《圆标准方程》说课稿

合集下载

高中数学说课稿:《圆的标准方程》.doc

高中数学说课稿:《圆的标准方程》.doc

高中数学说课稿:《圆的标准方程》"说课"有利于提高教师理论素养和驾驭教材的能力,也有利于提高教师的语言表达能力,因而受到广大教师的重视,登上了教育研究的大雅之堂。

下面是我为大家收集的关于高中数学说课稿:《圆的标准方程》,欢迎大家阅读借鉴!高中数学说课稿:《圆的标准方程》【一】教学背景分析1.教材结构分析《圆的方程》安排在高中数学第二册(上)第七章第六节.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.2.学情分析圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:3.教学目标(1) 知识目标:①掌握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;③利用圆的标准方程解决简单的实际问题.(2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解和加强对待定系数法的运用;③增强学生用数学的意识.(3) 情感目标:①培养学生主动探究知识、合作交流的意识;②在体验数学美的过程中激发学生的学习兴趣.根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:4. 教学重点与难点(1)重点:圆的标准方程的求法及其应用.(2)难点:①会根据不同的已知条件求圆的标准方程;②选择恰当的坐标系解决与圆有关的实际问题.为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:【二】教法学法分析1.教法分析为了充分调动学生学习的积极性,本节课采用"启发式"问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上.另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程.2.学法分析通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解.通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆.通过应用圆的标准方程,熟悉用待定系数法求的过程.下面我就对具体的教学过程和设计加以说明:【三】教学过程与设计整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:创设情境启迪思维深入探究获得新知应用举例巩固提高反馈训练形成方法小结反思拓展引申下面我从纵横两方面叙述我的教学程序与设计意图.首先:纵向叙述教学过程(一)创设情境——启迪思维问题一已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决.一方面帮助学生回顾了旧知——求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题.用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望.这样获取的知识,不但易于保持,而且易于迁移.通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节.(二)深入探究——获得新知问题二 1.根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?2.如果圆心在,半径为时又如何呢?这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r 的圆的标准方程.然后再让学生对圆心不在原点的情况进行探究.我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法.得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节.(三)应用举例——巩固提高I.直接应用内化新知问题三 1.写出下列各圆的标准方程:(1)圆心在原点,半径为3;(2)经过点,圆心在点.2.写出圆的圆心坐标和半径.我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备.II.灵活应用提升能力问题四 1.求以点为圆心,并且和直线相切的圆的方程.2.求过点,圆心在直线上且与轴相切的圆的方程.3.已知圆的方程为,求过圆上一点的切线方程.你能归纳出具有一般性的结论吗?已知圆的方程是,经过圆上一点的切线的方程是什么?我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程.第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆.第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间.最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮.III.实际应用回归自然问题五如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0.01m).我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识.(四)反馈训练——形成方法问题六 1.求过原点和点,且圆心在直线上的圆的标准方程.2.求圆过点的切线方程.3.求圆过点的切线方程.接下来是第四环节——反馈训练.这一环节中,我设计三个小题作为巩固性训练,给学生一块"用武"之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心.另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果.(五)小结反思——拓展引申1.课堂小结把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法①圆心为,半径为r 的圆的标准方程为:圆心在原点时,半径为r 的圆的标准方程为:.②已知圆的方程是,经过圆上一点的切线的方程是:.2.分层作业(A)巩固型作业:教材P81-82:(习题7.6)1,2,4.(B)思维拓展型作业:试推导过圆上一点的切线方程.3.激发新疑问题七 1.把圆的标准方程展开后是什么形式?2.方程表示什么图形?在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了.在知识的拓展中再次掀起学生探究的热情.另外它为下节课研究圆的一般方程作了重要的准备.以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计:横向阐述教学设计(一)突出重点抓住关键突破难点求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点.第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心.最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五.这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破.(二)学生主体教师主导探究主线本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终.从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的.另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务.(三)培养思维提升能力激励创新为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力.在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行.以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变.最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争"使教育过程成为一种艺术的事业".。

高一必修二《圆的标准方程》的说课稿

高一必修二《圆的标准方程》的说课稿

高一必修二《圆的标准方程》的说课稿
 【小编寄语】数学网小编给大家整理了高一必修二《圆的标准方程》的说课稿,希望能给大家带来帮助!
 【一】教学背景分析
 1.教材结构分析
 《圆的方程》安排在高中数学第二册(上)第七章第六节.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.
 2.学情分析圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握。

《圆的标准方程》说课稿

《圆的标准方程》说课稿

《圆的标准方程》说课稿圆的标准方程讲义[1]教学背景分析1.教材分析标准圆方程是高中数学第二卷(第一部分)第七章第六节圆方程的第一种形式。

它是在学习了直线方程和求曲线方程的一般方法之后的另一个曲线方程。

这是以前知识的延续和延伸,也是研究二次曲线的开始。

这对我们学习下面的一般方程和参数方程以及第八章“二次曲线”等内容,无论在知识上还是在方法上都有积极的意义。

因此,本节的内容在整个解析几何中起着承上启下的作用。

2.学习情况分析虽然学生在初中就已经学习了圆的概念和基本性质,并且已经掌握了求解曲线方程的一般方法,但是学生学习解析几何的时间不长,对解析几何的本质了解不多,而且坐标法的应用也不够熟练,因此在学习过程中难免会出现困难。

[2]教学目标,教学重点和难点1。

教学目标:(1)知识目标:①掌握圆的标准方程,可以从圆的标准方程中写出圆的半径之和中心坐标;(2)根据条件,用待定系数法可以得到圆的标准方程;③用标准圆方程解决简单的实际问题。

(2)能力目标①加强待定系数法的应用,进一步培养学生用代数方法研究几何问题的能力;(2)提高学生应用数学解决实际问题的意识和兴趣。

(3)情感目标:培养学生主动探究的意识。

教学重点和难点(1)要点:圆的标准方程和用待定系数法求圆的标准方程的形式。

(2)难点:①根据不同的已知条件,用待定系数法求圆的标准方程;(2)用标准圆方程解决简单的实际问题。

[3]教学方法分析为了充分调动学生的积极性,我采用了“启发式”问题教学法,将教学过程由浅入深,问题环环相扣。

通过解决问题,我达到了对知识的理解,这不仅能适应学生的思维过程,而且能激发学生学习数学的兴趣,因为他能从学习过程中学习,从思维中获得收获。

[4]教学过程分析我把整个教学过程设计为五个环节,由七个问题组成。

创设情境启发思维,深入探究获取新知识,应用实例,巩固和改进反馈训练总结的形成方法,反思和拓展外延(1)创设情境启发思维1问题1:众所周知,隧道的横截面是一个半径为4米的半圆形。

人教版高中数学必修二《圆的标准方程》说课稿

人教版高中数学必修二《圆的标准方程》说课稿

《圆的标准方程》说课稿说教学目标:本节课的知识目标是:理解掌握圆的定义及标准方程。

能力目标是:能根据圆的标准方程指出圆心和半径;能根据已知条件求圆的标准方程。

情感目标:培养学生勇于发现、勇于探索的精神。

说教学重难点,重点是理解掌握圆的定义及标准方程。

难点是圆的标准方程的推导说教法:本节课主要采用讲练结合法和引导发现法。

说学法:主要采用自主探究法说本节课使用的教具:主要采用多媒体教学说教学过程:一、师生问好 二、复习提问:两点间的距离公式和线段的中点坐标公式。

三、 导入新课用图片导入本节课主要内容㈠ 圆的定义圆是平面内到定点的距离等于定长的点的轨迹。

㈡ 圆的标准方程222()()x a y b r -+-=㈢ 例题讲解及练习例1 写出圆22(2)(1)5x y -++=的圆心的坐标及半径. 解 方程 22(2)(1)5x y -++=可化为 []222(2)(1)x y -+--=,所以 2,1,a b r ==-=,故,圆心的坐标为(2,1)C -,半径为r =.【注意】使用公式(8.8)求圆心的坐标时,要注意公式中两个括号内都是“-”号.练习1:说出圆的圆心坐标及半径(1) (x-1)2+(y-2)2=9 (2) (x+1)2+(y+2)2=4 (3) (x-3)2+y 2=5 (4) x 2+(y+5)2=8 (5) x 2+y 2=16 (6) (x-2)2+(y+8)2=(-6)2例2 设点A(4,3)、B (6,-1),求以线段AB 为直径的圆的标准方程。

解:所求圆的圆心为C ,则C 为线段AB 的中点,半径为线段AB 的长度的一半,即 2211(46)(31)20522r =-++==故所求圆的方程为22(5)(1)5x y -+-=.练习2:1.求以点C(-1,3)为圆心,r=3为半径的圆的标准方程.2. 求以点(-2,5)为圆心,并且过点(3, -7)的圆的标准方程强化练习1.求圆心为点C(2,-3)且过点A (5,1)的圆的标准方程.2.已知点A (1,2),B(3,0),求以AB 为直径的圆的标准方程.四、说课堂小结1.圆的定义 2.圆的标准方程五、说作业布置 读书部分:认真读教材64,65页;预习教材65—66页内容。

圆的标准方程说课

圆的标准方程说课

教学过程
板书设计
教学评价
三、反馈练习,引用拓展
• 1.回归到创设的情境问题中
例:写出圆心为A(2,-3),半径5的圆的方程,并 判断点M(3,-2),P(5,-7),Q(-1,3)是否在这个 圆上.
课题介绍
教学分析
教学方法
教学过程
板书设计
三、反馈练习,引用拓展
• 2.写出下列各圆的方程 (1)圆心在原点,半径为3; (2)圆心在C(3, 4,) 半径为 ;5 (3)经过点P(5,,1)圆心在点 C(;8, 3) • 3.根据圆的方程口答出它的圆心和半径 (1)(x 2)2 ( y 3)2 5
课题介绍
教学分析
教学方法
教学过程
板书设计
教学评价
“圆的标准方程”是高中数学教材 新课标人教A版数学必修2第四章第一 节内容.
课题介绍
教学分析
教学方法
教学过程
板书设计
教学评价
一、教材的地位和作用
二、教学目标
三、教学重难点
课题介绍
教学分析
教学方法
教学过程
板书设计
教学评价
一、教材的地位和作用
在此之前学生已学习了圆的概念和直 线与程这为过渡到本节的学习起着铺垫作 用.本节内容在解析几何中,占据非常重要 的地位.以及为其他学科和今后的学习打下 基础.
(2)(x 2)2 y2 . (2)2
教学评价
课题介绍
教学分析
教学方法
教学过程
板书设计
教学评价
四、知识回顾,反思提高
• 1.知识方面:
圆的标准方程; 确定一个圆的标准方程要具备的两个条件.
• 2.思想方法方面:
数形结合的思想

圆的标准方程说课稿

圆的标准方程说课稿

《圆的标准方程》说课稿《圆的标准方程》说课稿(第一课时)大家好,我今天说课的题目是圆的标准方程。

下面我将从以下几个方面来阐述我的教学设计。

一、教材分析《圆的标准方程》选基础模块下册第八章第4节的内容,在此之前我们学了直线方程,圆的标准方程是是进一步学习圆的一般方程、直线与圆的位置关系的基础,所以本节内容在整个解析几何中起着承前启后的作用。

二、学情分析我教授的是幼教二年级的学生,他们在知识、能力和情感上有以下特征。

在新课开始之前教师借助“问卷星”创建网络问卷,通过微信将问卷发布到班级微信群,学生填写提交。

老师在手机浏览每一份问卷,并获得详细的统计分析报告,准确了解学生知识准备情况。

三、教学目标依据教学大纲和新课程理念,结合本专业学生的认知特点,我确定本节课的教学目标如下:四、重点、难点分析重点:圆的标准方程的推导和初步运用。

难点:利用待定系数法求圆的标准方程,五、教法学法分析结合本节课的教学目标,我主要采用了以下教学策略,本着以学生发展为核心的理念,我引导学生形成以下几种学习方法下面我将着重阐述我教学过程设计。

六、教学过程设计(一)课前诊测,扫除障碍根据课前调查了解的情况,学生对两点间距离公式有关知识不太熟悉了。

我制作微课以便学生在线学习。

课前教师通过问卷星设计课前检测,让学生可以在线答题。

(二)创设情境,导入新课通过播放赵州桥的视频,设置问题引起学生思考。

使学生感受到数学源于生活,学会用数学的眼光去关注生活,体现了数学的应用价值。

(三)合作交流,探究新知本环节旨在探究圆的标准方程,整个教学环节分三步完成。

第一步,深入探究圆的定义我指出“不以规矩,无以成方圆。

”要求学生用圆规在直角坐标系中作出一个圆,我又利用几何画板演示了一遍圆的定义。

让他们尝试回忆出圆的定义,最后说出完整的圆的定,也为下一步方程的推导奠定了基础。

第二步,探究圆的标准方程中职学生数学基础薄弱,很大部分原因是没有建立基本数学思维,因此我让他们自学圆的标准方程的推导过程。

圆的标准方程说课稿与教案

圆的标准方程说课稿与教案

圆的标准方程说课稿与教案圆的标准方程说课稿一•说课思路1教材分析:《圆的方程》安排在人民教育出版社高中数学A版必修2第四章第一节的内容■圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用■圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.2.教法分析:3■学法分析4教学过程二•教学目标⑴知识目标:①掌握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;③利用圆的标准方程解决简单的实际问题.(2)能力目标:①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解;③增强学生用数学的意识.⑶情感目标:①培养学生主动探究知识、合作交流的意识;②在体验数学美的过程中激发学生的学习兴趣.三•教学重点与难点(1)重点:圆的标准方程的求法及其应用.(2)难点:①会根据不同的已知条件求圆的标准方程;②选择恰当的坐标系解决与圆有关的实际问题四•教法分析和学法分析1•教法分析为了充分调动学生学习的积极性,本节课采用启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上■借助创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程.2•学法分析通过推导圆的标准方程,求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆■通过应用圆的标准方程,使学生认识到数学在实际问题中的应用。

五.教学过程与设计整个教学过程是由五个问题组成的问题链驱动的,共分为五个环节:创设情境f启迪思维f深入探究f获得新知f应用举例f巩固提咼反馈训练f形成方法f小结反思f拓展引申问题一已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?CD的长度转移为用曲线的方程来解决.一方面帮助学生学习了求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题.用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望.这样获取的知识,不但易于保持,而且易于迁移•【教学目标】知识目标:1 了解圆的定义;2理解用解析法推导圆的标准方程的过程3掌握圆的标准方程:会根据圆的标准方程写出圆的半径和圆心坐标;能根据条件写出圆的标准方程;能力目标:1培养学生用代数方法研究几何问题的能力;2培养学生的数形结合思想的思维习惯;3注意培养学生观察问题、发现问题、解决问题的能力.情感目标:1培养学生主动探究知识、合作交流的意识;2学习中感受学习乐趣,体验成功。

人教版高中数学《圆的标准方程》说课稿

人教版高中数学《圆的标准方程》说课稿

问题3:求曲线的方程的一般步骤是什么? 其中哪几个步骤必不可少?
(1)建立适当的坐标系,用有序实数对例如(x,y)表示曲线上 任意一点M的坐标; (2)写出适合条件 p 的点M的集合P={M|p(M)}; (3)用坐标表示条件p(M),列出方程f(x,y)=0; (4)化方程f(x,y)=0为最简形式; (5)证明以化简后的方程的解为坐标的点都是曲线上的点. 其中步骤(1)(3)(4)必不可少.
下面我们用求曲线方程的一般步骤来建立圆的标准方程.
求圆心是C(a, b),半径是r的圆的方程。
解:设M(x,y)是圆上任意一点, 根据圆的定义|MC|=r 由两点间距离公式,得
y M

r C
x a
2
y b r
2

x 说明: 1.特点:明确给出了圆心和 半径。 2.确定圆的方程必须具备三个 独立的条件。 O
问题1:具有什么性质的点的轨迹称为圆? 平面内与一定点距离等于定长的点的轨迹称为圆. 问题2:图中哪个点是定点?哪个点是动点?动点具有什么 性质?圆心和半径都反映了圆的什么特点? 圆心C是定点,圆周上的点M是动点,它 们到圆心距离等于定长|MC|=r,圆心和半径分 别确定了圆的位置(定位)和大小(定型).
x 3
x 8
2
2
y 4 5
2
2
(3)经过点P(5,1),圆心在点C(8,-3)
y 3 25
练习2.写出下列各圆的圆心坐标和半径 (1)
2 x 1 y 6 2
2 2
1, 0
a,0
6
3
(2) x 1 y 2 9 (3) x a
“兴趣是最好的老师!”可利用生活中的实例:小学课 本中所学习的《赵州桥》、学生在游乐场见过的摩天轮 等,以两个圆的模型为背景,激发学生学习圆的兴趣.

信息化教学设计《圆的标准方程》说课稿

信息化教学设计《圆的标准方程》说课稿

信息化教学设计《圆的标准方程》说课稿第一篇:信息化教学设计《圆的标准方程》说课稿《致橡树》信息化教学设计《致橡树》信息化教学设计说课稿英国教育家罗素说过这样一句话:“教育是获得运用知识的艺术”。

《致橡树》是当代诗歌名篇,有很强的抒情性,美文就应该用美的艺术去教。

下面我将从以下几方面阐述我的教学设计。

一、【设计理念】职高语文课程标准对阅读和鉴赏的要求是:“学会鉴赏文学作品,能感受形象,品味语言,领悟作品的丰富内涵,体会其艺术表现力,有自己的情感体验和思考,受到感染和启迪”;在阅读和鉴赏活动中,不断地充实精神生活,完善自我人格,提升人生境界,加深个人对社会、自然、国家关系的思考和认识。

依据语文课程标准、学习者特征分析、现代教育技术理论及建构主义学习理论,创设一个融多种信息化手段和教法学法于一体的情境性、社会性课堂环境,引导学生体会诗歌的意象美、情感美,丰富学生的情感世界,养成健康的审美情趣,提高文学修养,形成正确的爱情观。

二、【学情分析】教学对象是中等职业学校机电专业2010级的学生,学生基础较差,课外阅读量少,阅读鉴赏诗歌的能力极为薄弱,没有升学压力,学业负担轻。

机电专业的学生动手能力和逻辑思维能力比较强,但是形象思维能力、语言表达能力较差。

初中、中职一年级已经有诗歌学习的经验,已经初步具备搜集整合资料的能力,初步掌握了鉴赏诗歌的一般方法。

十六七岁的中职生正处在青春期,敏感、细腻、感受力强,他们正处在人生观、价值观初步形成并逐步确立的阶段,对人生、尤其是对爱情充满了好奇和憧憬,而这首诗的内容与爱情有关,跟生活贴近,学生很感兴趣。

所以以此为很好的切入点,形象的启发、引导学生思考人生,为学生一辈子打上精神的底色。

二、【教材分析】(一)本课的地位与作用:《致橡树》编排在中等职业教育规划教材语文《致橡树》信息化教学设计过程与手段:采用音乐、视频、校园学习平台等信息化手段,为学生营造诗画合一的氛围和意境,展现蕴含着丰富的“美”的资源的语文教材,实现助学助教功能。

圆的标准方程说课稿

圆的标准方程说课稿

《圆的标准方程》的说课稿各位老师、同学们,大家好!今天我说课的题目是《圆的标准方程》,按大纲要求《圆的方程》这一节共分三课时,我今天要说的是第一课时的内容——圆的标准方程.下面我将从三个方面来阐述我对这节课的教学认识,分别是,教学背景分析、教法学法分析、以及具体的教学过程与设计。

首先,我对本节课的教学背景进行一些分析:在这里我分四小点进行说明。

【一】教学背景分析1.教材结构分析《圆的方程》安排在高中数学第二册(上)第七章第六节。

在新课表实验教材中,被安排在必修二的平面解析几何初步中,我们知道,圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.而圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对接下来直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.2。

学情分析:圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的。

但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强。

根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:3.教学目标(1)知识目标:①掌握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;③利用圆的标准方程解决简单的实际问题.(2)能力目标:①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解和加强对待定系数法的运用;③增强学生用数学的意识.(3)情感目标:①培养学生主动探究知识、合作交流的意识;②在体验数学美的过程中激发学生的学习兴趣.根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:4。

教学重点与难点(1)重点:圆的标准方程的求法及其应用。

说课稿——圆的标准方程

说课稿——圆的标准方程

说课稿——圆的标准方程
圆是一个重要的概念,它是许多几何图形的基本元素,而更重要的是,它也是科学研究和应用中一个重要的因素。

对于学习圆的标准方程来说,一定要先了解圆是什么,以及它的基本特性是什么,从而了解它的标准方程是什么。

首先,让我们来了解一下圆是什么。

圆是一种平面图形,它是由点组成的闭合曲线,任意两点的距离都是定值的,这个定值就是圆的半径。

从定义上来看,圆是一种特殊的椭圆,它的中心就是椭圆的中心,并且它的长轴等于它的短轴,也就是说,所有椭圆的周长都是相同的。

接下来,让我们看一下圆的基本特性。

圆有很多特性,这些特性中有许多是非常重要的,从而可以帮助我们更好的理解它的标准方程。

首先,由于圆的周长都是相同的,因此它的弧度是相同的。

圆的面积也是一个定值,它的面积是径径,也就是Pi平方。

最后,圆的中心点到圆周上任意一点的距离是一个定值,也就是半径。

根据以上内容,我们可以得出圆的标准方程:(x-a)+(y-b)=r。

其中,a和b是圆心坐标,r是半径。

一般来说,当我们知道圆心和
半径,就可以通过这个标准方程来确定一个圆。

综上所述,圆的标准方程是(x-a)+(y-b)=r,它包含了圆的三个
基本特性,即周长、面积和中心点到圆周上任意一点的距离,我们可以通过这三个特性来推导出它的标准方程。

谢谢大家!。

圆的标准方程(说课稿)

圆的标准方程(说课稿)

数学与信息科学学院说课稿课题圆的标准方程专业数学与应用数学指导教师潘超班级2007级2班姓名李节强学号***********2010年6月5日课题介绍我说的课题是圆的标准方程,它选自普通高中课程标准实验教科书数学必修2第四章第一节.一、教材分析(一)本节在教材中的地位和作用“圆的标准方程”是在学生学习了圆的概念和基本性质的基础上,进一步运用坐标法解决二次曲线问题.对本节的学习为后面学习直线与圆的位置关系、椭圆、双曲线、抛物线等提供了基本模式和理论基础,起着承前启后的重要作用.(二)目标分析根据新课标理念及布鲁姆的目标分类教学理论,我制定了以下教学目标:1、知识目标①掌握圆的标准方程及其推导过程;②会根据圆心坐标、半径熟练地写出圆的标准方程以及从圆的标准方程中熟练准确地找出圆心坐标和半径.2、能力目标①培养学生用代数的方法解决几何问题的能力;②培养学生数形结合的思想;③培养学生自主探究的能力.3、情感目标①培养学生积极思考、自主构建知识体系的学习态度;②让学生感受数学的现实美、抽象美,体会圆的标准方程形成过程的严谨美.(三)教学重难点1.重点:圆的标准方程的求法及应用;2.难点:会求圆的标准方程.二、学情分析通过对上一章直线的方程的学习,学生已经初步掌握了坐标法,已有运用代数方法解决几何问题的能力,再加上学生在初中已经学习了圆的定义及其基本性质,为此,学生具备了自主探究的条件.但由于学生接触解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.三、教学方法与手段(一)教法选择建构主义教学理论认为:“学习过程不是一个被动接受信息的过程,而是学习者积极主动地建构自己知识的过程.”因而,为了达到预期的教学目标,本节通过师生之间的相互探讨和交流进行教学,即以启发式教学法为主,以讲练结合法、谈话法等展开教学.在探究过程中,教师着眼于“导”,采用问题驱动的形式,激发学生的求知欲望;学生着眼与“探”,通过探究发现规律,发展探索能力和创造能力.(二)学法指导根据新课程标准理念,学生是学习的主体,教师只是学习的帮助者,引导者.考虑到圆的标准方程并不难,本节课老师着重于引导,采用自主探究的方法进行学习,使学生在探究中获得知识,提高能力,且从中体验学习的乐趣.(三)教学手段为了提高课堂教学效率,我采用多媒体辅助教学;为了突出重点加深学生印象,我用彩色粉笔辅助教学;为了作图美观,我又使用了圆规和三角板.四、教学过程整个教学过程,包括下面六个环节:创设情境→探究新知→例题讲解→巩固练习→课时总结→布置作业.(一)创设情境问题:如果隧道的截面是半径为5m的圆拱(示意图如下),该圆拱跨度AB为8m,假设车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3.5m的货车能驶入这个隧道吗?俗话说“兴趣是最好的老师”,为了增强学生学习数学的信心,增加学习数学的兴趣,我选取了现实生活中货车过隧道的问题来创设情景.我从实际问题出发,让学生感受到数学来源于生活而又服务于生活,激发了学生的学习兴趣.这样获取的知识,不但易于保持,而且易于迁移.(二)探求新知1、建构主义教学理论认为,学习并不是知识的简单积累,它包含新、旧知识的冲突而引发的观念转变和结构重组,是新旧经验的双向的相互作用的过程.因此,此环节我注重新旧知识的联系,在对上一章直线的方程的回顾中,抛出本节课所要研究探讨的内容:在直角坐标系中,如何求圆心在(,)C a b,半径为r的圆的方程呢?激发学生积极思考.2、待学生思考片刻后,我再向学生连发两问:我们在探求直线的方程的过程中都有哪些步骤呢?那我们又能不能根据此步骤来探求圆的方程呢?这儿表面上是向学生提问,实则是为学生的自主探究、思考指明方向.3、有了上面所作的铺垫,我将让学生彼此协作,类比求直线方程的步骤,自主探究.如果学生在探究过程中遇到了困难,无法继续进行探究的时候,我再作适当的提示.通过此种方式,学生将会"不辱使命",很快找到圆心为(,)C a b ,半径为r 的圆的方程222()()x a y b r -+-=.4、待学生给出圆的方程后,为了培养学生严谨的思维,我将引导学生从坐标是方程的解的点必在圆上,圆上的点的坐标也必定是方程的解这两个方面来验证方程,并指出此方程为圆心在(,)C a b ,半径为r 的圆的标准方程,对为什么被称为“标准方程”进行适当的阐述.5、为了让学生更好地理解所学知识,根据学生的认知规律,我给出了两个关于圆的标准方程的练习,让学生独立完成,我做简单讲解和小结.在小结中指出:圆心和半径是圆的两要素;要求圆的标准方程,只需去找圆心坐标和半径.(三)例题讲解例1 ABC ∆的三个顶点的坐标分别是(5,1)A ,(7,3)B -,(2,8)C -,求它的外接圆的方程.. 例2 引入中所遗留的“货车过隧道”的问题.通过这两个例题,进一步强化学生对知识的理解与应用.在讲解过程中,我利用波利亚的解题理论,着重于解题分析,引导学生积极思考,让学生都投入到解题中来.例1讲解中指出,求圆的标准方程的一般方法:若圆心坐标和半径不易找到时采用待定系数法求解.到此,本节课的难点也得以突破.回顾例2并指出:解决本题的关键在于求圆的标准方程,以此强调本节课的重点.(四)巩固练习夸美纽斯的教学认为所学知识需及时巩固,在巩固的过程中也可以培养学生独立解决问题的能力.在例题讲解后,通过抽个别同学上黑板演算,其余同学在草稿本上完成练习的方式来掌握学生的学习情况,从而对讲解内容作适当的补充提醒.(五)课时总结根据艾宾浩斯遗忘规律,越先学习的东西越容易忘记,因此,对所学知识进行及时的总结和回顾是很有必要的.1、知识方面:(1)圆心为(,)C a b ,半径为r 的圆的标准方程为:222()()x a y b r -+-= ,当圆心在原点时,圆的标准方程为:222x y r += ;(2)确定一个圆的方程所要具备的两个要素2、思想方法方面:学会用代数的方法解决几何问题,注意培养数形结合的思想(六)布置作业根据循序渐进的原则,我将作业的布置分为三个层次,使学生巩固新知识的同时也给学有余力的学生以自由发展的空间.此外,设置思考题,为下节课学习“圆的一般方程”做准备.1、巩固:124(1,2,3)P ;2、选做题:长为2a 的线段AB 的两个端点A 和B 分别在x 轴和y 轴上滑动,求线段AB 的中点的轨迹方程.3、思考题: ①标准方程的展开式是圆的方程吗?②所有的二元二次方程都表示圆吗?如果不是,怎样的二元二次方程才表示圆?五、板书设计板书设计的好坏直接影响这节课的效果,因此它起着举足轻重的作用.为了使整个板面重点突出,层次分明,在使用多媒体辅助教学的基础上,我将黑板分为两版:第一总之,本节课是根据教师只是学生学习的引导者,知识是由学生自主构建的原则设计的.。

《圆的标准方程》说课稿(通用3篇)

《圆的标准方程》说课稿(通用3篇)

《圆的标准方程》说课稿(通用3篇)《圆的标准方程》篇1“说课”有利于提高教师理论素养和驾驭教材的能力,也有利于提高教师的语言表达能力,因而受到广大教师的重视,登上了教育研究的大雅之堂。

下面是小编为大家收集的关于高中数学说课稿:《圆的标准方程》,欢迎大家阅读借鉴!高中数学说课稿:《圆的标准方程》【一】教学背景分析1.教材结构分析《圆的方程》安排在高中数学第二册(上)第七章第六节.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.2.学情分析圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:3.教学目标(1) 知识目标:①掌握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;③利用圆的标准方程解决简单的实际问题.(2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解和加强对待定系数法的运用;③增强学生用数学的意识.(3) 情感目标:①培养学生主动探究知识、合作交流的意识;②在体验数学美的过程中激发学生的学习兴趣.根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:4. 教学重点与难点(1)重点:圆的标准方程的求法及其应用.(2)难点:①会根据不同的已知条件求圆的标准方程;②选择恰当的坐标系解决与圆有关的实际问题.为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:【二】教法学法分析1.教法分析为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上.另外我恰当的利用多媒体进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程.2.学法分析通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解.通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆.通过应用圆的标准方程,熟悉用待定系数法求的过程.下面我就对具体的教学过程和设计加以说明:【三】教学过程与设计整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:创设情境启迪思维深入探究获得新知应用举例巩固提高反馈训练形成方法小结反思拓展引申下面我从纵横两方面叙述我的教学程序与设计意图.首先:纵向叙述教学过程(一)创设情境——启迪思维问题一已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决.一方面帮助学生回顾了旧知——求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题.用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望.这样获取的知识,不但易于保持,而且易于迁移.通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节.(二)深入探究——获得新知问题二1.根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?2.如果圆心在,半径为时又如何呢?这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r的圆的标准方程.然后再让学生对圆心不在原点的情况进行探究.我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法.得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节.(三)应用举例——巩固提高I.直接应用内化新知问题三 1.写出下列各圆的标准方程:(1)圆心在原点,半径为3;(2)经过点,圆心在点.2.写出圆的圆心坐标和半径.我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备.II.灵活应用提升能力问题四 1.求以点为圆心,并且和直线相切的圆的方程.2.求过点,圆心在直线上且与轴相切的圆的方程.3.已知圆的方程为,求过圆上一点的切线方程.你能归纳出具有一般性的结论吗?已知圆的方程是,经过圆上一点的切线的方程是什么?我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程.第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆.第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间.最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮.III.实际应用回归自然问题五如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0.01m).我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识.(四)反馈训练——形成方法问题六 1.求过原点和点,且圆心在直线上的圆的标准方程.2.求圆过点的切线方程.3.求圆过点的切线方程.接下来是第四环节——反馈训练.这一环节中,我设计三个小题作为巩固性训练,给学生一块“用武”之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心.另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果.(五)小结反思——拓展引申1.课堂小结把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法①圆心为,半径为r 的圆的标准方程为:圆心在原点时,半径为r 的圆的标准方程为:.②已知圆的方程是,经过圆上一点的切线的方程是:.2.分层作业(A)巩固型作业:教材P81-82:(习题7.6)1,2,4.(B)思维拓展型作业:试推导过圆上一点的切线方程.3.激发新疑问题七 1.把圆的标准方程展开后是什么形式?2.方程表示什么图形?在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了.在知识的拓展中再次掀起学生探究的热情.另外它为下节课研究圆的一般方程作了重要的准备.以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的:横向阐述教学设计(一)突出重点抓住关键突破难点求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点.第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心.最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五.这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破.(二)学生主体教师主导探究主线本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终.从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的.另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务.(三)培养思维提升能力激励创新为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力.在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行.以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变.最后我以赫尔巴特的一句结束我的说课,发挥我们的创造性,力争“使教育过程成为一种艺术的事业”.《圆的标准方程》说课稿篇2圆的标准方程是高中数学的一个重要知识点,下面小编为大家搜集的一篇“高二数学说课稿《圆的标准方程》”,供大家参考借鉴,希望可以帮助到有需要的朋友!1.教材结构分析《圆的方程》安排在高中数学第二册(上)第七章第六节.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.2.学情分析圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:3.教学目标(1) 知识目标:①掌握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;③利用圆的标准方程解决简单的实际问题.(2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解和加强对待定系数法的运用;③增强学生用数学的意识.(3) 情感目标:①培养学生主动探究知识、合作交流的意识;②在体验数学美的过程中激发学生的学习兴趣.根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:4. 教学重点与难点(1)重点:圆的标准方程的求法及其应用.(2)难点:①会根据不同的已知条件求圆的标准方程;②选择恰当的坐标系解决与圆有关的实际问题.《圆的标准方程》说课稿篇3【一】教学背景分析1.教材结构分析《圆的方程》安排在高中数学第二册(上)第七章第六节.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.2.学情分析圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:3.教学目标(1) 知识目标:①掌握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;③利用圆的标准方程解决简单的实际问题.(2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解和加强对待定系数法的运用;③增强学生用数学的意识.(3) 情感目标:①培养学生主动探究知识、合作交流的意识;②在体验数学美的过程中激发学生的学习兴趣.根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:4. 教学重点与难点(1)重点:圆的标准方程的求法及其应用.(2)难点:①会根据不同的已知条件求圆的标准方程;②选择恰当的坐标系解决与圆有关的实际问题.为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:【二】教法学法分析1.教法分析为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上.另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程.2.学法分析通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解.通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆.通过应用圆的标准方程,熟悉用待定系数法求的过程.下面我就对具体的教学过程和设计加以说明:【三】教学过程与设计整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:创设情境启迪思维深入探究获得新知应用举例巩固提高反馈训练形成方法小结反思拓展引申下面我从纵横两方面叙述我的教学程序与设计意图.首先:纵向叙述教学过程(一)创设情境——启迪思维问题一已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决.一方面帮助学生回顾了旧知——求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题.用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望.这样获取的知识,不但易于保持,而且易于迁移.通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节.(二)深入探究——获得新知问题二1.根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?2.如果圆心在,半径为时又如何呢?这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r的圆的标准方程.然后再让学生对圆心不在原点的情况进行探究.我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法.得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节.(三)应用举例——巩固提高I.直接应用内化新知问题三 1.写出下列各圆的标准方程:(1)圆心在原点,半径为3;(2)经过点,圆心在点.2.写出圆的圆心坐标和半径.我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备.II.灵活应用提升能力问题四 1.求以点为圆心,并且和直线相切的圆的方程.2.求过点,圆心在直线上且与轴相切的圆的方程.3.已知圆的方程为,求过圆上一点的切线方程.你能归纳出具有一般性的结论吗?已知圆的方程是,经过圆上一点的切线的方程是什么?我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程.第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆.第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间.最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮.III.实际应用回归自然问题五如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0.01m).我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识.(四)反馈训练——形成方法问题六 1.求过原点和点,且圆心在直线上的圆的标准方程.2.求圆过点的切线方程.3.求圆过点的切线方程.接下来是第四环节——反馈训练.这一环节中,我设计三个小题作为巩固性训练,给学生一块“用武”之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心.另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果.(五)小结反思——拓展引申1.课堂小结把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法①圆心为,半径为r 的圆的标准方程为:圆心在原点时,半径为r 的圆的标准方程为:.②已知圆的方程是,经过圆上一点的切线的方程是:.2.分层作业(A)巩固型作业:教材P81-82:(习题7.6)1,2,4.(B)思维拓展型作业:试推导过圆上一点的切线方程.3.激发新疑问题七 1.把圆的标准方程展开后是什么形式?2.方程表示什么图形?在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了.在知识的拓展中再次掀起学生探究的热情.另外它为下节课研究圆的一般方程作了重要的准备.以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计:横向阐述教学设计(一)突出重点抓住关键突破难点求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点.第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心.最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五.这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破.(二)学生主体教师主导探究主线本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终.从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的.另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务.(三)培养思维提升能力激励创新为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力.在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行.以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变.最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争“使教育过程成为一种艺术的事业”.。

高中数学《圆的标准方程》说课稿

高中数学《圆的标准方程》说课稿

高中数学《圆的标准方程》讲课稿【一】教课背景剖析1.教材构造剖析《圆的方程》安排在高中数学第二册 ( 上) 第七章第六节 . 圆作为常有的简单几何图形在实质生活和生产实践中有着宽泛的应用. 圆的方程属于分析几何学的基础知识是研究二次曲线的开始对后续直线与圆的地点关系、圆锥曲线等内容的学习不论在知识上仍是方法上都有着踊跃的意义因此本节内容在整个分析几何中起着承上启下的作用.2.学情剖析圆的方程是学生在初中学习了圆的观点和基天性质后又掌握了求曲线方程的一般方法的基础长进行研究的 . 但因为学生学习分析几何的时间还不长、学习程度较浅且对坐标法的运用还不够娴熟在学习过程中不免会出现困难 . 此外学生在研究问题的能力 , 合作沟通的意识等方面有待增强 .依据上述教材构造与内容剖析考虑到学生已有的认知构造和心理特点我拟订以下教课目的:3.教课目的(1)知识目标:①掌握圆的标准方程 ;②会由圆的标准方程写出圆的半径和圆心坐标能依据条件写出圆的标准方程 ;③利用圆的标准方程解决简单的实质问题.(2)能力目标:①进一步培育学生用代数方法研究几何问题的能力;②加深对数形联合思想的理解和增强对待定系数法的运用 ; ③增强学生用数学的意识 .(3)感情目标:①培育学生主动研究知识、合作沟通的意识;②在体验数学美的过程中激发学生的学习兴趣 .依据以上对教材、教课目的及学情的剖析我确立以下的教课要点和难点:4.教课要点与难点(1)要点 : 圆的标准方程的求法及其应用 .(2)难点:①会依据不一样的已知条件求圆的标准方程 ;②选择适合的坐标系解决与圆相关的实质问题.为使学生能达到本节设定的教课目的我再从教法和学法长进行剖析:【二】教法学法剖析1.教法剖析为了充足调换学生学习的踊跃性本节课采纳“启示式”问题教课法用环环相扣的问题将研究活动层层深入使教师老是站在学生思想的近来发展区上 . 此外我适合的利用多媒体课件进行协助教课借助信息技术创建实质问题的情境既能激发学生的学习兴趣又直观的指引了学生建模的过程 .2.学法剖析经过推导圆的标准方程加深对用坐标法求轨迹方程的理解 . 经过求圆的标准方程理解一定具备三个独立的条件才能够确立一个圆 . 经过应用圆的标准方程熟习用待定系数法求的过程 .下边我就对详细的教课过程和设计加以说明:【三】教课过程与设计整个教课过程是由七个问题构成的问题链驱动的共分为五个环节:创建情境启示思想深入研究获取新知应用举例稳固提高反应训练形成方法小结反省拓展引申下边我从纵横双方面表达我的教课程序与设计企图.第一:纵向表达教课过程(一) 创建情境——启示思想问题一已知地道的截面是半径为 4m的半圆车辆只好在道路中心线一侧行驶一辆宽为 2.7m 高为 3m的货车能不可以驶入这个地道 ?经过对这个实质问题的研究把学生的思想由用勾股定理求线段CD 的长度转移为用曲线的方程来解决 . 一方面帮助学生回首了旧知——求轨迹方程的一般方法另一方面在获取汽车不可以经过的结论的同时学生自己推导出了圆心在原点半径为 4 的圆的标准方程进而很自然的进入了本课的主题. 用实质问题创建问题情境让学生感觉到问题根源于实质应用于实质激发了学生的学习兴趣和学习欲念. 这样获取的知识不只易于保持并且易于迁徙.经过对问题一的研究抓住了学生的注意力把学生的思想引到用坐标法研究圆的方程上来此时再把问题深入进入第二环节.(二) 深入研究——获取新知问题二 1. 依据问题一的研究能不可以获取圆心在原点半径为的圆的方程 ?2.假如圆心在半径为时又怎样呢 ?这一环节我第一让学生对问题一进行概括获取圆心在原点半径为 4 的圆的标准方程后指引学生概括出圆心在原点半径为 r 的圆的标准方程 . 而后再让学生对圆心不在原点的状况进行研究 . 我预设了三种方法等候着学生的研究结果分别是:坐标法、图形变换法、向量平移法 .获取圆的标准方程后我设计了由浅入深的三个应用平台进入第三环节 .( 三) 应用举例——稳固提高I.直策应用内化新知问题三 1. 写出以下各圆的标准方程:(1)圆心在原点半径为 3;(2)经过点圆心在点 .2.写出圆的圆心坐标和半径 .我设计了两个小问题第一题是直接或间接的给出圆心坐标和半径求圆的标准方程第二题是给出圆的标准方程求圆心坐标和半径这两题比较简单能够安排学生口答达成目的是先让学生娴熟掌握圆心坐标、半径与圆的标准方程之间的关系为后边研究圆的切线问题作准备.II.灵巧应用提高能力问题四 1. 求以点为圆心并且和直线相切的圆的方程.2.求过点圆心在直线上且与轴相切的圆的方程 .3.已知圆的方程为求过圆上一点的切线方程 .你能概括出拥有一般性的结论?已知圆的方程是经过圆上一点的切线的方程?我设计了三个小问题第一个小题有了刚才解决问题三的基础学生会很快求出半径依据圆心坐标写出圆的标准方程 . 第二个小题有些困难需要指引学生应用待定系数法确立圆心坐标和半径再求解进而理解一定具备三个独立的条件才能够确立一个圆 . 第三个小题解决方法许多我预设了四种方法再一次为学生的发散思想创建了空间 . 最后我让学生由第三小题的结论进行概括、猜想在论证经过圆上一点圆的切线方程的过程中又一次模拟了真剪发现的过程使研究氛围达到高潮.。

《圆的标准方程》说课稿

《圆的标准方程》说课稿

《圆的标准方程》说课稿(一)说教材1、教材构造编排:本节课位于直线方程之后和圆的一般方程之前,学习直线方程为后边学习圆的方程奠定了根底,而学好圆的标准方程是为了进一步学习圆的一般方程和切线方程打好根底,因此在构造上起承上启下的作用。

2、教学目标学问目标:(1)把握圆的标准方程,并能依据圆的标准方程写出圆心坐标和半径、(2)已知圆心和半径会写出圆的标准方程、力量目标:(1)培育学生数形结合力量、(2)培育学生应用数学学问解决实际问题的力量情感目标:(1)培育学生主动探究学问,合作沟通的意识。

(2)在体验数学美的过程中激发学生学习的兴趣。

3、教学重点(1)圆的标准方程(2)已知圆的标准方程会写出圆的圆心和半径(3)已知圆心坐标和半径会写出圆的标准方程4、教学难点(1)圆的标准方程的推导(2)圆的标准方程的应用(二)说教法本节课采纳讲练结合,启发式教学(三)说学法1、主动探究学习2、小组合作学习(四)说教学过程1、导入通过钟表的图片让学生了解钟表的指针头运行的轨迹是一个圆,其次个钟表是让学生了解圆是一系列的点来构成的,第三个图是抽象出圆是由动点运行的轨迹有此形成圆的定义。

2、学问连接(1)圆的定义,圆上的点具备的特征性质(2)平面上两点间的距离公式通过复习为后边推导圆的标准方程奠定根底,降低难度。

3、新课学习(1)推导圆的标准方程(化解难点)怎么推出圆的标准方程,为了降低难度,可以把圆看成一个动点,既然是动点,那他的坐标是变化的,就用(x,y)表示,既然是圆上的点就应具备圆的特征性质即|CM|=r接下来就简单推出圆的标准方程。

(2)圆的标准方程(突出重点)先分析它的构造,圆心的横纵坐标及半径与圆的标准方程之间的关系。

为了稳固这个学问安排两个练习,练习一是已知圆心坐标及半径写出圆的标准方程,练习二是已知圆的标准方程写出圆的圆心坐标和半径(3)为了加强学问的应用,我加了一道用圆的标准方程解决实际问题的例子。

【精编范文】高一数学《圆的标准方程》说课稿模板-范文模板 (6页)

【精编范文】高一数学《圆的标准方程》说课稿模板-范文模板 (6页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==高一数学《圆的标准方程》说课稿模板【一】教学背景分析1.教材结构分析《圆的方程》安排在高中数学第二册(上)第七章第六节.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.2.学情分析圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:3.教学目标(1) 知识目标:①掌握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;③利用圆的标准方程解决简单的实际问题.(2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解和加强对待定系数法的运用;③增强学生用数学的意识.(3) 情感目标:①培养学生主动探究知识、合作交流的意识;②在体验数学美的过程中激发学生的学习兴趣.根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:4. 教学重点与难点(1)重点:圆的标准方程的求法及其应用.(2)难点:①会根据不同的已知条件求圆的标准方程;②选择恰当的坐标系解决与圆有关的实际问题.为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:【二】教法学法分析1.教法分析为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上.另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程.2.学法分析通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解.通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆.通过应用圆的标准方程,熟悉用待定系数法求的过程.下面我就对具体的教学过程和设计加以说明:【三】教学过程与设计整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:创设情境启迪思维深入探究获得新知应用举例巩固提高反馈训练形成方法小结反思拓展引申下面我从纵横两方面叙述我的教学程序与设计意图.首先:纵向叙述教学过程(一)创设情境——启迪思维问题一已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决.一方面帮助学生回顾了旧知——求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题.用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望.这样获取的知识,不但易于保持,而且易于迁移.通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节.(二)深入探究——获得新知问题二 1.根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?2.如果圆心在,半径为时又如何呢?这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r的圆的标准方程.然后再让学生对圆心不在原点的情况进行探究.我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法.得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节.(三)应用举例——巩固提高I.直接应用内化新知问题三 1.写出下列各圆的标准方程:(1)圆心在原点,半径为3;(2)经过点,圆心在点.2.写出圆的圆心坐标和半径.我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备.II.灵活应用提升能力问题四 1.求以点为圆心,并且和直线相切的圆的方程.2.求过点,圆心在直线上且与轴相切的圆的方程.3.已知圆的方程为,求过圆上一点的切线方程.。

圆的标准方程(说课稿)课件PPT汇编

圆的标准方程(说课稿)课件PPT汇编
教材 分析
教学 评价 教学 方法
圆的标 准方程
板书 设计 教学 过程 教具 准备
教材 分析
教学 评价 教学 方法
圆的标 准方程
板书 设计 教学 过程 教具 准备
一、教材的地位和作用
教材 分析
二、教学目标
三、教学重难点
一、教材的地位和作用
“圆的标准方程”是在圆的概念 和基本性质的基础上,运用“曲线和 方程”理论解决具体二次曲线的一个 实例.这节为后面直线与圆的位置关系、 椭圆、双曲线、抛物线等内容的学习 提供了基本模式和理论基础.
教学 过程
创设情景 合作探究 反馈练习 知识回顾 布置作业 引入新课 获得新知 引用拓展 反思提高 分层落实
四、知识回顾,反思提高
1.知识方面:
圆的标准方程;
确定一个圆的标准方程要具备的两个条件.
2.思想方法方面:
数形结合的思想
教学 过程
创设情景 合作探究 反馈练习 知识回顾 布置作业 引入新课 获得新知 引用拓展 反思提高 分层落实

一、教材的地位和作用
教材 分析
二、教学目标
三、教学重难点
三、教学重难点
1.重点:圆的标准方程的求法及其应用
2.难点:根据不同的已知条件求圆的标 准方程
教材 分析
教学 评价 教学 方法
圆的标 准方程
板书 设计 教学 过程 教具 准备
教学 方法
二、学法
一、教法
本节课采用探究研讨法,用环 环相扣的问题引导学生将探究活动 逐层深入,从学生的最近发展区出 发引导学生的学习。
D
A
O
C
B
教学 过程
创设情景 合作探究 反馈练习 知识回顾 布置作业 引入新课 获得新知 引用拓展 反思提高 分层落实
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《圆标准方程》说课稿
《圆标准方程》说课稿
【一】教学背景分析
1.教材结构分析
《圆的方程》安排在高中数学第二册(上)第七章第六节.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.
2.学情分析圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.
根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:
3.教学目标
(1)知识目标:①掌握圆的标准方程;
②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;
③利用圆的标准方程解决简单的实际问题.
(2)能力目标:①进一步培养学生用代数方法研究几何问题的能力;
②加深对数形结合思想的理解和加强对待定系数法的运用;
③增强学生用数学的意识.
(3)情感目标:①培养学生主动探究知识、合作交流的意识;
②在体验数学美的过程中激发学生的学习兴趣.
根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点: 4.教学重点与难点
(1)重点:圆的标准方程的求法及其应用.
(2)难点:①会根据不同的已知条件求圆的标准方程;
②选择恰当的坐标系解决与圆有关的实际问题.
为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:
【二】教法学法分析
1.教法分析为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上.另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程.
2.学法分析通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解.通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆.通过应用圆的标准方程,熟悉用待定系数法求的过程.
【三】教学过程与设计
整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:
创设情境启迪思维深入探究获得新知应用举例巩固提高
反馈训练形成方法小结反思拓展引申
下面我从纵横两方面叙述我的教学程序与设计意图.
首先:纵向叙述教学过程
(一)创设情境——启迪思维
问题一已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?
通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决.一方面帮助学生回顾了旧知——求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题.用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望.这样获取的知识,不但易于保持,而且易于迁移.
通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节.
(二
)深入探究——获得新知
问题二1.根据问题一的探究能不能得到圆心在原点,半径为的圆的方程? 2.如果圆心在,半径为时又如何呢?
这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r的圆的标准方程.然后再让学生对圆心不在原点的情况进行探究.我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法.
得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节. (三)应用举例——巩固提高
I.直接应用内化新知
问题三1.写出下列各圆的标准方程:
(1)圆心在原点,半径为3;
(2)经过点,圆心在点.
2.写出圆的圆心坐标和半径.
我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备.
II.灵活应用提升能力
问题四1.求以点为圆心,并且和直线相切的圆的方程.
2.求过点,圆心在直线上且与轴相切的圆的方程.
3.已知圆的方程为,求过圆上一点的切线方程.
你能归纳出具有一般性的结论吗?
已知圆的方程是,经过圆上一点的切线的方程是什么?
我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程.第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆.第三个小题解决方法较多,我预设了四种方法再一次为学生
的发散思维创设了空间.最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮.
III.实际应用回归自然
问题五如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0.01m). 我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识.
(四)反馈训练——形成方法
问题六1.求过原点和点,且圆心在直线上的圆的标准方程.
2.求圆
下面我就对具体的教学过程和设计加以说明:。

相关文档
最新文档