概率论3
概率论3
P AB PB | AP A
5.3
例3 已知 P( A) 0.5, P( B) 0.6, P( B / A) 0.8.
求 P( AB)与P( A B )
例4 设袋中有r只红求,t只白球.每次自袋中任 取一只球,观察其颜色然后放回,并再放入a只 与所取出的那只球同色的球.若在袋中连续取 球四次,试求第一、二次取到红球且求第三、 四次取到白球的概率.
PBi | A PA | Bi PBi
j j
5.6
5 .7
PA | B PB
j 1
n
i 1,2,,n
P A P A | B 1 P B 1 P A | B 2 P B 2 P A | B n P B n
P( A) P( B) P( A / B) P( B ) P( A / B )
例1 某电子设备制造厂所用的元件是由三家元件 制造厂提供的.根据以往的记录有以下数据:
元件制造厂 1 2 3 次品率 0.02 0.01 0.03 提供元件的份额 0.15 0.80 0.05
设这三家工厂的产品在仓库中是均匀混合的, 且无区别的标志.(1)在仓库中随机地取一只元件, 求它是次品的概率;(2)在仓库中随机地取一只元件, 若已知取到的是次品,分析此次品出自何厂,需求出 由三家工厂生产的概率分别是多少.试求这些概率.
二 乘法定理
乘法定理 其意义是… (5.3)式容易推广到多个事件的情况.
P A1 A2 An PAn A1 A2 An 1 PAn 1 A1 A2 An 2 PA2 A1 P A1 其 中 P A1 A2 An 1 0
设P(A)>0,则有
注 对 任 一 事 件 A, A与 A 构 成 样 本 空 间 Ω 的一个分划。
概率论第三章
一、数学期望的概念 二、数学期望的性质 三、应用实例
回
停 下
§3.1
数学期望
一、数学期望的概念
1. 问题的提出 1654年, 一个名叫梅累的骑士就“两个赌徒 约定赌若干局, 且谁先赢 c 局便算赢家, 若在一 赌徒胜a局 (a<c), 另一赌徒胜b局(b<c)时便终止 赌博, 问应如何分赌本” 为题求教于帕斯卡, 帕 斯卡与费马通信讨论这一问题, 于1654 年共同 建立了概率论的第一个基本概念 — 数学期望
因而其数学期望E(X)不存在.
§3.2 数学期望的性质 一、性质
性质3.1 设C是常数, 则有ECC. 证
E X E C 1 C C . E CX CE X .
性质3.2 设 X 是一个随机变量, C 是常数, 则有 证 E CX Cxk pk C xk pk CE X .
数学期望, 记为EX, 即
E X
xp x dx .
4. 数学期望不存在的实例
例3
设随机变量X的分布律为 1 PX n , n 1,2,, nn 1
求证: 随机变量X没有数学期望.
证 由定义, 数学期望应为
1 E X npn . n1 n 1 n 1
求EX, EY, E (Y / X ), E[( X Y )2 ]. 思考: X2的分布律?
例7 设随机变量X ~ N0,1, Y ~U0,1, Z~B5,0.5, 且X, Y, Z相互独立, 求随机变量W 2X+3Y4Z1
的数学期望.
《概率论》第3章§3条件分布
若按条件概率公式,则有 P{X y x | Y y} 当P{( XXP,{YY)x限(,XYy制,}Y在)y在}直区线域 D上 上时可视具为有一密维度r.vf (x, y)
y D
O
P{Y y} 0
x
第三章 多维随机变量及其分布
§3 条件分布
8/17
第三章 多维随机变量及其分布
§3 条件分布
4/17
设 (X ,的Y )分布律为
P{ X xi,Y yj} pij (i, j 1, 2,)
考虑在 {Y 对已y于j发} 固生定的的条j件,若下P{Y,{发Xy生j}x的i}p条.j 件 0概, 则率称
为在
P{ XP{Xxi| Yxi | Yyj }
X
Y
Y (1 X ) X Y
YX
1/ 2 1/ 2
X Y 1/ 2
Y
1 X
故三段木棒能构成 的概率为
X Y
P{Y
1 2
,X
1 2
,
X
Y
1 2
}
f (x, y)dxdy
y
yx
x0.5, y0.5 x y0.5
x 1dxdy
0.5
D
x
O
0.5 x 1
D:xx0y.50, y.50.5 0 x1,0 y x
如何定义条件分布 P{X x | Y y}
0, 考虑条件概率
P{X
x
|
y
Y
y
}
P{X x, y Y y } P{y Y y }
称为条件分布
应用积分中值定理
x
y
y
y
y
f (u, v)dvdu fY ( y)dy
概率论第三章第3,4节条件分布,独立性
P X m, Y n q n2 p2 , n 2,3,; m 1,2,n 1
目 录 前一页 后一页 退 出
第三章 随机变量及其分布
§3条件分布
例3 设某班车起点站上车人数 X 服从参数为 ( 0) 的泊松分布,每位乘客在中途下车的概率为 p(0 p 1),
1 f ( x, y) , x y x, f ( y | x ) 当0 x 1, Y | X 2x f X ( x) 其它。 0,
1 P{ X , Y 0} 1 2 ( 3) P{ X | Y 0} 2 P{Y 0} y
1 1 (1 ) 2 3 2 2 1 4 1 1 2
目 录 前一页 后一页 退 出
第三章 随机变量及其分布
§3条件分布
P{ X x , y Y y } FX |Y ( x | y ) lim 0 P{ y Y y }
F ( x , y ) lim [F ( x, y ) F ( x, y )]/ 2 y 0 d lim [ F ( y ) F ( y )] / 2 Y Y FY ( y ) 0 dy y x x f ( u, v )dudv f ( u, y )du y . fY ( y) fY ( y)
n 2
2
第三章 随机变量及其分布
§3条件分布
在 X= m 条件下随机变量Y 的条件分布律为
当m=1,2,3,… 时,
P{Y n | X m}
P{ X m ,Y n} P{ X m }
p 2 q n 2 n m 1 pq , m 1 pq
概率论3
P(X 2) 1 P(X 1) 1 P(X 0) P(X 1) 1 C50 0.4500.555 C510.4510.554 1 0.555 5 0.45 0.554 0.744
例3-1 已知发射一枚地对空导弹可“击中”来犯 敌机的概率是0.96,问在同样条件下需发射多少枚 导弹才能保证至少有一枚导弹击中敌机的概率大于 0.999? 解 设需要发射n枚导弹,则击中敌机的导弹数是随机 变量X~B(n,0.96),则
0
1
k
n
X ~ Cn0 p0qn
Cn1 p1qn1
Cnk pk qnk
Cnn
p
n
q0
n
( px q)n
C
k n
pk
q
nk
xk
k 0
n
n
所以, b(k; n, p) Cnk p k q nk ( p 1 q)n 1n 1
k 0
k 0
特别地,n=1时,二项分布为二值分布,其分布列
射手甲在一次射击中得分X的概率分布为:
0 1 2
e1
X ~ 0 0.2 0.8
e2
射手乙在一次射击中得分Y的概率分布为:
Y
~
0 0.6
1 0.3
2 0.1
Y的概率分布(律)为:
0 Y ~ 0.6
1 0.3
2 0.1
计算Y的分布函数F(x)=P(Y<x):
当x≤0时, F(x)=P(Y<x)=P()=0
X=X (w) w
X=X(w0)=0, X=X(w1)=1, X=X(w2)=2, …, X=X(w100)=100 事件“废品数少于50”={w : X (w) <50}
概率论第三章课后习题答案_课后习题答案
第三章 离散型随机变量率分布。
,试写出命中次数的概标的命中率为目;设已知射手每次射击射击中命中目标的次数指示射手在这三次独立以本空间上定义一个函数验的样本空间;试在样作为试验,试写出此试察这些次射击是否命中三次独立射击,现将观一射手对某目标进行了7.0.1.343.0441.0189.0027.03210027.0)7.01()()0()0(189.0)7.01()7.01(7.03)(3)1()1()1()1(441.0)7.01(7.07.03)(3)2()2()2()2(343.0)7.0()()3()3()(0)(1)()()(2)()()(3)(},,,{)},,(),,,(),,,(),,,(),,,(),,,(),,,(),,,{(3,2,1332183217653214323321187654321821321321321321321321321321⎪⎪⎭⎫ ⎝⎛=-======-⨯-⨯⨯===+=+====-⨯⨯⨯===+=+===================Ω==的分布列为所以,,则简记为将,,则代表击中目标的次数,令则次射中”,“第解:设ξξξξξξξξξξξξξξωξωξωξωξωξωξωξωξωξξωωωA A A P P P A A A P P P P P A A A P P P P P A A A P P P A A A A A A A A A A A A A A A A A A A A A A A A i i A i i i。
出的废品数的概率分布前已取个,求在取得合格品之不再放回而再取来使用,若取得废品就个这批零件中任取个废品,安装机器时从个合格品、一批零件中有1139.2118805499101112123)3(132054109112123)2(13227119123)1(129)0(32101919110111111211213110191111211213111191121311219=⨯⨯⨯=⋅⋅⋅===⨯⨯=⋅⋅===⨯=⋅=====C C C C C C C C P C C C C C C P C C C C P C C P ξξξξξξ,,,可能取值为:代表废品数,则解:令.1188054132054132271293210⎪⎪⎭⎫ ⎝⎛的分布列为所以,ξ废品数的概率分布。
概率论第三章
若二维随机变量( 若二维随机变量(X,Y)具有概率密度 ) 1 1 x − µ1 2 f (x, y) = exp{− ) 2 [( 2 2(1− ρ ) σ1 2πσ1σ2 1− ρ x − µ1 y − µ2 y − µ2 2 )( ) +( ) ]} − 2ρ( 其中
µ1, µ2,σ1,σ2, ρ
3.1.2、二维随机变量的联合分布函数 、 维随机变量的联合 联合分布函数
二维随机变量( 二维随机变量(X,Y) ) ( X , Y )的联合分布函数 )的联合分布函数
一维随机变量X 一维随机变量 X的分布函数 的分布函数
F(x, y) = P(X≤ x,Y ≤ y) − ∞ < x, y < ∞
xi ≤3yj ≤2
求:F(3,2) = P(X≤ 3,Y ≤ 2) = ∑∑pij
1 1 1 1 = + 0+ 0+ + + 0 = 4 8 8 2
例2 设随机变量 Y ~ E (1) ,随机变量
0 , 若Y ≤ k ( k = 1,) 2 Xk = 1 , 若Y > k 的联合概率分布列。 求 X 1 和 X 2 的联合概率分布列。
第三章 多维随机变量及其分布
到现在为止, 到现在为止,我们只讨论了一维随机变量 及其分布. 及其分布. 但有些随机现象用一个随机变量来 描述还不够, 描述还不够,而需要用几个随机变量来描述 在打靶时, 在打靶时,命中点的位置是由一 对随机变量(两个坐标)来确定的. 对随机变量(两个坐标)来确定的. 飞机的重心在空 中的位置是由三个随 机变量(三个坐标) 机变量(三个坐标)来 确定的等等. 确定的等等.
1/ 4 x 1 1 解: (3)P( X < ,Y < ) = ∫0 [∫0 3xdy]dx 4 2
《概率论》第3章§4相互独立的随机变量
§4
A, B 相互独立 X , Y 相互独立
相互独立的随机变量
11/19
P( A | B) P( A), P( B | A) P( B)
f ( x, y) f X ( x) fY ( y) (a.e) f ( x, y ) f X |Y ( x | y ) = f X ( x) ( a.e) fY ( y )
§4
相互独立的随机变量
1/19
随机变量的独立性
离散型、连续型随机变量的独立性的判断
利用随机变量的独立性进行相关概率的 计算
第三章 多维随机变量及其分布
§4
A, B 相互独立
相互独立的随机变量
A, B 之间没有任何关系
P( AB) P( A) P( B)
2/19
怎样定义 r.v X , Y 之间的独立性 若
FX ( x2 ) FY ( y2 ) FX ( x1 ) FY ( y2 ) FX ( x2 ) FY ( y1 ) FX ( x1 ) FY ( y1 )
[ FX ( x2 ) FX ( x1 )] [ FY ( y2 ) FY ( y1 )]
P{x1 X x2 }P{ y1 Y y2 }
X ~ U (0,1), Y ~ U (0,1)
X , Y 独立,故联合密度为
1, 0 x 1, 0 y 1 f ( x, y ) f X ( x ) f Y ( y ) 其它 0,
故两信号互相干扰的概率为
P{ | X Y | 1 }
120
1
y
y x
1 2 1 2 1
2
( x ) 1 exp{ [ 21 2 1 2(1 )
概率论基础3——条件概率
一、条件概率生活中很多概率都是在某些特殊条件下的概率。
比如你想知道你在家感染新冠的概率,这是取决于很多方面的,比如,政策有没有放开、是否位于高风险区等等。
只有在这些条件的限制下,我们才能较为准确的求出你想知道的概率。
基本概念:设A,B是随机试验E的两个随机试验,且P(B)>0,称P(A|B)=\frac{P(AB)}{P(B)} 为在事件B发生的条件下,事件A发生的条件概率。
韦恩图:上面A、B分别有两个椭圆,代表了他们的事件范围。
我们想要求在B的条件下A发生的概率,那么直观上分母应该是P(B),因为条件是事件B就相当于要以事件B作为基础;而由于事件B的限制,事件A中不属于B的部分应该被舍去,它们不在B的控制之下。
所以也很容易理解,分子是A和B的和事件(交集)的概率。
性质条件概率也属于概率,所以它也满足概率的基本性质,只不过会有所改变。
(1)对于每一事件A,0≤P(A|B)≤1(2) P(\Omega|B)=1(3)若A_1,A_2,……,A_n 互不相容,则P(\bigcup_{i=1}^{m} A_i|B)=\sum_{i=1}^mP(A_i|B) (4) P(A|B)+P(\overlineA|B)=1(5)容斥原理: P(A\bigcup B|B)=P(A|B)+P(B|B)-P(AB|B)二、乘法公式在上文我们知道条件概率的公式为: P(A|B)=\frac{P(AB)}{P(B)} 。
那如果我们此时知道P(B)和P(A|B),相求P(AB),可以通过移项转化成下列公式: P(A|B)P(B)=P(AB)同理,我们也可以得到: P(B|A)P(A)=P(AB) 这两个公式我们称其为乘法公式。
上面两个式子在实际计算中要根据问题灵活选择。
我们也可以将其拓展到n个事件中:P(A_1A_2…A_n)=P(A_1)P(A_2|A_1)P(A_3|A_2A_1)…P(A_n|A_n…A_2A_1) 我们可以这样理解:$P(A_1)$是假设A1正确,$P(A_2|A_1)$是假设A1正确的情况下A2正确,以此类推三、全概率公式有限划分基本概念:设 \Omega 为随机试验E的样本空间,B1,B2 ,…,Bn为E的一组事件,若(1) Bi∩Bj =f ,i ≠ j(2) B_1∪B_2 ∪…∪B_n=\Omega则称B1,B2,…,Bn 为 \emptyset 的一个有限划分,或称完备事件组。
概率论第三章
8 July 2010
联合密度函数的基本性质 (1) p(x, y) ≥ 0. (非负性) (2) (正则性)
注意: P{(X,Y) ∈D} = ∫∫ p(x, y)dxdy
D
8 July 2010
3.1.5
一,多项分布
常用多维分布 常用多维分布
若每次试验有r 种结果:A1, A2, ……, Ar 记 P(Ai) = pi , i = 1, 2, ……, r 记 Xi 为 n 次独立重复试验中 Ai 出现的次数. 则 (X1, X2, ……, Xr)的联合分布列为:
2x
+∞
1 2x +∞ 1 3y +∞ = A e × e 2 0 3 0
=A/6 所以, A=6
8 July 2010
例3.1.4
6e(2x+3y) , x ≥ 0, y ≥ 0 若 (X, Y) ~ p( x, y) = 其 它 0,
试求 P{ X< 2, Y< 1}.
8 July 2010
注 意 点 (2)
二维正态分布的边际分布是一维正态: 若 (X, Y) N ( ), 则 XN( ), YN( ).
二维均匀分布的边际分布不一定是一维均匀分布.
8 July 2010
例3.2.1 设 (X, Y)服从区域 D={(x, y), x2+y2 <1} 上的均匀分布,求X 的边际密度p(x). 解: 由题意得
e y , 0 < x < y p( x, y) = 其 他 0,
求概率P{X+Y≤1}. 解: P{X+Y≤1}=
1/2
1x x
y=x
x+y=1
= ∫ dx∫
《概率论》第3章§5两个随机变量的函数的分布
= P{X ≤ z,Y ≤ z}
则
Fmax (z) = F (z)
F (z) = P{min(X ,Y) ≤ z} min = FX1 (z)FX,2 (z)z} FXn (z) = 1 P{min(X Y) > F (z) =1P{{min(,Y 1,zX2 ,, Xn ) ≤ z } = P X > z X> } min n = 1∏ > } P(z > [ =1 P{X1zFXi {Y )] z} i =1 =1 ,[1,,{X 独立同分布于 F(x)时有 X1 X2 P Xn ≤ z}][1 P{Y ≤ z}] 特别当 n = 1[1 FX (z)][1 F (z)] n Y
z
2σ 2
∴
z e ,z ≥0 2 fZ (z) = σ 分布) (瑞利Rayleigh分布) 0 , z第三章 多维随机变量及其分布 <0
ρ d 2 =1 e 2σ2 2σ 2
z 2σ 2
(z ≥ 0)
§5 两个随机变量的函数的分布
11/15 11/15
设 X ~ FX (x),Y ~ F ( y) ,且 X,Y 相互独立 ,则 Y F (z) = P{max(X ,Y) ≤ z} max
∵ Fmax (z) = F (z) ∴ fmax (z) = 2 f (z)F(z)
2
= 2 f (z)∫∞ f (t)dt ∵ Fmin (z) = 1[1 F(z)]2
∴ fmax (z) = 2 f (z)[1 F(z)]
= 2 f (z)[1 ∫∞ f (t)dt]
概率论第3章 随机向量及其分布
例3 一袋中有五件产品,其中两件次品,三件正品,
从袋中任意依次取出两件,分别采用有放回与不放回 两种方式进行抽样检查,规定随机变量
=10,,
第1次取出次品 第1次取出正品
=10,,
第2次取出次品 第2次取出正品
则(ξ,η)的联合分布律如下(并可求得边缘分布律):
表1 有放回抽样的分布律
设(X, Y)的联合分布律为P{X=xi , Y=yj}= pij (i,j=1,2, …) ,则(X, Y)关于X的边缘分布律有
PX xi PX xi ,Y
P X xi , (Y y j )
j 1
P ( X xi ,Y y j )
FX1,X2,L ,Xn x1, x2,L , xn P : X1() x1, X 2 () x2,L , X n () xn
I P : n Xi () xi
i 1
定理3.1.1 设,F, P为概率空间, 随机向量 X1, X 2,L , X n 的联合分布函数为FX1,X2,L ,Xn ,则
P 0, 1 P 0 P 1 0 2 3 3 5 4 10
P 1, 0 P 1 P 0 1 3 2 3 5 4 10
P 1, 1 P 1 P 1 1 3 2 3 5 4 10
定理3.1.2 设,F, P为概率空间, X1, X 2,L , X n
为其上的随机向量。
(1) 若X1, X 2,L
,
X
都为离散型随机变量,有分布列
n
P Xi aji ,j 1,2,L ,i 1,2,L ,n,
《概率论》第3章§2边缘分布解析
(关X ,于Y ) 的 第三Y章 多边维缘随密机变度量(及函其数分)布
例 设随机变量 X 和Y 具有联合概率密度
6, x2 y x,
f (x, y) 0,
其他.
求边缘概率密度 fX ( x), fY ( y).
解
fX (x)
f (x, y)d y
y
(1,1)
当 0 x 1时,
y x
p11 p21 pi1
p12 p22 pi 2
p1 j
p2 j pij
P{ X xi } pij , i 1,2,; P{Y y j } pij , j 1,2,.
j 1
i 1
2020年11月24日星期二
§2 边缘分布
6/29
设 从r.v X 四1个, 2数,3,中4 等可能取值,又设
2020年11月24日星期二
例 设( X ,Y ) 的联合密度为
f
(x,
y)
kxy,
0,
0 x y,0 y 1, 其他
其中k 为常数. 求
(1)常数 k ;
(2) P ( X + Y 1) , P ( X < 0.5); (3) 联合分布函数 F (x,y); (4) 边缘密度与边缘分布函数
1
0.5
y
dy 1 y
8xydx
5
/
6.
y
1
y=x
yy 11
0.5 00
y y==x x xx
0
0.5
2020年11月24日星期二
P( X 0.5)
x
0.5
1
0 dxx8xydy 7 /16.
的分段区域 y
x0
概率论第三章习题及答案
则称
p i j P X x i , Y y j i , j 1 , 2 ,
为二维离散 X , Y 型 的随 (机 联变 合量
2021/7/1
14
第三章 习题课
二维离散型随机变量的联合分布律
X,Y的联合分布下 律表 也表 可示 以
布的关系,了解条件分布。 3 掌握二维均匀分布和二维正态分布。 4 要理解随机变量的独立性。 5 要会求二维随机变量的和及多维随机变返回主目3 录
第三章 习题课
1 二维随机变量的定义 设 E 是一个随机试验,它的样本空间是 S={e}, 设 X=X(e) 和 Y=Y(e) 是定义在 S 上的随机变量。 由它们构成的一个向量 (X, Y) ,叫做二维随机 向量,或二维随机变量。
2021/7/1
返回主目17 录
4) F ( x 2 , y 2 ) F ( x 2 , y 1 ) F ( x 1 , y 1 ) F ( x 1 , y 2 ) 0 .
2021/7/1
y y2
(x1 , y2)
(X, Y )
y1 (x1 , y1)
o x1
(x2 , y2)
(x2 , y1)
10
x2
x
第三章 习题课
说明
Y X
y1
y2
…
yj
…
x1
p11
p12
…
p1 j
…
x2
p 21
p 22
p2 j
…
xi
pi1
2021/7/1
…
返回主目15 录
第三章 习题课
二维离散型随机变量联合分布律的性质
概率论 (3)
A 3 3个射手中至少有一个击中目标: 1 ∪ A2 ∪ A3
3个射手中至少有一个未击中目标: A1 ∪ A2 ∪ A3 , A1 A2 A3 3个射手中至少有二个击中目标:
A1 A2 A3 + A1 A2 A3 + A1 A2 A3 + A1 A2 A3 , A1 A2 ∪ A2 A3 ∪ A1 A3
(a1 , a2 ), (a1 , b1 ), (a1 , b2 ), (a1 , b3 ), (a2 , b1 ), = (a2 , b2 ), (a2 , b3 ), (b1 , b2 ), (b2 , b3 ), (b1 , b3 )
A0 ="没有抽到次品"
= {(b1 , b2 ), (b2 , b3 ), (b1 , b3 )}
B= A
A
A+ B =
A = A,
A + A = ,
= , =
5.差 "随机事件A发生,且随机事件B不发生" 是一个随机事件,则称此随机事件为随机 事件A与随机事件B的差,记为 差
A B, 或者A \ B
用集合论语言,
ω ∈, ω ∈ A, 且ω B ω ∈ A B
A = A
( A B) + B = A ∪ B
= {( x, y ) ∞ < x < +∞, ∞ < y < +∞} = R 2
随机事件A="距离目标不超过100米"
= {( x, y ) x 2 + y 2 ≤ 1002 } R 2
考虑两个特殊的随机事件: 由于 ,所以样本空间 也是随机事件. 但每做一次随机试验,样本空间 必然发生, 又称样本空间 为必然事件 必然事件. 必然事件 由于 ,所以空集 也是随机事件. 但每做一次随机试验,空集 一定不发生, 又称空集 为不可能事件 不可能事件. 不可能事件
《概率论》数学3章课后习题详解
概率论第三章习题参考解答1. 如果ξ服从0-1分布, 又知ξ取1的概率为它取0的概率的两倍, 求ξ的期望值 解:由习题二第2题算出ξ的分布率为ξ0 1 P1/32/3因此有E ξ=0×P (ξ=0)+1×P (ξ=1)=2/3+2η, ξ与η的分布律如下表所示:: 求周长的期望值, 用两种方法计算, 一种是利用矩形长与宽的期望计算, 另一种是利用周长的分布计算.解: 由长和宽的分布率可以算得E ξ=29×P (ξ=29)+30×P (ξ=30)+31×P (ξ=31) =29×0.3+30×0.5+31×E η=19×P (η=19)+20×P (η=20)+21×P (η=21) =19×0.3+20×0.4+21×0.3=20 由期望的性质可得 E ζ=2(E ξ+E η)=2×而如果按ζ的分布律计算它的期望值, 也可以得 E ζ=96×0.09+98×0.27+100×0.35+102×0.23+104× 验证了期望的性质.4. 连续型随机变量ξ的概率密度为⎩⎨⎧><<=其它)0,(10)(a k x kx x aϕ又知Eξ=0.75, 求k 和a 的值。
解: 由性质⎰+∞∞-=1)(dx x ϕ得111)(|10110=+=+==++∞∞-⎰⎰a kx a k dx kx dx x a aϕ即k =a +1(1)又知75.022)(|10211=+=+===+++∞∞-⎰⎰a kx a k dx kx dx x x E a a ϕξ得ka +1.5(2)由(1)与(2)解得a =0.5, 即a =2, k =36. 下表是某公共汽车公司的188辆汽车行驶到发生一次引擎故障的里程数的分布数列.若表中各以组中值为代表. 从188辆汽车中, 任意抽选15辆, 得出下列数字: 90, 50, 150, 110, 90, 90, 110, 90, 50, 110, 90, 70, 50, 70, 150. (1)求这15个数字的平均数; (2) 计算表3-9中的期望并与(1)相比较.解: (1) 15个数的平均数为(2) 按上表计算期望值为(10×5+30×11+50×16+70×25+90×34+110×46+130×33+150×16+170×2)/1887. 两种种子各播种300公顷地, 调查其收获量, 如下表所示, 分别求出它们产量的平均值解: 假设种子甲的每公顷产量数为, 种子乙的每公顷产量数为, 则 E ξ=(4500×12+4800×38+5100×40+5400×10)/100=4944 E η=(4500×23+4800×24+5100×30+5400×23)/100=49598. 一个螺丝钉的重量是随机变量, 期望值为10g , 标准差为1g . 100个一盒的同型号螺丝钉重量的期望值和标准差各为多少?(假设各个螺丝钉的重量相互之间独立) 解: 假设这100个螺丝钉的重量分别为ξ1, ξ2,…, ξ100, 因此有E ξi =10, Dξi =102=12=1, (i =1,2,…,100), 设ξ为这100个螺丝钉的总重量,因此∑==1001i i ξξ,则ξ的数学期望和标准差为gD D D kgg E E E i ii i i i i i 1011001)(1000101001001100110011001=⨯==⎪⎭⎫⎝⎛====⨯==⎪⎭⎫ ⎝⎛=∑∑∑∑====ξξξσξξξξ9. 已知100个产品中有10个次品,求任意取出的5个产品中次品数的期望值.解: 假设ξ为取出5个产品中的次品数, 又假设ξi 为第i 次取出的次品数, 即, 如果第i 次取到的是次品, 则ξi =1否则ξi =0, i =1,2,3,4,5, ξi 服从0-1分布,而且有 P {ξi =0}=90/100, P {ξi =1}=10/100, i =1,2,3,4,5因此, E ξi =10/100=1/10, 因为∑==51i iξξ因此有5.010155151=⨯==⎪⎭⎫ ⎝⎛=∑∑==i i i i E E E ξξξ10. 一批零件中有9个合格品和3个废品, 在安装机器时, 从这批零件中任取一个, 如果取出的是废品就不再放回去. 求取得第一个合格品之前, 已经取出的废品数的数学期望和方差. 解: 假设在取到第一个合格品之前已取出的废品数为ξ, 则可算出0045.02201101112123}3{041.02209109112123}2{2045.0119123}1{75.0129}0{==⋅⋅====⋅⋅===⋅=====ξξξξP P P P因此有319.009.0409.0)(409.090045.04041.02045.03.030045.02041.02045.0222===-==⨯+⨯+==⨯+⨯+=ξξξξξE E D E E11. 假定每人生日在各个月份的机会是同样的, 求3个人中生日在第一个季度的平均人数. 解: 设三个随机变量ξi ,(i =1,2,3), 如果3个人中的第i 个人在第一季度出生, 则ξi =1, 否则ξi =0, 则ξi 服从0-1分布, 且有 P (ξi =1)=1/4, 因此E ξi =1/4, (i =1,2,3)设ξ为3个人在第一季度出生的人数, 则ξ=ξ1+ξ2+ξ3, 因此Eξ=E (ξ1+ξ2+ξ3)=3Eξi12. ξ有分布函数⎩⎨⎧>-=-其它1)(x e x F xλ, 求E ξ及D ξ. 解: 因ξ的概率密度为⎩⎨⎧>='=-其它)()(x e x F x xλλϕ, 因此 ()λλλϕξλλλλλ11)(0=-=+-=-===∞+-∞+-∞+-+∞-+∞-+∞∞-⎰⎰⎰⎰xx xxxe dx e xe e xd dx ex dx x x E()22020222222)(|λξλλϕξλλλλ==+-=-===⎰⎰⎰⎰∞+-∞+-+∞-+∞-+∞∞-E dx xe e x e d x dx ex dx x x E x x x x22222112)(λλλξξξ=-=-=E E D13. ⎪⎩⎪⎨⎧<-=其它1||11)(~2x x x πϕξ, 求E ξ和D ξ.解: 因φ(x )是偶函数, 因此Eξ=0,则D ξ=Eξ2-(Eξ)2=Eξ2 因此有⎰⎰-===+∞∞-1222212)(dx xx dx x x E D πϕξξ令θθθd dx x cos ,sin ==则上式=2112sin 21212cos 2sin 12||20202022=+=+=⎰⎰ππππθπθπθθπθθπd d 即D ξ16. 如果ξ与η独立, 不求出ξη的分布直接从ξ的分布和η的分布能否计算出D (ξη), 怎样计算?解: 因ξ与η独立, 因此ξ2与η2也独立, 则有[]()()222222)()()(ηξηξξηξηξηE E E E E E D -=-=17. 随机变量η是另一个随机变量ξ的函数, 并且η=e λξ(λ>0), 若E η存在, 求证对于任何实数a 都有λξλξEe ea P a⋅≤≥-}{.证: 分别就离散型和连续型两种情况证. 在ξ为离散型的情况: 假设P (ξ=x i )=p i , 则λξλξλλλξEe e e E p e p ep a P a a i i a x ax i a x ax i i i i i --∞=-≥-≥==≤≤=≥∑∑∑][){)(1)()(在ξ为连续型的情况假设ξ的概率密度为φ(x ), 则λξλξλλλϕϕϕξEe e Ee dx x e dx x edx x a P a a a x aa x a--+∞∞--+∞-+∞==≤≤=≥⎰⎰⎰)()()()()()(}{证毕.18. 证明事件在一次试验中发生次数的方差不超过1/4.证: 设ξ为一次试验中事件A 发生的次数, 当然最多只能发生1次, 最少为0次, 即ξ服从0-1分布, P {ξ=1}=P (A )=p , P {ξ=0}=1-p =q ,则4121412124141)1(222≤⎪⎭⎫ ⎝⎛--=-⋅+-=-=-=p p p p p p p D ξ19. 证明对于任何常数c , 随机变量ξ有 D ξ=E (ξ-c )2-(Eξ-c )2证: 由方差的性质可知D (ξ-c )=Dξ, 而2222)()()]([)()(c E c E c E c E c D ---=---=-ξξξξξ证毕.20. (ξ,η)的联合概率密度φ(x ,y )=e -(x +y )(x ,y >0), 计算它们的协方差cov (ξ,η). 解: 由φ(x ,y )=e -(x +y )(x ,y >0)可知ξ与η相互独立, 因此必有cov (ξ,η)=0.21. 袋中装有标上号码1,2,2的3个球, 从中任取一个并且不再放回, 然后再从袋中任取一球, 以ξ, η分别记为第一,二次取到球上的号码数, 求ξ与η的协方差.,P {ξ=2}=P {η=2}=2/3, P {ξ=1}=P {η=1}=1/3, E ξ=E η=35322311=⨯+⨯38314312312},{)(2121=⨯+⨯+⨯====∑∑==i j j i ijP E ηξξη则913538)(),cov(22-=-=⋅-=ηξξηηξE E E22. (ξ , η)只取下列数组中的值:)0,2()31,1()1,1()0,0(--且相应的概率依次为1/6, 1/3, 1/12, 5/12. 求ξ与η的相关系数ρ, 并判断ξ与η是否独立? 解: ξ与的联合分布表及各边缘分布计算表如下表所示: 因此1212260121=⨯+⨯+⨯-=ξE 1225125412512=⨯+⨯=ξE144275144251225)(22=-=-=ξξξE E D3613311121311270=⨯+⨯+⨯=ηE1083731121912=+⨯=ηE129627512961691237129616910837)(22=-⨯=-=-=ηηηE E D36133112131)(-=-⨯-=ξηE则4322211236171336131253613)(),cov(-=⨯⨯-=⋅--=⋅-=ηξξηηξE E E 相关系数804.027522127543236122211296275144275432221),cov(-=-=⨯⨯⨯-=⨯-==ηξηξρD D, 计算ξ与η的相关系数ρ, 并判断ξ与η是否独立? 解: 由上表的数据的对称性可知与η的边缘分布一样, 算出为 P (ξ=-1)=P (η=-1)=3/8 P (ξ=0)=P (η=-0)=2/8P (ξ=1)=P (η=1)=3/8 由对称性可知Eξ=Eη=0831831=⨯+⨯-. 081818181)(=+--=ξηE 因此cov (ξ,η)=E (ξη)-E (ξ)E (η)=0 则ρ=0而P (ξ=0,η=0)=0≠P {ξ=0}P {η=0}=1/16因此ξ与η不独立. 这是一个随机变量间不相关也不独立的例子.24. 两个随机变量ξ与η, 已知Dξ=25, Dη=36, ρξη=0.4, 计算D (ξ+η)与D (ξ-η). 解:374.065236252),cov(2)]()[()]([)(854.065236252),cov(2)]()[()]([)(2222=⨯⨯⨯-+=-+=-+=---==---=-=⨯⨯⨯++=++=++=-+-==+-+=+ξηξηρηξηξηξηξηηξξηξηξηξρηξηξηξηξηηξξηξηξηξD D D D D D E E E E E D D D D D D D E E E E E D《概率论》期中测试题参考解答1、(10分)设A B C 、、表示三个随机事件,试用事件A B C 、、的运算分别表示下列各事件:(1)A 不发生而B C 、都发生; 表示为:ABC(2)A B C 、、三个事件至少有一个发生; 表示为:AB C ;或表示为:ABC ABC ABC ABC ABC ABC ABC(3)A B C 、、三个事件至多有一个发生; 表示为:ABCABC ABC ABC(4)A B C 、、恰有两个不发生; 表示为:ABCCAB BAC ;(5)A B C 、、都不发生; 表示为:ABC(6)A B C 、、三个事件不少于两个发生; 表示为:ABBC AC ;或表示为:ABC ABC ABC ABC(7)A B C 、、同时发生; 表示为:ABC(8)A B C 、、三个事件不多于两个发生; 表示为:AB C ;或表示为:ABC 或表示为:ABCABC ABC ABC ABC ABC ABC(9)A B C 、、不全发生; 表示为:AB C ;或表示为:ABC 或表示为:ABCABC ABC ABC ABC ABC ABC(10)A B C 、、恰有一个发生.或表示为:ABC ABC ABC2、(14分)已知()0.6,()0.3,()0.6,P A P AB P B ===求:(1)()P AB ;(2)()P A B -;(3)()P AB ;(4)()P AB ;(5)()P A B ;(6)()P B A ;(7)()P A B A .解:(1)因为0.3()()()()P AB P A B P A P AB ==-=-,所以有()()0.3[1()]0.30.40.30.1P AB P A P A =-=--=-=;(2)()()()[1()]()(10.6)0.10.3P A B P A P AB P A P AB -=-=--=--= (3)()()()()0.40.60.10.9P AB P A P B P AB =+-=+-=;(4)()()1()10.90.1P AB P A B P A B ==-=-=;(5)()0.11()()0.66P AB P A B P B ===; (6)()()0.33()()1()0.44P AB P A B P B A P A P A -====-;(7)[()]()()()()()()P A B A P AB AA P A B A P B A P B P A P BA ==+- ()()()[()()]P AB P B P A P B P AB =+--()0.11()()0.60.17P AB P A P AB ===++3、(8分)一个盒子中有10个球,其中4个黑球6个红球,求下列事件的概率:(1)A =“从盒子中任取一球,这个球是黑球”;(2)B =“从盒子中任取两球,刚好一黑一红”;(3)C =“从盒子中任取两球,都是红球”;(4)D =“从盒子中任取五球,恰好有两个黑球”.解:(1)141102()5C P A C ==;(2)11462108()15C C P B C ==;(3)262101()3C P C C ==; (4)234651010()21C C P C C ==4、(3分)设甲、乙、丙三人同时独立地向同一目标各射击一次,命中率分别为112,,323,求目标被命中的概率.解:设1A =“甲命中目标”;2A =“乙命中目标”;3A =“丙命中目标”;A =“目标被击中”。
《概率论》第3章§2边缘分布
F (x,y) =
2x2–x4 , 0 x <1, y 1 y4 , x 1, 0 y < 1 1, x 1, y 1
2013年8月5日星期一
(4)
0, 2x2–x4 , 1, 0,
x < 0, 0 x < 1, x1 y<0
FX ( x) F ( x,) =
FY ( y ) F (, y ) =
y4 ,
1,
0 y < 1,
y1
2013年8月5日星期一
4 x 4 x , 0 x 1 f X ( x) 其他 0,
3
4 y , 0 y 1 fY ( y ) 其他 0,
3
2013年8月5日星期一
当然也可直接由联合密度求边缘密度,例 如
6/29
§2
故 X , Y的联合分布律为
Y X
P{X i, Y j} P{Y j | X i} P{X i} 1 1 (1 j i) i 4
1 1/ 4 0 0 0
1 4
1 2 3 4
pi
2 1/ 8 1/ 8 0 0
1 4
3 1/12 1/12 1/12 0
y
故 r.v X的密度函数为 同理 Y的分布函数为
Y的密度函数为
( x )
FY ( y ) f ( x, v)dxdv
fY ( y ) f ( x, y )dx
( y )
称 f X ( x)为 ( X , Y )关于 X的边缘密度(函数) 称 f Y ( y) 为 ( X , Y )关于 Y 的边缘密度(函数) 第三章 多维随机变量及其分布
概率论第3章习题详解
3.设二维随机变量(X, Y)的联合分布函数为F(x,y)=血乂前丫,0, 冗y 2 其他.求二维随机变量(X, Y)在长方形域0 x冗冗4'6内的概率.【解】如图P{0 X 7C 冗'6冗冗F(2? 」}公式(3.2)3冗冗..F (“)F (0-)4 6 37C nF(0,n 习题二1.将一硬币抛掷三次,以X表示在三次中出现正面的次数,以Y表示三次中出现正面次数与出现反面次数之差的绝对值•试写出X和Y的联合分布律•2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X表示取到黑球的只数,以Y 表示取到红球的只数.求X和Y的联合分布律•n n n n n n sin-gsin — s in —gsin — sin Ogsin — sinOgsin-4 3 4 6 3 6 ¥( 3 i ). 4题3图 说明:也可先求出密度函数,再求概率。
4.设随机变量(X , Y )的分布密度求:(1)常数A ;(2)随机变量(X ,Y )的分布函数; (3) P {0 w X <1, 0< Y <2}.【解】(1)由f(x,y)dxdy o ° Ae -(3x 4y)dxdy A 1得A =12(2)由定义,有y xF (x, y) f(u,v)dudv0, 其他⑶ P{0 X 1,0 Y 2}P{0 X 1,0 Y 2}5.设随机变量(X , Y )的概率密度为k(6 x y), 0 x 2,2y 4, 0,其他.f (x ,y )Ae (3x4y), x 0, y 0,0,其他.x12e (3u 4v)dudv(1 e 3x )(1 e 4y ) y 0,x 0,0,12e(3x 4y)dxdy(1 e 3)(1 e 8) 0.9499.(1)确定常数k;(2)求P[X< 1, Y< 3};(3)求P{X<1.5};(4)求P{X+Y w 4}.【解】(,1)由性质有f (x, y)(2) P{X 1,Yf (x, y)dxdy3}P{X 1.5}0 2k(6 xf(x,y)dydx312§k(6 x y)dydx f (x,y)dxdy如图x 1.51.5 dxa=D1y)dydx 8k 1,38f (x, y)dxdyP{X Y 4}X Y24 1 —(6 x y)dy2 8f (x, y)dxdy如图b f (x, y)dxdy27324 D24 x 1 2(6 x y)dy - 8 30.2 )上服从均匀分布,题5图X在(0,dx 0 26.设X和Y是两个相互独立的随机变量, Y的密度函数为f Y(y)5e5y0,y 0,其他.求:(1)X与Y的联合分布密度; (2) P{Y< X}.题6图所以【解】(1)因X在(0, 0.2 )上服从均匀分布, X的密度函数为丄f x (x) 0.2,0,x 0.2,其他.0,f (x, y)X,丫独立 f x (x)gf y (y)25e 5y , 0 x 0.2且 y 0, 0, 其他•⑵ P(Y X) f (x, y)dxdy 如图 25e 5y dxdyy xD■1=e 0.3679.求(X Y )的联合分布密度求边缘概率密度所以f Y (y)5e 5y , y 0, 0, 其他.0.2 dx 025e -5ydy0 2( 5e 5x5)dx5e 5y 0,7.设二维随机变量X, Y )的联合分布函数为F (x , y )(1 0,4xe )(1 e 2y ), x 0, y 0, 其他.【解】f (x, y)2F(X , y)8e (4x 2y)8.设二维随机变量( X, Y ) (X ,0,的概率密度为4.8y(2 0,0,y 其他.x), 0, 1,0 y x,其他.【解】f X (X )f (x, y)dyx0 4.8y(2 x)dy0,2.4x 2(2 0,x), 0 其他. 1,f Y (y)f (x, y)dx 1y4.8y(2 x)dx2.4 y(3 4y y 2), 0 y 1, 0,其他.1.4y\1y=x'wp oX题10图(1)试确定常数c ; (2)求边缘概率密度 【解】(1)f (x, y)dxdy 如图 f (x,y)dxdyD21 c .⑵ f x (x) f (x , y )d y9.设二维随机变量ye , 0 x y,0,其他.求边缘概率密度 【解】f X (x)f(x, y)dyx0,e y dyxce , x 0,0, 其他.f y (y)f (x,y)dxye y dx0,ye x , y 0, 0, 其他.10.设二维随机变量X ,Y 的概率密度为f ( x ,y )=2cx y, 0, 2x y 1, 其他.1dx -12cx 2ydyx4 c21题8图X, Y )的概率密度为1 21 212 4\2x ydy x (1 x ), 1 x 1,x 4 80, 0, 其他.f Y(y) f(x, y)dx0, 0, 其他.11.设随机变量(X, Y)的概率密度为x1dyx0,其他.求条件概率密度【解】f x(x)f (x, y)f Y i x (y | x),f (x, y)d y1, y x, 0 x 1,0, 其他.题11图f x i Y (x | y).所以f Y(y) f(x, y)dx11dxy11dxy0,y,y,1 y 0,0 y 1,f Yix(y |x)f(x,y)f x(x)12x0,|y| x 1,其他.y 21y 4x2ydx52y2, 0 y 1,2x, x 1,, y x 1,i y亠,y x i,i y0, 其他.12.袋中有五个号码1 , 2, 3, 4, 5,从中任取三个,记这三个号码中最小的号码为X,最大的号码为Y.(1)求X与Y的联合概率分布;(2)X与Y是否相互独立?【解】(1)X与Y的联合分布律如下表3 4 5P{X X i} 1 1 1 2 2 3 3 6亠3 亠3 —10C5 10 C5 10C5 102 0 31 12 210 10103 0 0 A 11 1 ■^―~2■^―10C5 101 3 6P{Y y i}10 10 106 16 1(2)因P{X 1}gP{Y 3} P{X 1,Y 3},10 10 100 10f xY(x| y)f(x,y)f Y(y)故X与Y不独立(2)X与Y是否相互独立?⑵ 因 P{X 2}gP{Y 0.4}0.2 0.8 0.16 0.15 P(X 2,Y 0.4),15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X 和Y 相互独立,且服从 同一分布,其概率密度为1000f (X )= 丁0,故从而方程有实根的概率为:(2X)2 4Y 0灯Y,P{X 2 Y}x 2 f (x, y)dxdyydxx 2 1e 0y/2dy故X 与Y 不独立.14.设X 和Y 是两个相互独立的随机变量, f v (y )=X 在(0, 1 y/2 2e , 0,1)上服从均匀分布, Y 的概率密度为y 0, 其他.(1) 求X 和Y 的联合概率密度;(2) 设含有a 的二次方程为a 2+2Xs +Y =0, 试求 a 有实根的概率.1, 0 x 1,【解】(1)因f X (X )°,其他;f v (y)1 2 e 22 0,y 1, 其他.1 e 故 f(x,y)X,Y 独立 f x (x)gf Y (y)2 y/2x 1,y 0,x 1000, 其他.F z(z)x y- z10616. 设某种型号的电子管的寿命(以小时计)近似地服从(160,202)分布.随机地选取4 求其中没有一只寿命小于180的概率.2 2dxdy x y求Z=X/ Y的概率密度【解】如图,Z的分布函数F Z(z)XP{Z z} P{X z}(1) 当z W0 时,F Z(z) 0(2) 当0<z<1时,(这时当x=1000 时,y=^0)z(如图a)103106dy23当z >1103F z(z)1031062 2dxdyx yzy 106df^dx1031063zydy12zf z(z)f z(z)1丄2zz20,1尹12,0 ,1,z 1,其他.1,z 1,其他.io3dy1:z孽dx10 x y只,【解】设这四只寿命为X(i=1,2,3,4),则X〜N ( 160 , 202),从而P{min(X!,X2,X3,X4)180}X i之间独立P{X i 180}gP{X2 180}P{X3180}gP{X4180}[1 P{X1180}] C P{X2 180}] g1 P{X3 180}] g1 P{X4 180}][1P{X14180}]4, 180 160120[1 4 (1)] 4(0.158) 0.00063.17.设X, Y是相互独立的随机变量,其分布律分别为F^[X=k}= p (k),k=0,1,2,…, P{Y=r}= q (r), r=0, 1, 2,… 证明随机变量Z=X+Y的分布律为iP{Z=i}= p(k)q(ik 0k) , i=0, 1, 2,….【证明】因X和Y所有可能值都是非负整数,所以{Z i} {X Y i}{X 0,Y i}U{X 1,Y i 1} UL U{X i,Y 0}于是P{Z i}iP{Xk 0 k,Y ik}X,Y相互独〔i立P{X k}gP{Y i k}k 0ip(k)q(i k)k 018.设X, Y是相互独立的随机变量,它们都服从参数为n, p的二项分布.证明Z=X+Y服从参数为2n, p的二项分布.【证明】方法一:X+Y可能取值为0, 1, 2,…,2n.kP{ X Y k} P{X i,Y k i}i 0X +Y = (1 l + 口 2+…+ 口 n + 口 1,+2,+ …+ 口 n所以,X +Y 服从参数为(2n , p )的二项分布.2) 求V=max ( X, Y )的分布律; (3) 求U =min (X, Y )的分布律;(4)求W =X +Y 的分布律.P{Y 3|X 0} P{Y 3, X 0}P{X 0}2 P{V i} P{max( X,Y) i}P{Xi 0 nk i n k iP qk iki 0n i i n ipqknnk 2n kp qi 0ik i2nk 2n kP qk方法二:设 1 1, 1 2,…,1 n ; 1 1, 1 2 ,,1均服从两点分布(参数为 p ),则X= 1 1+ 1 2+…+ 1 n , Y = 1 1 ' +a 2+…+/ 1,k【解】(1) P{X 2|Y 2}P{X 2,Y2}P{Y 2} P{X 2,Y2}5P{X i,Y 2}i 00.05 10.25 2P{X 0,Y3} 3P{X 0,Y j}j 00.01 1 0.033P(X i)gP{Y k i}i,Y i} P{X i,Y i}P{X k 0 i,Yik} P{Xk 0k,Y i}, i 0,123,4,5所以V 的分布律为V=max(X Y ) 0⑶ P{U i} P{min( X,Y) i}(4)类似上述过程,有1234567 8 0.020.06 0.13 0.19 0.24 0.190.120.051 2 2 22, x y R , R 0, 其他.f(x, y)dy 0 y xf(x, y)dy xn dn4 R 12rdr 0 n 25—n 4 dn4R 12rdr 0 n 2(2)【解】因(X, Y )的联合概率密度为20.雷达的圆形屏幕半径为R 设目标出现点(X, Y )在屏幕上服从均匀分布.(1)求 RY >0 | Y >X }; (1) P{Y 0|Y X}P{Y 0,Y X}P{Y X}0.040.16 0.28 0.24 0.28P{X i,Y i}3P{X i,Y i}P{X i,Yk i5k} P{X k,Y i}k i 1i 0,123,U =min(X Y ) P0.280.300.25 0.17 WX +Y Pf (x, y)e1【解】区域D 的面积为 Sdx1x1 f (x,y )2 0,(X, Y )关于X 的边缘密度函数为2ln x e 2. (X , Y )的联合密度函数为 “2 c 1 ,1 x e ,0 y , x其他. f x (X )1/x 1 1 0 2dy2?0,1 x e 2,其他.1所以f X (2)[4y 1y 2y 3P { X =X i }= p iX 1 X 21/8 1/8P { Y =y j }= p1/612【解】因 P{Y y j } P jP{X x,Y y j },1故P{Y 比} P{X X 1,Y yd P{X X 2,Y yd,从而 P{X x 1,Y 1 243/8 3 1/2 4(2) P{ M0} P{max(X,Y) 0}1 P{max( X,Y)0}1 P{X 0,Y0} 1f (x, y)d1 1 3.x 0 y 04 421.设平面区域 D 由曲线y =1/x 及直线y =0, x =1,x=e $所围成, 二维随机变量(X Y ) 在区域D 上服从均匀分布,求(X , Y )关于X 的边缘概率密度在 x =2处的值为多少?22.设随机变量X 和Y 相互独立,下表列出了二维随机变量(X Y )联合分布律及关于 X 和Y 的边缘分布律中的部分数值.试将其余数值填入表中的空白处而 X 与 Y 独立,故 P{X X j }gP{Y y j } P{X x i ,Y y i },11 从而 P{X x ,} — P{X 为,丫 y ,}6241 1 1即:P{X x ,} / .24 6 43 同理 P{X x 2} . 4从而P{X X 2,Y y 3} P{Y 滋 P{X23.设某班车起点站上客人数 X 服从参数为 入(入>0)的泊松分布,每位乘客在中途下车的概 率为p ( 0<p <1),且中途下车与否相互独立,以Y 表示在中途下车的人数,求: (1)在发车时有n 个乘客的条件下,中途有 m 人下车的概率;(2)二维随机变量(X ,Y )的概率分布.【解】(1) P{Y m | X n}C :p m (1 p )n m ,0 m n,n 0,1,2丄.(2)P{X n,Y m} P{X n}gP{Y m| X n}又P{XX 1} P{X X 1,Y ydP{X1即丄1 1 P{X冷丫y 3},424 8从而 P{X X 1,Y y 3} 1 1.同理 P{Yy ?}1 2'P{XX 2,Y 3又P{Y y j }1 ,故 P{Y Y 3) 11 -y 』P {X X i ,Y y 3),X i ,Y y 3}11 1 12 4X i ,Y y ?}j im mn meC n P (1P)呻 n,n 0,1,2,L .24.设随机变量X 和Y 独立,其中X 的概率分布为 X ~ 0.3 0.7,而Y 的概率密度为f (y ),求随机变量U=X^Y 的概率密度g ( u ). 【解】设F ( y )是Y 的分布函数,则由全概率公式,知 U=X FY 的分布函数为G(u) P{X Y u} 0.3P{X Y u| X 1} 0.7P{X Y u |X 2} 0.3P{Y u 1| X 1} 0.7P{Y u 2|X2}由于X 和Y 独立,可见 G(u) 0.3P{Y u 1} 0.7P{Yu 2} 0.3F(u1) 0.7F(u2).由此,得U 的概率密度为g(u) G(u)0.3F (u 1) 0.7F (u 2) 0.3f(u1) 0.7f(u2).25. w 1}. 解:25.设随机变量X 与Y 相互独立,且均服从区间[0,3] 上的均匀分布, 求 P {max{X , Y }因为随即变量服从[0,3]上的均匀分布,于是有1f(x) 3 0,3, f(y)因为X , Y 相互独立,所以推得 26. 0,x 3;1 c3, 0 y0, y 0,y3, 3.f (x, y)1 9 0,3,03, 0,y 0,x 3,yP{max{ X ,Y} 1}193.设二维随机变量(X, Y )的概率分布为其中a ,b ,c 为常数,且 X 的数学期望 E (X )= 0.2, P {Y < 0| X w 0}=0.5,记Z =X +Y .求:(1)a, b, c 的值;(2)Z的概率分布;(3)P{ X=Z}.解(1) 由概率分布的性质知,a+b+c+0.6=1 即a+b+c = 04由E(X) 0.2,可得a c 0.1.再由P{Y 0X 0} P{X 0,Y 0} a b Z 0.5,P{X 0} a b 0.5得 a b 0.3.解以上关于a, b, c的三个方程得a 0.2,b 0.1,c 0.1 .⑵Z的可能取值为2,1,0,1,2,P{Z 2} P{X 1,Y 1} 0.2,P{Z 1} P{X 1,Y 0} P{X 0,Y 1} 0.1,P{Z 0} P{X 1,Y 1} P{X 0,Y 0} P{X 1,Y 1}0.3,P{Z 1} P{X 1,Y 0} P{X 0,Y 1} 0.3,P{Z 2} P{X 1,Y 1} 0.1,即Z的概率分布为2⑵方程a 2Xa Y 0有实根的条件是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X(a) = 1, X(b) = 2, X(c) = 2, 思考一下,X 是随机变量吗 ?很明显,X 不是随机变量,因为
{ω : X(ω) 1} = {a} ∈/ Ω, 那么如何对X 的取值进行一下修改,使之成为随机变量呢 ?只要修改X (b)的取值即可。令
Y (a) = 1, Y (b) = 1, Y (c) = 2,
其中,B(R)是实数轴上的Borel域。
这里有两点注记。首先,随机变量是确定性函数,自身并没有随机性。换句话说,给定 样本空间上的样本点,有唯一确定的实数值与之相对应。这种对应关系并没有不确定性。所 有的不确定性都体现在样本点是否在实验结果中出现上,和随机变量本身没有关系。随机 变量的引入,更多地是为了数学处理上的方便。其次,随机变量并不是概率论中独有的概 念。实分析的基本研究对象是所谓“可测函数(Measurable Functions)”。如果我们规定所谓 “可测集(Measurable Sets)”为某种σ-代数的元素,且在函数的定义域和值域上都定义了相应 的σ-代数,那么“可测函数”就是“可测集”原像仍为“可测集”的函数。很明显,随机变量 是一种特殊的可测函数,这里的“可测集”具有了更为具体的实际含义。
例 1.5 (随机变量平方) 包络检波器在通信和雷达电路中十分常见。小信号条件下,平 方律检波器作为包络检波器的重要类型被广泛使用。设平方律检波器的输入为随机噪声X, 那么其输出Y = aX2仍然是随机噪声。这是随机变量平方的典型实例。
4
例 1.6 (随机变量初等变换) 通信系统中载波信号常常表示为
是否仍然是随机变量呢?答案当然是肯定的。
定义 1.2 (实轴上的可测函数) 设B(R)为实数轴上的Borel域,如果函数f (x)满足
f (x) : R → R, f −1(A) ∈ B(R), ∀A ∈ B(R),
(1-7)
则称函数f 为可测函数(Measurable Function)。
5
可以证明,常见的初等函数都是可测函数[1]。事实上,实际应用中遇到的绝大多数函数 或者变换都是可测的。因此,读者一般不用担心函数的可测性质会影响推理。下面的结论可 以直接验证。
对于通常人们关心的集合A ⊆ R,事件X ∈ A的不确定度性应该能够被精确描述;
事件X ∈ A的不确定度应该和相应的统计实验结果的不确定度相一致。
对于第一个问题,根据第二章对实数轴上Borel域B(R)的讨论,绝大部分人们所关心的集合 都在B(R)内。所以,确保B(R)中元素的不确定度能够被度量是随机变量须满足的条件。由于 在样本空间Ω上已经定义好了σ-域F ,F 中的元素都能够用概率来描述其不确定度,所以要 求B(R) 内的元素能够和F内的元素相对应是自然的。也就是说,
随机变量与分布函数
PART A
我们已经在严格的公理化基础上建立了概率的定义。概率是以集合为自变量的函数,这 使我们或多或少感到困惑。统计实验的结果是样本空间的样本点,当我们使用概率方法对这 些实验结果(样本点)进行分析的时候,难道不能够直接对这些样本点实施运算吗?这里会 遇到一定的困难,主要的问题是样本点本身是实体对象,不一定具有数量特性,从而可能无 法直接使用数学工具进行处理。例如,抛硬币实验所得到的结果是“正面”和“反面”。如果 我们想要了解多次实验中“正面”出现的次数,那么直接对“正面”和“反面”进行处理不恨 妥当。“正面”+“正面”什么意思呢?含义并不清晰。因此,如果试图使用数学工具,那么首 先需要将非数值的研究对象(样本点)进行“量化”。也就是说,需要一种“映射”,能够将非 数值的实验结果转化为数值,才能够让数学分析和运算工具发挥作用。退一步讲,即便实验 结果本身是数值,仍有很大可能无法直接观测到。例如,对通信信道中的噪声电平进行重复 采样,由于采样仪器精度以及采样手段的限制,我们获得的观测结果只能是实际噪声电平的 某种近似。这里的仪器和采样方法同样构成了某种从实际实验结果到观测的“映射”。因此, 在我们对概率论展开讨论之初,应该建立一种从样本空间映射到数值的“映射”,并在此基 础上使用数学运算工具进行分析研究。这个映射就是“随机变量”。
随机变量生成的Borel域
随机变量不仅仅对统计实验结果进行了量化,还起到了在样本空间与实数轴间传递信 息的作用。随机变量中包含的信息是如何通过样本空间来表达的呢?首先考察一个例子。
例 1.8 继续例1.3的讨论,分别考察使得X和Y 成为随机变量的σ-代数
Y : {{a, b, c}, {a, b}, {c}, ∅}, X : {{a, b, c}, {a}, {b, c}, ∅},
定理 1.4 考虑样本空间Ω和其上的σ-代数F,如果{Xk}是Ω上的随机变量序列,假定其 存在逐点极限X,那么X 也是随机变量。
证明 2 我们从上(下)极限出发,来研究随机变量的极限。注意到存在确定的整数N0和N1, 使得
∩
{ω : sup Xk x} = {ω : Xk(ω) x},
k
k>∩N0
{ω : inf Xk x} = {ω : Xk(ω) x},
例 1.7 (随机信号相乘) 通信系统中调幅信号的典型形式为
X(t) = A cos(2πf t + Φ), 其中幅度A和相位Φ都是随机变量。这是随机变量相乘的典型实例
ห้องสมุดไป่ตู้
以上例子说明,随机变量应该对加、减、乘、除和初等函数变换等操作封闭。定理1.1为 我们提供了有力的工具。
定理 1.2 考虑样本空间Ω和其上的σ-代数F,如果X和Y 是Ω上的随机变量,那么
由于Borel域包含的元素(集合)非常多,且大多数元素的结构很复杂,所以直接考察其 在样本空间中所对应的原像比较困难。为此,我们需要把所考察的集合范围收窄。
定理 1.1 考虑样本空间Ω和其上的σ-代数F,X : Ω → R,如果
X−1((−∞, x]) ∈ F , ∀x ∈ R,
那么X 是随机变量。
定理 1.3 考虑样本空间Ω和其上的σ-代数F,如果X是Ω上的随机变量,f (x)为可测函 数,那么f (X)是随机变量。
随机变量仅能做初等运算显然是不够的,现代数学处理手段的基本内容是以极限为核 心的微积分。因此,随机变量的极限是否仍然是随机变成为了重要问题。由于随机变量本身 是函数,而函数的极限有很多种类,比如在微积中学到过的逐点极限、一致极限等,随着学 习的深入,我们还将接触到其他类型的随机极限。这里只考虑逐点极限。
证明 1 令B(R)为Borel域,C为满足如下条件的集族
A ∈ C ⇐⇒ A ∈ B(R), X−1(A) ∈ F ,
很明显,C ⊆ B(R),我们需要证明的是C = B(R)。 注意到集合的交、并、补运算在X 的逆映射下保持不变,即
∪∞
∪∞
X−1( Ak) = X−1(Ak),
k=1
k=1
∩∞
∩∞
k k>N1
(1-8) (1-9)
我们有supk Xk和infk Xk都是随机变量。又根据微积分知识,
lim sup Xk = inf sup Xn, lim inf Xk = sup inf Xn,
k
k n>k
k
k n>k
所以,lim supk Xk和lim infk Xk也都是随机变量。而注意到
随机变量的基本概念
随机变量的定义
随机变量是定义于样本空间上的实数值映射,完成了对统计实验结果的量化。但是,仅 仅有量化是不够的。概率论研究事件的不确定性,作为不确定性的度量,概率定义在样本 空间上,并没有直接定义在实数轴上。所以,随机变量取值的不确定性需要相应的刻画。如 果X 是随机变量,那么有两个问题值得考虑:
容易验证,Y 成为了随机变量。改变前的X和改变后的Y 有什么本质的不同呢?仔细观察就 会发现,Y 具有这样的特性:仅通过F就能够推断Y 取值的差异情况(不包括具体的数值)。 换句话说,样本空间上的σ-代数包含了Y 取值差异的几乎全部信息。这也是随机变量定义 中(1-3)之所以非常重要的原因。
3
随机变量的判定
(1-10)
lim Xk = X ⇐⇒ lim sup Xk = lim inf Xk = X,
k
k
k
立刻得到,X 也是随机变量。
(1-11)
尽管我们出于逻辑完整性的考虑,对严格遵循定义的随机变量的判定给予了充分的强 调,但在实际应用中,随机变量的理论判定并不总是意义重大。许多应用概率问题都不对随 机变量的定义进行严格检查。读者在具体工程实践中需要始终明确,随机变量是定义在样本 空间上的实值函数。其他的随机变量定义探讨,读者可以根据需要作出适度的简化处理。
例 1.1 考虑抛硬币实验,如果以H表示正面向上,以T表示反面向上,设样本空间为{H, T},σ代数为{∅, {H, T}, {H}, {T}},定义函数X(ω) 为
X(H) = 1, X(H) = 0,
容易验证X (ω)满足(1-3),因此为随机变量,该随机变量称为Bernoul li随机变量。
例 1.2 考虑对通信信道中的噪声电平进行数字采样,则样本数据自身具有数量特征。 由于采样设备数字量化误差的限制,实际上只能获得离散的采样值。但是,多数情况下为 简单起见,假设实验结果为连续数值(这种近似在实际应用中经常被采用)。因此样本空间 为R,σ-代数为实数轴上的Borel域,代表采样结果的随机变量为
∪ {ω : X(ω) < r} = {ω : X(ω) < qk}, qk→r, qk ∈ Q,
k
从而可以把(1-5)改写为
∪ {ω : X(ω) + Y (ω) < x} = {ω : X(ω) < q} ∩ {ω : Y (ω) < x − q},
q∈Q
(1-6)
由于{ω : X(ω) + Y (ω) < x}与{ω : X(ω) + Y (ω) x}是等价的,立刻得到所需证明的结论。 除了四则运算以外,随机变量在初等函数(多项式、指数、对数、三角函数等)作用下