灰色系统预测方法介绍

合集下载

灰色预测模型公式

灰色预测模型公式

灰色预测模型公式灰色预测模型是一种基于历史数据和现有数据的预测方法,它可以用来预测未来某个事件或指标的发展趋势。

灰色预测模型的核心思想是利用系统自身的信息和规律,通过建立灰色微分方程来进行预测。

灰色预测模型的公式可以表示为:$$\hat{X}_{0}^{(k)} = (X_{0}^{(1)} + X_{0}^{(2)} + ... + X_{0}^{(k)}) / k$$$$\hat{X}_{i}^{(k)} = (X_{0}^{(1)} + X_{0}^{(2)} + ... + X_{0}^{(k)}) / k$$$$\hat{X}_{i+1}^{(1)} = aX_{i}^{(1)} + b$$$$\hat{X}_{i+1}^{(k+1)} = aX_{i}^{(k+1)} + b$$其中,$X_{0}^{(k)}$表示观测数据的累加生成序列,$\hat{X}_{i}^{(k)}$表示预测值,$a$和$b$为待确定的系数。

灰色预测模型的核心思想是将数据分为两个部分:系统的发展规律部分和随机波动部分。

系统的发展规律部分可以通过灰色微分方程进行建模和预测,而随机波动部分则通过随机项来表示。

灰色预测模型的建模步骤如下:1. 数据预处理:对原始数据进行平滑处理,消除随机波动的影响,得到累加生成序列。

2. 确定发展规律:根据累加生成序列,建立灰色微分方程,估计系统的发展规律。

3. 模型参数估计:通过最小二乘法估计模型的参数,确定$a$和$b$的值。

4. 模型检验和优化:对模型进行检验和优化,确保预测结果的准确性和可靠性。

5. 模型预测:利用建立好的灰色预测模型,对未来的数据进行预测。

灰色预测模型在实际应用中具有广泛的应用价值。

它可以用来预测各种经济指标、环境数据、自然灾害等,为决策提供科学依据。

同时,灰色预测模型还可以用于评估和分析系统的可持续发展能力,帮助企业和机构合理规划和管理资源。

灰色预测模型是一种基于历史数据和现有数据的预测方法,它通过利用系统自身的信息和规律,建立灰色微分方程来进行预测。

灰色预测和时间序列预测的优缺点和应用场景比较

灰色预测和时间序列预测的优缺点和应用场景比较

灰色预测和时间序列预测的优缺点和应用场景比较灰色预测和时间序列预测是常用的预测分析方法,它们在很多领域都具有广泛的应用。

本文将比较这两个方法的优缺点和应用场景,以期帮助读者更好地理解和使用它们。

一、灰色预测方法灰色预测方法是一种基于信息不完备的小样本预测方法,它可以在数据量较小时对未来趋势进行预测。

它的优点包括:1、适用范围广:灰色预测方法适用于各种经济、社会和科技等领域的短期和中长期预测,对于复杂多变的系统也有较好的适应性。

2、效果显著:灰色预测方法可以针对不平衡数据或缺少有效信息的数据进行预测,准确率较高,在实际应用中表现出较好的效果。

3、计算简单:灰色预测方法原理简单,计算量小,对计算资源的要求较低。

但是,灰色预测方法也存在一些缺点:1、数据需求严格:灰色预测方法对数据要求较高,在数据量不充足的情况下容易出现预测偏差。

2、理论基础不足:灰色预测方法的理论体系相对较弱,缺乏统一的数学架构支撑。

3、易受外部因素影响:灰色预测方法很容易受到外部因素的影响,对于具有较强周期性的数据预测,其效果可能不太理想。

二、时间序列预测方法时间序列预测方法是指将某一现象随时间变化的过程所形成的数值序列作为研究对象,通过对序列的统计特征进行分析来预测未来的趋势。

它的优点有:1、适用性广泛:时间序列预测方法适用于各种领域的数据,并可应用于多种时间序列模型,如ARIMA、ARCH、GARCH等。

2、模型复杂,预测精度高:时间序列预测方法可使用多种复杂模型进行预测,模型优化后可以得到较为精确的预测结果。

3、预测稳定可靠:时间序列预测方法通常采用样本内和样本外检验来验证预测模型的稳定性和可靠性。

但是,时间序列预测方法也存在一些缺点:1、数据需求严格:时间序列预测方法对基础数据的准确性和完整性要求非常高,只有数据质量较高时才能得到准确的结果。

2、影响因素复杂:由于各种外部和内部因素的影响,某些时间序列的预测较为困难。

3、计算资源要求高:时间序列预测方法涉及多个模型、参数和算法,因此需要更高的计算资源和算法优化,计算成本较高。

灰色预测理论-定义

灰色预测理论-定义

什么是灰色预测法?灰色预测是就灰色系统所做的预测。

所谓灰色系统是介于白色系统和黑箱系统之间的过渡系统,其具体的含义是:如果某一系统的全部信息已知为白色系统,全部信息未知为黑箱系统,部分信息已知,部分信息未知,那么这一系统就是灰色系统。

一般地说,社会系统、经济系统、生态系统都是灰色系统。

例如物价系统,导致物价上涨的因素很多,但已知的却不多,因此对物价这一灰色系统的预测可以用灰色预测方法。

灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测。

尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测。

灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。

其用等时距观测到的反应预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。

简言之,灰色预测模型是通过少量的、不完全的信息,建立灰色微分预测模型,对事物发展规律作出模糊性的长期描述(模糊预测领域中理论、方法较为完善的预测学分支)。

灰色系统的概念是由邓聚龙教授于1982年提出的,它描述部分信急己知,部分未知介于黑白系统之间的系统。

GM(1,1)模型是灰色理论中较常用的预测方法,它以定性分析为先导,定量与定性结合,对离散序列建立微分方程以及白化方程,一般要经历思想开发、因素分析、量化、动态化、优化五个步骤。

灰色系统通过对原始数据的整理来寻求其变化规律,这是一种就数据寻找数据的现实规律的途径,称为灰色序列的生成。

生成数通过对原始数据的整理寻找数的规律,分为三类:a、累加生成:通过数列间各时刻数据的依个累加得到新的数据与数列。

灰色系统理论概述

灰色系统理论概述

灰色系统理论概述一、本文概述本文旨在对灰色系统理论进行全面的概述和探讨。

灰色系统理论,作为一种专门研究信息不完全、不明确、不确定系统的新兴学科,自其诞生以来,已经在众多领域,如经济管理、预测决策、生态环保等,展现出其独特的优势和强大的应用价值。

本文首先简要介绍了灰色系统理论的基本概念、发展历程和主要特点,然后详细阐述了灰色系统理论的核心内容,包括灰色预测、灰色决策、灰色关联分析等方面。

本文还将对灰色系统理论的应用领域和前景进行展望,以期能够为广大读者提供一个全面、深入的灰色系统理论概述,并激发更多学者和研究人员对该领域的兴趣和探索。

二、灰色系统理论的基本原理灰色系统理论是一种专门研究信息不完全、不明确的系统的理论。

它的基本原理主要包括灰色关联分析、灰色预测模型和灰色决策等。

这些原理的核心思想是利用已知信息,通过灰色理论的处理方法,挖掘系统的内在规律,从而实现对系统的有效描述和预测。

灰色关联分析是灰色系统理论中的一种重要方法。

它通过计算系统中各因素之间的关联度,揭示因素之间的内在联系和动态变化过程。

这种方法对于处理信息不完全、数据不规则的系统尤为有效,能够帮助我们更好地理解系统的结构和行为。

灰色预测模型是灰色系统理论的另一个核心原理。

它利用少量的、不完全的信息,通过建立灰色微分方程或灰色差分方程,实现对系统发展趋势的预测。

灰色预测模型具有预测精度高、计算简便等优点,广泛应用于经济、社会、工程等多个领域。

灰色决策是灰色系统理论在决策领域的应用。

它通过分析决策问题中的灰色信息,结合灰色关联分析和灰色预测模型等方法,为决策者提供科学、合理的决策依据。

灰色决策注重决策过程的系统性和整体性,有助于提高决策的科学性和准确性。

灰色系统理论的基本原理包括灰色关联分析、灰色预测模型和灰色决策等。

这些原理为我们提供了一种全新的视角和方法来理解和处理信息不完全、不明确的系统。

通过运用这些原理,我们可以更好地揭示系统的内在规律,实现对系统的有效描述和预测,为决策和实践提供有力支持。

灰色预测原理及实例

灰色预测原理及实例

灰色预测原理及实例
一、灰色预测原理
灰色预测,是指根据动态系统的过去试验数据和实测数据,利用灰色规律进行预测的一种数学方法。

灰色预测的基本思想是:由内在原理和系统的实际运行数据,建立有关系的关于未来时间的数学模型,即所谓的灰色系统模型,从而建立未来状态的预测模型。

二、灰色预测实例
1、灰色模型在汽车行业的应用
汽车行业是一个特殊的行业,其市场受到很多因素的影响,因此,在汽车行业预测中,灰色模型能够很好地发挥其优势。

首先,根据汽车市场的详细统计数据,如汽车生产量、销售量,可以采集过去一定时间段内(如一年、两年)汽车的生产量及销售量等数据,将这些数据经过一定的模型处理,形成一个灰色模型,利用该模型可以预测汽车行业的今后发展趋势。

2、灰色模型在电力行业的应用。

灰色预测GM(1,1)

灰色预测GM(1,1)

南昌市民用汽车保有量灰色GM(1,1)模型预测灰色预测是一种对含有不确定因素的系统进行预测的方法。

灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。

其用等时距观测到的反应预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。

灰色模型适合于小样本情况的预测,当然对于大样本数据,灰色模型也可以做,并且数据个数的选择有很大的灵活性。

原始序列X (0):表1 南昌市民用汽车保有量年份 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 南昌市民用汽车保有量(万辆)24.410926.730730.387836.380741.016143.7348.41615763.1第一步:构造累加生成序列X (1); 第二步:计算系数值;通过灰色关联分析软件GM 进行灰色模型拟合求解,得到:α= -0.101624 , μ=25.290111 , 平均相对误差为4.685749%第三步:得出时间响应预测函数模型为:()()858996.248269896.2731101624.01-=+⋅k e k X第四步:进行灰色关联度检验。

真实值:{24.4109,26.7307,30.3878,36.3807,41.0161,43.7300,48.4100,61.0000,57.0000,63.1000} 预测值:{24.4109,29.2310,32.3578,35.8190,39.6504,43.8917,48.5867,53.7839,59.5371,65.9056}计算得到关联系数为: {1,0.906683,0.444273,0.416579,0.82377,0.357133,0.715694,0.843178,0.333333,0.770986} 于是灰色关联度:r=0.661163关联度r=0.661163满足分辨率ρ=0.5时的检验准则r>0.60,关联性检验通过。

数学建模——灰色预测模型

数学建模——灰色预测模型

数学建模——灰色预测模型灰色预测模型(Grey Forecasting Model)是一种用于预测不确定性数据的数学模型。

它适用于那些缺乏充分历史数据、不具备明显的规律性趋势或周期性的情况。

灰色预测模型基于灰色系统理论,通过分析数据的变化趋势和规律,来进行预测。

该模型在处理少量数据、缺乏趋势规律的情况下,具有一定的优势。

灰色预测模型的基本思想:灰色预测模型基于“白化(Whitening)”和“黑化(Blackening)”的思想,将不确定性数据分为“白色”和“黑色”两部分。

其中,“白色”代表已知数据,具有规律性和趋势,可以进行预测;而“黑色”代表未知数据,缺乏规律,需要进行预测。

通过建立数学模型,将“白色”和“黑色”数据进行融合,得出预测结果。

灰色预测模型的基本步骤:1.建立灰色数列:将原始数据分成“白色”和“黑色”两部分,构建灰色数列。

2.建立灰色微分方程:对“白色”数列进行微分,得到一阶或高阶微分方程。

3.求解微分方程:求解微分方程,得到预测模型的参数。

4.进行预测:利用已知的模型参数,对“黑色”数据进行预测,得出未来的趋势。

示例:用灰色预测模型预测销售量假设你是一家新开设的小型餐厅的经营者,你希望预测未来三个月的月销售量。

然而,你的餐厅刚刚开业不久,历史销售数据有限,且不具备明显的趋势。

这种情况下,你可以考虑使用灰色预测模型来预测销售量。

步骤:1.建立灰色数列:将已知的销售数据分为“白色”(已知数据)和“黑色”(未知数据)两部分。

2.建立灰色微分方程:对“白色”销售数据进行一阶微分,得到灰色微分方程。

3.求解微分方程:根据灰色微分方程的形式,求解微分方程,得到模型的参数。

4.进行预测:利用求解得到的模型参数,对“黑色”销售数据进行预测,得到未来三个月的销售量趋势。

这个例子中,灰色预测模型可以帮助你基于有限的历史销售数据,预测未来的销售趋势。

虽然该模型的精确度可能不如其他更复杂的方法,但在缺乏充足数据时,它可以提供一种有用的预测工具。

灰色预测

灰色预测
灰色预测是用灰色模型GM(1,1)来进行定量分析的, 通常分为以下几类: (1) 灰色时间序列预测。用等时距观测到的反映预测对象 特征的一系列数量(如产量、销量、人口数量、存款数量 、利率等)构造灰色预测模型,预测未来某一时刻的特征 量,或者达到某特征量的时间。 (2) 畸变预测(灾变预测)。通过模型预测异常值出现的 时刻,预测异常值什么时候出现在特定时区内。 (3) 波形预测,或称为拓扑预测,它是通过灰色模型预测 事物未来变动的轨迹。 (4) 系统预测,是对系统行为特征指标建立一族相互关联 的灰色预测理论模型,在预测系统整体变化的同时,预测 系统各个环节的变化。
关联度分析是分析系统中各因素关联程度的
方法。计算关联度需先计算关联系数。
1.2 灰色预测的概念
1.2 灰色预测的概念
1.2 灰色预测的概念
1.3 灰色预测模型
x (k ) x (0) (i ) x (1) (k 1) x (0) (k )
(1) i 0 k
X (1) {x(1) (1), x(1) (2),..., x(1) (n)}
1.2 灰色预测的概念
(2) 累减生成数(IAGO) 是累加生成的逆运算。 记原始序列为 X (1) {x(1) (1), x(1) (2),..., x(1) (n)} (1) 对 X 做一次累减生成,得生成序列 X (0) {x(0) (1), x(0) (2),..., x(0) (n)} 其中 x(0) (k ) x(1) (k ) x(1) (k 1) 规定 x(1) (0) 0 累加生成与累减生成之间的关系如下图所示: 1-AGO IAGO
X (0) {x(0) (1), x(0) (2),..., x(0) (n)}

灰色系统预测

灰色系统预测

1 预测方法介绍预测方法可分为定性和定量预测两种。

定性预测是依据预测者对预测对象有关情况的了解和分析,由预测者根据实践经验和主观判断做出的预测,可分为市场调研法、专家预测法、主观概率法、交叉影响法等。

该方法主要用于对预测对象的未来性质、发展趋势和转折点进行预测。

定量预测是以大量的历史观察值为主要依据,建立适当的数学模型进行预测,推断和估计预测目标的未来值。

预测精度和把握度较高,克服了定性分析不足。

具体方法包括相关因素预测法和时间序列预测法。

1.相关因素预测常用预测方法为一元线性回归法和多元线性回归法。

两者均需要建立线性回归模型进行预测。

线性回归模型一般是用于测定经济现象之间在数量上变化的一般关系,运用最小二乘法,计算出经济指标在时间上的变化关系和发展趋势。

在搜集数据齐全的基础上,构建线性回归模型,再由最小二乘法计算回归系数,最后由建立的线性回归模型预测未来年的指标结果。

2.时间序列预测时间序列预测是针对已知的历史数据进行分析,建立时间序列模型预测。

常用方法有指数平滑法、灰色预测法。

指数平滑法是移动平均法的一种,其特点在于给过去的观测值不一样的权重,即较近期观测值的权重比较远期观测值的权重要大。

根据平滑次数不同,指数平滑可分为一次指数平滑、二次指数平滑等。

如果实际数据具有较为明显的变动趋势时,采用一次指数平滑直接预测。

当时间序列的变动出行直线变动趋势时,采用一次指数平滑预测具有明显的滞后偏差,因此需要在一次指数平滑基础上进行二次指数平滑,利用滞后偏差规律找出数据的变化趋势,然后建立直线趋势预测模型,这便是二次指数平滑法。

灰色预测是通过原始数据的处理和灰色模型的建立,发现、掌握系统的发展规律,对系统的未来状态做出科学的定量预测。

灰色预测模型能够根据现有的少量信息进行计算和推测。

最常用的灰色预测模型是GM(1,1)模型。

G 表示Gray (灰色),M 表示Model (模型),GM (1,1)表示1阶的、1个变量的灰色模型。

灰色系统基本方法

灰色系统基本方法

灰色系统基本方法灰色系统是一种新兴的系统科学方法,它是通过对系统中的不确定性进行分析和研究,从而得出系统的规律性和趋势性。

灰色系统的基本方法包括灰色模型、灰色关联分析、灰色预测等。

灰色模型是灰色系统的核心方法之一,它是通过对系统中的数据进行处理和分析,得出系统的规律性和趋势性。

灰色模型的基本思想是将系统中的数据分为两部分,即灰色数据和白色数据。

灰色数据是指系统中的不确定性因素,白色数据是指系统中的确定性因素。

通过对灰色数据进行处理和分析,得出系统的规律性和趋势性,从而对系统进行预测和控制。

灰色关联分析是灰色系统的另一种方法,它是通过对系统中的数据进行关联分析,得出系统中各因素之间的关联程度和影响程度。

灰色关联分析的基本思想是将系统中的数据进行标准化处理,然后通过计算各因素之间的关联度,得出系统中各因素之间的关联程度和影响程度。

通过对系统中各因素之间的关联程度和影响程度进行分析,得出系统的规律性和趋势性,从而对系统进行预测和控制。

灰色预测是灰色系统的另一种方法,它是通过对系统中的数据进行处理和分析,得出系统的规律性和趋势性,从而对系统进行预测和控制。

灰色预测的基本思想是将系统中的数据分为灰色数据和白色数据,然后通过对灰色数据进行处理和分析,得出系统的规律性和趋势性,从而对系统进行预测和控制。

总之,灰色系统是一种新兴的系统科学方法,它是通过对系统中的不确定性进行分析和研究,从而得出系统的规律性和趋势性。

灰色系统的基本方法包括灰色模型、灰色关联分析、灰色预测等,这些方法可以应用于各种领域,如经济、环境、医疗等,具有广泛的应用前景。

灰色预测建模原理及应用

灰色预测建模原理及应用

灰色预测建模原理及应用灰色预测建模是一种基于灰色系统理论的预测方法,它通过对已知数据进行灰色处理,利用数学模型进行预测分析,能够在数据不完全、信息不充分的情况下进行较为准确的预测,并被广泛应用于经济、环境、管理、工程等领域。

灰色预测的基本原理是通过对原始数据序列进行灰色处理,从而实现数据序列的规律性显现和可预测性增强。

灰色预测建模的基本步骤如下:1.序列建模:对原始数据序列进行建模,确定其特征方程。

主要有一阶、二阶、灰度关联度模型和灰色GM(1,1)模型等。

2.模型参数估计:根据确定的特征方程,通过最小二乘法等方法对模型参数进行估计,得到模型的数值解。

3.模型检验:对已建立的模型进行检验,判断模型的适用性及精度。

一般通过残差检验、相关系数检验等方法来评估模型。

4.预测和累加生成:通过模型预测得到待预测期的结果,并将预测结果与原始数据进行累加生成,得到预测序列。

灰色预测建模的特点是:省数据量、灰度信息充分、模型简单、适用性广泛。

应用方面,灰色预测建模主要有以下几个方面:1.经济方面:灰色预测可以用于经济指标预测,如GDP、消费指数、物价指数等。

通过对这些指标进行预测分析,可以指导政府采取相应的宏观调控政策。

2.环境方面:灰色预测可以应用于环境数据的预测,如空气质量指数、水质指标等。

通过对环境数据的预测,可以做到提前预警,并采取相应的控制措施,保护环境质量。

3.管理方面:灰色预测可以用于企业管理,如销售预测、库存预测、供应链管理等。

通过对企业数据进行预测,可以合理安排生产、销售和供应,提高企业的经济效益和竞争力。

4.工程方面:灰色预测可以应用于工程项目的进度和成本预测,如道路建设、房地产开发等。

通过对工程数据进行预测分析,可以及时发现问题,并采取相应的措施,保证项目的顺利进行。

总的来说,灰色预测建模是一种有效的预测方法,能够在数据不完全、信息不充分的情况下进行较为准确的预测,广泛应用于经济、环境、管理、工程等领域,对各行各业的发展和决策都具有重要作用。

灰色预测模型的优化及其应用

灰色预测模型的优化及其应用

偏残差灰色预测模型的优化
1 2 3
偏残差灰色预测模型的基本原理
通过对原始数据序列的偏残差进行修正,提高灰 色预测模型的精度。
优化方法一
考虑非等间距序列:在偏残差灰色预测模型中考 虑非等间距序列的影响,可以更准确地反映原始 数据的变化规律。
优化方法二
引入非线性函数:在偏残差灰色预测模型中引入 非线性函数,可以更准确地描述原始数据序列的 变化规律。
05
结论
研究成果总结
灰色预测模型在处理具有不完整、不确定信息的问题上具有优势,能够克服数据量 小、信息不完全等限制。
通过引入优化方法,灰色预测模型在预测精度、稳定性和泛化性能等方面都得到了 显著提升。
灰色预测模型在多个领域具有广泛的应用价值,如经济、环境、医学等,为相关领 域的科学研究提供了新的思路和方法。
灰色神经网络预测模型的优化
01
灰色神经网络预测模型的基本原理
利用神经网络的自学习能力,对灰色预测模型进行优化。
02
优化方法一
选择合适的网络结构:根据历史数据选择合适的网络结构,可以提高灰
色神经网络预测模型的泛化能力。
03
优化方法二
采用集成学习算法:将多个灰色神经网络模型的预测结果进行集成,可
以提高预测精度。
灰色预测模型与其他模型的组合研究
01
02
03
集成学习
将灰色预测模型与其他预 测模型进行集成,通过集 结多个模型的优点,提高 预测精度。
混合模型
将灰色预测模型与其他模 型进行混合,以充分利用 各种模型的优势,提高预 测性能。
多模型融合
将多个灰色预测模型进行 融合,通过综合多个模型 的预测结果,提高预测精 度。
基于大数据和人工智能的灰色预测模型研究

灰色预测法

灰色预测法

灰色预测法1.介绍灰色预测就是灰色系统所做的预测,灰色系统理论是我国著名学者邓聚龙教授创立的一种兼具软硬科学特性的新理论。

灰色系统的具体含义就是:部分信息已知,部分信息未知的某一系统。

一般地说,社会系统、经济系统、生态系统都是灰色系统。

例如物价系统,导致物价上涨的因素有很多,但已知的却不多,因此对物价这一灰色系统的预测可以用灰色预测方法。

2.适用问题灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测。

比如说人口预测、气象预报、初霜预测、灾变预测(如地震时间的预测)、数列预测(如对消费物价指数的预测)。

灰色预测模型所需要的数据量比较少,预测比较准确,精确度比较高。

样本分布不需要有规律性,计算简便,检验方便。

灰色GM(1,1) 模型是指运用曲线拟合和灰色系统理论进行预测的方法,对历史数据有很强的依赖性,没有考虑各个因素之间的联系,所以误差偏大,只适合做中长期的预测,不适合长期预测。

3.数学方法核心步骤3.1数据的检验与处理首先,为了确保建模方法的可行性,需要对抑制数据作必要的检验处理,设参考数据为(0)(0)(0)(0)((1),(2),...,())x x x x n =,计算数列的级比(0)(0)(1)().2,3,...,()x k k k n x k λ-== 如果所有的级比()k λ 都在可容覆盖2212(,)n n e e -++ 内,则数列(0)x 可以作为模型GM(1,1)的数据进行灰色预测,否则,需要对(0)x 做必要地变换处理,使其落入可容覆盖内,即取适当的c ,做平移变换 (0)(0)()(),1,2,...,y k x k c k n =+=则是数列(0)(0)(0)(0)()((1),(2),...,())y k y y y n =的级比(0)(0)(1)(),2,3,...,()y y k k X k n y k λ-=∈= 3.2 建立模型按照下面的办法建立模型GM (1,1)(1) 由上面的叙述知道参考数据列为(0)(0)(0)(0)((1),(2),...,())x x x x n =,对其做一次累加(AGO )生成数列(1)x(1)(1)(1)(1)(1)(1)(0)(1)(0)((1),(2),...,())((1),(1)(2),...,(1)())x x x x n x x x x n x n ==+-+其中(1)(0)1()()(1,2,...,)k i x k x i k n ===∑ 。

(完整版)灰色预测模型

(完整版)灰色预测模型

我们说X (1)是X (0)的AGO序列,并记为
当且仅当
X (1) AGO X (0)
X (1) x(1) 1, x(1) 2,L , x(1) n
k
并满足 x(1) (k) x(0) (m) (k 1, 2,L , n) m1
例1 摆动序列为:X (0) 1, 2, 1.5, 3
3、灰数及其运算
只知道大概范围而不知道其确切值的数称为灰 数,通常记为:“”。
例如: 1. 头发的多少才算是秃子。应该是个区间范
围。模糊 2.多少层的楼房算高楼,中高楼,低楼。 3.多么重才算胖子?。
灰数的种类:
a、仅有下界的灰数。 有下界无上界的灰数记为: ∈[a, ∞] b、仅有上界的灰数。 有上界无下界的灰数记为: ∈[-∞ ,b] c、区间灰数 既有上界又有下界的灰数: ∈ [a, b] d、连续灰数与离散灰数 在某一区间内取有限个值的灰数称为离散灰 数,取值连续地充满某一区间的灰数称为连续 灰数。
这表明
IAGO X (1) IAGO(பைடு நூலகம்AGO X (0) ) X (0)
3. 均值生成算子(MEAN)
定义 它是将AGO序列中前后相邻两数取平均数, 以获得生成序列。令X (1)为X (0)的AGO序列
X (1) x(1) 1, x(1) 2,L , x(1) n
称Z (1)为X (1) 的MEAN序列,并记为
定义 它是对AGO生成序列中相邻数据依次累 减,又称累减生成。令X (0)为原序列
X (0) x(0) 1, x(0) 2,L , x(0) n
称Y是 X (0)的IAGO序列,并记为
当且仅当
Y IAGO X (0)
Y y(1), y(2),L , y(n)

灰色预测是指利用GM模型对系统行为特征的变化规律进行预测

灰色预测是指利用GM模型对系统行为特征的变化规律进行预测

灰色预测是指利用GM 模型对系统行为特征的变化规律进行预测,同时也可以对行为特征的发展变化的时刻进行估计,以及在特定时区内发生事件的未来事件分布情况作出研究等等,这些工作的实质是将“随机情况”当做“灰色过程”,“随机变量”当做“灰变量”,并主要以灰色系统理论中的GM(1,1)模型来进行处理。

在预测时间范围为a :5月31日0时0分至5月31日23时45分时,对PA 进行灰色预测。

第一步:级别检验建立5月31日0时0分之前的7组数据的时间序列如下: ()()()()()()()()()()()()()()()()7,6,5,4,3,2,100000000x x x x x x x x ==(170.6250,290.6250,267.7500,203.2500,307.6875,279.0938,195.1875) (1)求级比()k λ()()()()()k x k xk 001-=λ ()()()()()()()7,6,5,4,3,2λλλλλλλ= =(0.6,1.085,1.3,0.7,1.1,1.4) (2)级别判断由于所有的()[]4.16.0-∈k λ,()7,6,5,4,3,2=k ,故可以用作满意的GM(1,1)建模。

第二步:GM(1,1)建模(1)对原始数据()0x 做一次累加,即()()2188.1714,0313.1519,9375.1239,25.932,729,25.461,625.1701=x(2)构造数据矩阵B 及数据向量Y()()()()()()()()()()()()()()()()()()()()⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛+-+-+-+-=1762116521132211212111111111x x x x x x x x B, ()()()()()()()()⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=76320000x x x x Y (3)计算∧μ()()⎪⎪⎭⎫⎝⎛===T -T T∧8936.2920367.0,1Y B B B b a μ于是得:a=0.0367,b=292.8936 (4)建立模型()()8936.2920367.011=+xdtdx求解得:()()()()kak e ab ea b x k x 0023.00197.780860.797911--*-=+⎪⎭⎫ ⎝⎛-=+(5)求生成数列值()()11+∧k x 及模型还原值()()10+∧k x 令k=1,2,3,4,5,6,由上面的时间响应函数()1∧x ,其中取 ()()()()()()625.170111001===∧∧x x x由()()()()()()1110--=∧∧∧k x k x k x ,取k=2,3,4,5,6,7,得 ()(),2460.234,0038.243,0890.252,5140.261,2912.271,4341.281,625.1700=∧x第四步:模型检验模型的各项检验指标值的计算结果如下表:第一个时点进行预测,由附件1可得:预测值为:225.8037,实测值为:249.0938,计算相对误差为:0.0935。

灰色系统战略预测模型

灰色系统战略预测模型

i?1
对于非负数据,累加次数越多,则随机性弱化越多, 当累加次数足够大后,可认为时间序列已有随机序列变 为非随机序列了。一般随机序列的多次累加序列,大多 可用指数曲线逼近。
上标0表示原始时间序列,记生成列为:X(1)={X(1)(1), X(1)(2), X(1)(3), ... ,X(1)(n)}
? ? ? k
式中: X ?1??k ?? X ?0??i? ? X (1) (k ? 1) ? X (0) (k )
? ? ? i?1
k
上标1表示一次累加,同理,可作m次累加,有: X ?m ??k ?? ?? X ?m?1? i
灰色系统理论研究宗旨为强调信息优化,研究现实规律;概率与 数理统计:强调统计数据与历史关系,研究历史的统计规律;模糊理论 则是强调先验信息,依赖人的经验,研究经验认知的表达规律。
灰色系统理论与概率、模糊理论的对 比
“灰色”“概率”“模糊”理论的区别
指标 内涵 基础 依据 手段 特点 要求 目标 思维方式 信息标准
灰色系统理论的提出
灰色系统 (Greysystem) 是邓聚龙在 20世纪 70年代末、 80年代初体提出的。人们通过概率与 数理统计,解决样本量大、数据多但缺乏明显规 律的问题,即“大样本不确定性”问题;人们用 模糊数学处理人的经验与认知先验信息的不确定 性问题,即“认知不确定性”问题。而灰色系统 理论(简称灰理论 Greysystem) 则是针对既无经验, 数据又少的不确定性问题,即“少数据不确定性” 问题提出的。
灰色系统 小样本不确定
灰朦胧集 信息覆盖
生成 少数据 允许任意分布 现实规律 多角度 最少信息
概率论 大样本不确定
康托集 概率分布
统计 多数据 要求典型分布 历史统计规律 重复再现 无限信息

灰色预测方法实验报告

灰色预测方法实验报告

灰色预测方法实验报告实验报告:灰色预测方法一、实验目的通过使用灰色预测方法,对某个问题进行预测,并分析预测结果的准确性。

二、实验原理灰色预测方法是一种基于数据的预测方法,用于在缺乏足够数据的情况下对未来趋势进行预测。

该方法主要基于灰色系统理论,通过对数据序列进行灰色分析,找出其内在规律,并建立预测模型。

三、实验步骤1. 收集相关数据:首先,需要收集与要预测的问题相关的数据,包括历史数据和现有数据。

2. 数据预处理:对收集到的数据进行清洗和处理,确保数据的准确性和可靠性。

3. 灰色分析:使用灰色分析方法对数据进行处理,包括建立灰色模型、计算关联度等步骤。

4. 模型建立:基于灰色分析的结果,建立预测模型。

5. 验证模型:使用部分历史数据进行模型验证,评估模型的准确性和可靠性。

6. 进行预测:根据建立的模型,对未来一段时间内的数据进行预测。

7. 分析结果:对预测结果进行分析,并评估预测的准确性和可行性。

四、实验结果通过实验,我们成功应用了灰色预测方法对某个问题进行了预测,并得到了如下结果:1. 在灰色分析过程中,我们找到了数据序列的内在规律,并建立了预测模型。

2. 模型验证结果显示,该模型在部分历史数据上具有较高的准确性和可靠性。

3. 根据建立的模型,我们对未来一段时间内的数据进行了预测,并取得了一定的准确性。

五、实验结论通过实验,我们验证了灰色预测方法的有效性和可行性,该方法可以在缺乏足够数据的情况下进行预测,并取得一定的准确性。

在实际应用中,我们可以根据实际问题的特点,选择适当的灰色预测方法,并进行合理的预测。

六、实验总结通过本次实验,我们对灰色预测方法有了更深入的了解,并且验证了其在预测问题上的有效性。

实验过程中,我们还需要注意数据的质量和预处理的准确性,以及模型的验证过程,确保预测结果的准确性和可靠性。

灰色预测方法在实际应用中有很大的潜力,可以帮助我们做出合理的预测和决策。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指 标 p越 大 越 好 , p越 大 , 表 明 残 差 与 残 差 平 均 值 之 差 小 于 给 定 值 0.67451的 点 较 多 , 即 拟 合 值 ( 或 预 测 值 ) 分 布 比 较 均 匀 . 按 C , p两 个 指 标 , 可 综 合 评 定 预 测 模 型 的 精 度 . 模 型 的 精 度 由 后 验 差 和 小 误 差 概 率 共 同 刻 划 .一 般 地 ,将 模 型 的 精 度 分 为 四 级 , 见 表 2-1
设X 0 = { X 0 (1), X 0 (2),⋯ , X 0 ( n)} 为参考序列, 其它序列, 则X 0与X 1的关联系数为 :
X i = { X i (1), X i (2),⋯ , X i ( n)} , i = 1, 2,⋯ , m为
ε ij =
min X 0 ( j ) − X i ( j ) + ρ max max X 0 ( j ) − X i ( j )
1 ε i = ∑ ε ij n j =1
n
(2 − 39)
(0) (0) (0) (0) 设原始数据序列X 0 = { x0 (1), x0 (2),⋯ , x0 ( n)} 为
参考序列, 用m种灰色建模方法所得模型值分别为 ˆ X (0) = { x (0) (1), x (0) (2),⋯ , x (0) ( n)} , i = 1, 2,⋯ , m .求出该
表2 − 1 精度检验等级参照表
模型精度等级 均方差比值 均方差比值C 1级(好) 级 2级(合格) 级 合格) 3级(勉强) 级 勉强) C<=0.35 0.35<C<=0.5 0.5<C<=0.65 小误差概率p 小误差概率 0.95<=p 0.80<=p<0.95 0.70<=p<0.80 P<0.70
灰色系统建模
§1 §2 §3 §4 §5 灰色系统理论概述 灰色GM(1.1)模型 灰色 模型 序列光滑度的理论分析 灰色GM(1.1)优化模型分析 灰色 优化模型分析 灰色模型的应用
2.3 GM(1.1)模型的精度检验
模型选定之后,一定要经过检验才能判定其是否合 理,只有通过检验的模型才能用来作预测,灰色模型 的精度检验一般有三种方法:相对误差大小检验法, 关联度检验法和后验差检验法.下面对这三种方法 做个简单介绍.
j i j
X 0 ( j ) − X i ( j ) + ρ max max X 0 ( j ) − X i ( j )
i j
其中, j = 1, 2,⋯ , n
从关联 系数 的计 算来看 ,我们 得到 比较 数列 与参考 数 列在 各点 的关联 系数 值,结 果较 多,信 息过于 分散 ,不 便于 比较 ,因而 有必 要将每 一比 较数 列各个 时刻 的 关联 系数集 中体 现在 一个值 上,这 一数 值就 是灰 关 联 度.邓 氏灰 色关联 度为
ˆ 其中, e( k ) = x (0) ( k ) − x (0) ( k ), k = 1, 2,⋯ , n
(2 − 32)
计 算相对误 差得
e( k ) rel ( k ) = (0) × 100%, k = 1, 2,⋯ , n x (k )
计 算平 均相对 误差 得
(2 − 33)
1 n rel = ∑ rel ( k ) , n k =1
4级(不合格) 0.65<C 级 不合格)
于是, 模型的精度级别 = Max { p的级别, C的级别}
2.3.3 关联度检验法
灰关 联分析实 质上就是 比较数据 到曲线几 何形状 的 接近程度 ,一般来 说,几何形 状越接近 ,变化趋势 也就 越接近,关 联度就越 大.因而在 进行关联 分析 时 ,必须先确 定参考数 列,然后比 较其它数 列同参 考数列 的接近程 度,这样才 能对其它 数列进行 比 较,进而 做出判断 .
(2 − 34)
2.3.2 后验差检验法
ˆ 设按GM (1.1)建模法所求出的X (0)如(2 − 31)所示, 残 差如(2 − 32)所示, 原始序列X (0)及残差序列E的方差
2 分别为S12和S2 , 则
1 n (0) 2 2 S1 = ∑ [ x ( k ) − x ] n k =1 1 2 S = ∑ [e ( k ) − e ] n k =1
2 2 n
(2 − 35)
1 n (0) 1 n 其中, x = ∑ x ( k ), e = ∑ e( k ) n k =1 n k =1
计算后 验差 比为
C = S 2 / S1
计算小误 差概率为
(2 − 36)
(2 − 37)
p = P { e( k ) − e < 0.6745 S1 }
指标C 和p是后验差检验的两个重要指标.指标C 越小 越好, C 越小表示S1大而S2 越小. S1大表示原始数据方差 大,即原始数据离散程度大.S2小表示残方差小,即残 差离散程度小.C 小就表明尽管原始数据很离散,而模 型所得计算值与实际值之差并不太离散.
i i i i
m个序列与参考序列的邓氏关联度ε i ( i = 1, 2,⋯ , m ), 如果ri ( i = 1, 2,⋯ , m )在所有关联度中最大, 则第i种灰色 建模方法为所建模型中最好的模型.
2.3.1 相对误差检验法
ˆ ˆ 设按GM (1.1)建模法已求出X (1) , 并将X (1)做一次累 ˆ (0) ,即 减转化为X
ˆ ˆ ˆ ˆ X (0) = [ x (0) (1), x (0) (2),⋯ , x (0பைடு நூலகம் ( n)] (2 − 31)
计 算残差 得
ˆ E = [e(1), e(2),⋯ , e( n)] = X (0) − X (0)
相关文档
最新文档