半导体物理与器件物理ppt课件

合集下载

(施敏)半导体器件物理(详尽版)ppt

(施敏)半导体器件物理(详尽版)ppt

江西科技师范大学
半导体器件物理 如图,晶面ACC’A’在 坐标轴上的 截距为1,1,∞, 其倒数为1,1,0, 此平面用密勒指数表示 为(110), 此晶面的晶向(晶列指 数)即为[110];
晶面ABB’A’用密勒指 数表示为( 100 );
晶面D’AC用密勒指数 表示为( 111 )。
江西科技师范大学
禁带比较窄,常 温下,部分价带 电子被激发到空 的导带,形成有 少数电子填充的 导带和留有少数 空穴的价带,都 能带电
3~6eV
能带被电 子部分占 满,在电 场作用下 这些电子 可以导电
禁带很 宽,价 带电子 常温下 不能被 激发到 空的导 带
硅1.12eV
锗0.67 eV
砷化镓 1.42 eV 江西科技师范大学
半导体器件物理
第 章 半导体特性
1.1 半导体的晶格结构 1.2 半导体的导电性 1.3 半导体中的电子状态和能带
1
1.4 半导体中的杂质与缺陷
1.5 载流子的运动 1.6 非平衡载流子 1.7 习题
江西科技师范大学
半导体器件物理
● —— 本章重点
半导体材料的晶格结构 电子和空穴的概念 半导体的电性能和导电机理 载流子的漂移运动和扩散运动
半导体器件物理
共有化运动
由于晶体中原子的周期性 排列而使电子不再为单个 原子所有的现象,称为电 子共有化。
半导体中的电子是在周期性排列 且固定不动的大量原子核的势场 和其他大量电子的平均势场中运动。 这个平均势场也是周期性变化的, 且周期与晶格周期相同。
在晶体中,不但外层价电 子的轨道有交叠,内层电 子的轨道也可能有交叠, 它们都会形成共有化运动; 但内层电子的轨道交叠较 少,共有化程度弱些,外 层电子轨道交叠较多,共 有化程度强些。

【精品】半导体物理(SEMICONDUCTOR PHYSICS )PPT课件

【精品】半导体物理(SEMICONDUCTOR PHYSICS )PPT课件
• 适当波长的光照可以改变半导体的导电能力
如在绝缘衬底上制备的硫化镉(CdS)薄膜,无光照时的暗电阻为几十 MΩ,当受光照后电阻值可以下降为几十KΩ
• 此外,半导体的导电能力还随电场、磁场等的作用而改变
• 本课程的内容安排
以元素半导体硅(Si)和锗(Ge)为对象: • 介绍了半导体的晶体结构和缺陷,定义了晶向和晶面 • 讨论了半导体中的电子状态与能带结构,介绍了杂质半导体及其 杂质能级 • 在对半导体中载流子统计的基础上分析了影响因素,讨论了非平 衡载流子的产生与复合 • 对半导体中载流子的漂移运动和半导体的导电性进行了讨论,介 绍了载流子的扩散运动,建立了连续性方程 • 简要介绍了半导体表面的相关知识
• 化学比偏离还可能形成所谓反结构缺陷,如GaAs晶体中As 的成份偏多,不仅形成Ga空位,而且As原子还可占据Ga空 位,称为反结构缺陷。
• 此外高能粒子轰击半导体时,也会使原子脱离正常格点位 置,形成间隙原子、空位以及空位聚积成的空位团等。
• 位错是晶体中的另一种缺陷,它是一种线缺陷。
• 半导体单晶制备和器件生产的许多步骤都在高温下进行,因而在 晶体中会产生一定应力。
共价键方向是四面体对称的,即共价键是从正四面体中心原子出 发指向它的四个顶角原子,共价键之间的夹角为109°28´,这种正四面 体称为共价四面体。
图中原子间的二条连线表示共有一对价电子,二条
线的方向表示共价键方向。
共价四面体中如果把原子粗
略看成圆球并且最近邻的原
子彼此相切,圆球半径就称 为共价四面体半径。
图1.6 两种不同的晶列
• 晶列的取向称为晶向。 • 为表示晶向,从一个格点O沿某个晶向到另一格点P作位移 矢量R,如图1.7,则
R=l1a+l2b+l3c • 若l1:l2:l3不是互质的,通过

半导体物理与器件-课件-教学PPT-作者-裴素华-第1章-半导体材料的基本性质

半导体物理与器件-课件-教学PPT-作者-裴素华-第1章-半导体材料的基本性质

简化为
J = pqv p
1.6.4 半导体的电阻率ρ
电阻率是半导体材料的一个重要参数,其值为电导率
的倒数。 1
1
ρ= =
σ nqμn + pqμ p
对于强P型和强N型半导体业有相应的简化。
从上面的公式可以看出,半导体电阻率的大小决定于 n, p, μn ,μp的具体数值,而这些参数又与温度有关, 所以电阻率灵敏的依赖于温度,这是半导体的重要 特点之一。
b) P型硅中电子和空穴 的迁移率
载流子的迁移率还要随温度而变化。
硅中载流子迁移率随温度变化的曲线 a) μn b) μp
1.6.3 半导体样品中的漂移电流密度
设一个晶体样品如图所示, 以单位面积为底,以平 均漂移速度v为长度的矩 形体积。先求出电子电 流密度,设电场E为x方 向,在电场的作用下, 电子应沿着-x方向运动。
不论半导体中的杂质激发还是本征激发,都是依靠吸收 晶格热振动能量而发生的。由于晶格的热振动能量是随 温度变化的,因而载流子的激发也要随温度而变化。
载流子激发随温度的变化 a)温度很低 b)室温临近 c)温度较高 d)温度很高
伴随着温度的升高,半导体的费米能级也相应地发 生变化
杂质半导体费米能级随温度的变化 a)N型半导体 b)P型半导体
a)随机热运动 b) 随机热运动和外加电场作用下的运动合成
随机热运动的结果是没有电荷迁移,不能形成电流。
引入两个概念:
1. 大量载流子碰撞间存在一个路程的平均值,称为平 均自由程,用λ表示,其典型值为10-5cm;
2. 两次碰撞间的平均时间称为平均自由时间,用τ表示, 约为1ps;
建立了上述随机热运动的图像后,就可以比较实际地去 分析载流子在外加电场作用下的运动了。

《半导体物理学》课件

《半导体物理学》课件
重要性
半导体物理学是现代电子科技和信息 科技的基础,对微电子、光电子、电 力电子等领域的发展具有至关重要的 作用。
半导体物理学的发展历程
19世纪末期
半导体概念的形成,科学家开始认识到 某些物质具有导电性介于金属和绝缘体
之间。
20世纪中叶
晶体管的商业化应用,集成电路的发 明,推动了电子科技和信息科技的发
半导体中的热电效应
总结词
解释热电效应的原理及其在半导体中的应用。
详细描述
当半导体受到温度梯度作用时,会在两端产生电压差 ,这一现象被称为热电效应。热电效应的原理在于不 同温度下,半导体内部载流子的分布不同,导致出现 电势差。热电效应在温差发电等领域有应用价值,可 以通过优化半导体的材料和结构来提高热电转换效率 。
分析器件在长时间使用或恶劣环 境下的性能退化,以提高其可靠 性。
THANKS
THANK YOU FOR YOUR WATCHING
06
半导体材料与工艺
半导体材料的分类和特性
元素半导体
如硅、锗等,具有稳定的化学性质和良好的半导 体特性。
化合物半导体
如砷化镓、磷化铟等,具有较高的电子迁移率和 光学性能。
宽禁带半导体
如金刚石、氮化镓等,具有高热导率和禁带宽度 大等特点。
半导体材料的制备和加工
气相沉积
通过化学气相沉积或物理气相沉积方法制备 薄膜。
05
半导体器件的工作原理
二极管的工作原理
总结词
二极管是半导体器件中最简单的一种 ,其工作原理基于PN结的单向导电性 。
详细描述
二极管由一个P型半导体和一个N型半 导体结合而成,在交界处形成PN结。 当正向电压施加时,电子从N区流向P 区,空穴从P区流向N区,形成电流; 当反向电压施加时,电流极小或无电流 。

最新半导体物理与器件-课件-教学PPT-作者-裴素华-第4章-MOS场效应晶体管精品课件

最新半导体物理与器件-课件-教学PPT-作者-裴素华-第4章-MOS场效应晶体管精品课件
第四页,共74页。
2.表面(biǎomiàn)势与表面(biǎomiàn)耗尽区
下图给出了P型半导体MOS结构在栅极电压UG>>0情况下更 为(ɡènɡ wéi)详细的能带图。
第五页,共74页。
在下面(xià mian)的讨论中,定义与费米能级相对应的费
米势为
F
(Ei
EF )体内 q
因此(yīncǐ),对于P型半 导体,
MOS 电容(diànróng)等效示意图 第十页,共74页。
在平带条件(tiáojiàn)下对应的总电容称为MOS 结构的平带 电容CFB
C FB
t OX
OX 0
1 2
OX S
LD
右图表示(biǎoshì)了 P型半导体MOS结构 的理想C-U曲线
线
第十一页,共74页。
MOS电容-电压(diànyā)曲
UDS较小时(xiǎoshí),导电沟道随UGS的变化
a) UGS< UT 没有沟道 b) UGS> UT 出现沟道 c) UGS>>UT 沟道增厚
第二十四页,共74页。
2. 饱和(bǎohé)工作区
此时的电流-电压特性(tèxìng)对应与特性(tèxìng)图中UGS=5V曲线的 AB段。
导电沟道(ɡōu dào)随UDS的变化
ns
ni
exp
q(
s
T
F
ps
ni
exp
q(
F T
s
第七页,共74页。
通过以上讨论,以下各区间的表面电势可以区分为: Ψs<0空穴积累(能带向上弯曲); Ψs=0平带情况; ΨF>Ψs>0空穴耗尽(能带向下弯曲); ΨF=Ψs 表面上正好(zhènghǎo)是本征的ns=ps=ni ΨF<Ψs 反型情况(反型层中电子积累,能带向下弯曲)。

《半导体器件物理》课件

《半导体器件物理》课件
《半导体器件物理》PPT课件
目录 Contents
• 半导体器件物理概述 • 半导体材料的基本性质 • 半导体器件的基本结构与工作原理 • 半导体器件的特性分析 • 半导体器件的制造工艺 • 半导体器件的发展趋势与展望
01
半导体器件物理概述
半导体器件物理的定义
半导体器件物理是研究半导体材料和器件中电子和空穴的行为,以及它们与外部因 素相互作用的一门学科。
可以分为隧道器件、热电子器件、异质结器 件等。
半导体器件的应用
01
通信领域
用于制造手机、卫星通信、光纤通 信等设备中的关键元件。
能源领域
用于制造太阳能电池、风力发电系 统中的传感器和控制器等。
03
02
计算机领域
用于制造计算机处理器、存储器、 集成电路等。
医疗领域
用于制造医疗设备中的检测器和治 疗仪器等。
04
02
半导体材料的基本性质
半导体材料的能带结构
总结词
能带结构是描述固体中电子状态的模 型,它决定了半导体的导电性能。
详细描述
半导体的能带结构由价带和导带组成 ,它们之间存在一个禁带。当电子从 价带跃迁到导带时,需要吸收或释放 能量,这决定了半导体的光电性能。
载流子的输运过程
总结词
载流子输运过程描述了电子和空穴在 半导体中的运动和相互作用。
•·
场效应晶体管分为N沟道 和P沟道两种类型,其结 构包括源极、漏极和栅极 。
场效应晶体管在放大、开 关、模拟电路等中应用广 泛,具有功耗低、稳定性 高等优点。
当栅极电压变化时,导电 沟道的开闭状态会相应改 变,从而控制漏极电流的 大小。
04
半导体器件的特性分析
半导体器件的I-V特性

《半导体物理基础》课件

《半导体物理基础》课件
当电子从导带回到价带时,会释 放能量并发出光子,这就是发光 效应。发光效应是半导体的一个 重要应用,如发光二极管和激光 器等。
04 半导体中的载流子输运
CHAPTER
载流子的产生与复合
载流子的产生
当半导体受到外界能量(如光、热、电场等)的作用时,其 内部的电子和空穴的分布状态会发生改变,导致电子和空穴 从价带跃迁到导带,产生电子-空穴对。
06 半导体物理的应用与发展趋势
CHAPTER
半导体物理在电子器件中的应用
01
02
03
晶体管
利用半导体材料制成的晶 体管是现代电子设备中的 基本元件,用于放大、开 关和整流信号。
集成电路
集成电路是将多个晶体管 和其他元件集成在一块芯 片上,实现特定的电路功 能。
太阳能电池
利用半导体的光电效应将 光能转化为电能,太阳Hale Waihona Puke 电池是可再生能源的重要 应用之一。
半导体物理在光电子器件中的应用
LED
发光二极管,利用半导体的光电效应发出可见光 ,广泛应用于照明和显示领域。
激光器
利用半导体的光放大效应产生激光,用于数据存 储、通信和医疗等领域。
光探测器
利用半导体的光电效应探测光信号,用于光纤通 信、环境监测等领域。
半导体物理的发展趋势与展望
新材料和新型器件
随着科技的发展,人们不断探索新的半导体材料和新型器件,以 提高性能、降低成本并满足不断变化的应用需求。
闪锌矿结构
如铬、钨等金属的晶体结构。
如锗、硅等半导体的晶体结构。
面心立方结构(fcc)
如铜、铝等金属的晶体结构。
纤锌矿结构
如氮化镓、磷化镓等半导体的晶 体结构。
晶体结构对半导体性质的影响

半导体器件物理课件一.ppt

半导体器件物理课件一.ppt

第一章 半导体物理基础
能量为E的电子状态密度
EC 导带底 h 普朗克常数 mn* 电子的有效质量
广东工业大学
第一章 半导体物理基础
能量为E的空穴状态密度
mp* 空穴的有效质量 EV 价带顶
广东工业大学
第一章 半导体物理基础
费米-狄拉克分布函数
能量为E的一个量子态被一个电子占据的几率
E 电子能量 k0 玻耳兹曼常数 T 热力学温度 EF 费米能级 常数,大多数情况下,它的数值在半导体能 带的禁带范围内,和温度、半导体材料的导电类型、杂质的 含量以及能量零点的选取有关。只要知道了EF的数值,在一 定温度下,电子在各量子态上的统计分布就完全确定了。
广东工业大学
第一章 半导体物理基础
1.3 半导体中的平衡与非平衡载流子
载流子 参与导电的电子和空穴统称为半导体的载流子。
载流子的产生 本征激发 电子从价带跃迁到导带,形成导带电子和价带空穴 杂质电离 当电子从施主能级跃迁到导带时产生导带电子;
当电子从价带激发到受主能级时产生价带空穴
广东工业大学
第一章 半导体物理基础
广东工业大学
第一章 半导体物理基础
深能级杂质
非Ⅲ、Ⅴ族元素掺入硅、锗中也会在禁带中引入能级。 非Ⅲ、Ⅴ族元素产生的能级有以下两个特点:
(1)施主能级距离导带底较远,受主能级距离价带顶也较 远。称为深能级,相应的杂质称为深能级杂质;
(2)这些深能级杂质能产生多次电离,每一次电离相应地 有一个能级。因此,这些杂质在硅、锗的禁带中往往引入若干 个能级。而且,有的杂质既能引入施主能级,又能引入受主能 级。
若E> EF,则f(E)<1/2
当系统的温度高于绝对零度时,如 果量子态的能量比费米能级低,则 该量子态被电子占据的几率大于百 分之五十;若量子态的能量比费米 能级高,则该量子态被电子占据的 几率小于百分之五十。 因此,费米能级是量子态基本上被 电子占据或基本上是空穴的一个标 志。

半导体物理与器件(吕淑媛)课件章 (1)

半导体物理与器件(吕淑媛)课件章 (1)

第 1 章 晶体中的电子运动状态
若某平面通过某轴,则在该轴的截距数目不唯一,此时, 可以通过另一平行平面来确定米勒指数。同样,当某平面通过 原点时,也可选择另一平行平面来确定其米勒指数。
原子的面密度是晶体的一个重要特征参数。原子面密度是 单位面积内原子的个数,可以用晶胞中一个晶面内所含原子数 除以晶胞中晶面的面积来计算。在计算过程中,原子的个数是 以原子切面的百分比来计算的。
第 1 章 晶体中的电子运动状态 第 1 章 晶体中的电子运动状态
1. 1 1. 2 1. 3 习题
固体的晶格结构 量子力学初步 晶体中电子的运动状态
第 1 章 晶体中的电子运动状态
从物质形态上分,半导体属于固体。固体的结构决定了其 性质,所以首先考虑固体中原子排列规律,即固体的晶格结构。 其次,半导体中的电子运动状态难以用经典力学来描述,而量 子力学波理论却能很好地描述半导体中电子的运动状态,所以 需要对量子力学有初步了解,并学习它的分析方法。最后,用 量子力学方法对晶体中的电子运动状态进行分析,得到晶体的 E-k 关系图,利用 E-k 关系图讨论电子的有效质量,并引 入空穴的概念,同时也为计算晶体中电子的量子态密度打下基 础。
第 1 章 晶体中的电子运动状态
化合物半导体是由两种及两种以上的元素组成的。化合物 包括二元(即两种元素)、三元(即三种元素)和多元化合物。二 元化合物半导体可以是由三族元素与五族元素组成化合物, 如 GaAs 或 GaP 。二族元素与六族元素也可以组成二元化合 物半导体。三元化合物半导体由三种元素组成,如 Alx Ga 1- x As ,其中下标 x 是原子序数低的元素的组分。当然还可以制 造更复杂的半导体材料。
第 1 章 晶体中的电子运动状态
4. 基本晶格结构
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0811 控制科学与工程 081101 控制理论与控制工程 081102 检测技术与自动化装置 081103 系统工程 081104 模式识别与智能系统 081105 导航、制导与控制
0812 计算机科学与技术(注:可授予 工学、理学学位) 081201 计算机软件与理论 081202 计算机系统结构 081203 计算机应用技术
绪论:微电子、IC的发展历史
早期历史发展
Semiconductor Physics and Device Physics
Semiconductor Physics and Device Physics
Semiconductor Physics and Device Physics
ENIAC(1946)
半导体物理与器件物理
Semiconductor Physics and Device Physics
2011.4
Semiconductor Physics and Device Physics
主要教材:
《半导体物理学》,刘恩科,朱秉升,罗晋生,电子工业
出版社,2008年11月第7版 《半导体器件物理与工艺》,施敏著,赵鹤鸣,钱敏,黄 秋萍译,苏州大学出版社,2002年12月第1版
Semiconductor Physics and Device Physics
Semiconductor Physics and Device Physics
Semiconductor Physics and Device Physics
Semiconductor Physics and Device Physics
Semiconductor Physics and Device Physics
Semiconductor Physics and Device Physics
Solutions
New, new, new…we got to find something ne
Semiconductor Physics and Device Physics
Semiconductor Physics and Device Physics
半导体概要
微电子学研究领域
•半导体物理、材料、工艺
微电子学发展的特点
向高集成度、高性能、 低功耗、高可靠性电路 方向发展 与其它学科互相渗透, 形成新的学科领域: 光 电集成、MEMS、生物芯 片
•半导体器件物理 •集成电路工艺 •集成电路设计和测试 •微系统,系统
1965,Gordon Moore 预测 Moore’s law半导体芯片上的晶体管数目每两年翻两番 存储器容量 60%/年 每三年,翻两 番 10 G 1 G 100 M 10 M 1 M 100 K 10 K 1 K 0.1 K 1970 1980 1990 2000 2010
Semiconductor Physics and Device Physics
1.E+9 1.E+8 1.E+7 1.E+6 1.E +5
每三年翻两番
“Itanium”:15,950,00 0 Pentium II: 7,500,000 PowerPC620:6,900,000
PentiumPro: 5,500,000 PowerPC604:3,600,000 Pentium:3,300,000 PowerPC601:2,800,000 i80486DX:1,200,000 m68040:1,170,000
在学科分类中,微电子学既可以属于理学(071202 ),也可 以属于工学(080903 微电子学与固体电子学 )
Semiconductor Physics and Device Physics
工学 (08)
0808 电气工程 080801 电机与电气 080802 电力系统及其自动化 080803 高电压与绝缘技术 080804 电力电子与电力传动 080805 电力理论与新技术 0809 电子科学与技术(注:可授 予工学、理学学位) 080901 物理电子学 080902 电路与系统 080903 微电子学与固体电子学 080904 电磁场与微波技术 0810 信息与通信工程 081001 通信与信息系统 081002 信号与信息处理
主要参考书:
《半导体物理与器件》(第三版),Donald A. Neamen著,
电子工业出版社 《现代半导体器件物理》,施敏,科学出版社,2001年 《集成电路器件电子学》,R. S. Muller, T. I. Kamins, M. Chan著,王燕等译,电子工业出版社,2004年第3版
三.半导体中载流子的统计分布
四.半导体的导电性
五.非平衡载流子
六.pn结
七.金属和半导体的接触 八.半导体表面与MIS结构
Semiconductor Physics and Device Physics
半导体概要
微电子学
固态电子学分支之一 光电子学
微电子学
研究在固体(主要是半导体〕材料上构成的微小 型化器件、电路及系统的电子学分支学科
Semiconductor Physics and Device Phys物理学 Part 2: 半导体器件物理学
Semiconductor Physics and Device Physics
Part 1: 半导体物理学
一.半导体中的电子状态
二.半导体中杂质和缺陷能级
Semiconductor Physics and Device Physics
半导体及其基本特性
什么是半导体?
固体材料:绝缘体、半导体、导体
(其它:半金属,超导体)
Semiconductor Physics and Device Physics
Semiconductor Physics and Device Physics
Semiconductor Physics and Device Physics
Semiconductor Physics and Device Physics
Semiconductor Physics and Device Physics
Semiconductor Physics and Device Physics
相关文档
最新文档