 则L 3 i 1i 1 ( )(A) 1 (B)1 (C) i (D) i练习题【变式1】复数z 满足Z 2 -,则求z 的共轭z1 i込」2,则z?z =(1 、3i )1B.- 2 【变式2】已知复数z 1 A.-4 [例 4】已知弓 C.1 D.22 i , z 23 2i1•设复数z a bi(a,b R),则z 为纯虚数的必要不充分条件是a 7a 6 22•已知复数z ——2 ---------- (a 5a 6)i(a R),那么当a= _________________ 时,z 是实数; a 1当 a __________________ 时,z 是虚数;当 a= ____________ 时,z 是纯虚数。
高中数学复数练习题及答案
高中数学复数练习题及答案一、单选题1.若复数z 满足()12i 10z -=,则( ) A .24i z =+ B .2z +是纯虚数C .复数z 在复平面内对应的点在第三象限D .若复数z 在复平面内对应的点在角α的终边上,则sin α=2.下列说法正确的是( )A .若复数()i ,z a b a b R =+∈,则z 为纯虚数的充要条件是0a =且0b =.B .若()()21i 0,x y x y R -+->∈,则2x >且1y >.C .若()()2212230Z Z Z Z -++=,则123Z Z Z ==.D .若复数z 满足i 2z -=,则复数z 对应点的集合是以()0,1为圆心,以2为半径的圆.3.已知复数113i z =+的实部与复数21i z a =--的虚部相等,则实数a 等于( ) A .-3 B .3 C .-1 D .14.设复数z 满足i 3i z z --=,则z 的虚部为( )A .2i -B .2iC .2-D .25.若复数(32)(1)i ai +-在复平面内对应的点位于第一象限,则实数a 的取值范围为( )A .32,23⎛⎫- ⎪⎝⎭B .3,2⎛⎫-∞- ⎪⎝⎭C .23,32⎛⎫- ⎪⎝⎭D .2,3⎛⎫-∞- ⎪⎝⎭6.在复平面中,复数z 对应的点的坐标为(1,2),则复数iz 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 7.已知复数z 满足(12i)43i z -=-(i 为虚数单位),则z =( )A B .5C D .28.已知复数23i z =-,则()1i z +=( ) A .3i -B .3+3i -C .3i +D .3i -+9.已知复数1i z =-,则2i z z -=( )A .2B .3C .D .10.复数z 满足(2)i z z =+,则z =( )A .1i +B .1i -C .1i -+D .1i --11.在复平面内O 为坐标原点,复数()1i 43i z =-+,27i z =+对应的点分别为12,Z Z ,则12Z OZ ∠的大小为( )A .3πB .23π C .34π D .56π12.已知12z i =-,则(i)z z -的模长为( )A .4B C .2 D .1013.2021i 1i-=( )A .11i 22+ B .11i 22-- C .11i 22-+D .11i 22-14.已知复数z 满足()21i 68i z -=+,其中i 为虚数单位,则z =( )A .10B .5CD .15.设i 12z =+,则在复平面内z 的共轭复数z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限16.已知复数()()31i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是( ). A .()3,1- B .()1,3- C .()1,+∞ D .(),3-∞17.设复数z 满足i 1i(i z ⋅=+为虚数单位),则复数z 在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限18.已知复数z 满足z +2i -5=7-i ,则|z |=( )A .12B .3 C.D .919.复数1i1i+-(i 为虚数单位)的共轭复数的虚部等于( ) A .1B .1-C .iD .i -20.设i 为虚数单位,()1i 2i z -+=+,则复数z 的虚部是( ) A .12-B .1i 2C .32-D .3i 2-二、填空题21.定义12,C z z ∈,221212121(||||)4z z z z z z ⊕=+--,121212i(i )z z z z z z ⊗=⊕+⊕.若134i z =+,21z =+,则12||z z ⊗=___________.22.在复平面内,复数1z 和2z 对应的点分别是(21)A ,和(01)B ,,则12zz=_______. 23.设复数i 12z =+(i 是虚数单位),则在复平面内,复数2z 对应的点的坐标为________.24.已知复数z 满足24(1i)(12i)z --=-,则||z =________. 25.复数2ii 1+-的共轭复数是_______. 26.复数1i z =+(其中i 为虚数单位)的共轭复数z =______.27.设复数1z ,2z 满足11z =,22z =,121z z -=,则12z z +=________. 28.设i 是虚数单位,若复数z =1+2i ,则复数z 的模为__________. 29.已知复数i 3i z =+(i 为虚数单位),则z =__________. 30.已知复数()3iR ib z b -=∈的实部和虚部相等,则z =___________. 31.已知i 是虚数单位,复数z 满足322i z =+,则z =___________.32.甲、乙、丙、丁四人对复数z 的陈述如下(i为虚数单位):甲:z z +=;乙:2z z -=;丙:26;:4z z z z z ⋅==丁,在甲、乙、丙、丁四人陈述中,有且只有两个人的陈述正确,则z =___________.33.已知关于x 的方程,()()()221i i 0,,R x x ab a b a b ++++++=∈总有实数解,则a b +的取值范围是__________.34.将复数1+i 对应的向量顺时针旋转45°,则所得向量对应的复数为________.35i 对应的向量绕原点按逆时针方向旋转90,则所得向量对应的复数为________.36.已知m R ∈,复平面内表示复数()3i m m --的点位于第三象限内,则m 的取值范围是____________ 37.下列命题:①若a R ∈,则()1i a +是纯虚数;②若()()()22132i x x x x R -+++∈是纯虚数,则1x =±;③两个虚数不能比较大小.其中正确命题的序号是________.38.已知复数z 1=a 2-3-i ,z 2=-2a +a 2i ,若z 1+z 2是纯虚数,则实数a =________.39.若i 是虚数单位,则复数310i3i =-________.(写成最简结果)40.设i 是虚数单位,且12w =-,则21w w ++=______. 三、解答题41.在复平面内,若复数()()22232i z m m m m -+-=-+对应的点满足下列条件.分别求实数m 的取值范围. (1)在虚轴上; (2)在第二象限; (3)在直线y =x 上.42.在复平面内,复数()22234i z a a a a =--+--(其中i 为虚数单位,R a ∈).(1)若复数z 为纯虚数,求a 的值; (2)若复数z >0,求a 的值.43.由方程()31cos2πisin 2πz k k k ==+∈Z 得310z -=的三个根为()2π2πcosisin 02,33k k k k k ω=+≤≤∈Z ,则()()()321111z z z z ωω-=---.将上式右边的各个一次因子适当分组相乘,则可变成有理系数多项式,就得到了31z -的有理分解式.请你仿此将151z -进行有理分解.44.求实数m 取何值时,复数()()22232i z m m m m =--+-在复平面内对应的点Z ;(1)位于第二象限; (2)位于第一或第三象限; (3)在直线10x y --=上. 45.判断下列命题的真假. (1)任何复数的模都是非负数; (2)x 轴是复平面的实轴,y 轴是虚轴;(3)若1z =,2z =,3z =42i z =-,则这些复数的对应点共圆; (4)cos isin θθ+,最小值为0.【参考答案】一、单选题 1.D 2.D 3.C 4.C 5.A 6.B 7.A 8.B 9.D 10.C 11.C 12.B 13.C 14.B 15.D 16.A 17.D 18.C 19.B 20.C 二、填空题 21.3522.12i -##2i+1-23.()34-,24.2 25.13i 22-+ 26.1i -##i+1-27282930.3132.2 33.[)2,+∞ 3435.1-1- 36.()0,3 37.③ 38.339.13i +##3i 1+ 40.0 三、解答题41.(1)m =2或m =-1; (2)-1<m <1; (3)m =2. 【解析】 【分析】(1)由题可得220m m --=,即求;(2)由题可知2220320m m m m ⎧--<⎨-+>⎩,进而即得;(3)由题可得222=32m m m m --+-,即得. (1)∵复数()()22232i z m m m m -+-=-+对应的点为()222,32m m m m ---+,由题意得220m m --=, 解得m =2或m =-1. (2)由题意得2220320m m m m ⎧--<⎨-+>⎩ ∴1212m m m -<<⎧⎨⎩或, ∴-1<m <1. (3)由题得222=32m m m m --+-, ∴m =2.42.(1)2a = (2)4a = 【解析】 【分析】(1)根据纯虚数的知识列式,从而求得a 的值. (2)根据复数能比较大小列式,从而求得a 的值. (1)由于z 为纯虚数,所以2220340a a a a ⎧--=⎨--≠⎩,可得2a =.(2)由于z 与0可以比较大小,所以z 为实数,且0z >,所以2220340a a a a ⎧-->⎨--=⎩,可得4a =.43.()()()()()231411111z z z z z ωωωω----⋅⋅⋅-【解析】 【分析】根据题目所给的信息即可求解. 【详解】根据题目有理分解式原理可知151=0z -的15个根为()2π2πcosisin 0151514,k k k k k ω=+≤≤∈Z , 则151z -()()()()()231411111z z z z z ωωωω=----⋅⋅⋅-.44.(1)102m -<<或12m <<; (2)12m <-或01m <<或2m >; (3)1m =-或3. 【解析】 【分析】(1)可得点Z 的坐标为()22232,m m m m ---,然后可得222320m m m m ⎧--<⎪⎨->⎪⎩,解出即可;(2)可得2223200m m m m ⎧-->⎪⎨->⎪⎩或2223200m m m m ⎧--<⎪⎨-<⎪⎩,解出即可;(3)将点Z 的坐标代入直线的方程求解即可.(1)复数()()22232i z m m m m =--+-在复平面内对应的点Z 的坐标为()22232,mm m m ---若点Z 位于第二象限,则222320m m m m ⎧--<⎪⎨->⎪⎩,解得102m -<<或12m <<(2)若点Z 位于第一或第三象限,则2223200m m m m ⎧-->⎪⎨->⎪⎩或2223200m m m m ⎧--<⎪⎨-<⎪⎩解得12m <-或01m <<或2m > (3)若点Z 在直线10x y --=上,则2223210m m m m ---+-= 解得1m =-或3 45.(1)真命题; (2)真命题; (3)真命题; (4)假命题; 【解析】 【分析】由复数模长公式判断(1),由复平面的定义判断(2),根据复数的模长判断(3),由模长计算公式求解cos isin θθ+,判断(4). (1)真命题,若()i ,z a b a b R =+∈,则0z =≥,故该命题为真命题; (2)真命题,由复平面的定义可知,x 轴是实轴,y 轴是虚轴,故该命题为真命题; (3)真命题,因为3124z z z z ===(4)假命题,cos isin 1θθ+==为定值,所以其最大最小值均为1,故该命题为假命题.。
完整版)高中数学复数练习题
完整版)高中数学复数练习题高中数学《复数》练题一、基本知识:复数的基本概念1.形如a+bi的数叫做复数(其中a,b∈R);复数的单位为i,它的平方等于-1,即i²=-1.其中a叫做复数的实部,b叫做虚部。
2.实数:当b=0时复数a+bi为实数;虚数:当b≠0时的复数a+bi为虚数;纯虚数:当a=0且b≠0时的复数a+bi为纯虚数。
3.两个复数相等的定义:a+bi=c+di⟺a=c且b=d(其中,a,b,c,d,∈R)。
特别地a+bi=0⟺a=b=0.4.共轭复数:z=a+bi的共轭记作z=a-bi;5.复平面:z=a+bi,对应点坐标为p(a,b);(象限的复)6.复数的模:对于复数z=a+bi,把z²=a²+b²叫做复数z的模;二、复数的基本运算:设z1=a1+b1i,z2=a2+b2i1.加法:z1+z2=(a1+a2)+(b1+b2)i;2.减法:z1-z2=(a1-a2)+(b1-b2)i;3.乘法:z1·z2=(a1a2-b1b2)+(a2b1+a1b2)i。
特别z·z=a²+b²。
4.幂运算:i¹=i,i²=-1,i³=-i,i⁴=1,i⁵=i,i⁶=-1……以此类推。
三、复数的化简把c+di(a,b是均不为0的实数)的化简就是通过分母实数化的方法将分母化为实数:z=(a+bi)/(c+di)=(ac+bd)+(ad-bc)i/(c²+d²)四、例题分析例1】已知z=a+1+(b-4)i,求1) 当a,b为何值时z为实数2) 当a,b为何值时z为纯虚数3) 当a,b为何值时z为虚数4) 当a,b满足什么条件时z对应的点在复平面内的第二象限。
变式1】若复数z=(x²-1)+(x-1)i为纯虚数,则实数x的值为A。
-1 B。
1 C。
0 D。
-1或1例2】已知z1=3+4i,z2=(a-3)+(b-4)i,求当a,b为何值时z1=z2例3】已知z=1-i,求z,z·z;变式1】复数z满足z=(2-i)/(1-i),则求z的共轭z变式2】已知复数z=3+i,则z·z=?例4】已知z1=2-i,z2=-3+2i1) 求z1+z22) 求z1·z22.已知复数 $z$ 满足 $(z-2)i=1+i$,求 $|z|$。
高中复数测试题及答案
高中复数测试题及答案一、选择题(每题2分,共20分)1. 复数 \( z = 3 + 4i \) 的共轭复数是:A. \( 3 - 4i \)B. \( 4 + 3i \)C. \( -3 + 4i \)D. \( -3 - 4i \)2. 如果 \( z_1 = 2 - i \) 和 \( z_2 = 3 + 2i \),那么 \( z_1 \cdot z_2 \) 等于:A. 5 - 4iB. 8 - 5iC. 5 + 4iD. 8 + 5i3. 复数 \( z = a + bi \) 在复平面上的对应点位于:A. 右半平面B. 左半平面C. 上半平面D. 下半平面4. 复数 \( z = 1 - i \) 的模长是:A. \( \sqrt{2} \)B. 2C. 1D. \( \sqrt{1} \)5. 如果 \( z_1 = 2 - i \) 和 \( z_2 = 1 + 3i \),那么 \( z_1+ z_2 \) 等于:A. 3 + 2iB. 3 - 2iC. 2 + 2iD. 2 - 2i6. 复数 \( z = x + yi \) 的虚部是:A. \( x \)B. \( y \)C. \( x - y \)D. \( x + y \)7. 复数 \( z = 3 + 4i \) 的实部是:A. 3B. 4C. \( 3i \)D. \( 4i \)8. 复数 \( z = -2 - 2i \) 的共轭复数与 \( z \) 的模长之积等于:A. 8B. 4C. 16D. 329. 复数 \( z = 1 + i \) 的模长是:A. \( \sqrt{2} \)B. 2C. 1D. \( \sqrt{1} \)10. 复数 \( z = 2 - 3i \) 的共轭复数与 \( z \) 的模长之积等于:A. 13B. 10C. 5D. 13二、填空题(每题2分,共10分)11. 复数 \( z = 5 + 12i \) 的模长是 \( \sqrt{5^2 + 12^2} = \) __________。
高中数学复数练习题含答案
高中数学复数练习题含答案一、单选题1.若复数2(1i)-的实部为a ,虚部为b ,则a b +=( ) A .3-B .2-C .2D .32.已知a R ∈,“实系数一元二次方程2904x ax ++=的两根都是虚数”是“存在复数z 同时满足2z =且1z a +=”的( )条件. A .充分非必要 B .必要非充分 C .充分必要D .既非充分又非必要3.在复平面内,复数z 满足()()1i 1i ,z a b a b R +=++∈,且z 所对应的点在第一象限或坐标轴的非负半轴上,则2+a b 的最小值为( ) A .2- B .1- C .1 D .2 4.设||(12i)34i z -=+,则z 的共轭复数对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限5.在复平面内,复数z 满足()1i 3i z -=-+,则复数z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限6.下列命题正确的是( )①若复数z 满足2z ∈R ,则z R ∈; ②若复数z 满足i R z∈,则z 是纯虚数;③若复数12,z z 满足12=z z ,则12=±z z ; ④若复数12,z z 满足2121z z z =且10z ≠,则12=z z .A .①③B .②④C .①④D .①③7.已知复数z 满足(1i)32i +=+z ,则z 的虚部为( ) A .12 B .1i 2-C .12-D .1i 28.设i 为虚数单位,()1i 2i z -+=+,则复数z 的虚部是( ) A .12-B .1i 2C .32-D .3i 2-9.下列说法正确的是( )A .若复数()i ,z a b a b R =+∈,则z 为纯虚数的充要条件是0a =且0b =.B .若()()21i 0,x y x y R -+->∈,则2x >且1y >.C .若()()2212230Z Z Z Z -++=,则123Z Z Z ==.D .若复数z 满足i 2z -=,则复数z 对应点的集合是以()0,1为圆心,以2为半径的圆.10.若复数z 在复平面内对应的点为(1,1),则其共轭复数z 的虚部是( ) A .i B .i - C .1 D .1-11.复数1i1i+-(i 为虚数单位)的共轭复数的虚部等于( ) A .1B .1-C .iD .i -12.已知i 是虚数单位,复数1z 、2z 在复平面内对应的点分别为()1,2-、()1,1-,则复数21z z 的共轭复数的虚部为( ) A .15-B .15C .1i 5-D .1i 513.已知i 为虚数单位,则复数1i -+在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限14.已知复数()()31i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是( ). A .()3,1- B .()1,3- C .()1,+∞D .(),3-∞15.已知34i z =+,则()i z z -=( ) A .1117i +B .1917i +C .1117i -D .1923i +16.下列关于复数的命题中(其中i 为虚数单位),说法正确的是( ) A .若复数1z ,2z 的模相等,则1z ,2z 是共轭复数B .已知复数1z ,2z ,3z ,若()()2212230z z z z -+-=,则123z z z ==C .若关于x 的方程()21i 14i 0x ax +++-=(a ∈R )有实根,则52a =-D .12i +是关于x 的方程20x px q ++=的一个根,其中,p q 为实数,则5q = 17.复数5ii 2iz -=-+在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 18.已知复数i(1i)z =-,则其共轭复数z =( )A .1i --B .1i -+C .1i -D .1i +19.设向量OP ,PQ ,OQ 对应的复数分别为z 1,z 2,z 3,那么( )A .z 1+z 2+z 3=0B .z 1-z 2-z 3=0C .z 1-z 2+z 3=0D .z 1+z 2-z 3=020.复数2i z =-(i 为虚数单位)的虚部为( ) A .2 B .1 C .i D .1-二、填空题21.若i 为虚数单位,复数z 满足42ii 12iz --=+,则z =___________. 22.设复数1z ,2z 是共轭复数,且12229i,-=-+z z ,则1z =___________.23.已知复数z i =,i 为虚数单位,则z =______ 24.若i(,)i+∈a b a b R 与3+4i 互为共轭复数,则a b -=___________. 25.已知复数20202023i i z =+(i 为虚数单位),则z 在复平面内对应的点位于第________象限.26.复数2i z a =+,a ∈R ,若13i i+-z 为实数,则=a ________. 27.设i 是虚数单位,若复数z =1+2i ,则复数z 的模为__________. 28.已知复数()3iR ib z b -=∈的实部和虚部相等,则z =___________. 29.已知复数z 满足()1i 42i z -=+,则z =_________(用代数式表示). 30.定义12,C z z ∈,221212121(||||)4z z z z z z ⊕=+--,121212i(i )z z z z z z ⊗=⊕+⊕.若134i z =+,21z =+,则12||z z ⊗=___________.31.已知i 是虚数单位,复数12iiz -=,则z 的共轭复数z =___________.32.已知复数z =(,a b ∈R 且0,0a b ≠≠)的模等于1,则12b a b++的最小值为______.33.甲、乙、丙、丁四人对复数z 的陈述如下(i 为虚数单位):甲:z z +=;乙:2z z -=;丙:26;:4z z z z z ⋅==丁,在甲、乙、丙、丁四人陈述中,有且只有两个人的陈述正确,则z =___________.34i 对应的向量绕原点按逆时针方向旋转90,则所得向量对应的复数为________. 35.计算cos 40isin 40cos10isin10________.36.已知z =,则22022z z z ++⋅⋅⋅+=___________. 37.已知复数z 1=a 2-3-i ,z 2=-2a +a 2i ,若z 1+z 2是纯虚数,则实数a =________.38.若复数z 满足|z -i|=3,则复数z 对应的点Z 的轨迹所围成的图形的面积为________.39.若i 是虚数单位,则复数310i3i =-________.(写成最简结果) 40.已知2i +是关于x 的方程()20,R x ax b a b ++=∈的根,则b a -=________. 三、解答题 41.已知复数023i z =+,(1)若复数z 满足003zz z z =+,求z ;(2)若z C ∈,0z z =,0z z +=0z z -的值.42.已知复数z 和它的共轭复数z 满足232i z z +=+.(1)求z ;(2)若z 是关于x 的方程()20,x px q p q R ++=∈的一个根,求复数()4i zp q +-的模.43.已知i 为虚数单位,实数m 分别取什么数值时,复数()22(1)iz m m m =+-+-满足下列条件: (1)纯虚数;(2)复平面内对应的点在直线y x =上. 44.根据要求完成下列问题:(1)已知复数1z 在复平面内对应的点在第四象限,1||1z =,且111z z +=,求1z ;(2)已知复数225(15i)3(2i)12im z m =-+-+-为纯虚数,求实数m 的值. 45.已知ABC 中,AB ,AC 对应的复数分别为12i -+,23i --,通过几何作图求出这两个复数和与差对应的向量.【参考答案】一、单选题 1.B 2.D 3.B 4.D 5.C 6.B7.A8.C9.D10.D11.B12.A13.B14.A15.B16.D17.C18.C19.D20.D二、填空题21.12223.124.125.四26.3-2728.29.13i+##3i+1 30.3531.2i-+32.733.234.1-1-351i236.037.338.9π39.13i +##3i 1+ 40.9 三、解答题41.(1)79i 1010z =-;【解析】 【分析】(1)根据复数的乘法列出方程,由复数相等求解即可;(2)根据复数的几何意义及条件可知以OA ,OB 为邻边的平行四边形是菱形,解三角形后知AOB 是正三角形即可得解. (1)设i z a b =+ (),a b ∈R , 因为023i z =+,003zz z z =+所以0(i)(23i)3(i)(23i)zz a b a b =++=+++, 所以(23)(32)i (32)(33)i a b a b a b -++=+++由3233a b a b +=-⎧⎨-=⎩, 解得710910a b ⎧=⎪⎪⎨⎪=-⎪⎩,所以79i 1010z =-(2)设复数0z ,z ,0zz +在复平面内对应点分别为A ,B ,C由0z z =OA ,OB 为邻边的平行四边形是菱形, 在OAC 中,AC OA =OC 所以,1cos 2OAC ∠=-,所以,23OAC π∠=,所以,3AOB π∠= 因此,AOB 为正三角形,故00z z z -==42.(1)12z i =+; (2)1. 【解析】 【分析】(1)设()i ,z a b a b R =+∈,根据复数的运算以及复数相等,即可求得结果; (2)将(1)中所求z 代入方程,根据复数相等求得,p q ,结合复数的运算,即可求得()4i zp q ++及其模长.(1)设()i ,z a b a b R =+∈,则i z a b =-,()()22i i 3i 32i z z a b a b a b +=++-=+=+,所以332a b =⎧⎨=⎩,即12a b =⎧⎨=⎩,所以i 12z =+.(2)将i 12z =+代入已知方程可得()()212i 12i 0p q ++++=, 整理可得()()24i 30p p q +++-=,所以24030p p q +=⎧⎨+-=⎩,解得25p q =-⎧⎨=⎩,所以()()()()()12i 2i 12i 5ii 4i 2i 2i 2i 5z p q +--+-====-+--+-+--,又i 1-=,所以复数()4i zp q +-的模为1.43.(1)2m =- (2)1m =± 【解析】 【分析】(1)实部为0,虚部不为0即可; (2)实部等于虚部即可得解. (1)由已知22010m m m ⎧+-=⎨-≠⎩ 解得211m m m =-=⎧⎨≠⎩或2m =-所以(2)由已知212m m m -=+-21m =1m =±44.(1)112z = (2)2m =- 【解析】 【分析】(1)设1i z a b =+,由题设可得关于,a b 的方程组,求出其解后可得1z . (2)根据复数的四则运算可求2z ,根据其为纯虚数可求实数m 的值. (1)设1i z a b =+(a b R ∈、),由题意得22121a b a ⎧+=⎨=⎩,解得12a =,32b =±,∵复数1z 在复平面内对应的点在第四象限,∴32b =-,∴113i 22z =-; (2)()()()()2222515i 32i 6253i 12im z m m m m m =-+-+=--+---,依题意得260m m --=,解得3m =或2m =-, 又∵22530m m --≠,∴3m ≠且12m ≠-, ∴2m =-. 45.见解析 【解析】 【分析】分别表示出复数对应的向量,结合向量的运算求解. 【详解】以A 为复平面的坐标原点,以,AB AC 为邻边作平行四边形,如图,所以12i -+,23i --的和对应的向量为AD .()()12i 23i -+---对应的向量为CB ,如图,()()----+对应的向量为BC,如图,23i12i。
高中复数经典练习题(含答案)
高中复数经典练习题(含答案)一、单选题1.设复数z 满足i 4i 0z ++=,则||z =( )A B .4 C D 2.已知复数13i z a =-,22i z =+(i 为虚数单位),若12z z 是纯虚数,则实数=a ( ) A .32-B .32C .6-D .63.已知复数12z i =-,则z 在复平面内对应的点关于虚轴对称的点是( ) A .(1,2)- B .(1,2) C .(2,1)- D .(1,2)--4.设集合A 实数 ,{}B =纯虚数,{}C =复数,若全集SC ,则下列结论正确的是( ) A .AB C =B .A B =C .()S A B ⋂=∅D .SSABC5.复数 21(1)i 1z a a =+--是实数,则实数a 的值为( ) A .1或-1 B .1 C .-1D .0或-16.在复平面内,复数z 满足()()1i 1i ,z a b a b R +=++∈,且z 所对应的点在第一象限或坐标轴的非负半轴上,则2+a b 的最小值为( ) A .2- B .1- C .1 D .2 7.设复数z 满足i 3i z z --=,则z 的虚部为( )A .2i -B .2iC .2-D .2 8.已知x ,R y ∈,i 为虚数单位,且()2i 2y y x ++=-,则x y +的值为( )A .1B .2C .3D .49.已知复数2ii+=a z (a R ∈,i 是虚数单位)的虚部是3-,则复数z 对应的点在复平面的( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 10.2243i 4i a a a a --=+,则实数a 的值为( )A .1B .1或4-C .4-D .0或4-11.设O 为原点,向量OA ,OB 对应的复数分别为2+3i ,-3-2i ,那么向量BA 对应的复数为( )A .-1+iB .1-iC .-5-5iD .5+5i 12.若复数z 满足()13i 17i -=-z ,则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限13.复数20222i 1iz =+(其中i 为虚数单位),则z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限14.2021i 1i-=( )A .11i 22+ B .11i 22-- C .11i 22-+D .11i 22-15.已知复数z 满足()21i 68i z -=+,其中i 为虚数单位,则z =( )A .10B .5CD .16.若复数4i1iz =-,则复数z 的模等于( )A B .2 C .D .4 17.已知复数z 满足(2i)43i z +=-(i 为虚数单位),则z =( ) A .2+i B .2-iC .1+2iD .1-2i18.“1x =”是“22(1)(32)i x x x -+++是纯虚数”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 19.已知复数z 满足z +2i -5=7-i ,则|z |=( )A .12B .3C .D .920.下列命题正确的是( )①若复数z 满足2z ∈R ,则z R ∈; ②若复数z 满足i R z∈,则z 是纯虚数;③若复数12,z z 满足12=z z ,则12=±z z ; ④若复数12,z z 满足2121z z z =且10z ≠,则12=z z .A .①③B .②④C .①④D .①③二、填空题21.若复数1z ,2z 满足112i z =-,234i z =+(i 是虚数单位),则12z z ⋅的虚部为___________.22.已知复数z 满足24(1i)(12i)z --=-,则||z =________.23.已知复数z 满足()1i 42i z -=+,则z =_________(用代数式表示). 24.设(3i)i 6i a a b +=-,其中a ,b 是实数,则i a b +=____________. 25.若i(,)i+∈a b a b R 与3+4i 互为共轭复数,则a b -=___________. 26.已知复数z 满足211iz -=+,则z 的最小值为___________; 27.已知复数2z =+i ,其中i 为虚数单位,那么复数()2z ·z 所对应的复平面内的点在第________象限28.18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数,使复数及其运算具有了几何意义,例如,z OZ =,也即复数z 的模的几何意义为z 对应的点Z 到原点的距离,在复数平面内,复数02i1ia z +=+ (i 是虚数单位,)a R ∈是纯虚数,其对应的点为0Z ,Z 为曲线1z =上的动点,则0Z 与Z 之间的最小距离为________________.29.设复数i 12z =+(i 是虚数单位),则在复平面内,复数2z 对应的点的坐标为________.30.若()i 1)(,x y x x y R +=-∈,则2x y +的值为__________. 31.已知i 是虚数单位,复数z 满足322i z =+,则z =___________.32.已知复数z 满足()()1i 2i z t t +=∈R ,若z =,则t 的值为___________. 33.已知i 是虚数单位,则202220211()1+⎛⎫+= ⎪-⎝⎭i i i ___________.34.把复数z 的共轭复数记作z ,已知()12i 43i z +=+(其中i 是虚数单位),则z =______.35.i 是虚数单位,则1i1i+-的值为__________. 36.已知复数21ii z +=,则z =______. 37.若a ∈R ,且i2ia ++是纯虚数,则a =____. 38.若i 是虚数单位,则复数310i3i =-________.(写成最简结果)39.已知i 为虚数单位,复数21iz =-的虚部为___________. 40.已知2i +是关于x 的方程()20,R x ax b a b ++=∈的根,则b a -=________. 三、解答题41.在复平面内,若复数()()22232i z m m m m -+-=-+对应的点满足下列条件.分别求实数m 的取值范围. (1)在虚轴上; (2)在第二象限; (3)在直线y =x 上.42.已知z =cos θ-sin θi(cos θ+sin θ). (1)当θ为何值时,|z|取得最大值,并求此最大值; (2)若θ∈(π,2π),求arg z (用θ表示). 43.将下列复数表示成三角形式 (1)πtan i,(0,)2θθ+∈; (2)[)1cos isin ,0,2πααα++∈. 44.求满足下列各条件的复数z . (1)i i 1=-z ; (2)220z z -+=.45.复数()()11i z m m =++-对应的点在直线40x y +-=上,求实数m 的值.【参考答案】一、单选题 1.A 2.A 3.D 4.D 5.C 6.B 7.C 8.B 9.D10.C 11.D 12.D 13.B 14.C 15.B 16.C 17.B 18.A 19.C 20.B 二、填空题 21.-2 22.223.13i +##3i+1 24.25.1261##1-27.四 28.129.()34-,30.1 3132.2或2- 3334.2i +##i 2+ 35.136 37.12-##0.5- 38.13i +##3i 1+ 39.1 40.9 三、解答题41.(1)m =2或m =-1; (2)-1<m <1; (3)m =2. 【解析】 【分析】(1)由题可得220m m --=,即求;(2)由题可知2220320m m m m ⎧--<⎨-+>⎩,进而即得;(3)由题可得222=32m m m m --+-,即得. (1)∵复数()()22232i z m m m m -+-=-+对应的点为()222,32m m m m ---+,由题意得220m m --=, 解得m =2或m =-1. (2)由题意得2220320m m m m ⎧--<⎨-+>⎩ ∴1212m m m -<<⎧⎨⎩或, ∴-1<m <1. (3)由题得222=32m m m m --+-, ∴m =2.42.(1)当()24k k Z πθπ=-∈时,z 取最大值为,(2)97,,284arg 77,,2284z θππθπθππθπ⎧⎛⎫+∈ ⎪⎪⎪⎝⎭=⎨⎡⎫⎪-∈⎪⎢⎪⎣⎭⎩.【解析】 【分析】(1)按照复数模的定义求解即可; (2)按照复数的辐角主值的定义求解即可. (1)由复数模的定义可得:z ===,显然当cos 14πθ⎛⎫+= ⎪⎝⎭时最大,即()24k k Z πθπ=-∈ , 最大值为; (2)设arg zα= ,()cos sin i cos sin 1cos isin 44z ππθθθθθθ⎤⎛⎫⎛⎫=-+=++++ ⎪ ⎪⎥⎝⎭⎝⎭⎦ ,实部为1cos 04πθ⎛⎫++ ⎪⎝⎭> 59442πππθ⎛⎫≤+≤ ⎪⎝⎭ ,虚部为sin 4πθ⎛⎫+ ⎪⎝⎭, sin 4tan tan 281cos 4πθθπαπθ⎛⎫+ ⎪⎛⎫⎝⎭==+ ⎪⎛⎫⎝⎭++ ⎪⎝⎭ , ∴当7,4πθπ⎛⎫∈ ⎪⎝⎭ 即5,244ππθπ⎛⎫+∈ ⎪⎝⎭ 时, sin 04πθ⎛⎫+ ⎪⎝⎭<, 此时复数z 对应的点在第四象限, 5,288θπππ⎛⎫+∈ ⎪⎝⎭,92828θπθπαπ=++=+ ,当7,24πθπ⎡⎫∈⎪⎢⎣⎭ 即92,44ππθπ⎡⎫+∈⎪⎢⎣⎭,sin 04πθ⎛⎫+ ⎪⎝⎭>, 此时复数z 对应的点在第一象限(或x 轴的非负半轴上),9,288θπππ⎡⎫+∈⎪⎢⎣⎭,∴72828θπθπαπ=+-=- , ∴97,,284arg 77,,2284z θππθπθππθπ⎧⎛⎫+∈ ⎪⎪⎪⎝⎭=⎨⎡⎫⎪-∈⎪⎢⎪⎣⎭⎩ ; 综上,当()24k k Z πθπ=-∈时,z 最大,最大值为97,,284arg 77,,2284z θππθπθππθπ⎧⎛⎫+∈ ⎪⎪⎪⎝⎭=⎨⎡⎫⎪-∈⎪⎢⎪⎣⎭⎩.43.(1)1ππsin icos cos 22θθθ⎡⎤⎛⎫⎛⎫-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦; (2)当0πα≤<时,2cos cos isin 222ααα⎛⎫+ ⎪⎝⎭;当π2πα≤<时,2cos cos πisin π222ααα⎡⎤⎛⎫⎛⎫-+++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.【解析】 【分析】(1)根据同角三角函数的商数关系及诱导公式,再结合复数表示的三角形式 即可求解;(2)根据三角函数的二倍角公式及诱导公式,再结合复数表示的三角形式即可求解; (1)()sin 1tan i i sin icos cos cos θθθθθθ+=+=+, π(0,),cos 02θθ∈∴>,1ππtan i sin icos cos 22θθθθ⎡⎤⎛⎫⎛⎫+=-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ (2)21cos isin 2cos isincos222ααααα++=+2coscos isin 222ααα⎛⎫=+ ⎪⎝⎭. ∵当0πα≤<时,π022α≤<,cos 02α>, ∴1cos isin 2cos cos isin 222ααααα⎛⎫++=+ ⎪⎝⎭, 当π2πα≤<时,π<π22α≤,cos02α≤,∴1cos isin 2cos cos isin 222ααααα⎛⎫++=--- ⎪⎝⎭2coscos πisin π222ααα⎡⎤⎛⎫⎛⎫=-+++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. 44.(1)1i z =+(2)12z = 【解析】 【分析】(1)利用复数的除法运算算出答案即可;(2)由条件可得221724z ⎫⎛⎫-=-=⎪ ⎪⎪⎝⎭⎝⎭,然后可得答案.(1)由i i 1=-z 可得22i 1i i 1i==1i i i 1z ----==+- (2)因为220z z -+=,所以221724z ⎫⎛⎫-=-=⎪ ⎪⎪⎝⎭⎝⎭,所以12z -=所以12z = 45.2m = 【解析】 【分析】求得z 对应的点的坐标并代入直线40x y +-=,由此求得m 的值. 【详解】z 对应点为()1,1m m +-,将()1,1m m +-代入直线40x y +-=得1140,2m m m ++--==.。
江苏省江阴一中高中复数知识点和相关练习试题 百度文库
一、复数选择题1.复数11z i=-,则z 的共轭复数为( )A .1i -B .1i +C .1122i + D .1122i - 2.复数3(23)i +(其中i 为虚数单位)的虚部为( ) A .9iB .46i -C .9D .46-3.设复数(,)z a bi a R b R =+∈∈,它在复平面内对应的点位于虚轴的正半轴上,且有1z =,则a b +=( )A .-1B .0C .1D .2 4.已知a 为正实数,复数1ai +(i 为虚数单位)的模为2,则a 的值为( )A B .1C .2D .35.复数312iz i=-的虚部是( ) A .65i -B .35iC .35D .65-6.已知复数202111i z i-=+,则z 的虚部是( )A .1-B .i -C .1D .i7.已知复数z 满足22z z =,则复数z 在复平面内对应的点(),x y ( ) A .恒在实轴上 B .恒在虚轴上C .恒在直线y x =上D .恒在直线y x=-上8.已知复数z 的共轭复数212iz i-=+,i 是虚数单位,则复数z 的虚部是( ) A .1 B .-1 C .i D .i -9.设复数z 满足41iz i=+,则z 的共轭复数z 在复平面内的对应点位于( )A .第一象限B .第二象限C .第三象限D .第四象限10.已知(),a bi a b R +∈是()()112i i +-的共轭复数,则a b +=( ) A .4 B .2C .0D .1-11.设21iz i+=-,则z 的虚部为( ) A .12B .12-C .32D .32-12.设a +∈R ,复数()()()242121i i z ai ++=-,若1z =,则a =( )A .10B .9C .8D .7 13.已知i 是虚数单位,2i z i ⋅=+,则复数z 的共轭复数的模是( )A .5BC D .314.设复数202011i z i+=-(其中i 为虚数单位),则z 在复平面内对应的点所在象限为( ) A .第四象限B .第三象限C .第二象限D .第一象限15.设复数满足(12)i z i +=,则||z =( )A .15B C D .5二、多选题16.已知复数Z 在复平面上对应的向量(1,2),OZ =-则( ) A .z =-1+2iB .|z |=5C .12z i =+D .5z z ⋅=17.已知复数z 满足220z z +=,则z 可能为( ). A .0B .2-C .2iD .2i+1-18.已知复数z 满足220z z +=,则z 可能为( ) A .0B .2-C .2iD .2i -19.已知复数(),z x yi x y R =+∈,则( ) A .20zB .z 的虚部是yiC .若12z i =+,则1x =,2y =D .z =20.已知复数012z i =+(i 为虚数单位)在复平面内对应的点为0P ,复数z 满足|1|||z z i -=-,下列结论正确的是( )A .0P 点的坐标为(1,2)B .复数0z 的共轭复数对应的点与点0P 关于虚轴对称C .复数z 对应的点Z 在一条直线上D .0P 与z 对应的点Z 间的距离的最小值为221.已知复数z 满足2724z i =--,在复平面内,复数z 对应的点可能在( ) A .第一象限 B .第二象限C .第三象限D .第四象限22.复数z 满足233232iz i i+⋅+=-,则下列说法正确的是( )A .z 的实部为3-B .z 的虚部为2C .32z i =-D .||z =23.已知i 为虚数单位,复数322iz i+=-,则以下真命题的是( ) A .z 的共轭复数为4755i - B .z 的虚部为75i C .3z =D .z 在复平面内对应的点在第一象限24.已知复数1z =-+(i 为虚数单位),z 为z 的共轭复数,若复数zw z=,则下列结论正确的有( )A .w 在复平面内对应的点位于第二象限B .1w =C .w 的实部为12-D .w 的虚部为2i 25.设i 为虚数单位,复数()(12)z a i i =++,则下列命题正确的是( ) A .若z 为纯虚数,则实数a 的值为2B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是(,)122-C .实数12a =-是z z =(z 为z 的共轭复数)的充要条件 D .若||5()z z x i x R +=+∈,则实数a 的值为226.已知复数12z =-+(其中i 为虚数单位),则以下结论正确的是( )A .20zB .2z z =C .31z =D .1z =27.以下为真命题的是( )A .纯虚数z 的共轭复数等于z -B .若120z z +=,则12z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数 28.下面四个命题,其中错误的命题是( ) A .0比i -大 B .两个复数当且仅当其和为实数时互为共轭复数C .1x yi i +=+的充要条件为1x y ==D .任何纯虚数的平方都是负实数29.已知i 为虚数单位,下列说法正确的是( ) A .若,x y R ∈,且1x yi i +=+,则1x y == B .任意两个虚数都不能比较大小C .若复数1z ,2z 满足22120z z +=,则120z z == D .i -的平方等于130.设复数z 满足12z i =--,i 为虚数单位,则下列命题正确的是( )A .|z |=B .复数z 在复平面内对应的点在第四象限C .z 的共轭复数为12i -+D .复数z 在复平面内对应的点在直线2y x =-上【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.D 【分析】先由复数的除法化简该复数,再由共轭复数的概念,即可得出结果. 【详解】 因为,所以其共轭复数为. 故选:D. 解析:D 【分析】先由复数的除法化简该复数,再由共轭复数的概念,即可得出结果. 【详解】 因为()()11111111222i i z i i i i ++====+--+, 所以其共轭复数为1122i -. 故选:D.2.C 【分析】应用复数相乘的运算法则计算即可. 【详解】 解:所以的虚部为9. 故选:C.解析:C 【分析】应用复数相乘的运算法则计算即可. 【详解】解:()()()32351223469i i i i +=-++=-+ 所以()323i +的虚部为9. 故选:C.3.C 【分析】根据复数的几何意义得. 【详解】∵它在复平面内对应的点位于虚轴的正半轴上,∴,又,∴, ∴. 故选:C .解析:C 【分析】根据复数的几何意义得,a b . 【详解】∵z 它在复平面内对应的点位于虚轴的正半轴上,∴0a =,又1z =,∴1b =, ∴1a b +=. 故选:C .4.A 【分析】利用复数的模长公式结合可求得的值. 【详解】,由已知条件可得,解得. 故选:A.解析:A 【分析】利用复数的模长公式结合0a >可求得a 的值. 【详解】0a >,由已知条件可得12ai +==,解得a =故选:A.5.C 【分析】由复数除法法则计算出后可得其虚部. 【详解】 因为,所以复数z 的虚部是. 故选:C .解析:C 【分析】由复数除法法则计算出z 后可得其虚部.【详解】因为33(12)366312(12)(12)555i i i i i i i i +-===-+--+, 所以复数z 的虚部是35. 故选:C .6.C 【分析】求出,即可得出,求出虚部. 【详解】 ,,其虚部是1. 故选:C.解析:C 【分析】求出z ,即可得出z ,求出虚部. 【详解】()()()220211i 1i i 1i 1i 1i z --===-++-,i z ∴=,其虚部是1.故选:C.7.A 【分析】先由题意得到,然后分别计算和,再根据得到关于,的方程组并求解,从而可得结果. 【详解】由复数在复平面内对应的点为得,则,, 根据得,得,.所以复数在复平面内对应的点恒在实轴上, 故解析:A 【分析】先由题意得到z x yi =+,然后分别计算2z 和2z ,再根据22z z =得到关于x ,y 的方程组并求解,从而可得结果. 【详解】由复数z 在复平面内对应的点为(),x y 得z x yi =+,则2222z x y xyi =-+,222z x y =+,根据22z z =得222220x y x y xy ⎧-=+⎨=⎩,得0y =,x ∈R .所以复数z 在复平面内对应的点(),x y 恒在实轴上, 故选:A .8.A 【分析】先化简,由此求得,进而求得的虚部. 【详解】 ,所以,则的虚部为. 故选:A解析:A 【分析】先化简z ,由此求得z ,进而求得z 的虚部. 【详解】()()()()212251212125i i i iz i i i i ----====-++-, 所以zi ,则z 的虚部为1.故选:A9.D 【分析】先对化简,从而可求出共轭复数,再利用复数的几何意义可得答案 【详解】 解:因为, 所以,所以共轭复数在复平面内的对应点位于第四象限, 故选:D解析:D 【分析】先对41iz i=+化简,从而可求出共轭复数z ,再利用复数的几何意义可得答案 【详解】解:因为244(1)4(1)=2(1)22221(1)(1)2i i i i i z i i i i i i i i --===-=-=+++-, 所以22z i =-,所以共轭复数z 在复平面内的对应点位于第四象限,故选:D10.A 【分析】先利用复数的乘法运算法则化简,再利用共轭复数的定义求出a+bi ,从而确定a ,b 的值,求出a+b . 【详解】 , 故选:A解析:A 【分析】先利用复数的乘法运算法则化简()()112i i +-,再利用共轭复数的定义求出a +bi ,从而确定a ,b 的值,求出a +b . 【详解】()()112i i +-1223i i i =-++=-3a bi i ∴+=+3,1a b ==,4a b +=故选:A11.C 【分析】根据复数的除法运算,先化简复数,即可得出结果. 【详解】 因为, 所以其虚部为. 故选:C.解析:C 【分析】根据复数的除法运算,先化简复数,即可得出结果. 【详解】 因为()()()()21223113111222i i i i z i i i i ++++-====+--+, 所以其虚部为32. 故选:C.12.D 【分析】根据复数的模的性质求模,然后可解得. 【详解】 解:,解得. 故选:D . 【点睛】本题考查复数的模,掌握模的性质是解题关键.设复数,则, 模的性质:,,.解析:D 【分析】根据复数的模的性质求模,然后可解得a . 【详解】解:()()()()24242422221212501111i i i i aai ai++++====+--,解得7a =. 故选:D . 【点睛】本题考查复数的模,掌握模的性质是解题关键.设复数(,)z a bi a b R =+∈,则z =模的性质:1212z z z z =,(*)nnz z n N =∈,1122z z z z =. 13.C 【分析】首先求出复数的共轭复数,再求模长即可. 【详解】 据题意,得,所以的共轭复数是,所以. 故选:C.解析:C 【分析】首先求出复数z 的共轭复数,再求模长即可. 【详解】 据题意,得22(2)12121i i i iz i i i ++-+====--, 所以z 的共轭复数是12i +,所以z =. 故选:C.14.A【分析】根据复数的运算,先将化简,求出,再由复数的几何意义,即可得出结果. 【详解】 因为,所以,其在复平面内对应的点为,位于第四象限. 故选:A.解析:A 【分析】根据复数的运算,先将z 化简,求出z ,再由复数的几何意义,即可得出结果. 【详解】因为()()()()4202050550512111121111111i i i z i iii i i i ++++======+-----+, 所以1z i =-,其在复平面内对应的点为()1,1-,位于第四象限. 故选:A.15.B 【分析】利用复数除法运算求得,再求得. 【详解】 依题意, 所以. 故选:B解析:B 【分析】利用复数除法运算求得z ,再求得z . 【详解】 依题意()()()12221121212555i i i i z i i i i -+====+++-,所以5z ==故选:B二、多选题 16.AD 【分析】因为复数Z 在复平面上对应的向量,得到复数,再逐项判断.【详解】因为复数Z 在复平面上对应的向量,所以,,|z|=,,故选:AD解析:AD【分析】因为复数Z 在复平面上对应的向量(1,2)OZ =-,得到复数12z i =-+,再逐项判断.【详解】因为复数Z 在复平面上对应的向量(1,2)OZ =-,所以12z i =-+,12z i =--,|z 5z z ⋅=,故选:AD17.AC【分析】令,代入原式,解出的值,结合选项得出答案.【详解】令,代入,得,解得,或,或,所以,或,或.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.解析:AC【分析】令()i ,z a b a b R =+∈,代入原式,解出,a b 的值,结合选项得出答案.【详解】令()i ,z a b a b R =+∈,代入220z z +=,得222i 0a b ab -+=,解得00a b =⎧⎨=⎩,或02a b =⎧⎨=⎩,或02a b =⎧⎨=-⎩, 所以0z =,或2i z =,或2i z =-.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.18.ACD【分析】令代入已知等式,列方程组求解即可知的可能值.【详解】令代入,得:,∴,解得或或∴或或.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.解析:ACD【分析】令z a bi =+代入已知等式,列方程组求解即可知z 的可能值.【详解】令z a bi =+代入22||0z z +=,得:2220a b abi -+=,∴22020a b ab ⎧⎪-+=⎨=⎪⎩,解得0,0a b =⎧⎨=⎩或0,2a b =⎧⎨=⎩或0,2,a b =⎧⎨=-⎩ ∴0z =或2z i =或2z i =-.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.19.CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取,则,A 选项错误;对于B 选项,复数的虚部为,B 选项错误;解析:CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取z i ,则210z =-<,A 选项错误;对于B 选项,复数z 的虚部为y ,B 选项错误;对于C 选项,若12z i =+,则1x =,2y =,C 选项正确;对于D选项,z =D 选项正确.故选:CD.本题考查复数相关命题真假的判断,涉及复数的计算、复数的概念以及复数的模,属于基础题.20.ACD【分析】根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出,利用,结合复数模的运算进行化简,由此判断出点的轨迹,由此判读C 选项的正确解析:ACD【分析】根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出z ,利用|1|||z z i -=-,结合复数模的运算进行化简,由此判断出Z 点的轨迹,由此判读C 选项的正确性.结合C 选项的分析,由点到直线的距离公式判断D 选项的正确性.【详解】复数012z i =+在复平面内对应的点为0(1,2)P ,A 正确;复数0z 的共轭复数对应的点与点0P 关于实轴对称,B 错误;设(,)z x yi x y R =+∈,代入|1|||z z i -=-,得|(1)(1)i|x yi x y -+=+-,即=y x =;即Z 点在直线y x =上,C 正确; 易知点0P 到直线y x =的垂线段的长度即为0P 、Z 之间距离的最小值,结合点到直线的距2=,故D 正确. 故选:ACD【点睛】本小题主要考查复数对应的坐标,考查共轭复数,考查复数模的运算,属于基础题. 21.BD【分析】先设复数,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出,即可确定对应的点所在的象限.【详解】设复数,则,所以,则,解得或,因此或,所以对应的点为或,因此复【分析】先设复数(),z a bi a b R =+∈,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出z ,即可确定对应的点所在的象限.【详解】设复数(),z a bi a b R =+∈,则2222724z a abi b i =+-=--,所以2222724z a abi b i =+-=--,则227224a b ab ⎧-=-⎨=-⎩,解得34a b =⎧⎨=-⎩或34a b =-⎧⎨=⎩, 因此34z i =-或34z i =-+,所以对应的点为()3,4-或()3,4-,因此复数z 对应的点可能在第二或第四象限.故选:BD.【点睛】本题主要考查判定复数对应的点所在的象限,熟记复数的运算法则,以及复数相等的条件即可,属于基础题型.22.AD【分析】由已知可求出,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】解:由知,,即,所以的实部为,A 正确;的虚部为-2,B 错误;,C 错误;,D 正确;故选:A解析:AD【分析】由已知可求出32z i =--,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】 解:由233232i z i i +⋅+=-知,232332i z i i +⋅=--,即()()()2233232232313i i i z i i ---=-=+ 39263213i i --==--,所以z 的实部为3-,A 正确;z 的虚部为-2,B 错误;32z i =-+,C 错误;||z ==D 正确; 故选:AD.本题考查了复数的除法运算,考查了复数的概念,考查了共轭复数的求解,考查了复数模的求解,属于基础题.23.AD【分析】先利用复数的除法、乘法计算出,再逐项判断后可得正确的选项.【详解】,故,故A 正确.的虚部为,故B 错,,故C 错,在复平面内对应的点为,故D 正确.故选:AD.【点睛】本题考解析:AD【分析】先利用复数的除法、乘法计算出z ,再逐项判断后可得正确的选项.【详解】()()32232474725555i i i i i z i ++++====+-,故4755i z =-,故A 正确.z 的虚部为75,故B 错,355z ==≠,故C 错, z 在复平面内对应的点为47,55⎛⎫ ⎪⎝⎭,故D 正确. 故选:AD.【点睛】本题考查复数的概念、复数的运算以及复数的几何意义,注意复数(),z a bi a b R =+∈的虚部为b ,不是bi ,另外复数的除法运算是分子分母同乘以分母的共轭复数.24.ABC【分析】对选项求出,再判断得解;对选项,求出再判断得解;对选项复数的实部为,判断得解;对选项,的虚部为,判断得解.【详解】对选项由题得.所以复数对应的点为,在第二象限,所以选项正确解析:ABC【分析】对选项,A 求出1=2w -+,再判断得解;对选项B ,求出1w =再判断得解;对选项,C 复数w 的实部为12-,判断得解;对选项D ,w 判断得解. 【详解】对选项,A 由题得1,z =-221=422w -+∴===-+.所以复数w 对应的点为1(2-,在第二象限,所以选项A 正确;对选项B ,因为1w ==,所以选项B 正确; 对选项,C 复数w 的实部为12-,所以选项C 正确;对选项D ,w 的虚部为2,所以选项D 错误. 故选:ABC【点睛】 本题主要考查复数的运算和共轭复数,考查复数的模的计算,考查复数的几何意义,考查复数的实部和虚部的概念,意在考查学生对这些知识的理解掌握水平.25.ACD【分析】首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】∴选项A :为纯虚数,有可得,故正确选项B解析:ACD【分析】首先应用复数的乘法得2(12)z a a i =-++,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】()(12)2(12)z a i i a a i =++=-++∴选项A :z 为纯虚数,有20120a a -=⎧⎨+≠⎩可得2a =,故正确选项B :z 在复平面内对应的点在第三象限,有20120a a -<⎧⎨+<⎩解得12a <-,故错误 选项C :12a =-时,52z z ==-;z z =时,120a +=即12a =-,它们互为充要条件,故正确 选项D :||5()z z x i x R +=+∈时,有125a +=,即2a =,故正确故选:ACD【点睛】本题考查了复数的运算及分类和概念,应用复数乘法运算求得复数,再根据复数的概念及性质、相等关系等确定参数的值或范围26.BCD【分析】利用复数的运算法则直接求解.【详解】解:复数(其中为虚数单位),,故错误;,故正确;,故正确;.故正确.故选:.【点睛】本题考查命题真假的判断,考查复数的运算法则解析:BCD【分析】利用复数的运算法则直接求解.【详解】解:复数12z =-(其中i 为虚数单位),2131442z ∴=-=--,故A 错误; 2z z ∴=,故B 正确;31113()()12244z =--+=+=,故C 正确;||1z ==.故D 正确. 故选:BCD .【点睛】本题考查命题真假的判断,考查复数的运算法则等基础知识,考查运算求解能力,属于基础题.27.AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若为纯虚数,可设,则,即纯虚数的共轭复数等于,故A 正确;对于B解析:AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若z 为纯虚数,可设()0z bi b =≠,则z bi z =-=-,即纯虚数z 的共轭复数等于z -,故A 正确;对于B ,由120z z +=,得出12z z =-,可设11z i =+,则21z i =--, 则21z i =-+,此时12z z ≠,故B 错误;对于C ,设12,z a bi z c di =+=+,则()()12a c b d i R z z =++++∈,则0b d +=, 但,a c 不一定相等,所以1z 与2z 不一定互为共轭复数,故C 错误;对于D ,120z z -=,则12z z =,则1z 与2z 互为共轭复数,故D 正确.故选:AD.【点睛】本题考查与复数有关的命题的真假性,考查复数的基本概念和运算,涉及实数、纯虚数和共轭复数的定义,属于基础题. 28.ABC【分析】根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.【详解】对于A 选项,由于虚数不能比大小,解析:ABC【分析】根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.【详解】对于A 选项,由于虚数不能比大小,A 选项错误;对于B 选项,()()123i i ++-=,但1i +与2i -不互为共轭复数,B 选项错误; 对于C 选项,由于1x yi i +=+,且x 、y 不一定是实数,若取x i =,y i =-,则1x yi i +=+,C 选项错误;对于D 选项,任取纯虚数()0,ai a a R ≠∈,则()220ai a =-<,D 选项正确. 故选:ABC.【点睛】本题考查复数相关命题真假的判断,涉及共轭复数的概念、复数相等以及复数的计算,属于基础题.29.AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,且,根据复数相等的性质,则,故正确;对于选项B ,解析:AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,x y R ∈,且1x yi i +=+,根据复数相等的性质,则1x y ==,故正确;对于选项B ,∵虚数不能比较大小,故正确;对于选项C ,∵若复数1=z i ,2=1z 满足22120z z +=,则120z z ≠≠,故不正确; 对于选项D ,∵复数()2=1i --,故不正确;故选:AB .【点睛】本题考查复数的相关概念,涉及复数的概念、复数相等、复数计算等知识,属于基础题. 30.AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】,A 正确;复数z 在复平面内对应的点的坐标为,在第三象限,B 不正确;z 的共轭复数为,C 正确;复数z 在复平面内对解析:AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】||z ==A 正确;复数z 在复平面内对应的点的坐标为(1,2)--,在第三象限,B 不正确;z 的共轭复数为12i -+,C 正确;复数z 在复平面内对应的点(1,2)--不在直线2y x =-上,D 不正确.故选:AC【点睛】本小题主要考查复数的有关知识,属于基础题.。
江阴市必修第二册第二单元《复数》测试卷(有答案解析)
一、选择题1.在下列命题中,正确命题的个数是( ).①两个复数不能比较大小;②复数i 1z =-对应的点在第四象限;③若()()22132i x x x -+++是纯虚数,则实数1x =;④若()()2212230z z z z -+-=,则123z z z ==.A .0B .1C .2D .3 2.设()()2225322z t t t t i =+-+++,其中t ∈R ,则以下结论正确的是( ) A .z 对应的点在第一象限B .z 一定不为纯虚数C .z 对应的点在实轴的下方D .z 一定为实数 3.若a b 、为非零实数,则以下四个命题都成立:①10a a+≠;②()2222a b a ab b +=++;③若a b ,=则a b =±;④若2a ab =,则a b ,=则对于任意非零复数a b 、,上述命题中仍为真命题的个数为( )个. A .1 B .2 C .3 D .44.设i 为虚数单位,复数z 满足21i i z=-,则复数z 的共轭复数等于( ) A .1-i B .-1-i C .1+i D .-1+i5.已知复数23i -是方程220x px q ++=的一个根,则实数p ,q 的值分别是( ) A .12,26 B .24,26 C .12,0 D .6,86.在复平面内,O 是原点,,,OA OC AB 对应的复数分别为-2+i ,3+2i, 1+5i ,那么BC 对应的复数为( )A .4+7iB .1+3iC .4-4iD .-1+6i 7.设i 是虚数单位,则2320192342020i i i i +++⋅⋅⋅+的值为( ) A .10101010i -- B .10111010i -- C .10111012i -- D .10111010i - 8.下列命题中,正确的命题是( )A .若1212,0z z C z z ∈->、,则12z z >B .若z R ∈,则2||z z z ⋅=不成立C .1212,,0z z C z z ∈⋅=,则10z =或20z =D .221212,0z z C z z ∈+=、,则10z =且20z =9.复数252i +i z =的共轭复数z 在复平面上对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 10.复数z 满足()234(i z i i --=+为虚数单位),则(z = )A .2i -+B .2i -C .2i --D .2i +11.已知复数z 满足()15i z i -+=,则z =( )A .23i +B .23i -C .32i +D .32i - 12.若32a i i -+为纯虚数,则实数a 的值为( ) A .32- B .23- C .23 D .32二、填空题13.已知复数z 满足1z =,则2z i -(其中i 是虚数单位)的最小值为____________. 14.已知集合{}11M z z =+=,{}i N z z i z =+=-,则M N =______.15.若23i -是方程()220,x px q p q R ++=∈的一个根,则p q +=______.16.若复数(2)(1)()z a a i a R =-++∈对应的点位于第二象限,则z 的取值范围是_______.17.已知1cos z isin αα=+,2cos z isin ββ=-,α,β为实数,i 为虚数单位,且125121313z z i -=+,则cos()αβ+的值为_______. 18.复数3(2) i (,)z x y x y =++-∈R ,且||2z =,则点(,)x y 的轨迹是_____________.19.已知复数z 满足(12)43i z i +=+,则z = _________________;20.给出下列四种说法:①-2i 是虚数,但不是纯虚数;②两个复数互为共轭复数,当且仅当其和为实数;③已知 x y R ,∈,则 x i 1i y +=+ 的充要条件为x y 1==;④如果让实数a 与 ai 对应,那么实数集与纯虚数集一一对应.其中正确说法的为 __________.三、解答题21.(1)计算:()()432-2i (i 为虚数单位);(2)已知z 是一个复数,求解关于z 的方程,313z z i z i ⋅-⋅=+(i 为虚数单位).22.已知()()212162=10,25,,51z a i z a i a R i a a--=+-∈+-为虚数单位.若12z z +是实数. (1)求实数a 的值; (2)求12z z ⋅的值.23.已知i 为虚数单位,关于x 的方程()()2690x i x ai a R -+++=∈有实数根b . (1)求实数a ,b 的值;(2)若复数z 满足20z a bi z ---=,求z 为何值时,z 有最小值,并求出z 的最小值.24.(1)求复数2320191i i i izi++++=+的值.(2)复数()213105z a ia=+-+,()22251z a ia=+--,若12z z+是在复平面内对应的点在第三象限,求实数a的取值范围.25.已知复数()2227656 ()1a az a a i a Ra-+=+--∈-,实数a取什么值时,z是:①实数?②虚数?③纯虚数?26.如图,在复平面内,已知复数z1,z2,z3对应的向量分别是OA OB OC,,,i是虚数单位,若复数123z zzz⋅=,求11i2z+.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据复数121,2z z==,可得①是错误的;根据复数的表示,可得②是错误的;根据复数的分类,列出方程组,可得③是正确的;根据1231,,1z z i z===-,可得④错误的.【详解】对于①中,例如复数121,2z z==,此时12z z<,所以①是错误的;对于②中,复数i1z=-对应的点坐标为(1,1)-位于第二象限,所以②是错误的;对于③中,若()()22132ix x x-+++是纯虚数,则满足2210320xx x⎧-=⎨++≠⎩,解得1x=,所以③是正确的;对于④中,例如1231,,1z z i z ===-,则()()22110i i -++=,所以④错误的. 故选:B.【点睛】本题主要考查了复数的基本概念,以及复数的表示与复数的运算的综合应用,其中解答中熟记复数的概念与运算,逐项判定是解答的关键,着重考查推理与运算能力. 2.C解析:C【分析】根据()2222110t t t ++=++>,2253t t +-可正可负也可为0,即可判定.【详解】 ()2222110t t t ++=++>,z ∴不可能为实数,所以D 错误; z ∴对应的点在实轴的上方,又z 与z 对应的点关于实轴对称,z 对应的点在实轴的下方,所以C 正确;213,25302t t t -<<+-<,z 对应的点在第二象限,所以A 错误; 21,25302t t t =+-=,z 可能为纯虚数,所以B 错误; ∴C 项正确.故选:C【点睛】此题考查复数概念的辨析,关键在于准确求出实部和虚部的取值范围.3.B解析:B【解析】【分析】根据复数的概念和性质,利用复数的代数形式的运算法则,即可得出正确选项.【详解】解:对于①,当a i =时,10a a+=,即①不成立, 对于②,根据复数代数形式的运算法则,满足乘法公式,即②在正确,对于③,在复数C 中,1i =,则1,a b i ==时,a b ≠±,即③错误,对于④,根据复数代数形式的运算法则可得,若2a ab =,则a b ,=即④正确, 综上可得上述命题中仍为真命题的序号为②④,故选B.【点睛】本题考查了复数的概念和性质及复数的代数形式的运算法则,属基础题.4.B解析:B【分析】利用复数的运算法则解得1z i =-+,结合共轭复数的概念即可得结果.【详解】∵复数z 满足21i i z =-,∴()()()2121111i i i z i i i i +===---+, ∴复数z 的共轭复数等于1i --,故选B.【点睛】本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.5.A解析:A【分析】复数23i -是方程的根,代入方程,整理后利用复数的相等即可求出p,q 的值.【详解】因为23i -是方程220x px q ++=的一个根,所以22(23)(23)0i p i q -+-+=, 即(224)3100p i p q --++=,所以22403100p p q -=⎧⎨-++=⎩,解得12,26p q ==,故选A. 【点睛】本题主要考查了复数方程及复数相等的概念,属于中档题.6.C解析:C【解析】BC BA AO OC AB OA OC =++=--+15(2)3244i i i i =----+++=-,选C.7.B解析:B【分析】利用错位相减法、等比数列的求和公式及复数的周期性进行计算可得答案.【详解】解:设2320192342020S i i i i =+++⋅⋅⋅+,可得:24201920320023420192020iS i i i i i =++++⋅⋅⋅++,则24201923020(1)22020i S i i i i ii -=++++⋅⋅⋅+-, 2019242019202023020(1)(1)202020201i i i S i i i i i i i i i i--=+++++⋅⋅⋅+-+-=-, 可得:2(1)(1)(1)20202020202112i i i i i S i i i i ++-=+-=+-=-+-,可得:2021(2021)(1)1011101012i i i S i i -+-++===---, 故选:B.【点睛】 本题主要考查等比数列的求和公式,错位相减法、及复数的乘除法运算,属于中档题. 8.C解析:C【分析】A .根据复数虚部相同,实部不同时,举例可判断结论是否正确;B .根据实数的共轭复数还是其本身判断2||z z z ⋅=是否成立;C .根据复数乘法的运算法则可知是否正确;D .考虑特殊情况:12,1z i z ==,由此判断是否正确.【详解】A .当122,1i z z i =+=+时,1210z z -=>,此时12,z z 无法比较大小,故错误;B .当0z =时,0z z ==,所以20z z z ⋅==,所以此时2||z zz ⋅=成立,故错误;C .根据复数乘法的运算法则可知:10z =或20z =,故正确;D .当12,1z i z ==时,2212110z z +=-+=,此时10z ≠且20z ≠,故错误. 故选:C.【点睛】本题考查复数的概念以及复数的运算性质的综合,难度一般.(1)注意实数集是复数集的子集,因此实数是复数;(2)若z C ∈,则有2z z z ⋅=. 9.C解析:C【解析】【分析】根据复数的运算求得2i z =-+,得到z 2i =--,再根据复数的表示,即可求解,得到答案.【详解】由题意,根据复数的运算可得复数252i +i 2i z ==-+, 则z 2i =--,所以z 对应点(2,1)--在第三象限,故选C .【点睛】本题主要考查了复数的运算,以及复数的表示,其中解答中熟记复数的运算法则,以及复数的表示是解答的关键,着重考查了推理与运算能力,属于基础题.10.C解析:C【解析】【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.【详解】由()2345i z i --=+=,得()()()5252222i z i i i i -+===-+-----+, 2z i ∴=--.故选C .【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.11.B解析:B【解析】【分析】根据复数的运算法则计算即可.【详解】()15i z i -+=,()()()()51523111i i i z i i i i +-+∴===+++-, 2 3.z i ∴=-故选B.【点睛】本题考查了复数的运算法则和共轭复数的概念,属于基础题12.C解析:C 【分析】 先化简复数,再利用纯虚数的定义求解.【详解】由题得()(32)(32)(23)32(32)(32)13a i a i i a a i i i i -----+==++-, 因为32a i i-+为纯虚数, 则320(23)0a a -=⎧⎨-+≠⎩,所以23a =. 故选:C【点睛】结论点睛:复数(,)z a bi a b R =+∈则0a =且0b ≠,不要漏掉了0b ≠.二、填空题13.1【分析】复数满足为虚数单位)设利用复数模的计算公式与三角函数求值即可得出【详解】解:复数满足为虚数单位)设则当且仅当时取等号故答案为:1【点睛】本题考查了复数的运算法则模的计算公式及其三角函数求值 解析:1【分析】复数z 满足||1(z i =为虚数单位),设cos sin z i θθ=+,[0θ∈,2)π.利用复数模的计算公式与三角函数求值即可得出.【详解】 解:复数z 满足||1(z i =为虚数单位),设cos sin z i θθ=+,[0θ∈,2)π.则|2||cos (sin 2)|1z i i θθθ-=+-,当且仅当sin 1θ=时取等号.故答案为:1.【点睛】本题考查了复数的运算法则、模的计算公式及其三角函数求值,考查了推理能力与计算能力,属于中档题. 14.【分析】根据复数的几何意义可知代表的是圆上代表的是线利用线与圆的位置关系可知结果【详解】的几何意义是以点为圆心1为半径的圆表示到点和点的距离相等的点的集合是线段的垂直平分线也就是轴的几何意义是轴与圆 解析:{}0,2-【分析】根据复数的几何意义,可知11z +=代表的是圆上,i z i z +=-代表的是线,利用线与圆的位置关系,可知结果.【详解】 11z +=的几何意义是以点()1,0-为圆心,1为半径的圆.i i z z +=-表示到点()0,1A 和点()0,1B -的距离相等的点的集合,是线段AB 的垂直平分线,也就是x 轴.M N ⋂的几何意义是x 轴与圆的公共点对应的复数,故0z =或2z =-,{}0,2M N ∴⋂=-.【点睛】本题考查复数的几何意义,属中档题.15.38;【分析】假设另外一个根为根据是实数结合韦达定理可得结果【详解】假设另外一个根为是方程的一个根则①由可知是的共轭复数所以②把②代入①可知所以故答案为:38【点睛】本题重在考查是实数掌握复数共轭复解析:38;【分析】假设另外一个根为z ,根据z z 是实数,结合韦达定理,可得结果.【详解】假设另外一个根为z ,23i -是方程()220,x px q p q R ++=∈的一个根, 则 ()232232p i z q i z ⎧-+=-⎪⎪⎨⎪-=⎪⎩① 由,p q R ∈,可知z 是23i -的共轭复数,所以32z i =-- ②把②代入①可知1226p q =⎧⎨=⎩所以38p q +=故答案为:38【点睛】本题重在考查z z 是实数,掌握复数共轭复数的形式,属基础题16.【分析】根据复数的几何意义可知复数对应的点的坐标为再根据该点位于第二象限得即而再用二次函数法求其取值范围【详解】因为复数对应的点的坐标为又因为该点位于第二象限所以解得所以因为所以故答案为:【点睛】本解析:2⎡⎫⎪⎢⎪⎣⎭【分析】根据复数的几何意义,可知复数(2)(1)()z a a i a R =-++∈对应的点的坐标为21a a -+(,),再根据该点位于第二象限,得2010a a -<⎧⎨+>⎩即1a 2-<<,而||z ===范围.【详解】因为复数(2)(1)()z a a i a R =-++∈对应的点的坐标为()21a a -+,,又因为该点位于第二象限,所以20,10,a a -<⎧⎨+>⎩解得1a 2-<<.所以||z === 因为1a 2-<<,所以||,32z ⎡⎫∈⎪⎢⎪⎣⎭.故答案为:⎫⎪⎪⎣⎭【点睛】本题主要考查复数的几何意义,复数的模,还考查运算求解的能力,属于中档题. 17.【分析】根据复数减法和复数相等的条件列方程组结合两角和的余弦公式化简求得的值【详解】得即故答案为:【点睛】本小题主要考查复数减法和复数相等的条件考查两角和的余弦公式考查化归与转化的数学思想方法属于基 解析:12【分析】根据复数减法和复数相等的条件列方程组,结合两角和的余弦公式,化简求得cos()αβ+的值.【详解】1cos sin z i αα=+,2cos sin z i ββ=-,12512(cos cos )(sin sin )1313z z i i αβαβ∴-=-++=+,5cos cos ,1312sin sin ,13αβαβ⎧-=⎪⎪∴⎨⎪+=⎪⎩①② 22+①②,得22cos()1αβ-+=,即1cos()2αβ+=. 故答案为:12【点睛】 本小题主要考查复数减法和复数相等的条件,考查两角和的余弦公式,考查化归与转化的数学思想方法,属于基础题.18.以为圆心2为半径的圆【分析】根据复数模的定义确定复数对应点满足条件化简即得轨迹【详解】解:∵∴即点的轨迹是以为圆心2为半径的圆故答案为:以为圆心2为半径的圆【点睛】本题考查复数模的定义以及圆的方程含 解析:以(3,2)-为圆心,2为半径的圆【分析】根据复数模的定义确定复数对应点满足条件,化简即得轨迹.【详解】解:∵||2z =,∴22(3)(2)4x y ++-=,即点(,)x y 的轨迹是以(3,2)-为圆心,2为半径的圆.故答案为:以(3,2)-为圆心,2为半径的圆【点睛】本题考查复数模的定义以及圆的方程含义,考查基本分析求解能力,属基础题. 19.【分析】先根据复数除法得再根据共轭复数概念得【详解】因为所以即【点睛】本题重点考查复数的概念与复数相等属于基本题复数的实部为虚部为模为对应点为共轭为解析:2i +【分析】 先根据复数除法得z ,再根据共轭复数概念得z .【详解】因为()1243i z i +=+,所以43212i z i i+==-+,即2.z i =+ 【点睛】本题重点考查复数的概念与复数相等,属于基本题.复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭为.-a bi 20.③【解析】分析:①根据纯虚数的定义可判断;②根据共轭复数的定义可判断;③根据复数相等的性质可判定;④根据纯虚数的定义可判断详解:①因为是虚数也是纯虚数错误;②两个复数的和为实数时这两个复数不一定是共解析:③.【解析】分析:①根据纯虚数的定义可判断;②根据共轭复数的定义可判断;③根据复数相等的性质可判定;④根据纯虚数的定义可判断.详解:①因为2i -是虚数也是纯虚数,错误;②两个复数的和为实数时,这两个复数不一定是共轭复数,如1i -和3i +,这两个复数的和为实数,但这两个复数不是共轭复数,错误;③已知,x y R ∈,则i 1i x y +=+的充要条件为1x y ==,正确;④如果让实数a 与i a 对应,那么实数集与纯虚数集不是一一对应的,如当0a =时,错误,故答案为③.点睛:本题主要通过对多个命题真假的判断,主要综合考查复数的基本概念,属于中档题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.三、解答题21.(1)8;(2)13z i =-+或1z =-【分析】(1)()()()()()()4222232-22-22-28i i i i -=即可化简得值;(2)设,,z a bi a b R =+∈,建立等式()()()313a bi a bi i a bi i +---=+,列方程组求解.【详解】(1)()()()()()()4222232-22-22-286488i i i i --===-; (2)设,,z a bi a b R =+∈,313z z i z i ⋅-⋅=+,即()()()313a bi a bi i a bi i +---=+, 223313a b b ai i +--=+,所以2231,33a b b a +-=-=,解得13a b =-⎧⎨=⎩或10a b =-⎧⎨=⎩, 所以13z i =-+或1z =-.故答案为:13z i =-+或1z =-【点睛】此题考查复数的运算,关键在于根据题意利用复数的运算法则,准确计算求解. 22.(1)3;(2)3i -+.【分析】(1)求出12z z +,再根据复数的分类求出a 值;(2)写出共轭复数,然后由复数的乘法运算法则计算.【详解】(1)()2116105z a i a =--+,()22251z a i a=+--, ()()()()2212162162102525105151z z a i a i a a i a a a a ⎛⎫⎡⎤+=--++-=++--- ⎪⎣⎦+-+-⎝⎭由题意知12z z +为实数, ∴()()225100,50,10,a a a a ⎧---=⎪⎨+≠⎪-≠⎩,解得3a =. (2)当3a =时,12z i =-,21z i =-+, 12z i =+,则()()12213z z i i i ⋅=+-+=-+.【点睛】 本题考查复数的加法、乘法运算法则,考查共轭复数的概念,考查复数的分类,属于基础题.23.(1)3a b ==;(2)min 2z =【分析】(1)方程()()2690x i x ai a R -+++=∈有实数根b ,可得()()2690b b b i a -++-=,根据复数相等列出式子解出a ,b 的值即可;(2)设i z x y =+(x ,y R ∈),由332z i z --=,得()()()2222334x y x y -+-+=+⎡⎤⎣⎦,化简方程,根据表达式的几何意义,方程表示一个圆,再结合图形,可得z ,再求出z ,进而求出最小值即可.【详解】(1)b 是方程()()26i 90x x ai a R -+++=∈的实数根,()()2690b b a b i ∴-++-=,2690b b a b ⎧-+=∴⎨=⎩,解得3a b ==. (2)设i z x y =+(x ,y R ∈),由332z i z --=,得()()()2222334x y x y -+-+=+⎡⎤⎣⎦, 即()()221122x y ++-=,它表示复数z 对应的点Z 到点()1,1-的距离为22, 构成的图形是以()11,1O -为圆心,22为半径的圆,如图所示.当点Z 在1OO 所在的直线上时,z 有最大值或最小值,12OO =22r = ∴当1z i =-时,z 有最小值,且min 2z =【点睛】本题考查复数相等的概念,考查复数及其共轭复数,考查复数的模,考查复数的几何意义,考查数形结合思想,属于中档题.24.(1)1122z i =-+;(2)()1,3 【分析】(1)根据4142434,1,,1n n n n i i i i i i +++==-=-=得414243442340,n n n n i i i i i i i i n N +++++++=+++=∈,进而得2311122i i i z i i ++==-++; (2)由题得()()()2121321551a z z a a i a a -+=++-+-,再结合题意,根据复数的几何意义得()()2130512150a a a a a -⎧<⎪+-⎨⎪+-<⎩,解不等式组即可得答案. 【详解】解:(1)由于4142434,1,,1n n n n i i i i i i +++==-=-=,所以414243442340,n n n n i i i i i i i i n N +++++++=+++=∈,而201945043=⨯+, 所以()232019231111111222i i i i i i i i z i i i i --++++++-=====-++++; (2)()()()()22123232102510255151z z a i a i a a i a a a a ⎛⎫⎡⎤+=+-++-=++-+- ⎪⎣⎦+-+-⎝⎭()()()21321551a a a i a a -=++-+-, 因为12z z +在复平面内对应的点在第三象限,所以()()2130512150a a a a a -⎧<⎪+-⎨⎪+-<⎩,解不等式组得:13a <<. 故实数a 的取值范围是()1,3【点睛】本题考查复数的运算,复数的几何意义求参数,考查运算能力,是中档题.25.①6a =;②1a ≠±且6a ≠;③无解.【分析】对于复数z a bi =+(),a b R ∈,若0b =,则z 为实数;若0b ≠,则z 为虚数;若0b ≠且0a =,则z 为纯虚数;得到不等式解得;【详解】解:()2227656 ()1a a z a a i a R a -+=+--∈- ①若复数z 是实数,则22560,10,a a a ⎧--=⎨-≠⎩即16,1,a a a =-=⎧⎨≠±⎩或即6a =. ②若复数z 是虚数,则22560,10,a a a ⎧--≠⎨-≠⎩即16,1,a a a ≠-≠⎧⎨≠±⎩且即1a ≠±且6a ≠.③若复数z 是纯虚数,则222560,760,10,a a a a a ⎧--≠⎪-+=⎨⎪-≠⎩即16161a a a a a ≠-≠⎧⎪==⎨⎪≠±⎩且,且,,此时无解.【点睛】本题考查复数的基本概念,需注意实部的分母不能为零,属于基础题.26.3【分析】由题图可知,z 1=3+i ,z 2=1-2i ,z 3=-2+2i ,再求出复数z,再求i 2z +. 【详解】解:由题图可知,z 1=3+i ,z 2=1-2i ,z 3=-2+2i , 则123(3)(12)5222z z i i z z i ⋅+-===--+,∴532222z z +=-++==. 【点睛】本题主要考查复数的几何意义,考查复数的计算和模的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.。
高中数学复数练习题 百度文库
一、复数选择题1.若复数(1)()(i a i i -+是虚数单位)为纯虚数,则实数a 的值为( )A .2B .1C .0D .1- 2.212i i+=-( ) A .1 B .−1C .i -D .i 3.若复数1z i i ⋅=-+,则复数z 的虚部为( ) A .-1B .1C .-iD .i 4.若复数1211i z i +=--,则z 在复平面内的对应点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 5.若(1)2z i i -=,则在复平面内z 对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 6.复数12i z i=+(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 7.已知复数z 的共轭复数212i z i -=+,i 是虚数单位,则复数z 的虚部是( ) A .1B .-1C .iD .i - 8.设复数z 满足41i z i =+,则z 的共轭复数z 在复平面内的对应点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限 9.已知i 是虚数单位,a 为实数,且3i 1i 2i a -=-+,则a =( ) A .2 B .1 C .-2 D .-110.在复平面内,已知平行四边形OABC 顶点O ,A ,C 分别表示25-+i ,32i +,则点B 对应的复数的共轭复数为( )A .17i -B .16i -C .16i --D .17i -- 11.设a +∈R ,复数()()()242121i i z ai ++=-,若1z =,则a =( ) A .10 B .9 C .8 D .712.复数()()212z i i =-+在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 13.复数21i i+的虚部为( )A .1-B .1C .iD .i -14.若i 为虚数单位,,a b ∈R ,且2a i b i i +=+,则复数a bi -的模等于( )A B C D15.设复数满足(12)i z i +=,则||z =( )A .15BCD .5二、多选题16.已知复数Z 在复平面上对应的向量(1,2),OZ =-则( )A .z =-1+2iB .|z |=5C .12z i =+D .5z z ⋅=17.已知复数12z =-,则下列结论正确的有( )A .1z z ⋅=B .2z z =C .31z =-D .2020122z =-+ 18.下面关于复数的四个命题中,结论正确的是( )A .若复数z R ∈,则z R ∈B .若复数z 满足2z ∈R ,则z R ∈C .若复数z 满足1R z∈,则z R ∈ D .若复数1z ,2z 满足12z z R ∈,则12z z = 19.设复数z 满足1z i z +=,则下列说法错误的是( ) A .z 为纯虚数 B .z 的虚部为12i -C .在复平面内,z 对应的点位于第三象限D .2z = 20.已知复数z 满足2724z i =--,在复平面内,复数z 对应的点可能在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限 21.下列说法正确的是( )A .若2z =,则4z z ⋅=B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数z 的平方是纯虚数,则复数z 的实部和虛部相等D .“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件 22.已知i 为虚数单位,复数322i z i +=-,则以下真命题的是( ) A .z 的共轭复数为4755i - B .z 的虚部为75i C .3z = D .z 在复平面内对应的点在第一象限23.下列结论正确的是( )A .已知相关变量(),x y 满足回归方程ˆ9.49.1yx =+,则该方程相应于点(2,29)的残差为1.1B .在两个变量y 与x 的回归模型中,用相关指数2R 刻画回归的效果,2R 的值越大,模型的拟合效果越好C .若复数1z i =+,则2z =D .若命题p :0x R ∃∈,20010x x -+<,则p ⌝:x R ∀∈,210x x -+≥24.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )A .复数z 的虚部为iB .z =C .复数z 的共轭复数1z i =-D .复数z 在复平面内对应的点在第一象限 25.已知i 为虚数单位,以下四个说法中正确的是( ). A .234i i i i 0+++=B .3i 1i +>+C .若()2z=12i +,则复平面内z 对应的点位于第四象限D .已知复数z 满足11z z -=+,则z 在复平面内对应的点的轨迹为直线26.已知复数()(()()211z m m m i m R =-+-∈,则下列说法正确的是( )A .若0m =,则共轭复数1z =-B .若复数2z =,则mC .若复数z 为纯虚数,则1m =±D .若0m =,则2420z z ++=27.以下为真命题的是( ) A .纯虚数z 的共轭复数等于z -B .若120z z +=,则12z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数28.(多选)()()321i i +-+表示( )A .点()3,2与点()1,1之间的距离B .点()3,2与点()1,1--之间的距离C .点()2,1到原点的距离D .坐标为()2,1--的向量的模29.设()()2225322z t t t t i =+-+++,t ∈R ,i 为虚数单位,则以下结论正确的是( )A .z 对应的点在第一象限B .z 一定不为纯虚数C .z 一定不为实数D .z 对应的点在实轴的下方 30.已知复数i z a b =+(a ,b ∈R ,i 为虚数单位),且1a b +=,下列命题正确的是( ) A .z 不可能为纯虚数B .若z 的共轭复数为z ,且z z =,则z 是实数C .若||z z =,则z 是实数D .||z 可以等于12【参考答案】***试卷处理标记,请不要删除一、复数选择题1.D【分析】由复数乘法化复数为代数形式,然后根据复数的分类求解.【详解】,它为纯虚数,则,解得.故选:D .解析:D【分析】由复数乘法化复数为代数形式,然后根据复数的分类求解.【详解】2(1)()1(1)i a i a i ai i a a i -+=+--=++-,它为纯虚数,则1010a a +=⎧⎨-≠⎩,解得1a =-. 故选:D .2.D【分析】利用复数的除法运算即可求解.【详解】,故选:D解析:D【分析】利用复数的除法运算即可求解.【详解】()()()()2221222255121212145i i i i i i i i i i i +++++====--+-, 故选:D3.B【分析】,然后算出即可.由题意,则复数的虚部为1故选:B解析:B【分析】1i z i-+=,然后算出即可. 【详解】 由题意()11111i i i i z i i i i -+-+--====+⋅-,则复数z 的虚部为1 故选:B4.B【分析】利用复数的运算法则和复数的几何意义求解即可【详解】,所以,在复平面内的对应点为,则对应点位于第二象限故选:B解析:B【分析】利用复数的运算法则和复数的几何意义求解即可【详解】()()12i 1i 12i 33i 33i 111i 2222z +++-+=-=-==-+-, 所以,z 在复平面内的对应点为33,22⎛⎫- ⎪⎝⎭,则对应点位于第二象限 故选:B5.B【分析】先求解出复数,然后根据复数的几何意义判断.【详解】因为,所以,故对应的点位于复平面内第二象限.故选:B.【点睛】本题考查复数的除法运算及复数的几何意义,属于基础题. 化简计解析:B先求解出复数z ,然后根据复数的几何意义判断.【详解】因为(1)2z i i -=,所以()212112i i i z i i +===-+-, 故z 对应的点位于复平面内第二象限.故选:B.【点睛】 本题考查复数的除法运算及复数的几何意义,属于基础题. 化简计算复数的除法时,注意分子分母同乘以分母的共轭复数.6.A【分析】对复数进行分母实数化,根据复数的几何意义可得结果.【详解】由,知在复平面内对应的点位于第一象限,故选:A.【点睛】本题主要考查了复数除法的运算以及复数的几何意义,属于基础题解析:A【分析】对复数z 进行分母实数化,根据复数的几何意义可得结果.【详解】 由()()()122112121255i i i z i i i i -===+++-, 知在复平面内对应的点21,55⎛⎫⎪⎝⎭位于第一象限, 故选:A.【点睛】本题主要考查了复数除法的运算以及复数的几何意义,属于基础题.7.A【分析】先化简,由此求得,进而求得的虚部.【详解】,所以,则的虚部为.故选:A【分析】 先化简z ,由此求得z ,进而求得z 的虚部.【详解】()()()()212251212125i i i i z i i i i ----====-++-, 所以z i ,则z 的虚部为1.故选:A8.D【分析】先对化简,从而可求出共轭复数,再利用复数的几何意义可得答案【详解】解:因为,所以,所以共轭复数在复平面内的对应点位于第四象限,故选:D解析:D【分析】 先对41i z i=+化简,从而可求出共轭复数z ,再利用复数的几何意义可得答案 【详解】 解:因为244(1)4(1)=2(1)22221(1)(1)2i i i i i z i i i i i i i i --===-=-=+++-, 所以22z i =-, 所以共轭复数z 在复平面内的对应点位于第四象限,故选:D9.B【分析】可得,即得.【详解】由,得a =1.故选:B .解析:B【分析】可得3(2)(1)3ai i i i -=+-=-,即得1a =.【详解】由23(2)(1)223ai i i i i i i -=+-=-+-=-,得a =1.10.A【分析】根据复数的几何意义得出坐标,由平行四边形得点坐标,即得点对应复数,从而到共轭复数.【详解】由题意,设,∵是平行四边形,AC 中点和BO 中点相同,∴,即,∴点对应是,共轭复数为.解析:A【分析】根据复数的几何意义得出,A C 坐标,由平行四边形得B 点坐标,即得B 点对应复数,从而到共轭复数.【详解】由题意(2,5),(3,2)A C -,设(,)B x y ,∵OABC 是平行四边形,AC 中点和BO 中点相同,∴023052x y +=-+⎧⎨+=+⎩,即17x y =⎧⎨=⎩,∴B 点对应是17i +,共轭复数为17i -. 故选:A .11.D【分析】根据复数的模的性质求模,然后可解得.【详解】解:,解得.故选:D .【点睛】本题考查复数的模,掌握模的性质是解题关键.设复数,则,模的性质:,,.解析:D【分析】根据复数的模的性质求模,然后可解得a .【详解】 解:()()()()24242422221212501111i i i i a ai ai ++++====+--,解得7a =. 故选:D .本题考查复数的模,掌握模的性质是解题关键.设复数(,)z a bi a b R =+∈,则z = 模的性质:1212z z z z =,(*)n n z z n N =∈,1122z z z z =. 12.A【分析】利用复数的乘法化简复数,利用复数的乘法可得出结论.【详解】,因此,复数在复平面内对应的点位于第一象限.故选:A.解析:A【分析】利用复数的乘法化简复数z ,利用复数的乘法可得出结论.【详解】()()221223243z i i i i i =-+=+-=+,因此,复数z 在复平面内对应的点位于第一象限.故选:A.13.B【分析】将分母乘以其共轭复数进行分母实数化,化成的代数形式即得结果.【详解】,故虚部为1.故选:B.解析:B【分析】将分母乘以其共轭复数进行分母实数化,化成(),a bi a b R +∈的代数形式即得结果.【详解】22(1)11(1)(1)i i i i i i i -==+++-,故虚部为1. 故选:B.14.C【分析】首先根据复数相等得到,,再求的模即可.【详解】因为,所以,.所以.故选:C解析:C【分析】首先根据复数相等得到1a =-,2b =,再求a bi -的模即可.【详解】因为()21a i b i i bi +=+=-+,所以1a =-,2b =.所以12a bi i -=--==故选:C 15.B【分析】利用复数除法运算求得,再求得.【详解】依题意,所以.故选:B 解析:B【分析】利用复数除法运算求得z ,再求得z .【详解】 依题意()()()12221121212555i i i i z i i i i -+====+++-,所以z == 故选:B二、多选题16.AD【分析】因为复数Z 在复平面上对应的向量,得到复数,再逐项判断.【详解】因为复数Z 在复平面上对应的向量,所以,,|z|=,,故选:AD【分析】因为复数Z 在复平面上对应的向量(1,2)OZ =-,得到复数12z i =-+,再逐项判断.【详解】因为复数Z 在复平面上对应的向量(1,2)OZ =-,所以12z i =-+,12z i =--,|z 5z z ⋅=,故选:AD17.ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为,所以A 正确;因为,,所以,所以B 错误;因为,所以C 正确;因为,所以,所以D 正确解析:ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为111312244z z ⎛⎫⎛⎫=+= ⎪⎪ ⎪⎪⎝⎭⎭=⎝⋅,所以A 正确;因为221122z ⎛⎫-=-- ⎪ ⎪⎝⎭=,122z =+,所以2z z ≠,所以B 错误;因为3211122z z z ⎛⎫⎛⎫=⋅=-=- ⎪⎪ ⎪⎪⎝⎭⎝⎭,所以C 正确;因为6331z z z =⋅=,所以()2020633644311122zz z z z ⨯+⎛⎫===⋅=-⋅=-+ ⎪ ⎪⎝⎭,所以D 正确,故选:ACD.【点睛】 本题考查复数乘法与乘方的计算,其中还涉及到了共轭复数的计算,难度较易.18.AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.A 选项,设复数,则,因为,所以,因此,即A 正确;B 选项,设复数,则,因为,所,若,则;故B 错;C 选项,设解析:AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数(,)z a bi a b R =+∈,则(i ,)z a b a b =-∈R ,因为z R ∈,所以0b =,因此z a R =∈,即A 正确;B 选项,设复数(,)z a bi a b R =+∈,则()22222z a bi a b abi =+=-+,因为2z ∈R ,所0ab =,若0,0a b =≠,则z R ∉;故B 错;C 选项,设复数(,)z a bi a b R =+∈,则22222211a bi a b i z a bi a b a b a b -===-++++, 因为1R z∈,所以220b a b =+,即0b =,所以z a R =∈;故C 正确; D 选项,设复数1(,)z a bi a b R =+∈,2(,)z c di c d R =+∈,则()()()()12z z a bi c di ac bd ad bc i =++=-++,因为12z z R ∈,所以0ad bc +=,若11a b =⎧⎨=⎩,22c d =⎧⎨=-⎩能满足0ad bc +=,但12z z ≠,故D 错误.故选:AC.【点睛】本题主要考查复数相关命题的判断,熟记复数的运算法则即可,属于常考题型.19.AB【分析】先由复数除法运算可得,再逐一分析选项,即可得答案.【详解】由题意得:,即,所以z 不是纯虚数,故A 错误;复数z 的虚部为,故B 错误;在复平面内,对应的点为,在第三象限,故C 正确解析:AB【分析】 先由复数除法运算可得1122z i =--,再逐一分析选项,即可得答案.由题意得:1z zi +=,即111122z i i -==---, 所以z 不是纯虚数,故A 错误;复数z 的虚部为12-,故B 错误; 在复平面内,z 对应的点为11(,)22--,在第三象限,故C 正确;2z ==,故D 正确. 故选:AB【点睛】本题考查复数的除法运算,纯虚数、虚部的概念,复平面内点所在象限、复数求模的运算等知识,考查计算求值的能力,属基础题.20.BD【分析】先设复数,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出,即可确定对应的点所在的象限.【详解】设复数,则,所以,则,解得或,因此或,所以对应的点为或,因此复解析:BD【分析】先设复数(),z a bi a b R =+∈,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出z ,即可确定对应的点所在的象限.【详解】设复数(),z a bi a b R =+∈,则2222724z a abi b i =+-=--,所以2222724z a abi b i =+-=--,则227224a b ab ⎧-=-⎨=-⎩,解得34a b =⎧⎨=-⎩或34a b =-⎧⎨=⎩, 因此34z i =-或34z i =-+,所以对应的点为()3,4-或()3,4-,因此复数z 对应的点可能在第二或第四象限.故选:BD.【点睛】本题主要考查判定复数对应的点所在的象限,熟记复数的运算法则,以及复数相等的条件即可,属于基础题型.21.AD【分析】由求得判断A ;设出,,证明在满足时,不一定有判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】若,则,故A 正确;设,由,可得则,而不一定为0,故B 错误;当时解析:AD【分析】 由z 求得z z ⋅判断A ;设出1z ,2z ,证明在满足1212z z z z +=-时,不一定有120z z =判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】 若2z =,则24z z z ⋅==,故A 正确;设()11111,z a bi a b R =+∈,()22222,z a b i a b R =+∈ 由1212z z z z +=-,可得()()()()222222121212121212z z a a b b z z a a b b +=+++=-=-+-则12120a a b b +=,而()()121122121212121212122z z a bi a b i a a bb a b i b a i a a a b i b a i =++=-++=++不一定为0,故B 错误;当1z i =-时22z i =-为纯虚数,其实部和虚部不相等,故C 错误;若复数()()()211z a a i a R =-+-∈是虚数,则210a -≠,即1a ≠± 所以“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件,故D 正确; 故选:AD【点睛】本题考查的是复数的相关知识,考查了学生对基础知识的掌握情况,属于中档题.22.AD【分析】先利用复数的除法、乘法计算出,再逐项判断后可得正确的选项.【详解】,故,故A 正确.的虚部为,故B 错,,故C 错,在复平面内对应的点为,故D 正确.故选:AD.【点睛】本题考解析:AD【分析】先利用复数的除法、乘法计算出z ,再逐项判断后可得正确的选项.【详解】()()32232474725555i i i i i z i ++++====+-,故4755i z =-,故A 正确.z 的虚部为75,故B 错,3z ==≠,故C 错, z 在复平面内对应的点为47,55⎛⎫ ⎪⎝⎭,故D 正确. 故选:AD.【点睛】本题考查复数的概念、复数的运算以及复数的几何意义,注意复数(),z a bi a b R =+∈的虚部为b ,不是bi ,另外复数的除法运算是分子分母同乘以分母的共轭复数.23.ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当时,,则该方程相应于点(2,29)的残差为,则A 正确;在两个变量解析:ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当2x =时,ˆ9.429.127.9y=⨯+=,则该方程相应于点(2,29)的残差为2927.9 1.1-=,则A 正确;在两个变量y 与x 的回归模型中,2R 的值越大,模型的拟合效果越好,则B 正确;1z i =-,z ==C 错误;由否定的定义可知,D 正确;故选:ABD【点睛】本题主要考查了残差的计算,求复数的模,特称命题的否定,属于中档题. 24.BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数,所以其虚部为,即A 错误;,故B 正确;解析:BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数1z i =+, 所以其虚部为1,即A 错误;z ==B 正确;复数z 的共轭复数1z i =-,故C 正确;复数z 在复平面内对应的点为()1,1,显然位于第一象限,故D 正确.故选:BCD.【点睛】本题主要考查复数的概念,复数的模,复数的几何意义,以及共轭复数的概念,属于基础题型.25.AD【分析】根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简,得出,从而判断D.【详解】,则A 正确;虚数不能比较大小,则B 错误;,则,解析:AD根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简11z z -=+,得出0x =,从而判断D.【详解】234110i i i i i i +++=--+=,则A 正确;虚数不能比较大小,则B 错误;()221424341z i i i i =++=+-+=,则34z i =--,其对应复平面的点的坐标为(3,4)--,位于第三象限,则C 错误; 令,,z x yi x y R =+∈,|1||1z z -=+∣,=,解得0x =则z 在复平面内对应的点的轨迹为直线,D 正确;故选:AD【点睛】本题主要考查了判断复数对应的点所在的象限,与复数模相关的轨迹(图形)问题,属于中档题.26.BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,时,,则,故A 错误;对于B ,若复数,则满足,解得,故B 正确;对于C ,若复数z 为纯虚数,则满足,解得,解析:BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,0m =时,1z =-,则1z =-,故A 错误;对于B ,若复数2z =,则满足(()21210m m m ⎧-=⎪⎨-=⎪⎩,解得m ,故B 正确; 对于C ,若复数z为纯虚数,则满足(()21010m m m ⎧-=⎪⎨--≠⎪⎩,解得1m =-,故C 错误; 对于D ,若0m =,则1z =-+,()()221420412z z ++=+--+=+,故D 正确.故选:BD.本题主要考查对复数相关概念的理解,注意不同情形下的取值要求,是一道基础题.27.AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若为纯虚数,可设,则,即纯虚数的共轭复数等于,故A 正确;对于B解析:AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若z 为纯虚数,可设()0z bi b =≠,则z bi z =-=-,即纯虚数z 的共轭复数等于z -,故A 正确;对于B ,由120z z +=,得出12z z =-,可设11z i =+,则21z i =--, 则21z i =-+,此时12z z ≠,故B 错误;对于C ,设12,z a bi z c di =+=+,则()()12a c b d i R z z =++++∈,则0b d +=, 但,a c 不一定相等,所以1z 与2z 不一定互为共轭复数,故C 错误;对于D ,120z z -=,则12z z =,则1z 与2z 互为共轭复数,故D 正确.故选:AD.【点睛】本题考查与复数有关的命题的真假性,考查复数的基本概念和运算,涉及实数、纯虚数和共轭复数的定义,属于基础题. 28.ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于,也等于,即可判断选项C,D【详解】由复数的几何意义,知复数,分别对应复平面内的点与点,所以表示点与点之间的距离,故A 说法正确,B解析:ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于2i +,也等于2i --,即可判断选项C,D【详解】由复数的几何意义,知复数32i +,1i +分别对应复平面内的点()3,2与点()1,1,所以()()321i i +-+表示点()3,2与点()1,1之间的距离,故A 说法正确,B 说法错误;()()3212i i i +-+=+,2i +可表示点()2,1到原点的距离,故C 说法正确;()()()()3211322i i i i i +-+=+-+=--,2i --可表示表示点()2,1--到原点的距离,即坐标为()2,1--的向量的模,故D 说法正确,故选:ACD【点睛】本题考查复数的几何意义,考查复数的模29.CD【分析】利用配方法得出复数的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】,,所以,复数对应的点可能在第一象限,也可能在第二象限,故A 错误 解析:CD【分析】利用配方法得出复数z 的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】22549492532488t t t ⎛+⎫= ⎪⎝⎭+-->-,()2222110t t t ++=++>, 所以,复数z 对应的点可能在第一象限,也可能在第二象限,故A 错误;当222530220t t t t ⎧+-=⎨++≠⎩,即3t =-或12t =时,z 为纯虚数,故B 错误; 因为2220t t ++>恒成立,所以z 一定不为实数,故C 正确;由选项A 的分析知,z 对应的点在实轴的上方,所以z 对应的点在实轴的下方,故D 正确. 故选:CD.【点睛】本题考查复数的几何意义与复数的概念相关命题真假的判断,解题的关键就是求出复数虚部和实部的取值范围,考查计算能力与推理能力,属于中等题.30.BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当时,,此时为纯虚数,A 错误;若z 的共轭复数为,且,则,因此,B 正确;由是实数,且知,z 是实数,C 正确;由解析:BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当0a =时,1b =,此时z i 为纯虚数,A 错误;若z 的共轭复数为z ,且z z =,则a bi a bi +=-,因此0b =,B 正确;由||z 是实数,且||z z =知,z 是实数,C 正确;由1||2z =得2214a b +=,又1a b +=,因此28830a a -+=,64483320∆=-⨯⨯=-<,无解,即||z 不可以等于12,D 错误. 故选:BC【点睛】本小题主要考查复数的有关知识,属于基础题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.若 ,则在复平面内,复数 所对应的点位于()
A.第一象限B.第二象限C.第三象限D.第四象限
12. ()
A.1B.-1C.iD.-i
13.已知i是虚数单位,a为实数,且 ,则a=()
A.2B.1C.-2D.-1
14.复数 对应的向量 与 共线,对应的点在第三象限,且 ,则 ()
易错点睛:复数为纯虚数的充要条件是且,不要只写.本题不能只写出,还要写上.
解析:B
【分析】
先求出 ,再解不等式组 即得解.
【详解】
依题意, ,
因为复数 为纯虚数,
故 ,解得 .
故选:B
【点睛】
易错点睛:复数 为纯虚数的充要条件是 且 ,不要只写 .本题不能只写出 ,还要写上 .
4.B
【分析】
化简复数,可得,结合选项得出答案.
A.若复数 满足 ,则 B.若复数 满足 ,则
C.若复数 满足 ,则 D.若复数 , 满足 ,则
19.已知复数 (i为虚数单位)在复平面内对应的点为 ,复数z满足 ,下列结论正确的是()
A. 点的坐标为 B.复数 的共轭复数对应的点与点 关于虚轴对称
C.复数z对应的点Z在一条直线上D. 与z对应的点Z间的距离的最小值为
一、复数选择题
1.D
【分析】
运用复数除法的运算法则化简复数的表示,最后选出答案即可.
【详解】
因为,
所以在复平面内,复数(为虚数单位)对应的点的坐标为.
故选:D
解析:D
【分析】
运用复数除法的运算法则化简复数 的表示,最后选出答案即可.
【详解】
因为 ,
所以在复平面内,复数 ( 为虚数单位)对应的点的坐标为 .
【详解】
由题意得 ,则 .
故选:A
8.B
【分析】
由题意,设复数,根据共轭复数的概念,以及题中条件,即可得出结果.
【详解】
因为的实部为,所以可设复数,
则其共轭复数为,又,
所以由,可得,即,因此.
B.在两个变量 与 的回归模型中,用相关指数 刻画回归的效果, 的值越大,模型的拟合效果越好
C.若复数 ,则
D.若命题 : , ,则 : ,
23.已知复数 (其中 为虚数单位),则以下说法正确的有()
A.复数 的虚部为 B.
C.复数 的共轭复数 D.复数 在复平面内对应的点在第一象限
24.已知复数 (其中 为虚数单位),则以下结论正确的是()
【详解】
由
复数()为纯虚数,则 ,则
所以
故选:B
解析:B
【分析】
把给出的复数化简,然后由实部等于0,虚部不等于0求解a的值,最后代入模的公式求模.
【详解】
由
复数 ( )为纯虚数,则 ,则
所以
故选:B
7.A
【分析】
由得出,再由复数的四则运算求解即可.
【详解】
由题意得,则.
故选:A
解析:A
【分析】
由 得出 ,再由复数的四则运算求解即可.
A. B. C.1D.i
6.若复数 ( )为纯虚数,则 ()
A. B. C.3D.5
7.在复平面内,复数 对应的点是 ,则 ()
A. B. C. D.
8.设复数 满足方程 ,其中 为复数 的共轭复数,若 的实部为 ,则 为()
A.1B. C.2D.4
9.若 ,则 ()
A. B.4C. D.8
10.复数 的实部与虚部之和为()
29.复数 ,i是虚数单位,则下列结论正确的是()
A. B.z的共轭复数为
C.z的实部与虚部之和为2D.z在复平面内的对应点位于第一象限
30.给出下列命题,其中是真命题的是()
A.纯虚数 的共轭复数是 B.若 ,则
C.若 ,则 与 互为共轭复数D.若 ,则 与 互为共轭复数
【参考答案】***试卷处理标记,请不要删除
【详解】
则,的虚部为
故选:B
解析:B
【分析】
化简复数 ,可得 ,结合选项得出答案.
【详解】
则 , 的虚部为
故选:B
5.C
【分析】
求出,即可得出,求出虚部.
【详解】
,,其虚部是1.
故选:C.
解析:C
【分析】
求出 ,即可得出 ,求出虚部.
【详解】
, ,其虚部是1.
故选:C.
6.B
【分析】
把给出的复数化简,然后由实部等于0,虚部不等于0求解a的值,最后代入模的公式求模.
A. B. C. D.
15.若 为虚数单位, ,且 ,则复数 的模等于()
A. B. C. D.
二、多选题
16.已知复数 (i为虚数单位),则下列说法错误的是()
A.z的实部为2B.z的虚部为1C. D.
17.已知复数 满足 ,则 可能为().
A.0B. C. D.
18.下列四个命题中,真命题为()
20.下面关于复数的四个命题中,结论正确的是( )
A.若复数 ,则 B.若复数 满足 ,则
C.若复数 满足 ,则 D.若复数 , 满足 ,则
21.下面是关于复数 (i为虚数单位)的命题,其中真命题为()
A. B. C.z的共轭复数为 D.z的虚部为
22.下列结论正确的是()
A.已知相关变量 满足回归方程 ,则该方程相应于点(2,29)的残差为1.1
A. B.
C.复数 的实部为 D.复数 对应复平面上的点在第二象限
27.若复数 ,其中 为虚数单位,则下列结论正确的是( )
A. 的虚部为 B.
C. 为纯虚数D. 的共轭复数为
28.已知i为虚数单位,下列说法正确的是( )
A.若 ,且 ,则
B.任意两个虚数都不比较大小
C.若复数 , 满足 ,则
D. 的平方等于1
故选:D
2.B
【分析】
先利用复数的除法运算将化简,再利用模长公式即可求解.
【详解】
由于,
则.
故选:B
解析:B
【分析】
先利用复数的除法运算将 化简,再利用模长公式即可求解.
【详解】
由于 ,
则 .
故选:B
3.B
【分析】
先求出,再解不等式组即得解.
【详解】
依题意,,
因为复数为纯虚数,
故,解得.
故选:B
【点睛】
A. B. C. D.
25.下列命题中,正确的是()
A.复数的模总是非负数
B.复数集与复平面内以原点为起点的所有向量组成的集合一一对应
C.如果复数 对应的点在第一象限,则与该复数对应的向量的终点也一定在第一象限
D.相等的向量对应着相等的复数
26.已知复数 满足 为虚数单位 ,复数 的共轭复数为 ,则()
一、复数选择题
1.在复平面内,复数 ( 为虚数单位)对应的点的坐标为()
A. B. C. D.
2.已知复数 ,其中 为虚数单位,则 =()
A. B. C. D.
3.若复数 为纯虚数,且 ,则实数 的值为()
A. B.7C. D.
4.已知复数 ,则 的虚部为()
A.1B. C. D.
5.已知复数 ,则 的虚部是()