初三数学提高班方程的整数根(练习)
中考数学总复习——方程整数根
方程整数根主要讲解方程整数根,掌握带着字母解方程的思想,提高解题能力.1. 根的判别式为完全平方【练习1】已知关于x 的方程220 (0)kx x k k--=≠. (1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根都是整数,求整数k 的值.【练习2】已知关于x 的函数 2(3)3y mx m x =+--.(1)求证:无论m 取何实数,此函数的图象与x 轴总有公共点;(2)当m >0时,如果此函数的图象与x 轴公共点的横坐标为整数,求正整数m 的值.【练习3】关于x 的一元二次方程2(1)210m x mx m --++=.(1)求证:方程有两个不相等的实数根;(2)m 为何整数时,此方程的两个根都为正整数.【练习4】已知关于x 的一元二次方程04)15(22=+++-m m x m x .(1)求证:无论m 取何实数时,原方程总有两个实数根;(2)若原方程的两个实数根一个大于3,另一个小于8,求m 的取值范围;【练习5】已知关于x 的一元二次方程 23(1)230mx m x m -+++=.(1)如果该方程有两个不相等的实数根,求m 的取值范围;(2)在(1)的条件下,当关于x 的抛物线23(1)23y mx m x m =-+++与x 轴交点的 横坐标都是整数,且4x <时,求m 的整数值.2.根的判别式为非完全平方【练习1】已知关于x的一元二次方程x2+(m+3)x+m+1=0.(1)求证:无论m取何值,原方程总有两个不相等的实数根.(2)当m为何整数时,原方程的根也是整数.【练习2】已知关于x的方程(k-1)x2+2kx+k+3=0.(1)若方程有两个不相等的实数根,求k的取值范围.(2)当方程有两个相等的实数根时,求关于y的方程y2+(a-4k)y+a+1=0的整数根(a为正整数)【练习3】已知:关于x的一元二次方程x2-2(2m-3)x+4m2-14m+8=0.(1)若m>0,求证:方程有两个不相等的实数根;(2)若12<m<40的整数,且方程有两个整数根,求m的值.【练习4】已知关于x的一元二次方程x2−ax+a+5=0.(1)无论a取任何值,该方程的根不可能为x=x0,写出x0的值,并证明.(2)若a为正整数,且该方程存在正整数解,求所有正整数a的值.【练习5】已知k为整数,若关于x的二次方程kx2+(2k+3)x+l=0有有理根,则k的值是________.。
中考试题一元二次方程的整数根.docx
学科:数学专题:一元二次方程整数根主讲教师:黄炜 北京四中数学教师重难点易错点辨析在解决整数根问题时,还是不要忽略了对二次项系数的讨论。
题一题面:关于x 的方程()21210a x x a -+--=的根都是整数,求符合条件的a 的整数值.金题精讲题一题面:已知关于x 的一元二次方程x 2+2x +2k -4=0有两个不相等的实数根.(1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值.判别式,考虑参数范围满分冲刺题一题面:已知,关于x 的一元二次方程222(23)41480x m x m m --+-+=⑴若0m >,求证:方程有两个不相等的实数根;⑵若1240m <<的整数,且方程有两个整数根,求m 的值.判别式,整数根题二题面:已知关于x 的一元二次方程x 2+(m +3)x +m +1=0.(1)求证:无论m 取何值,原方程总有两个不相等的实数根;(2)当m 为何整数时,原方程的根也是整数.判别式,整数根讲义参考答案重难点易错点辨析题一答案:当1a =时,1x =;当1a ≠时,122111x x a ==---,(分离常数), a ∵为整数 1023a =-∴,,,综上,a 的整数值为10123-,,,,.金题精讲题一答案:(1)52k <;(2)k =2. 满分冲刺题一答案:⑴证明:[]22=2(23)4(4148)84m m m m ∆----+=+∵0m >, ∴840m +>.∴方程有两个不相等的实数根. ⑵2(23)84=(23)212m m x m m -±+-±+= ∵方程有两个整数根,必须使21m +为整数且m 为整数.又∵1240m <<,∴252181.m <+< ∴521<9m <+.21m +∵为奇数,217m +=∴∴24m =.题二答案:(1)证明:△=(m +3)2-4(m +1)=m 2+6m +9-4m -4=m 2+2m +5=(m +1)2+4∵(m +1)2≥0∴(m +1)2+4≥0∴无论m 取何实数时,原方程都有两个不相等的实数根(2)解关于x 的一元二次方程x 2+(m +3)x +m +1=0得23(1)42m m x --±++= 要使原方程的根是整数根,必须使得(m +1)2+4/ησ≠π−(m +1)2+4=a 2则(a +m -1)(a -m -1)=4∵a +m -1a -m -1的奇偶性相同⎪{1=212a m a m +---=或{1=212a m a m +----=- 解得{=21a m =-或{21a m =-=-将1m =-代入23(1)42m m x --±++=得1220x x =-=,符合题意; ∴当1m =-时,原方程的根是整数.初中数学试卷鼎尚图文**整理制作。
一元二次方程的整数根问题专题练习 (学生版)
一元二次方程的整数根问题专题练习一、选择题1、若k为正整数,且关于k的方程(k2-1)x2-6(3k-1)x+72=0有两个相异正整数根,k的值为().A. 2B. 4C. 6D. 8二、填空题2、已知k为整数,且关于x的方程(k2-1)x2-3(3k-1)x+18=0有两个不相等的正整数根,则k的值为______.3、已知12<m<40,且关于x的二次方程x2-2(m+1)x+m2=0有两个整数根,则整数m 的值为______.4、当关于x的方程x2-(m-1)x+m+1=0的两根都是整数,则整数m的值为______.三、解答题5、当整数m取何值时,关于x的方程(m-1)x2-(2m+1)x+1=0有整数根.6、已知方程(a2-1)x2-2(5a+1)x+24=0有两个不相等的负整数根,求整数a的值.7、当整数m取何值时,关于x的方程mx2-(1-m)x-1=0的根为整数.8、关于x的方程mx2-(3m+2)x+2m+2=0的根为正整数,且m为整数,求m的值.9、已知:关于x的一元二次方程(m-1)x2-2mx+m+1=0(m>1).(1)求证:方程总有两个不相等的实数根.(2)m为何整数时,此方程的两个实数根都为正整数?10、已知关于x的一元二次方程x2+(m+3)x+m+1=0.(1)求证:无论m取何值,原方程总有两个不相等的实数根.(2)当m为何整数时,原方程的根也是整数.11、一直角三角形的两直角边长均为整数,且满足方程x2-(m+2)x+4m=0,试求m的值及此直角三角形的三边长.12、已知关于x的方程(m-1)x2-2mx+m+1=0.(1)求证:无论常数m取何值,方程总有实数根.(2)当整数m取何值时,方程有两个整数根.13、已知:关于x的一元二次方程mx2-3(m-1)x+2m-3=0.(1)求证:不论实数m取何值,方程必有两个实数根.(2)若方程有一个根大于2且小于3,求实数m的取值范围.(3)若m为整数,且方程的两个根均为正整数,求m的值.14、已知关于x的一元二次方程x2+2x+2m-4=0有两个不相等的实数根.(1)求m的取值范围.(2)若m为正整数,且该方程的根都是整数,求m的值.15、已知关于x的一元二次方程x2+2(m+1)x+m2-1=0.(1)若方程有两个不相等的实数根,求m的取值范围.(2)在(1)的条件下,选择一个恰当的m的值,使方程的两个实数根为整数,并求出这两个根.16、已知:关于x的一元二次方程x2-(2m-3)x+m2-5m+2=0有两个不相等的实数根.(1)求m的取值范围.(2)若10<m<21,是否存在整数m,使方程有两个整数根,若存在求出m的值;若不存在请说明理由.17、当m为何整数时,方程2x2-5mx+2m2=5有整数解.18、求所有整数k,使方程kx2+(k+1)x+k-1=0的根都是整数.19、已知方程(k2-1)x2-3(3k-1)x+18=0有两个不相等的整数根,(1)求整数k的值.(2)求实数k的值.20、已知一元二次方程(2k-3)x2+4kx+2k-5=0,且4k+1是边长为7的菱形对角线的长,求k取什么整数值时,方程(2k-3)x2+4kx+2k-5=0的根都是整数?。
专题培优-一元二次方程的整数根(含答案)
一元二次方程的整数根1.使一元二次方程x2+3x+m=0有整数根的非负整数m的个数为( ).A. 0B. 1C. 2D. 32.满足(n2-n-1)n+2=1的整数n有________个.3.已知关于x的方程(a-1)x2+2x-a-1=0的根都是整数,那么符合条件的整数a有________个.4.方程x2+px+q=0的两个根都是正整数,并且p+q=1992,则方程较大根与较小根的比等于________.5.已知k为整数,且关于x的方程(k2-1)x2-3(3k-1)x+18=0有两个不相同的正整数根,则k=________.6.关于x的一元二方程4x2+4mx+m2+m-10=0(m为正整数)有整数根,则满足条件的m值的个数为________个.7.已知关于x的方程((m2−1)x2−3(3m−1)x+18=0有两个正整数根(m是整数).△ABC的三边a,b,c满足c=2√3,m2+a2m−8a=0,m2+b2m−8b=0.求:(1)m的值;(2)△ABC的面积.8.当k为何整数时,方程(k2-1)x2-6(3k-1)x+72=0有两个不相等的正整数根?9.当n为何整数时,关于x的一元二次方程x2-3nx+2n2-6=0的两根都为整数?10.求这样的正整数a,使得方程ax2+2(2a-1)x+4a-7=0至少有一个整数解.11.设关于x的一元二次方程(k2-6k+8)x2+(2k2-6k-4)x+k2=4的两根都是整数,求满足条件的所有实数k的值.12.已知m,n为正整数,关于x的方程x2-mnx+(m+n)=0有正整数解,求m,n的值.13.k为何值时,关于x的方程x2-4mx+4x+3m2-2m+4k=0的根是有理数?14.已知关于x的一元二次方程x2+cx+a=0的两个整数根恰好比方程x2+ax+b=0的两个根都大1,求a+b+c的值.15.已知一元二次方程x2+ax+b=0,①有两个连续的整数根,一元二次方程x2+bx+a=0,②有整数根,求a,b的值.答案1.C2.43.54.9975.26.47.解:(1)∵关于x 的方程(m 2-1)x 2-3(3m -1)x +18=0有两个正整数根(m 是整数).∵a =m 2-1,b =-9m +3,c =18,∴b 2-4ac =(9m -3)2-72(m 2-1)=9(m -3)2≥0,设x 1,x 2是此方程的两个根,∴x 1•x 2=c a =18m 2−1,∴18m 2−1也是正整数,即m 2-1=1或2或3或6或9或18, 又m 为正整数,∴m =2;(2)把m =2代入两等式,化简得a 2-4a +2=0,b 2-4b +2=0当a =b 时,a =b =2±√当a ≠b 时,a 、b 是方程x 2-4x +2=0的两根,而△>0,由韦达定理得a +b =4>0,ab =2>0,则a >0、b >0.①a ≠b ,c =2√3时,由于a 2+b 2=(a +b )2-2ab =16-4=12=c2 故△ABC 为直角三角形,且∠C =90°,S △ABC =12ab =1.②a =b =2-√2,c =2√3时,因2(2−√2)<2√3,故不能构成三角形,不合题意,舍去. ③a =b =2+√2,c =2√3时,因2(2+√>2√3,故能构成三角形.S △ABC =12×(2√)×√=√综上,△ABC 的面积为1或√. 8.解:∵k 2-1≠0∴k ≠±1∵△=36(k -3)2>0∴km ≠3用求根公式可得:x 1=6k−1,x 2=12k+1∵x 1,x 2是正整数∴k -1=1,2,3,6,k +1=1,2,3,4,6,12,解得k =2.这时x 1=6,x 2=4. 9.解:原方程变形得(x −2n)(x −n)=6,∵x ,n 均为整数,∴原方程化为{x −2n =±2,x −n =±3或{x −2n =±3,x −n =±2或{x −2n =±6,x −n =±1或{x −2n =±1,x −n =±6,解得n =-1或1或-5或5.10.解:原方程变形为(x +2)2a =2x +7(x ≠−2),解得a =2x +7(x +2)2.∵a ≥1,∴2x +7(x +2)2⩾1,∴-3≤x ≤1,∴x 可取值为-3,-1,0,1,分别代入a =2x +7(x +2)2中,解得a =1或a =5或a =74或a =1.又∵a 是正整数,∴当a =1或a =5时,方程至少有一个整数解. 11.解:原方程可化为[(k −4)x +(k −2)][(k −2)x +(k +2)]=0,∵k 2−6k +8=(k −4)(k −2)≠0,∴x 1=−k−2k−4=−1−2k−4,x 2=−k +2k−2=−1−4k−2, ∴k −4=−2x 1+1,k −2=−4x 2+1(x 1≠−1,x 2≠−1),消去k ,得x 1x 2+3x 1+2=0. ∴x 1(x 2+3)=−2.由于x 1,x 2都是整数,∴{x 1=−2,x 2+3=1或{x 1=1,x 2+3=−2或{x 1=2,x 2+3=−1.或{x 1=−2,x 2=−2或{x 1=1,x 2=−5或{x 1=2,x 2=−4. ∴k =6或3或103.经检验均满足题意.12.解:设方程x 2−mnx +(m +n )=0的两根分别为:x 1,x 2,∵m ,n 为正整数,∴x 1+x 2=mn >0,x 1⋅x 2=m +n >0,∴这两个根x 1,x 2均为正数,又∵(x 1−1)(x 2−1)+(m −1)(n −1)=x 1x 2−(x 1+x 2)+1−[mn −(m +n )+1]=(m +n )−mn +1+[mn −(m +n )+1]=2, 其中(x 1−1)(x 2−1),m −1,n −1均非负,而为两个非负整数和的情况仅有0+2;1+1;2+0.∵(x 1−1)(x 2−1)=x 1x 2−(x 1+x 2)+1=m +n −mn +1,(m −1)(n −1)=mn −(m +n )+1,∴{m +n −mn +1=0mn −(m +n)+1=2或{m +n −mn +1=1mn −(m +n )+1=1或{m +n −mn +1=2mn −(m +n)+1=0,解得:{m =2n =3或{m =3n =2或{m =2n =2或{m =1n =5或{m =5n =1.13.解:根据题意得:△=(-4m +4)2-4×(3m 2-2m +4k )=4(m 2-6m +4-4k ),∵方程的解为有理数,∴4(m 2-6m +4-4k )是一个完全平方数,即4-4k =9,解得:k =-54. 14.解:设方程x 2+ax +b =0的两个根为α,β,∵方程有整数根,设其中 α,β为整数,且α≤β,则方程x 2+cx +a =0的两根为α+1,β+1,∴α+β=-a ,(α+1)(β+1)=a ,两式相加,得 αβ+2α+2β+1=0,即 (α+2)(β+2)=3,∴{α+2=1β+2=3或{α+2=−3β+2=−1.解得{α=−1β=1或{α=−5β=−3.又 ∵a =-(α+β)=-[(-1)+1]=0,b =αβ=-1×1=-1,c =-[(α+1)+(β+1)]=-[(-1+1)+(1+1)]=-2, 或a =-(α+β)=-[(-5)+(-3)]=8,b =αβ=(-5)×(-3)=15,c =-[(α+1)+(β+1)]=-[(-5+1)+(-3+1)]=6, ∴a =0,b =-1,c =-2;或者a =8,b =15,c =6,∴a +b +c =0+(-1)+(-2)=-3或a +b +c =8+15+6=29,故a +b +c =-3,或29.15.解:设方程①的两个根式n ,n +1,则{n +(n +1)=−a n(n +1)=b∴a =-(2n +1),b =n (n +1),则方程②可变为x 2+n (n +1)x -(2n +1)=0③,∵方程③有整数根,视n 为主元,∴n 2x +n (x -2)+x 2-1=0④有整数解,∴设△=(x -2)2-4x (x 2-1)=x 2+4-4x 3=p 2(p 为正整数),∴x 2(1-4x )=(p +2)(p -2)⑤.∵p +2>p -2,∴{p +2=x 2p −2=1−4x ⑥,{p +2=x p −2=(1−4x)x ⑦,{p +2=1−4x p −2=x2⑧,{p +2=(1−4x)x p −2=x ⑨, 由⑥得:x 2+4x -1=0,解得:x 1=-5,x 2=1,把x 1=-5代入③得:n =-3或n =85(不合题意,舍去),当n =-3时,a =5,b =6, 把x 2=1代入③得:n 1=0,n 2=1,当n =0时,a =-1,b =0,当n =1时,a =-3,b =2, 对⑦,⑧,⑨继续讨论.综上所述,{a =−1b =0或{a =−3b =2或{a =5b =6.。
初中数学分式方程的增根、无解问题选择题培优训练2(附答案详解)
初中数学分式方程的增根、无解问题选择题培优训练2(附答案详解)1.若a 为整数,关于x 的不等式组22340x x x a ≤+⎧⎨-<⎩有且只有3个整数解,且关于x 的分式方程1122ax x x-=--有负整数解,则整数a 的个数为( ) A .4B .3C .2D .1 2.若a 为整数,关于x 的不等式组2(1)4340x x x a +≤+⎧⎨-<⎩有且只有3个非正整数解,且关于x 的分式方程11222ax x x -+=--有负整数解,则整数a 的个数为( )个. A .4 B .3 C .2 D .13.若a 使得关于x 的分式方程21224a x x -=-- 有正整数解,且方程2420ax x --=有解,则满足条件的所有整数a 的个数为( )A .1B .2C .3D .44.若数a 使关于x 的不等式组111(1){3223(1)x x x a x -≤--≤-,有且仅有三个整数解,且使关于y 的分式方程31222y a y y++--=1有整数解,则满足条件的所有a 的值之和是( ) A .﹣10B .﹣12C .﹣16D .﹣18 5.若关于x 的分式方程21133x m x x --=--的解为正数,且关于y 的不等式组212625y y y m +⎧+>⎪⎨⎪-≤⎩至少两个整数解,则符合条件的所有整数m 的取值之和为( )A .﹣7B .﹣9C .﹣12D .﹣14 6.关于x 的分式方程2322x m m x x ++=--的解为正实数,则实数m 的取值范围是( )A .6m <-且2m ≠B .6m >且2m ≠C .6m <且2m ≠-D .6m <且2m ≠ 7.若数a 使关于x 的分式方程41332a x x +=--的解为正数,使关于y 的不等式组12255(2)34y y a y y --⎧⎪⎨⎪+-⎩><无解,则所有满足条件的整数a 的值之积是( ) A .360B .90C .60D .15 8.若关于x 的方程x a c b x d -=-有解,则必须满足条件( ) A .a ≠b ,c ≠d B .a ≠b ,c ≠-d C .a ≠-b , c ≠d D .a ≠-b , c ≠-d 9.从7-,5-,1-,0,4,3这六个数中,随机抽一个数,记为m ,若数m 使关于x 的不等式组()x m 02x 43x 2-⎧>⎪⎨⎪-<-⎩的解集为x 1>,且关于x 的分式方程1x m 32x x 2-+=--有非负整数解,则符合条件的m 的值的个数是( )A .1个B .2个C .3个D .4个10.若数a 使关于x 的不等式组112352x x x x a-+⎧<⎪⎨⎪-≥+⎩有且只有四个整数解,且使关于y 的方程2211y a a y y++=--的解为非负数,则符合条件的所有整数a 的和为( ) A .3- B .2- C .1 D .211.如果关于x 的分式方程2ax x 3+--2=43x -有正整数解,且关于x 的不等式组()4x 3x 3x a 0<-⎧-≥⎨⎩无解,那么符合条件的所有整数a 的和是( )A .16-B .15-C .6-D .4-12.若关于x 的分式方程21x a x --=1的解为正数,则字母a 的取值范围是( ) A .a <2B .a≠2C .a >1D .a >1且a≠213.已知关于x 的方程33+3a x x -+=1的解为负数,且关于x 、y 的二元一次方程组27358x y x y a -=⎧⎨+=+⎩的解之和为正数,则下列各数都满足上述条件a 的值的是( ) A .23,2,5 B .0,3,5 C .3,4,5 D .4,5,614.若关于x 的分式方程412a x x -=-的解为正整数,且关于x 的不等式组1282{630x x a x -+-≤>有解且恰有6个整数解,则满足条件的所有整数a 的值之和是( )A .4B .0C .-1D .-315.(山东省济南市槐荫区2018届九年级下学期学业水平阶段性调研测试(一模)数学试题)若关于x 的分式方程m 1x 1--=2的解为非负数,则m 的取值范围是 A .m >−1B .m≥−1C .m >−1且m≠1D .m≥−1且m≠1 16.若关于x 的方程2622x a x x--=--1的解为正数,则所有符合条件的正整数a 的个数为( )A .1个B .2个C .3个D .4个 17.若数a 使关于x 的分式方程1133x a x x++=--有非负整数解,且使关于y 的不等式组()()321262234y y y y a ++⎧>⎪⎨⎪-≥-+⎩至少有3个整数解,则符合条件的所有整数a 的和是( ) A .﹣5B .﹣3C .0D .2 18.若关于x 的方程3344x m m x x ++=--的解为正数,则m 的取值范围是( ). A .92m < B .94m >-且34m ≠- C .6m < D .6m <且2m ≠ 19.已知关于x 的分式方程6111m x x+=--的解是非负数,则m 的取值范圈是( ) A .5m > B .5m ≥C .5m ≥且6m ≠D .5m >或6m ≠ 20.已知关于x 的分式方程211x k x x -=--的解为正数,则k 的取值范围为( ) A .20k -<< B .2k >-且1k ≠- C .2k >-D .2k <且1k ≠ 21.若关于 x 的分式方程3111m x x-=-- 的解是非负数,则 m 的取值范围是( )A .m ≥-4B .m ≥-4 且 m ≠-3C .m ≥2 且 m ≠3D .m ≥2 22.关于x 的方程2211x m m x x -+=--的解为正数,则m 的取值范围是( ) A .23m < B .23m > C .23m <且13m ≠ D .23m <且0m ≠ 23.若关于x 的方程232x m x +=-的解是正数,则m 的取值范围是( ) A .6m >- B .6m >-且2m ≠ C .6m >-且4m ≠- D .6m <-且4m ≠- 24.已知关于x 的分式方程11m x ---1=21x -的解是正数,则m 的取值范围是( ) A .m <4 且m ≠3B .m <4C .m ≤3且m ≠3D .m >5且m ≠625.已知二次函数y =(a+2)x 2+2ax+a ﹣1的图象与x 轴有交点,且关于x 的分式方程1ax x ++1=71x +的解为整数,则所有满足条件的整数a 之和为( ) A .﹣4B .﹣6C .﹣8D .3 26.若关于x 的分式方程121m x +=-的解为非负数,则m 的取值范围是( ) A .3m >- B .3m ≥-C .3m >-且1m ≠-D .3m ≥-且1m ≠- 27.对于二次函数y =2x 2﹣(a ﹣2)x +1,当x >1时,y 随x 的增大而增大;且关于x 的分式方程22x -﹣3=2ax x --有整数解,则满足条件的整数a 的和为( ) A .5 B .6 C .10 D .1728.若关于y 的不等式组122y-k 46y k k -⎧≥⎪⎨⎪≤+⎩有解,且关于x 的分式方程32222kx x x x +=---有非负整数解,则符合条件的所有整数k 的和为( )A .-5B .-9C .-10D .-16 29.关于x 的方程2334ax a x +=-的解为1x =,则a =( ) A .1 B .3 C .-1 D .-330.若数a 使关于x 的分式方程2311a x x x--=--有正数解,且使关于y 的不等式组21142y a y y a ->-⎧⎪⎨+⎪⎩有解,则所有符合条件的整数a 的个数为( ) A .1 B .2 C .3 D .431.若关于x 的分式方程1322m x x x ++=--有增根,则m 的值是( ) A .m =-1 B .m =2C .m =3D .m =0或m =3 32.(2017龙东地区)已知关于x 的分式方程3133x a x -=-的解是非负数,那么a 的取值范围是( )A .1a >B .1a ≥C .1a ≥且9a ≠D .1a ≤ 33.已知分式方程312(1)(2)x k x x x +=++-+的解为非负数,求k 的取值范围( ) A .5k ≥ B .1k ≥- C .5k ≥且6k ≠ D .1k ≥-且0k ≠ 34.已知关于x 的一次函数()210y a x a =--+的图象过一、三、四象限,且关于y 的分式方程93322ay a y y--=--有整数解,求所有满足条件的整数a 的和为( ) A .11 B .15 C .21 D .2435.若关于x 的方程3133x ax x x ++=--有正整数解,且关于y 的不等式组252510y a y -⎧<⎪⎨⎪--≤⎩至少有两个奇数解,则满足条件的整数a 有( )个A .0B .1C .2D .3参考答案1.C【解析】【分析】先解出不等式组,然后由不等式组有且只有3个整数解可得a 的范围;再解分式方程可得x=31a-,根据分式方程有负整数解可得a 的值,两者结合最终确定a 的值. 【详解】解:解不等式223x x ≤+,得:x≥-2,解不等式4x-a <0,得:x <4a , ∵不等式组有且只有3个整数解,∴0<4a ≤1, 解得:0<a ≤4, 由方程1122ax x x -=--得:x=31a- ∵方程有负整数解,∴a=2,4又∵0<a ≤4,∴a=2,4故选:C .【点睛】本题主要考查解不等式组和分式方程的能力,根据不等式组的解集情况和分式方程的解得出关于a 的范围是解题的关键.2.C【解析】【分析】由不等式组有且只有3个非正整数解可得014a <≤,即0<a ≤4,再求分式方程可得x 22a=-,根据分式方程有负整数解可得a 的值. 【详解】解不等式2(x +1)≤4+3x ,得:x ≥﹣2,解不等式4x ﹣a <0,得:x 4a <, ∵不等式组有且只有3个非正整数解, ∴014a <≤, 解得:0<a ≤4, 由方程得:x 22a =-且是负整数,∴2-a=-1或-2, ∴a =3,4.故选C .【点睛】本题考查了解不等式组和分式方程的能力,根据不等式组的解集情况和分式方程的解得出关于a 的范围是解题的关键.3.D【解析】【分析】先解分式方程,求得a 的值,再由方程2420ax x --=有解得a 的取值范围,则可求得a 的值,可求得答案.【详解】 解分式方程21224a x x -=--可得x=4-2a ,x≠2, ∵a 使得关于x 的分式方程21224a x x -=--有正整数解, ∴a 的值为0、2、6,方程2420ax x --=,当a=0时,方程有实数解,满足条件,当a≠0时,则有△≥0,即16+8a≥0,解得a≥-2且a≠0,∴满足条件的a 的值为-2,0、2、6,共4个,故选:D .【点睛】本题主要考查方程的解,求得a 的整数值是解题的关键.4.B【解析】【分析】根据不等式的解集,可得a 的范围,根据方程的解,可得a 的值,根据有理数的加法,可得答案.【详解】()()111132231x x x a x ⎧-≤-⎪⎨⎪-≤-⎩①②, 解①得x≥-3,解②得x≤35a +, 不等式组的解集是-3≤x≤35a +. ∵仅有三个整数解,∴-1≤35a +<0 ∴-8≤a <-3,31222y a y y++--=1, 3y-a-12=y-2.∴y=102a +, ∵y≠2,∴a≠-6,又y=102a +有整数解, ∴a=-8或-4,所有满足条件的整数a 的值之和是-8-4=-12,故选B .【点睛】本题考查了分式方程的解,利用不等式的解集及方程的解得出a 的值是解题关键. 5.A【解析】【分析】根据题意可以求得m 的取值范围,从而可以得到符合条件的m 的整数值,从而可以解答本题.【详解】 解:由方程21133x m x x--=--,解得:x =﹣2﹣m , 则2023m m -->⎧⎨--≠⎩ 可得:m <﹣2且m≠﹣5,212625y y y m +⎧+>⎪⎨⎪-≤⎩①②, 由①知,y >﹣2,由②知,y≤52m +, ∵关于y 的不等式组212625y y y m +⎧+>⎪⎨⎪-≤⎩至少两个整数解,∴y =﹣1和0∴5+m≥0,解得:m≥﹣5,又m <﹣2且m≠﹣5,∴-5<m <﹣2,∴m 的整数值为﹣4,﹣3,∴符合条件的所有整数m 的值之和=﹣4+(﹣3)=﹣7,故选:A.【点睛】本题考查分式方程的解、解一元一次不等式(组)、一元一次不等式组的整数解,解答本题的关键是明确题意,找出所求问题需要的条件,利用不等式的性质解答.6.D【解析】【分析】先根据分式方程的解法,求出用m 表示x 的解,然后根据分式有解,且解为正实数构成不等式组求解即可.【详解】2322x m m x x++=-- 去分母,得x+m+2m=3(x-2)解得x=62m -+ ∵关于x 的分式方程2322x m m x x ++=--的解为正实数 ∴x-2≠0,x >0 即62m -+≠2,62m -+>0, 解得m≠2且m <6故选D.点睛:此题主要考查了分式方程的解和分式方程有解的条件,用含m 的式子表示x 解分式方程,构造不等式组是解题关键.7.B【解析】【分析】表示出分式方程的解,由分式方程解为正数,得到a 的取值范围;不等式组变形后,根据不等式组无解,确定出a 的范围,进而求出a 的值,得到所有满足条件的整数a 的值之积.【详解】解:分式方程去分母得:2a ﹣8=x ﹣3,解得:x =2a ﹣5,由分式方程的解为正数,得到:2a ﹣5>0且2a ﹣5≠3,解得:a >52且a ≠4. 不等式组整理得:527y a y -⎧⎨-⎩><,由不等式组无解,得到:5﹣2a ≥﹣7,即a ≤6,∴a 的取值范围是:52<a ≤6且a ≠4,∴满足条件的整数a 的值为3,5,6,∴整数a 的值之积是90.故选B .【点睛】本题考查了分式方程的解以及解一元一次不等式组,熟练掌握运算法则是解答本题的关键.解题时注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解. 8.B【解析】【分析】把a 、b 、c 、d 都看做已知数解方程,去分母,转化为关于x 的整式方程,讨论x 的系数,再讨论最简公分母≠0,得出结论.【详解】方程两边都乘以d(b-x),得d(x-a)=c(b-x),∴dx-da=cb-cx ,即(d+c)x=cb+da ,∴当d+c ≠0,即c ≠-d 时,原方程的解为x=cb da d c ++, 由题意知还要满足b-x ≠0,即cb da d c++≠b , 所以b ≠a ,当c+d=0时,c=-d ,0x=d(a-b),∴当a=b 时,方程有无数个解,故选B.【点睛】本题考查了解字母系数的分式方程,解含有字母系数的方程和解数字系数的方程一样,均是通过去分母,将分式方程转化为整式方程,但因为分式方程中字母的取值决定着方程的解,故对转化后的整式方程中的未知数系数应加以限制,对解出的解还要进行检验. 9.A【解析】【分析】根据分式方程有非负整数解,即可从7-,5-,1-,0,4,3这六个数中找出符合要求的m 的值,综上即可得到答案.【详解】()x m 02x 43x 2-⎧>⎪⎨⎪-<-⎩①②, 解不等式①得:x m >,解不等式②得:x 1>,该不等式组的解集为:x 1>,m 1∴≤,即m 取7-,5-,1-,0;1x m 32x x 2-+=--, 方程两边同时乘以()x 2-得:()x 1m 3x 2-+=-,去括号得:x 1m 3x 6-+=-,移项得:x 3x 16m -=--,合并同类项得:2x 5m -=--,系数化为1得:m 5x 2+=, 该方程有非负整数解,∴即m 502+≥,m 522+≠,且m 52+为整数, m ∴取5-,3,综上:m 取5-,即符合条件的m 的值的个数是1个,故选A .【点睛】本题考查了分式方程的解,解一元一次不等式组,一元一次不等式组的整数解,正确掌握解不等式组的方法,解分式方程的方法是解题的关键.10.C【解析】【分析】先求出不等式的解集,根据只有四个整数解确定出a 的取值范围,解分式方程后根据解为非负数,可得关于a 的不等式组,解不等式组求得a 的取值范围,即可最终确定出a 的范围,将范围内的整数相加即可得.【详解】解不等式112352x x x x a-+⎧<⎪⎨⎪-≥+⎩,得524x a x <⎧⎪⎨+≥⎪⎩, 由于不等式组只有四个整数解,即254a a +≤<只有4个整数解, ∴2014a +<≤, ∴22a -<≤; 解分式方程2211y a a y y++=--,得2y a =-, ∵分式方程的解为非负数,∴20210a a -≥⎧⎨--≠⎩, ∴a≤2且a≠1,∴22a -<≤且a≠1,∴符合条件的所有整数a 为:-1,0,2,和为:-1+0+2=1,故选C.【点睛】本题考查含有参数的不等式和含有参数的分式方程的应用,熟练掌握不等式组的解法、分式方程的解法以及解分式方程需要注意的事项是解题的关键.11.D【解析】【分析】根据分式方程有正整数解确定出a 的值,再由不等式组无解确定出满足题意a 的值,求出之和即可.【详解】分式方程去分母得:2+ax ﹣2x +6=﹣4,整理得:(a ﹣2)x =﹣12(a ﹣2≠0),解得:x =﹣122a -,由分式方程有正整数解,得到:a =1,0,﹣1,﹣4,﹣10,不等式组整理得:9x x a -⎧⎨≥⎩<,解得:a ≤x <﹣9,由不等式组无解,即a ≥﹣9,∴a =1,0,﹣1,﹣4,之和为﹣4.故选D .【点睛】本题考查了分式方程的解,解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握运算法则是解答本题的关键.12.D【解析】去分母得:21,1x a x x a -=-=- ,则10,110a a ->--≠且 ,解得:a >1且a≠2.故选D.13.A【解析】【分析】先解分式方程得:x =a ﹣6,根据分式方程的解是负数列不等式求出a 的取值;再解方程组,把方程的解相加得:x +y =a +3+2a ﹣1=3a +2>0,得出a 的取值.【详解】3a x +﹣33x +=1,去分母得:a ﹣3=x +3,(a ≠3),x =a ﹣6. 由题意得:a ﹣6<0且x ≠-3,解得:a <6且a ≠3.27358x y x y a -=⎧⎨+=+⎩①②,①+②得:5x =5a +15,x =a +3③,把③代入①得:2(a +3)﹣y =7,y =2a ﹣1,∴x +y =a +3+2a ﹣1=3a +2>0,∴a >﹣23,则a 的取值为:﹣23<a <6且a ≠3. 故选A .【点睛】本题考查了分式方程和二元一次方程组以及不等式,解分式方程时要先去分母,化成整式方程后再求解,注意分母不为0,解二元一次方程组时常运用加减法解方程组,根据已知要求列不等式,最后求其解集即可.14.B【解析】【分析】【详解】分析:根据分式方程的解为正数求a的范围,注意使x=2的a的值;由不等式组有6个整数解求a的范围,综合得到a的范围后,取整数值求解.详解:把分式方程去分母,整理得,(a+3)x=8,当a≠-3时,x=83a+,所以83a+>0,解得a>-3.因为当x=2时,a=1,所以a>-3且a≠1.解不等式组128263xxa x+>-⎧⎪⎨⎪-≤⎩得,a≤x<5.因为有解且恰有6个整数解,所以-2<a≤-1.则满足条件的所有整数a的值是-1,0和是-1.故选B.点睛:由分式方程的解的情况求字母系数的取值范围,一般解法是:①根据未知数的范围求出字母的范围;②把使分母为0的未知数的值代入到去分母后的整式方程中,求出对应的字母系数的值;③综合①②,求出字母系数的范围.15.D【解析】去分母得,m−1=2(x−1),去括号得,m−1=2x−2,移项,合并同类项得,2x=m+1,系数化为1得,x=1 2m+.因为x≥0,所以12m+≥0,解得m≥−1.把x=1代入m−1=2x−2,得m=1,所以m≥−1且m≠1.故选D.16.B【解析】【分析】分式方程去分母转化为整式方程,由分式方程有正数解确定出a的范围即可得到结论.【详解】2622x a x x--=-- 1 去分母得:2x +a ﹣6=x ﹣2,解得:x =4﹣a ,由分式方程有正数解,得到4﹣a >0,且4﹣a ≠2,解得:a <4且a ≠2,∴所有符合条件的正整数a 的个数为1,3.故选:B .【点睛】此题考查了分式方程的解,熟练分式方程的解法是解本题的关键.17.D【解析】【分析】解出分式方程,根据题意确定a 的范围,解不等式组,根据题意确定a 的范围,根据分式不为0的条件得到a ≠﹣2,根据题意计算即可.【详解】 解:()()321262234y y y y a ++⎧>⎪⎨⎪-≥-+⎩①②由①得y >﹣8,由②得y ≤a ,∴不等式组的解集为:﹣8<y ≤a ,∵关于y 的不等式组()()321262234y y y y a ++⎧>⎪⎨⎪-≥-+⎩至少有3个整数解,∴a ≥﹣5, 解分式方程1133x a x x++=--,得x =42a - , ∵关于x 的分式方程1133x a x x ++=--有非负整数解,且42a -≠3, ∴a ≤4且a ≠﹣2且a 为偶数;∴﹣5≤a ≤4且a ≠﹣2且a 为偶数,∴满足条件的整数a 为﹣4,0,2,4,∴所有整数a 的和=﹣4+0+2+4=2,故选:D .【点睛】本题考查的是分式方程的解法、一元一次不等式组的解法,掌握解分式方程、一元一次不等式组的一般步骤是解题的关键.18.D【解析】【分析】把分式方程化为整式方程,根据解为正数,得出m 的取值范围.【详解】解:去分母得:x+m-3m=3x ﹣12,整理得:2x=﹣2m+12,解得:x=2122-+m , 已知关于x 的方程3344x m m x x++=--的解为正数, 所以﹣2m+12>0,解得m <6,当x=4时,x=2122-+m =4,解得:m=2, 所以m 的取值范围是:6m <且2m ≠.故答案选:D .【点睛】本题考查了分式方程的解,以及一元一次不等式,掌握方程和不等式的解法是解题的关键,注意要排除产生增根时m 的值.19.C【解析】【分析】先解分式方程,再根据解是非负数可得不等式,再解不等式可得.【详解】方程两边乘以(x-1)得61m x -=-所以5x m =-因为方程的解是非负数所以50m -≥,且51m -≠所以5m ≥且6m ≠故选:C【点睛】考核知识点:解分式方程.去分母,解分式方程,根据方程的解的情况列出不等式是关键. 20.B【解析】【分析】先用k 表示x ,然后根据x 为正数列出不等式,即可求出答案.【详解】 解:211x k x x -=--, 21x k x +∴=-, 2x k ∴=+,该分式方程有解,21k ∴+≠, 1k ∴≠-,0x ,20k ∴+>,2k ∴>-,2k ∴>-且1k ≠-,故选:B .【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.21.B【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解表示出x ,根据方程的解为非负数求出m 的范围即可.【详解】解:分式方程去分母得:m+3=x-1,解得:x=m+4,由方程的解为非负数,得到m+4≥0,且m+4≠1,解得:m ≥-4且m ≠-3.故选:B .【点睛】此题考查了解分式方程,分式方程的解,时刻注意分母不为0这个条件.解题的关键是熟练掌握运算法则进行解题.22.A【解析】【分析】将分式方程化为整式方程解得x=2-3m ,根据方程的解是正数列得2-3m>0,即可求出m 的取值范围.【详解】2211x m m x x-+=--, x-m-2m=2(x-1),x-3m=2x-2,∴x=2-3m , ∵方程2211x m m x x-+=--的解为正数, ∴2-3m>0, ∴23m <, 故选:A.【点睛】此题考查根据分式方程的解的情况求参数,将方程化为整式方程求出整式方程的解,列出不等式是解答此类问题的关键.23.C【解析】【分析】解分式方程,可得分式方程的解,根据分式方程的解是正数且分式方程有意义,可得不等式组,解不等式组,可得答案.【详解】232x m x +=-, 方程两边都乘以(x−2),得:2x+m=3x−6,解得:x=m+6,由分式方程的意义,得:m+6−2≠0,即:m≠−4,由关于x 的方程的解是正数,得:m+6>0,解得:m>−6,∴m 的取值范围是:m>−6且m≠−4,故选:C .【点睛】本题主要考查根据分式方程的解的情况,求参数的范围,掌握解分式方程,是解题的关键. 24.A【解析】【分析】方程两边同乘以1x -,化为整式方程,求得x ,再列不等式得出m 的取值范围.【详解】 解:12111m x x--=-- 12111m x x --=--- 方程两边同时乘以1x -()112m x ---=-4x m =-+∵已知关于x 的分式方程12111m x x--=--的解是正数,10x -≠ ∴4041m m -+>⎧⎨-+≠⎩∴4m <且3m ≠.故选:A【点睛】本题考查了分式方程的解的概念、解分式方程、数的分类、解不等式组等知识点,要注意分式的分母不为0的条件,此题是一道易错题,有一定的难度.25.A【解析】【分析】根据二次函数的定义和判别式的意义得到a+2≠0且△=4a2﹣4×(a+2)(a﹣1)≥0,则a≤2且a≠﹣2,再解分式方程得到x=61a+且x≠﹣1,利用分式方程的解为整数可求出解得a=0,﹣2,1,﹣3,2,﹣4,5,加上a的范围可确定满足条件的a的值,然后计算它们的和.【详解】解:根据题意得a+2≠0且△=4a2﹣4×(a+2)(a﹣1)≥0,解得a≤2且a≠﹣2,去分母得ax+x+1=7,解得x=61a+且x≠﹣1,因为分式方程的解为整数,所以a+1=±1,±2,±3,±6,且a≠﹣7,解得a=0,﹣2,1,﹣3,2,﹣4,5,所以满足条件的a的值为﹣4,﹣3,0,2,1.所以所有满足条件的整数a之和为﹣4+(﹣3)+0+2+1=﹣4.故选:A.【点睛】本题考查的是二次函数与x轴的交点问题,分式方程的解为整数,注意分式方程有意义的条件,掌握以上知识是解题的关键.26.D【解析】【分析】先将m视为常数,求解出分式方程的解(包含m),然后根据解的条件判断m的取值范围.【详解】121m x +=- m+1=2x-2解得:x=32m + ∵分式方程的解为非负数 ∴302m +≥ 解得:m≥-3 ∵方程是分式方程,∴312m +≠ 解得:m≠-1综上得:m≥-3且m≠-1故选:D .【点睛】本题考查解含有字母的分式方程,注意最后得到的结果,一定要考虑增根的情况. 27.C【解析】【分析】先解分式方程得x =4-3a -,根据分式方程22x -﹣3=2ax x --有整数解,可推出a 可以取的值,再根据二次函数的性质可推出a 的取值范围,即可求解.【详解】 解分式方程22x -﹣3=2ax x --, 可得x =4-3a -, ∵分式方程22x -﹣3=2ax x --有整数解, ∴a =﹣1,2,4,5,7,∵y =2x 2﹣(a ﹣2)x +1,∴抛物线开口向上,对称轴为x =24a -, ∴当x >24a -时,y 随x 的增大而增大, ∵x >1时,y 随x 的增大而增大,∴24a-≤1,解得a≤6,∴a能取的整数为﹣1,2,4,5;∴所有整数a值的和为10,故选:C.【点睛】本题考查了分式方程和二次函数的性质,掌握知识点是解题关键.28.A【解析】【分析】先解关于y的不等式组,根据不等式组有解,确定k的范围.整理分式方程,用含k的代数式表示出x,根据x有非负整数解,确定k的值,并得结论.【详解】不等式组整理得:4156 y ky k≥+≤+⎧⎨⎩,由不等式组有解,得到5k+6≥4k+1,即k≥-5,分式方程去分母得:kx=2x-4-3x-2,整理,得kx+x=-6即(k+1)x=-6,解得:x=-61k+,由方程有非负整数解,∴k+1=-6或-3或-2或-1 所以k=-7或-4或-3或-2又因为k≥-5,且-61k+≠2,所以k=-3,-2∵-3-2=-5.故选:A.【点睛】本题考查了求不等式组、求分式方程的解等知识点,题目难度较大,求分式方程非负数解的过程中,容易忘记分式方程的分母不等于0条件.29.D【解析】【分析】根据方程的解的定义,把x=1代入原方程,原方程左右两边相等,从而原方程转化为含有a 的新方程,解此新方程可以求得a 的值.【详解】解:把x=1代入原方程得:23314a a +=-, 去分母得,8a+12=3a-3,解得a=-3,故选:D .【点睛】解题关键是要掌握方程的解的定义,使方程成立的未知数的值叫做方程的解.30.B【解析】【分析】根据分式方程的解为正数即可得出a>-1且a ≠1,根据不等式组有解,即可得:a<3,找出所有的整数a 的个数为2.【详解】 解方程2311a x x x--=--,得: 12a x +=, ∵分式方程的解为正数,∴1a +>0,即a>-1,又1x ≠, ∴12a +≠1,a ≠1, ∴a>-1且a ≠1,∵关于y 的不等式组21142y a y y a ->-⎧⎪⎨+⎪⎩有解, ∴a-1<y ≤8-2a ,即a-1<8-2a ,解得:a<3,综上所述,a 的取值范围是-1<a<3,且a ≠1,则符合题意的整数a 的值有0、2,有2个,故选:B .【点睛】本题考查了根据分式方程解的范围求参数的取值范围,不等式组的求解,找到整数解的个数,掌握分式方程的解法和不等式组的解法是解题的关键.31.C【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根得到x ﹣2=0,求出x 的值,代入整式方程计算即可求出m 的值.【详解】解:去分母得:13(2)m x x --=-,由分式方程有增根,得到x ﹣2=0,即x =2,把x =2代入整式方程得:m ﹣3=0,解得:m =3,故选:C【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.32.C【解析】【分析】【详解】解:略33.D【解析】【分析】先把分式方程转化为整式方程求出用含有k 的代数式表示的x ,根据x 的取值求k 的范围.【详解】解:分式方程转化为整式方程得,(3)(1)k (1)(2)x x x x +-=+-+解得:k 1x =+解为非负数,则k+10≥,∴k -1≥又∵x≠1且x≠-2,∴k+11k+1-2≠≠,∴k -1≥ ,且k 0≠故选D【点睛】本题考查了分式方程的解,解答本题的关键是先把分式方程转化为整式方程,求出方程的解,再按要求列不等式,解不等式.34.B【解析】【分析】先根据一次函数图像过一、三、四象限求出a 的取值范围,再解分式方程,进而确定其整数【详解】解:∵一次函数()210y a x a =--+过一、三、四象限∴20100->⎧⎨-+<⎩a a ,求得a 的取值范围为:210a << 解分式方程:93322ay a y y --=-- 得:3(2)39--=-ay y a整理得:3153(3)663333---===----a a y a a a ∵解为整数 ∴3a -能被6整除,且3a ≠∴31,2,3,6-=±±±±a解得4,2,5,1,6,0,9,3=-a又2y ≠,∴6323-≠-a ,∴9a ≠ 又210a <<∴4,5,6.=a∴所有满足条件的整数a 的和为4+5+6=15.故答案为:B.【点睛】本题考查了一次函数图像问题和分式方程解的整数个数问题,熟练掌握一次函数的图像及分式方程的解法是解决此类题的关键.35.D【解析】【分析】分式方程去分母转化为整式方程,表示出正整数方程的解,代入检验确定出a 的值,再表示出不等式组的解集,由解集至少有两个奇数解确定出整数a 的值,求出之和即可.【详解】 解:3133x ax x x++=-- 解得:6x a = ∴方程有正整数解 且63a≠即2a ≠ ∴136a =、、 解不等式组252510y a y -⎧<⎪⎨⎪--≤⎩解得1521y y a ⎧<⎪⎨⎪≥-⎩关于y 的不等式组至少有两个奇数解a-≤∴15a≤∴6∴满足条件得整数a有3个,故选:D.【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.。
一元二次方程整数根问题-2021-2022学年九年级数学上册同步知识例题精讲+对点巩固练(人教版)
一元二次方程整数根问题及应用中考要求例题精讲板块一:一元二次方程的整数根问题☞有理数根问题方程20ax bx c ++=(0a ≠,a 、b 、c【例1】 对于任意实数x ,二次三项式22134x mx m m ++-+是一个完全平方式,求m 的值【解析】略【答案】由题意得2231()24m m m =-+,整理得25410m m +-=解得15m =或1m =-【例2】 已知关于x 的一元二次方程22131(1)0444x mx k m k k +-+--+=有有理根,求k 的值。
【解析】略【答案】∵原方程的根为有理根221314[(1)]444m k m k k ∆=-⨯⨯-+--+2231(1)44m k m k k =+++++所以∆为完全平方式,因此22131()244k k k +=++,整理得230k k += 解得0k =或13k =-【巩固】设m 是不为零的整数,关于x 的二次方程2(1)10mx m x --+=有有理根,求m 的值. 【解析】一个整系数的一元二次方程有有理根,那么它的判别式一定是完全平方数.令22(1)4m m n ∆=--=,其中n 是非负整数,于是2261m m n -+=,所以22(3)8m n --=, 由于33m n m n -+--≥,并且(3)(3)8m n m n -+--=是偶数, 所以3m n -+与3m n --同奇偶,所以 3432m n m n -+=⎧⎨--=⎩,或3234m n m n -+=-⎧⎨--=-⎩. 所以61m n =⎧⎨=⎩,或01m n =⎧⎨=⎩(舍去).所以6m =,这时方程的两个根为12,13. 点评:一个整系数的一元二次方程如果有整数根或有理根,那么它的判别式一定是完全平方数,然后利用平方数的性质、解不定方程等手段可以将问题解决.【答案】6m =☞整数根问题【例3】 当m 是什么整数时,关于x 的一元二次方程2440mx x -+=与2244450x mx m m -+--=的根都是整数.【解析】由题意可知,方程2440mx x -+=的判别式21(4)1616(1)01m m m ∆=--=-≥⇒≤方程2244450x mx m m -+--=的判别式为222(4)4(445)4(45)0m m m m ∆=---=+≥故54m ≥-,又m 为整数,0m ≠,故1m =-或1m =当1m =时,题干中的两个方程分别为2440x x -+=、2450x x --=,满足题意; 当1m =-时,题干中的两个方程分别为2440x x +-=、2430x x ++=,不合题意.故1m =.也可通过方程是否有整数根的条件来判断出1m =,此时两个判别式都要是完全平方数. 【答案】1m =【例4】 若k 为正整数,且关于k 的方程22(1)6(31)720k x k x ---+=有两个相异正整数根,求k 的值. 【解析】原方程变形、因式分解为2(1)(1)6(31)720k k x k x +---+=,[(1)12][(1)6]0k x k x +---=.即1121x k =+,261x k =-.由121k +为正整数得1,2,3,5,11k =;由61k -为正整数得2,3,4,7k =. 所以2,3k =使得1x ,2x 同时为正整数,但当3k =时,123x x ==,与题目不符,所以,只有2k = 为所求.【答案】2k =【例5】 已知关于x 的方程2(6)0x a x a +-+=的两根都是整数,求a 的值.【解析】本题的难点在于a 并不是整数,如果在采用求根公式,然后讨论∆是否为完全平方数,难度不小,因此本题采用韦达定理来求解【答案】设方程2(6)0x a x a +-+=的两个根为1x 、2x根据题意得12126x x a x x a +=-⎧⎨⋅=⎩①②,将②代入①,整理得12126x x x x +=-∴212267111x x x x -==-++∵1x 、2x 均为整数 ∴21x +的值为1±或7±当211x +=时,20x =,16x =,0a = 当211x +=-时,22x =-,18x =-,16a = 当217x +=时,26x =,10x =,0a = 当217x +=-时,28x =-,12x =-,16a = 综上所述,0a =或16a =板块二:一元二次方程的应用☞增长率问题【例6】 某个体户以50000元资金经商,在第一年中获得一定的利润,已知这50000元资金加上第一年的利润在第二年共获利润2612.5元,而且第二年的利润率比第一年多0.5%,则第一年的利润是多少元?【解析】略【答案】设第一年的利润为x 元,根据题意得(50000)(0.5%)2612.550000xx +⋅+=解得12250x =,252500x =-(舍) 答:第一年的利润为2250元【巩固】某商品两次价格下调后,单价从5元变成4.05元,则平均每次调价的百分率为( )A.9%B.10%C.11%D.12%【解析】略【答案】设平均每次调价的百分率为x ,根据题意得,25(1) 4.05x -=,解得0.1x =或 1.9x =(舍)因此选B【巩固】某商场2002年的营业额比2001年上升10%,2003年比2002年又上升10%,而2004年和2005年连续两年比上一年降低10%,那么2005年的营业额比2001年的营业额( ) A.降低了2% B. 没有变化 C.上升了2% D.降低了1.99%【解析】注意题目要求,还有注意是比较“2005年的营业额与2001年的营业额”【答案】设2001年的营业额为a 元,则2002年的营业额为1.1a 元,2003年的营业额1.21a 元,所以2005年的营业额为21.21(110%)0.9801a a ⨯-= 因此2005年的营业额比2001年的营业额降低了0.9801100% 1.99%a aa-⨯= 所以选择D【巩固】北京市政府为了迎接2008年奥运会,决定改善城市面貌,绿化环境,计划经过两年时间,绿地面积增加44%,则这两年平均每年绿地面积的增长率是()A.10%B.20%C.30%D.40%【解析】略【答案】设绿地面积的增长率是x,原有绿地面积为a,根据题意得2(1)(144%)a x a+=+解得20%x=或220%x=-(舍)则平均增长率为20%∴选B☞商品利润问题【例7】某商店以2400元购进某种盒装茶叶,第一个月按进价增加20%作为售价,售出50盒;第二个月每盒以低于进价5元作为售价,售完余下的茶叶,在整个买卖过程中盈利350元,求每盒茶叶的进价【解析】略【答案】设每盒进价x元,依题意可列下列方程:24005020%5(50)350xx⨯--=整理得21012000x x--=,解得130x=、240x=经检验130x=-、240x=都是原方程的解,但进价不能为负数,所以只取40x=答:每盒茶叶进价为40元【巩固】某玩具厂生产一种玩具熊猫,每日最高产量为40只,且产出的产品全部售出,已知生产x只玩具熊猫的成本为R(元),售价为每只P(元),且R、P与x的关系式为50030R x=+,1702P x=-,当日产量为多少时,每日获得的利润为1750元?【解析】略【答案】根据题意得(1702)(50030)1750x x x--+=,解之,得125x=,245x=(舍),即日产量为25只时,每月获得利润为1750元【例8】商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.⑴问商场经营该商品原来一天可获利润多少元?⑵若商场经营该商品一天要获利润2160元,则每件商品售价应为多少元?【解析】略【答案】⑴若商店经营该商品不降价,则一天可获利润100(10080)2000⨯-=(元).⑵设后来该商品每件降价x元,依题意,得(10080)(10010)2160x x--+=整理得210160x x-+=解得12x=,28x=当2x=时,售价为98元当8x=时,售价为92元答:商店经营该商品一天要获利润2160元时,每件商品应售价为98元或92元【巩固】宏达汽车出租公司共有出租车120辆,每辆汽车的日租金为160元,出租业务天天供不应求,为适应市场需求,经有关部门批准,公司准备适当提高日租金,经市场调查发现,一辆汽车日租金每增加10元,每天出租的汽车相应地减少6辆。
中考专题复习——整数根
初三数学专题复习1——整数根例1.已知:关于x 的一元二次方程01)2()1(2=--+-x m x m (m 为实数)(1)若方程有两个不相等的实数根,求m 的取值范围;(2)在(1)的条件下,求证:无论m 取何值,抛物线1)2()1(2--+-=x m x m y 总过x 轴上的一个固定点;(3)若m 是整数,且关于x 的一元二次方程01)2()1(2=--+-x m x m 有两个不相等的整数根,把抛物线1)2()1(2--+-=x m x m y 向右平移3个单位长度,求平移后的解析式.例2、关于x 的一元二次方程x 2-2(2m -3)x+4m 2-14m+8=0(1)若m >0,求证:方程有两个不相等的实数根(2)若12<m <40的整数,且方程有两个整数根,求m 的值例3、关于x 的一元二次方程240x x c -+=有实数根,且c 为正整数.(1)求c 的值;(2)若此方程的两根均为整数,在平面直角坐标系xOy 中,抛物线24y x x c =-+与x 轴交于A 、B 两点(A 在B 左侧),与y 轴交于点C . 点P 为对称轴上一点,且四边形OBPC 为直角梯形,求PC 的长;(3)将(2)中得到的抛物线沿水平方向平移,设顶点D 的坐标为(),m n ,当抛物线与(2)中的直角梯形OBPC 只有两个交点,且一个交点在PC 边上时,直接写出m 的取值范围.例4、已知: 关于x 的一元二次方程0)2(2=+++-n m x n m mx ①.(1)求证: 方程①有两个实数根;(2)求证: 方程①有一个实数根为1(3)设方程①的另一个根为1x ,若2=+n m ,m 为正整数且方程①有两个不相等的整数根时,确定关于x 的二次函数n m x n m mx y +++-=)2(2的解析式;(4)在(3)的条件下,把Rt △ABC 放在坐标系内,其中∠CAB = 90°,点A 、B 的坐标分别为(1,0)、(4,0),BC = 5, 将△ABC 沿x 轴向右平移,当点C 落在抛物线上时,求△ABC 平移的距离。
一元二次方程的整数根问题专题练习(解析版)
一元二次方程的整数根问题专题练习一、选择题1、若k 为正整数,且关于k 的方程(k 2-1)x 2-6(3k -1)x +72=0有两个相异正整数根,k 的值为().A. 2B. 4C. 6D. 8答案:A解答:原方程变形、因式分解为(k +1)(k -1)x 2-6(3k -1)x +72=0,[(k +1)x -12][(k -1)x -6]=0.即x 1=121k +,x 2=61k -. 由121k +为正整数得k =1,2,3,5,11; 由61k -为正整数得k =2,3,4,7. ∴k =2,3使得x 1,x 2同时为正整数,但当k =3时,x 1=x 2=3,与题目不符,∴只有k =2为所求.二、填空题2、已知k 为整数,且关于x 的方程(k 2-1)x 2-3(3k -1)x +18=0有两个不相等的正整数根,则k 的值为______.答案:2解答:原方程化为:[(k +1)x -6][(k -1)x -3]=0.∴x 1=61k +,x 2=31k -. 因方程的根为正整数,因而推知k =2,此时x 1=2,x 2=3.3、已知12<m <40,且关于x 的二次方程x 2-2(m +1)x +m 2=0有两个整数根,则整数m 的值为______.答案:24解答:由原方程有整数解可知,Δ=4(m +1)2-4m 2=4(2m +1)必然是一个完全平方数. 又12<m <40可知,25<2m +1<81,又2m +1为奇数,故2m +1=49,m =24.此时原方程的两个实数根为:x =212m +14502=±,不妨设x 1>x 2,则x 1=32,x 2=18.故m=244、当关于x 的方程x 2-(m -1)x +m +1=0的两根都是整数,则整数m 的值为______. 答案:7或-1解答:设方程的两整数根分别是x 1,x 2,由韦达定理得x 1+x 2=m -1,x 1·x 2=m +1,消去m ,可得x 1x 2-x 2-x 1=2,(x 1-1)(x 2-1)=3=1×3=-1×(-3),则有121113x x -=⎧⎨-=⎩.或121113x x -=-⎧⎨-=-⎩., 解得:1224x x =⎧⎨=⎩.或1202x x =⎧⎨=-⎩., 由此x 1·x 2=8或0,∴m =7或m =-1.三、解答题5、当整数m 取何值时,关于x 的方程(m -1)x 2-(2m +1)x +1=0有整数根.答案:-1.解答:当m =1时,-3x +1=0,x =13(舍). 当m ≠1时,该方程为一元二次方程,Δ=4m 2+4m +1-4m +4=4m 2+5,设4m 2+5=n 2(n 为正整数),4m 2-n 2=-5,则(2m +n )(2m -n )=-5,2521m n m n +=⎧⎨-=-⎩或2125m n m n +=⎧⎨-=-⎩, 则m =-1.6、已知方程(a 2-1)x 2-2(5a +1)x +24=0有两个不相等的负整数根,求整数a 的值. 答案:a =-2.解答:由题意得:2100a ⎧-≠⎨∆⎩>, Δ=[2(5a +1)]2-4×24(a 2-1)=4(a+5)2>0,∴a≠±1,a≠-5,由求根公式得:x1=61a-,x2=41a+,∵方程有两个不相等的负整数根,∴a-1=-1,-2,-3,-6,a+1=-1,-2,-4,即:a=0,-1,-2,-5,a=-2,-3,-5,∴a=-2或-5.∴a=-2.7、当整数m取何值时,关于x的方程mx2-(1-m)x-1=0的根为整数.答案:m=-1,0,1.解答:当m=0时,x=-1,当m≠0时,该方程为一元二次方程,x1=-1,x2=1m,∵xm为整数,∴m=±1,综上,当m=-1,0,1时,方程的根为整数.8、关于x的方程mx2-(3m+2)x+2m+2=0的根为正整数,且m为整数,求m的值.答案:0或1或2或-2.解答:当m=0时,方程可化为-2x+2=0,有整数根x=1,满足题意.当m≠0时,∵mx2-(3m+2)x+2m+2=0,[mx-(2m+2)](x-1)=0,mx-(2m+2)=0或a-1=0,∴x1=22mm+=2+2m,x2=1.又∵该方程的根为正整数且m为整数,∴2m为大于-2的整数,∴m=1或2或-2.则m 的值为0或1或2或-2.9、已知:关于x 的一元二次方程(m -1)x 2-2mx +m +1=0(m >1).(1)求证:方程总有两个不相等的实数根.(2)m 为何整数时,此方程的两个实数根都为正整数?答案:(1)证明见解答.(2)m =2或m =3.解答:(1)∵Δ=(-2m )2-4(m +1)(m -1)=4>0.∴方程总有两个不相等的实数根.(2)∵Δ=(-2m )2-4(m +1)(m -1)=4>0,m -1≠0.由求根公式解得:x 1=()2221m m +-=11m m +-,x 2=()2221m m --=1. x 1=11m m +-=1+21m - ∵方程的两个根都为正整数,m 是整数且m >1. ∴21m -是正整数. ∴m -1=1或m -1=2.∴m =2或m =3.10、已知关于x 的一元二次方程x 2+(m +3)x +m +1=0.(1)求证:无论m 取何值,原方程总有两个不相等的实数根.(2)当m 为何整数时,原方程的根也是整数.答案:(1)证明见解答.(2)当m =-1时,原方程的根是整数.解答:(1)Δ=(m +3)2-4(m +1)=m 2+6m +9-4m -4=m 2+2m +5=(m +1)2+4.∵(m +1)2≥0,∴(m +1)2+4>0.∴无论m 取何实数时,原方程总有两个不相等的实数根.(2)Δ=(m +3)2-4(m +1)=m 2+6m +9-4m -4=m 2+2m +5=(m +1)2+4.∵(m +1)2≥0,∴(m +1)2+4>0.∴无论m 取何实数时,原方程总有两个不相等的实数根.解关于x 的一元二次方程x 2+(m +3)x +m +1=0,得x =3m --.要使原方程的根是整数,必须使得(m +1)2+4是完全平方数.设(m +1)2+4=a 2,则(a +m +1)(a -m -1)=4.∵a +m +1和a -m -1的奇偶性相同,可得1212a m a m ++=⎧⎨--=⎩.或1212a m a m ++=-⎧⎨--=-⎩.解得21a m =⎧⎨=-⎩.或21a m =-⎧⎨=-⎩.将m =-1代入x =3m --±,得x 1=-2,x 2=0符合题意.∴当m =-1时,原方程的根是整数.11、一直角三角形的两直角边长均为整数,且满足方程x 2-(m +2)x +4m =0,试求m 的值及此直角三角形的三边长.答案:当m =15,直角三角形三边长分别为5,12,13;当m =12,直角三角形三边长分别为6,8,10.解答:由题意得,Δ=m 2-12m +4,∴x =()22m +±. ∵该方程的根均为整数,∴m 2-12m +4必为平方数,令m 2-12m +4=n 2(n 为正整数),整理得(m -6)2-n 2=32,∴(m -6+n )(m -6-n )=32,∴m -6+n 与m -6-n 同奇同偶.因此61662m n m n -+=⎧⎨--=⎩或6864m n m n -+=⎧⎨--=⎩, 解得157m n =⎧⎨=⎩或122m n =⎧⎨=⎩,当157m n =⎧⎨=⎩时,方程x 2-(m +2)x +4m =0为x 2-17x +60=0, 解得x =5或x =12,∴即当m =15,直角三角形三边长分别为5,12,13.当122m n =⎧⎨=⎩时,方程x 2-(m +2)x +4m =0为x 2-14x +48=0, 解得x =6或x =8,∴即当m =12,直角三角形三边长分别为6,8,10.12、已知关于x 的方程(m -1)x 2-2mx +m +1=0.(1)求证:无论常数m 取何值,方程总有实数根.(2)当整数m 取何值时,方程有两个整数根.答案:(1)证明见解答.(2)2或0或3或-1.解答:(1)①当m -1=0即m =1时,方程化成-2x +2=0,解得x =1,②当m -1≠0即m ≠1时,方程一元二次方程,a =m -1,b =-2m ,c =m +1,∴b 2-4ac =(-2m )2-4(m -1)(m +1)=4m 2-4m 2+4=4>0,∴方程总有两个不相等的实数根,∴综上所述,无论常数m 取何值,方程总有实数根.(2)x =()221m m ±-=()2221m m ±-=11m m±-, ∴x 1=1,x 2=11m m +-, 而11m m +-=121m m -+-=1+21m -, ∴当m -1=±1,±2时,x 2为整数,即m =2或0或3或-1,方程有两个整数根.13、已知:关于x 的一元二次方程mx 2-3(m -1)x +2m -3=0.(1)求证:不论实数m 取何值,方程必有两个实数根.(2)若方程有一个根大于2且小于3,求实数m 的取值范围.(3)若m 为整数,且方程的两个根均为正整数,求m 的值.答案:(1)证明见解答.(2)m <-3.(3)m =-3,-1,3.解答:(1)解法一:由题意,得()()2091423m m m m ≠⎧⎪⎨∆=---⎪⎩, ∴Δ=m 2-6m +9=(m -3)2≥0,∴不论实数m 取何值,方程必有两个实数根.解法二:原方程因式分解得(x -1)[mx -(2m -3)]=0,∵m ≠0,∴原方程必有两个实根.(2)由(1)可知,方程两根为x 1=1,x 2=23m m-, ∴2<23m m -<3,化简得2<2-3m<3, 由2<2-3m可知,m <0; 由2-3m <3可知,m <-3; ∴综上所述,m <-3.(3)∵m 为整数,x 2=2-3m 为正整数, ∴m =-3,-1,3.14、已知关于x 的一元二次方程x 2+2x +2m -4=0有两个不相等的实数根.(1)求m 的取值范围.(2)若m 为正整数,且该方程的根都是整数,求m 的值.答案:(1)m <52. (2)2.解答:(1)由题意得:b 2-4ac =4-4(2m -4)=20-8m >0,解得:m <52.(2)由m 为正整数,可知m =1或2,求根公式得x =-1∵方程的根为整数,∴5-2m 为完全平方数,则m 的值为2.15、已知关于x 的一元二次方程x 2+2(m +1)x +m 2-1=0.(1)若方程有两个不相等的实数根,求m 的取值范围.(2)在(1)的条件下,选择一个恰当的m 的值,使方程的两个实数根为整数,并求出这两个根.答案:(1)m >-1.(2)当m =1时,x 1=0,x 2=-4.解答:(1)Δ=[2(m +1)]2-4(m 2-1)=8m +8.∵方程有两个不相等的实数根,∴8m +8>0,∴m >-1.(2)在(1)的条件下,当m =1时,该方程可化为x 2+4x =0.∴两个整数根为x 1=0,x 2=-4.16、已知:关于x 的一元二次方程x 2-(2m -3)x +m 2-5m +2=0有两个不相等的实数根.(1)求m 的取值范围.(2)若10<m <21,是否存在整数m ,使方程有两个整数根,若存在求出m 的值;若不存在请说明理由.答案:(1)m >-18. (2)m =15.解答:(1)Δ=[-(2m -3)]2-4(m 2-5m +2)=8m +1>0,得m >-18. (2)存在整数m ,使方程有两个整数根,原因:方程解为x =()23m -,∵10<m<21,m为整数,∴81<8m+1<169且为整数,∴913,又∵方程有两个整数根,或11或12,∴m=998或15或118,∴m=15,当m=15时,x1=19;x2=8符合题意.17、当m为何整数时,方程2x2-5mx+2m2=5有整数解.答案:m=±1或m=±3.解答:将方程2x2-5mx+2m2=5左边因式分解可得(2x-m)(x-2m)=5故2521x mx m-=⎧⎨-=⎩,或2125x mx m-=⎧⎨-=⎩,或2521x mx m-=-⎧⎨-=-⎩,或2125x mx m-=-⎧⎨-=-⎩解得31311313 x x x xm m m m==-=-=⎧⎧⎧⎧⎨⎨⎨⎨==-=-=⎩⎩⎩⎩,,,.18、求所有整数k,使方程kx2+(k+1)x+k-1=0的根都是整数.答案:k=1.解答:①当k=0时,x-1=0,x=1.②当k≠0时,Δ=(k+1)2-4k(k-1)=-3k2+6k+1>0由根与系数关系得:x1+x2=-1kk+=-1-1k,x1·x2=1kk-=1-1k,∵根都是整数,∴k=±1,检验:k=-1不符合(舍).综上所述,k=1.19、已知方程(k2-1)x2-3(3k-1)x+18=0有两个不相等的整数根,(1)求整数k的值.(2)求实数k 的值.答案:(1)k =0,±2.(2)k =0,±2,±12. 解答:(1)[(k +1)x -6][(k -1)x -3]=0,x 1=61k +,x 2=31k -, ∵方程有两个整数根,即k +1=±1,±2,±3,±6,k -1=±1,±3,∴k =0,±2.(2)由x 1=61k +,x 2=31k -得k +1=16x ,k -1=23x , 化简得x 1=3-2932x +, ∴2x 2+3=±1,±3,±9,x 2=-2,-1,0,-3,3,-6,∴k =0,±2,±12. 20、已知一元二次方程(2k -3)x 2+4kx +2k -5=0,且4k +1是边长为7的菱形对角线的长,求k 取什么整数值时,方程(2k -3)x 2+4kx +2k -5=0的根都是整数?答案:k =1时,方程(2k -3)x 2+4kx +2k -5=0的根都是整数.解答:∵(2k -3)x 2+4kx +2k -5=0为一元二次方程,∴2k -3≠0,∴k ≠32. ∵4k +1是边长为7的菱形对角线的长,∴0<4k +1<14,∴-14<k <134. ∵Δ=(4k )2-4(2k -3)(2k -5)=64k -60≥0,∴k ≥1516, ∴1516≤k <134, ∵k 为整数,∴k =1或2或3.当k =1时,Δ=4,方程为-x 2+4x -3=0,根为x 1=1,x 2=3,符合题意;当k=2时,Δ=68,不符合题意;当k=3时,Δ=132,不符合题意.∴k=1.。
2020-2021学年中考数学陪优专题05 一元二次方程的整数根_答案
专题05 一元二次方程的整数根例1 当k=4时,x=1;当k=8时,x=-2;当k≠4且k≠8时,148x k =-,284x k =-,可得k=6或k=4,6,8或12. 例2 C例3 C 提示:方程变形为关于x 的二次方程()222290x yx y ++-=,2=71160y ∆-+≥且是完全平方数,得,162=y ∴4±=y ,∴⎩⎨⎧=-=4111y x ,⎩⎨⎧=-=4322y x ,⎩⎨⎧-==4133y x ,⎩⎨⎧-==4344y x .例 4 ①若0=r ,则21=x 不是整数;②0≠r ,设方程的两根为)(,2121x x x x <,则rr x x 221+-=+,rr x x 121-=,于是,3212)(22121=++⎪⎭⎫ ⎝⎛-=+-r r r r x x x x 有7)12)(12(21=--x x ,解得⎩⎨⎧==4121x x 或⎩⎨⎧=-=0321x x 则31-=r 或1=r .例5由0)()50(2-22=-+-y y x y x 得0)992500(4)(4)50(422≥-=---=∆y y y y ,即0)992500(≥-y ,25≤y 时,方程有实数解y y x 99250050-±-= .由于)992500(y -必须是完全平方数,而完全平方数的末位数字可能为0,1,4,5,6,9,故仅可取25,此时30=x 或, 20=x ,故所求的四位数为2025或3025.例6解法一:因a 的次数较低,故将方程整理为关a 于的一次方程,得)6(2)2(2+=+x a x ,显然02≠+x ,于是2)2()6(2++=x x a ,∵a 是正整数,1≥a ,即1)2()6(22=++x x ,化简得0822≤-+x x ,解得)2(24-≠≤≤-x x .当2,1,0,1,3,4---=x 时,.1,914,3,10,6,1=a ∵a 是正整数,故a 的值为1,3,6,10.解法二:()[])18(4)3(41242+=---=∆a a a a 为完全平方数,故)18(4+a 为奇数的平方.令2)12()18(+=+m a ,m 是正整数,则22m m a += ,于是,原方程可化为0)3)(2(4)1(4)1(22=+-+-+++m m x m m x m m ,即[][]0)3(2)1(2)-m 2=++++m x m mx ( ,解得m x 421+-=,1422+--=m x ,∴4m 或41)(+m 得4,2,1=m 或3,1=m ,故a 的值位1,3,6,10.A 级1. 3 9942. 13. 14. 1 9845. D6. B7. C8.D9.①当0=k 时,则1=x ,即0=k 为所求;②0≠k 时,则⎪⎪⎩⎪⎪⎨⎧-=--=+k x x k x x 11112121,得3)1)(1(21=--x x ,由此可得1,71=-=k k 或.10. 0=n 提示:方程①()2342221++=-n n x x ,方程②根为n n -+1,22,注意讨论.11.4,10,2--=a12.由韦达定理,得9112+=+p q p ①,16)(415++=q p pq ②,0>+q p ,0>pq ,为q p ,正整数.由②得216)(6016++=q p pq ,即4811516)154)(154(22=+=+-q p ,故⎩⎨⎧=-=-13,37,1,48115437,13,481,1154q p ,得13,7,124,4=p ,7,13,4,124=q ,代入①,即只有7,13==q p 满足条件.B 级1. 982. 49,32,27,25,24,-25,8,-3,-1,0.3. 5 提示:当6=k 时,解得2=x .当9=k 时,解得3-=x .当96≠≠k k 且时,解得kx k x -=-=96,9921 .当9,3,16±±±=-k 时,1x 是整数,这时3,15,3,5,7-=k ;当6,3,2,19±±±±=-k 时,2x 是整数,这时3,15,7,11,8,10=k .综上所述, 15,9,7,6,3=k 时,原方程的解为整数. 4.611提示:将原方程整理为关于a 的二次方程(),01722=++-xa a x 03282≥-=∆x ,)7(232822--±-=x x x a ,讨论枚举. 5. 1,3,5 提示:a x 321-=,ax 512-=. 6. -2,或-6 7. A 提示:a 与a1时方程09200152=++x x 的两个不相等的实数根. 8. C9. 解得4211---=k x ,2412---=k x ,故1241+-=-x k ,1422+-=-x k )1,1(21-≠-≠x x ,消去k 得,02312=++x x x x ,即()2321-=+x x ,求得310,3,6=k .10.设两连续正偶数为2,+k k ,则有)2(22392+=-+k k x x ,即0)22(23922=++-+k k x x ,x 为有理数,则[]2)1(6565++=∆k 为完全平方数,令)0(2≥=∆p p ,[]156********)1(622⨯=⨯-=+-k p也即[][]15655115)1(6)1(6⨯=⨯=--++k p k p ,于是得⎩⎨⎧=+-=++5)1(6113)1(6k p k p ,或⎩⎨⎧=+-=++1)1(6565)1(6k p k p 解得8=k 或46=k,相应的方程的解为2=x 或941-=x 与17-=x 或9130=x .总之,当2=x 或 17-=x 时, 22392-+x x 恰为两个整数8或10,或者46或48的乘积.11. 令2224n p q =-=∆ n 为非负数),即24))(p n q n q =+-( .∵n q n q +≤-≤1且n q n q +-与奇偶性相同,则⎩⎨⎧=+=-222p n q n q ①, ⎩⎨⎧=+=-24pn q n q ②, ⎩⎨⎧=+=-p n q pn q 4③, ⎩⎨⎧=+=-pn q pn q 22④, ⎩⎨⎧=+=-42n q p n q ⑤;消去n 分别得:12+=p q ,222+=p q ,25p q =,p q 2=,222p q +=,对于第1、3种情形,5,2==q p 对于第2、5种情形,4,2==q p (不合题意,舍去);对于第四种情形,p 为合数(舍去).又当5,2==q p 时,方程为2,21,0252212===+-x x x x .12. 1)2,12=++-=c b a a bc ,则c b ,是一元二次方程01222=+-+-a a t t 的两根, 故0)(4)1(4422≥--=+--=∆a a a a , 即0)1(≤-a a , 又 ∵ 0≥a 且a 为整数, 则1≥a ,∴1===c b a .2)由条件得0)1(2=++-k x k kx ,又 ∵原方程只有一组解,当0=k 时,1,0==y x , ∴⎩⎨⎧==10y x 符合条件,此时0=k ;当0≠k 时,01234)1(222=++-=-+=∆k k k k ,解得1,(3121=-=k k 舍),∴12=k , 即0122=+-x x , ∴1,1-==y x ,∴⎩⎨⎧-==11y x ,符合条件,此时k =1。
专题培优-一元二次方程的整数根(含答案)
专题培优-⼀元⼆次⽅程的整数根(含答案)⼀元⼆次⽅程的整数根1.使⼀元⼆次⽅程x2+3x+m=0有整数根的⾮负整数m的个数为( ).A. 0B. 1C. 2D. 32.满⾜(n2-n-1)n+2=1的整数n有________个.3.已知关于x的⽅程(a-1)x2+2x-a-1=0的根都是整数,那么符合条件的整数a有________个.4.⽅程x2+px+q=0的两个根都是正整数,并且p+q=1992,则⽅程较⼤根与较⼩根的⽐等于________.5.已知k为整数,且关于x的⽅程(k2-1)x2-3(3k-1)x+18=0有两个不相同的正整数根,则k=________.6.关于x的⼀元⼆⽅程4x2+4mx+m2+m-10=0(m为正整数)有整数根,则满⾜条件的m值的个数为________个.7.已知关于x的⽅程((m2?1)x2?3(3m?1)x+18=0有两个正整数根(m是整数).△ABC的三边a,b,c满⾜c=2√3,m2+a2m?8a=0,m2+b2m?8b=0.求:(1)m的值;(2)△ABC的⾯积.8.当k为何整数时,⽅程(k2-1)x2-6(3k-1)x+72=0有两个不相等的正整数根?9.当n为何整数时,关于x的⼀元⼆次⽅程x2-3nx+2n2-6=0的两根都为整数?10.求这样的正整数a,使得⽅程ax2+2(2a-1)x+4a-7=0⾄少有⼀个整数解.11.设关于x的⼀元⼆次⽅程(k2-6k+8)x2+(2k2-6k-4)x+k2=4的两根都是整数,求满⾜条件的所有实数k的值.12.已知m,n为正整数,关于x的⽅程x2-mnx+(m+n)=0有正整数解,求m,n的值.13.k为何值时,关于x的⽅程x2-4mx+4x+3m2-2m+4k=0的根是有理数?14.已知关于x的⼀元⼆次⽅程x2+cx+a=0的两个整数根恰好⽐⽅程x2+ax+b=0的两个根都⼤1,求a+b+c的值.15.已知⼀元⼆次⽅程x2+ax+b=0,①有两个连续的整数根,⼀元⼆次⽅程x2+bx+a=0,②有整数根,求a,b的值.答案1.C2.43.54.9975.26.47.解:(1)∵关于x 的⽅程(m 2-1)x 2-3(3m -1)x +18=0有两个正整数根(m 是整数).∵a =m 2-1,b =-9m +3,c =18,∴b 2-4ac =(9m -3)2-72(m 2-1)=9(m -3)2≥0,设x 1,x 2是此⽅程的两个根,∴x 1?x 2=c a =18m 2?1,∴18m 2?1也是正整数,即m 2-1=1或2或3或6或9或18,⼜m 为正整数,∴m =2;(2)把m =2代⼊两等式,化简得a 2-4a +2=0,b 2-4b +2=0当a =b 时,a =b =2±√当a ≠b 时,a 、b 是⽅程x 2-4x +2=0的两根,⽽△>0,由韦达定理得a +b =4>0,ab =2>0,则a >0、b >0.①a ≠b ,c =2√3时,由于a 2+b 2=(a +b )2-2ab =16-4=12=c2 故△ABC 为直⾓三⾓形,且∠C =90°,S △ABC =12ab =1.②a =b =2-√2,c =2√3时,因2(2?√2)<2√3,故不能构成三⾓形,不合题意,舍去.③a =b =2+√2,c =2√3时,因2(2+√>2√3,故能构成三⾓形.S △ABC =12×(2√)×√=√综上,△ABC 的⾯积为1或√. 8.解:∵k 2-1≠0∴k ≠±1∵△=36(k -3)2>0∴km ≠3⽤求根公式可得:x 1=6k?1,x 2=12k+1∵x 1,x 2是正整数∴k -1=1,2,3,6,k +1=1,2,3,4,6,12,解得k =2.这时x 1=6,x 2=4. 9.解:原⽅程变形得(x ?2n)(x ?n)=6,∵x ,n 均为整数,∴原⽅程化为{x ?2n =±2,x ?n =±3或{x ?2n =±3,x ?n =±2或{x ?2n =±6,x ?n =±1或{x ?2n =±1,x ?n =±6,解得n =-1或1或-5或5.10.解:原⽅程变形为(x +2)2a =2x +7(x ≠?2),解得a =2x +7(x +2)2.∵a ≥1,∴2x +7(x +2)2?1,∴-3≤x ≤1,∴x 可取值为-3,-1,0,1,分别代⼊a =2x +7(x +2)2中,解得a =1或a =5或a =74或a =1.⼜∵a 是正整数,∴当a =1或a =5时,⽅程⾄少有⼀个整数解. 11.解:原⽅程可化为[(k ?4)x +(k ?2)][(k ?2)x +(k +2)]=0,∵k 2?6k +8=(k ?4)(k ?2)≠0,∴x 1=?k?2k?4=?1?2k?4,x 2=?k +2k?2=?1?4k?2,∴k ?4=?2x 1+1,k ?2=?4x 2+1(x 1≠?1,x 2≠?1),消去k ,得x 1x 2+3x 1+2=0. ∴x 1(x 2+3)=?2.由于x 1,x 2都是整数,∴{x 1=?2,x 2+3=1或{x 1=1,x 2+3=?2或{x 1=2,x 2+3=?1.或{x 1=?2,x 2=?2或{x 1=1,x 2=?5或{x 1=2,x 2=?4.∴k =6或3或103.经检验均满⾜题意.12.解:设⽅程x 2?mnx +(m +n )=0的两根分别为:x 1,x 2,∵m ,n 为正整数,∴x 1+x 2=mn >0,x 1?x 2=m +n >0,∴这两个根x 1,x 2均为正数,⼜∵(x 1?1)(x 2?1)+(m ?1)(n ?1)=x 1x 2?(x 1+x 2)+1?[mn ?(m +n )+1]=(m +n )?mn +1+[mn ?(m +n )+1]=2,其中(x 1?1)(x 2?1),m ?1,n ?1均⾮负,⽽为两个⾮负整数和的情况仅有0+2;1+1;2+0.∵(x 1?1)(x 2?1)=x 1x 2?(x 1+x 2)+1=m +n ?mn +1,(m ?1)(n ?1)=mn ?(m +n )+1,∴{m +n ?mn +1=0mn ?(m +n)+1=2或{m +n ?mn +1=1mn ?(m +n )+1=1或{m +n ?mn +1=2mn ?(m +n)+1=0,解得:{m =2n =3或{m =3n =2或{m =2n =2或{m =1n =5或{m =5n =1.13.解:根据题意得:△=(-4m +4)2-4×(3m 2-2m +4k )=4(m 2-6m +4-4k ),∵⽅程的解为有理数,∴4(m 2-6m +4-4k )是⼀个完全平⽅数,即4-4k =9,解得:k =-54. 14.解:设⽅程x 2+ax +b =0的两个根为α,β,∵⽅程有整数根,设其中α,β为整数,且α≤β,则⽅程x 2+cx +a =0的两根为α+1,β+1,∴α+β=-a ,(α+1)(β+1)=a ,两式相加,得αβ+2α+2β+1=0,即 (α+2)(β+2)=3,∴{α+2=1β+2=3或{α+2=?3β+2=?1.解得{α=?1β=1或{α=?5β=?3.⼜∵a =-(α+β)=-[(-1)+1]=0,b =αβ=-1×1=-1,c =-[(α+1)+(β+1)]=-[(-1+1)+(1+1)]=-2,或a =-(α+β)=-[(-5)+(-3)]=8,b =αβ=(-5)×(-3)=15,c =-[(α+1)+(β+1)]=-[(-5+1)+(-3+1)]=6,∴a =0,b =-1,c =-2;或者a =8,b =15,c =6,∴a +b +c =0+(-1)+(-2)=-3或a +b +c =8+15+6=29,故a +b +c =-3,或29.15.解:设⽅程①的两个根式n ,n +1,则{n +(n +1)=?a n(n +1)=b∴a =-(2n +1),b =n (n +1),则⽅程②可变为x 2+n (n +1)x -(2n +1)=0③,∵⽅程③有整数根,视n 为主元,∴n 2x +n (x -2)+x 2-1=0④有整数解,∴设△=(x -2)2-4x (x 2-1)=x 2+4-4x 3=p 2(p 为正整数),∴x 2(1-4x )=(p +2)(p -2)⑤.∵p +2>p -2,∴{p +2=x 2p ?2=1?4x ⑥,{p +2=x p ?2=(1?4x)x ⑦,{p +2=1?4x p ?2=x2⑧,{p +2=(1?4x)x p ?2=x ⑨,由⑥得:x 2+4x -1=0,解得:x 1=-5,x 2=1,把x 1=-5代⼊③得:n =-3或n =85(不合题意,舍去),当n =-3时,a =5,b =6,把x 2=1代⼊③得:n 1=0,n 2=1,当n =0时,a =-1,b =0,当n =1时,a =-3,b =2,对⑦,⑧,⑨继续讨论.综上所述,{a =?1b =0或{a =?3b =2或{a =5b =6.。
中考数学考前专题复习一元二次方程整数根问题
中考数学考前专题复习一元二次方程整数根问题学校:___________姓名:___________班级:___________考生__________评卷人得分 一、解答题1.已知关于x 的一元二次方程24250x x m --+=有两个不相等的实数根.(1)求实数m 的取值范围;(2)若该方程的两个根都是符号相同的整数,求整数m 的值.2.在平面直角坐标系中,抛物线2222y x mx m m =++-的顶点为A .(1)求顶点A 的坐标(用含有字母m 的代数式表示);(2)若点()2,B B y ,()5,C C y 在抛物线上,且B C y y >,则m 的取值范围是 ;(直接写出结果即可)(3)当13x ≤≤时,函数y 的最小值等于6,求m 的值.3.已知关于x 的方程x 2+(m ﹣2)x ﹣2m =0.(1)求证:不论m 取何值,此方程总有实数根;(2)若m 为整数,且方程的一个根小于2,请写出一个满足条件的m 的值.4.已知关于x 的一元二次方程26210x x m -+-=有两个不相等的实数根.(1)求m 的取值范围;(2)若方程的两根都为整数,求正整数m 的值.5.某数学兴趣小组在探究函数y =x 2﹣2|x |+3的图象和性质时,经历了以下探究过程:(1)研究函数特点:该小组认为,可以将该函数转化为已经学过的二次函数来研究,即将绝对值符号去掉,得到分段函数(每段均为二次函数),其解析式为(填空):y =x 2﹣2|x |+3()()()()00x x ⎧≥⎪=⎨⎪⎩ㅤㅤㅤㅤ<. (2)画图象:在给出的坐标系中,分别画出当x ≥0时和x <0时所对应的二次函数的图象;(要求描出横坐标分别为﹣3,﹣2,﹣1,0,1,2,3所对应的点)(3)研究性质:根据函数图象,完成以下问题:①观察函数y =x 2﹣2|x |+3的图象,以下说法正确的有 (填写正确选项的代码). A .对称轴是直线x =1B .函数y =x 2﹣2|x |+3的图象有两个最低点,其坐标分别是(﹣1,2)、(1,2)C .当﹣1<x <1时,y 随x 的增大而增大D .当函数y =x 2﹣2|x |+3的图象向下平移3个单位长度时,图象与x 轴有三个公共点.①结合图象探究发现,当m 满足 时,方程x 2﹣2|x |+3=m 有四个解;①设函数y =x 2﹣2|x |+3的图象与其对称轴相交于P 点,当直线y =n 和函数y =x 2﹣2|x |+3图象只有两个交点时,且这两个交点与点P 所构成的三角形是等腰直角三角形,则n 的值为 .参考答案:1.(1)12m >;(2)1 【解析】【分析】(1)直接利用根的判别式即可求解;(2)根据韦达定理可得12250x x m =-+>,124x x +=,得到1522m <<,根据两个根和m 都是整数,进行分类讨论即可求解.【详解】解:(1)①一元二次方程24250x x m --+=有两个不相等的实数根,①()164250m ∆=--+>,解得12m >; (2)设该方程的两个根为1x 、2x ,①该方程的两个根都是符号相同的整数,①12250x x m =-+>,124x x +=,①1522m <<, ①m 的值为1或2,当1m =时,方程两个根为11x =、23x =;当2m =时,方程两个根1x 与2x 不是整数;①m 的值为1.【点睛】本题考查一元二次方程根的判别式、韦达定理,掌握上述知识点是解题的关键.2.(1)顶点A 的坐标为2(,)m m m ;(2)72m <-;(3)1414m -+=或2- 【解析】【分析】(1)将抛物线解析式化成22()y x m m m =++-的形式,即可求得顶点A 的坐标;(2)将()2,B B y ,()5,C C y 代入抛物线中求得B y 和C y 的值,然后再解不等式即可求解;(3)分类讨论,分对称轴在1的左侧、对称轴在3的右侧、对称轴在1,3之间共三种情况分别求出函数的最小值,进而求出m 的值.【详解】解:(1)由题意可知:抛物线222222()y x mx m m x m m m =++-=++-,①顶点A 的坐标为2(,)m m m ;(2)将()2,B B y 代入2222y x mx m m =++-中,得到2222222234B y m m m m m =+⨯+-=++,将()5,C C y 代入2222y x mx m m =++-中,得到22252522925C y m m m m m =+⨯+-=++,由已知条件知:B C y y >,①222925234m m m m ++<++,整理得到:621m <-,解得:72m <-, 故m 的取值范围是:72m <-; (3)二次函数的开口向上,故自变量离对称轴越远,其对应的函数值越大,二次函数的对称轴为x m =-,分类讨论:①当1m -<,即1m >-时,1x =时二次函数取得最小值为22212221y m m m m m =++-=++,又已知二次函数最小值为6,①2216m m ++=,解得1414m -+=或1414m --=, 又1m >-,故1414m -+=符合题意; ①当3m ->,即3m <-时,3x =时二次函数取得最小值为2223232259y m m m m m =+⨯+-=++,又已知二次函数最小值为6,①22596m m ++=,解得32m =-或1m =-, 又3m <-,故32m =-或1m =-都不符合题意; ①当13m ,即31m -≤≤-时,x m =-时二次函数取得最小值为222222y m m m m m m =++-=-,又已知二次函数最小值为6,①26m m -=,解得3m =或2m =-,又31m -≤≤-,故2m =-符合题意;综上所述,1414m -+=或2-. 【点睛】本题考查待定系数求二次函数的解析式,二次函数的最值问题,不等式的解法等,计算过程中细心,熟练掌握二次函数的图形及性质是解决本题的关键.3.(1)证明见解析(2)﹣1(答案不唯一)【解析】【分析】 (1)由题意知()()()222242412442b ac mm m m m ∆==⨯⨯-=+=-++-﹣,判断其与0的关系,即可得出结论;(2)表示出方程的两根,根据要求进行求解即可.(1) 证明:由题意知()()()222242412442b ac mm m m m ∆==⨯⨯-=+=-++-﹣ ①(m +2)2≥0,①①≥0,①关于x 的方程x 2+(m ﹣2)x ﹣2m =0总有实数根;(2)解:由(1)知,①=(m +2)2,①x ()()22(2)2222m m m m --±+-+±+==,①12222m m x -+++==,2222m m x m -+--==-, ①方程有一根小于2,①﹣m <2,①m >﹣2,①m 为整数,①满足条件的m 的一个值为﹣1.【点睛】本题考查了一元二次方程的根.解题的关键在于利用判根公式确定方程根的个数,利用公式求方程的根.4.(1)5m <;(2)3m =【解析】【分析】(1)直接运用一元二次方程根的判别式列不等式解答即可;(2)先运用求根公式求解,然后根据根为整数以及二次根式有意义的条件列式解答即可.【详解】解:(1)①关于x 的方程26210x x m -+-=有两个实数根,①()()264218400m m ∆=---=-+>,解得,5m <;(2)由题意得, 6408==31022m x m ±±--, ①x 为整数,且m 为正整数,①3m =或5m =,又①5m <①3m =.【点睛】本题主要考查了一元二次方程根的判别式、运用公式法解一元二次方程等知识点,灵活运用相关知识点成为解答本题的关键.5.(1)223x x -+,223x x ++(2)见解析(3)①B 、D ;①2<m <3;①2或6【解析】【分析】(1)利用绝对值的性质求解即可;(2)把3x=-,2-,1-,0,1,2,3分别代入函数表达式求出y的值,描点确定函数图象;(3)根据函数图象性质即可求解.(1)解:()22223023{23(0)x x xy x xx x x-+=-+=++<.故答案为:223x x-+,223x x++;(2)解:把3x=-,2-,1-,0,1,2,3分别代入函数表达式得:6y=,3,2,3,2,3,6,描点确定函数图象如下:(3)解:①A.对称轴是直线0x=,故错误;B.函数22||3y x x=-+的图象有两个最低点,其坐标分别是(1,2)-、(1,2),故正确;C.当11x-<<时,函数在y轴右侧的部分,y随x的增大而减小,故错误;D.当函数22||3y x x=-+的图象向下平移3个单位时,图象与x轴有三个公共点,正确;故答案为:B、D;①从图象看,23m<<时,方程223x x m-+=有四个解,故答案为:23m <<;①如图,当直线y n =处于直线y m =或'y m =的位置时,点P 和图象上的点构成等腰直角三角形,即2n =或6.故答案为:2或6.【点睛】本题考查的是二次函数的综合运用,解题的关键是主要通过函数作图,确定函数的性质,依据函数的性质,确定函数与直线的位置关系,通过图象求解问题.。
初中数学方程与不等式提高练习和常考题与压轴难题(含解析)
初中数学方程与不等式提高练习和常考题与压轴难题(含解析)一.选择题〔共16小题〕1.假设关于x的方程x﹣3k=5〔x﹣k〕+1的解为负数,那么k的值为〔〕A.k>B.k<C.k=D.k>且k≠22.以下各式,属于二元一次方程的个数有〔〕①xy+2x﹣y=7;②4x+1=x﹣y;③+y=5;④x=y;⑤x2﹣y2=2⑥6x﹣2y⑦x+y+z=1⑧y〔y﹣1〕=2y2﹣y2+x.A.1B.2C.3D.43.关于x的一元二次方程有实数根,那么实数a满足〔〕A.B.C.a≤且a≠3D.2+9x+1=0的两根,那么〔α2+2021α+1〕〔β2+2021β+1〕的值是4.设α,β是方程x〔〕A.0B.1C.2000D.40000002+〔a﹣b〕x+c2=0的根的 5.假设a,b,c为三角形三边,那么关于x的二次方程x情况是〔〕A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法确定6.方程﹣a=,且关于x的不等式组只有4个整数解,那么b的取值X围是〔〕A.﹣1<b≤3B.2<b≤3C.8≤b<9D.3≤b<47.观察以下方程:〔1〕;〔2〕;〔3〕;〔4〕其中是关于x的分式方程的有〔〕第1页〔共30页〕A.a>﹣1B.a>﹣2C.a>0D.a>﹣1且a≠09.假设关于x的不等式整数解共有2个,那么m的取值X围是〔〕A.3≤m<4B.3<m<4C.3<m≤4D.3≤m≤410.为引导居民节约用水,某市出台了城镇居民作用水阶梯水价制度.每年水费的计算方法为:年交水费=第一阶梯水价×第一阶梯用水量+第二阶梯水价×第二阶梯用水量+第三阶梯水价×第三阶梯用水量.该市某同学家在实施阶梯水价制度后的第一年缴纳水费1730元,那么该同学家这一年的用水量为〔〕某市居民用水阶梯水价表3〕水价〔元/m3〕阶梯户年用水量v〔m第一阶梯0≤v≤1805第二阶梯180<v≤2607第三阶梯v>26093B.270m3C.290m3D.310m3A.250m11.父子二人并排垂站立于游泳池中时,爸爸露出水面的高度是他自身身高的,儿子露出水面的高度是他自身身高的,父子二人的身高之和为3.2米.假设设爸爸的身高为x米,儿子的身高为y米,那么可列方程组为〔〕A.B.C.D.12.方程3x+y=9在正整数X围内的解的个数是〔〕A.1个B.2个C.3个D.有无数个2﹣4x+1=0,配成〔x+p〕2=q的形式,那么p、q的值是〔〕13.把一元二次方程xA.p=﹣2,q=5B.p=﹣2,q=3C.p=2,q=5D.p=2,q=32﹣2x﹣k+1=0有两个不相等的实数根,那么一次函14.假设关于x的一元二次方程x 数y=kx﹣k的大致图象是〔〕A.B.C.D.15.在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是〔〕A.=﹣5B.=+5C.=8x﹣5D.=8x+516.假设不等式组的解集是x>3,那么m的取值X围是〔〕A.m>3B.m≥3C.m≤3D.m<3二.填空题〔共14小题〕n〕′=n n﹣x1,假设〔x2〕′﹣=2,那么x=.17.对于实数x,规定〔x18.销售某件商品可获利30元,假设打9折每件商品所获利润比原来减少了10 元,那么该商品的进价是元.19.假设关于x、y的二元一次方程组的解是,那么关于x、y的二元一次方程组的解是x=,y=.20.实数m,n满足m﹣n2=1,那么代数式m2+2n2+4m﹣1的最小值等于.2﹣3x+8=0,那么△21.整数k<5,假设△ABC的边长均满足关于x的方程xABC的周长是.2﹣2m﹣1=0,n2﹣2n﹣1=0,那么m2+n222.假设两个不等实数m、n满足条件:m的值是.23.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮被感染后就会有144台电脑被感染.每轮感染中平均一台电脑会感染台电脑.2﹣m x++m+=0的根的情况是.24.假设m是实数,那么关于x的方程x25.假设关于x的方程=+1无解,那么a的值是.此就将具有这样性质的三个数称之为调和数,如6、3、2也是一组调和数.现有第3页〔共30页〕一组调和数:x、5、3〔x>5〕,那么x的值是.27.假设不等式组有解,那么a的取值X围是.28.如图A、B、C、D四人在公园玩跷跷板,根据图中的情况,这四人体重从小到大排列的顺序为.29.在一次数学知识竞赛中,竞赛题共30题.规定:答对一道题得4分,不答或答错一道题倒扣2分,得分不低于60分者得奖.得奖者至少应答对道题.30.假设关于x的不等式的解集为x<2,那么k的取值X围是.三.解答题〔共10小题〕31.甲,乙两位同学在解方程组时,甲正确地解得方程组的解为.乙因大意,错误地将方程中系数C写错了,得到的解为;假设乙没有再发生其他错误,试确定a,b,c的值.32.解方程组.33.参加一次篮球联赛的每两队之间都进展两次比赛,共要比赛30场,共有多少个队参加比赛?34.甲、乙两班同学同时从学校沿一路线走向离学校S千米的军训地参加训练.甲班有一半路程以V1千米/小时的速度行走,另一半路程以V2千米/小时的速度行走;乙班有一半时间以V1千米/小时的速度行走,另一半时间以V2千米/小时的速度行走.设甲、乙两班同学走到军训基地的时间分别为t1小时、t2小时.〔1〕试用含S、V1、V2的代数式表示t1和t2;〔2〕请你判断甲、乙两班哪一个的同学先到达军训基地并说明理由.35.对x,y定义一种新运算T,规定:T〔x,y〕=〔其中a,b均为非零常数〕,这里等式右边是通常的四那么运算,例如:T〔0,1〕==b,已知T〔1,1〕=2.5,T〔4,﹣2〕=4.〔1〕求a,b的值;〔2〕假设关于m的不等式组恰好有2个整数解,XX数P的取值X围.36.x=3是关于x的不等式的解,求a的取值X围.37.如果关于x的不等〔2m﹣n〕x+m﹣5n>0的解集为x<,试求关于x的不等式mx>n的解集.38.某养鸡厂方案购置甲、乙两种鸡苗共2000只进展饲养,甲种小鸡苗每只二元,乙种小鸡苗每只三元.〔1〕假设购置不超过4700元,应最少购置甲种小鸡苗多少只?〔2〕相关资料表示,甲、乙两种小鸡苗的成活率分虽是94%和99%,假设要使这两种小鸡苗成活率不低于96%且购置小鸡苗的总费用最低,应购置甲、乙两种小鸡各多少只?最少费用是多少元?39.为了相应“足球进校园〞的号召,某体育用品商店方案购进一批足球,第一次用6000元购进A品牌足球m个,第二次又用6000元购进B品牌足球,购进的B品牌足球的数量比购进的A品牌足球多30个,并且每个A品牌足球的进价是每个B品牌足球的进价的.〔1〕求m的值;〔2〕假设这两次购进的A,B两种品牌的足球分别按照a元/个,a元/个两种价格销售,全部销售完毕后,可获得的利润不低于4800元,求出a的最小值.40.为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.----初中数学方程与不等式提高练习和常考题与压轴难题(含解析)参考答案与试题解析一.选择题〔共16小题〕1.〔2021 春?蓬溪县校级月考〕假设关于x的方程x﹣3k=5〔x﹣k〕+1的解为负数,那么k的值为〔〕A.k>B.k<C.k=D.k>且k≠2【分析】此题首先要解这个关于x的方程,根据解是负数,可以得到一个关于k 的不等式,就可以求出k的X围.【解答】解:x﹣3k=5〔x﹣k〕+1,根据题意得,解得k<;应选B.【点评】此题是一个方程与不等式的综合题目.解关于x的不等式是此题的一个难点.2.〔2021春?文登市校级期中〕以下各式,属于二元一次方程的个数有〔〕①xy+2x﹣y=7;②4x+1=x﹣y;③+y=5;④x=y;⑤x2﹣y2=2⑥6x﹣2y⑦x+y+z=1⑧y〔y﹣1〕=2y2﹣y2+x.A.1B.2C.3D.4【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面区分.【解答】解:①xy+2x﹣y=7,不是二元一次方程,因为其未知数的最高次数为2;②4x+1=x﹣y,是二元一次方程;③+y=5,不是二元一次方程,因为不是整式方程;④x=y是二元一次方程;⑤x2﹣y2=2不是二元一次方程,因为其未知数的最高次数为2;⑥6x﹣2y,不是二元一次方程,因为不是等式;⑦x+y+z=1,不是二元一次方程,因为含有3个未知数;⑧y〔y﹣1〕=2y2﹣y2+x,是二元一次方程,因为变形后为﹣y=x.应选C.【点评】二元一次方程必须符合以下三个条件:〔1〕方程中只含有2个未知数;〔2〕含未知数项的最高次数为一次;〔3〕方程是整式方程.注意⑧整理后是二元一次方程.3.〔2021?海拉尔区校级三模〕关于x的一元二次方程有实数根,那么实数a满足〔〕A.B.C.a≤且a≠3D.【分析】讨论:当a﹣3=0,原方程变形为一元一次方程,有一个实数根;当a﹣3≠0,△=〔﹣〕2﹣4×〔a﹣3〕×1≥0,然后综合这两种情况即可.【解答】解:当a﹣3=0,方程变形为﹣x+1=0,此方程为一元一次方程,有一个实数根;当a﹣3≠0,△=〔﹣〕2﹣4×〔a﹣3〕×1≥0,解得a≤且a≠3.所以a的取值X围为a≤且a≠3.应选C.【点评】此题考察了一元二次方程ax2+bx+c=0〔a≠0〕的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考察了一元二次方程的定义.2+9x+1=0的两根,那么〔α2+2021α+1〕4.〔2021?桂平市二模〕设α,β是方程x〔β2+2021β+1〕的值是〔〕A.0B.1C.2000D.4000000【分析】欲求〔α2+2021α+1〕〔β2+2021β+1〕的值,先把此代数式变形为两根之积或两根之和的形式〔α2+2021α+1〕〔β2+2021β+1〕=〔α2+9α+1+2000α〕〔β2+9β+1+2000β〕,再利用根与系数的关系代入数值计算即可.【解答】解:∵α,β是方程x2+9x+1=0的两个实数根,∴α+β=﹣9,α?β=.1〔α2+2021α+1〕〔β2+2021β+1〕2+9α+1+2000α〕〔β2+9β+1+2000β〕=〔α又∵α,β是方程x2+9x+1=0的两个实数根,∴α2+9α+1=0,β2+9β+1=0.∴〔α2+9α+1+2000α〕〔β2+9β+1+2000β〕=2000α?2000β=2000×2000αβ,而α?β=,1∴〔α2+9α+1+2000α〕〔β2+9β+1+2000β〕=4000000.应选D.【点评】将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.2+〔a﹣b〕5.〔1999?XX〕假设a,b,c为三角形三边,那么关于x的二次方程xx+c2=0的根的情况是〔〕A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法确定【分析】先求出△=b2﹣4ac,再结合a,b,c为三角形的三边,即可判断根的情况.【解答】解:∵x2+〔a﹣b〕x+c2=0,∴△=b2﹣4ac==〔a﹣b〕2﹣c2=〔a﹣b﹣c〕〔a﹣b+c〕∵a,b,c为三角形三边,第9页〔共30页〕∴b+c>a,a+c>b∴a﹣b﹣c<0,a﹣b+c>0∴〔a﹣b﹣c〕〔a﹣b+c〕<0,即二次方程x2+〔a﹣b〕x+c2=0无实数根.应选C.【点评】此题考察了一元二次方程根的判别式的应用及三角形三边的关系.6.〔2021?德阳〕方程﹣a=,且关于x的不等式组只有4个整数解,那么b的取值X围是〔〕A.﹣1<b≤3B.2<b≤3C.8≤b<9D.3≤b<4【分析】分式方程去分母转化为整式方程,求出整式方程的解得到a的值,经检验确定出分式方程的解,根据不等式组只有4个正整数解,即可确定出b的X围.【解答】解:分式方程去分母得:3﹣a﹣a2+4a=﹣1,即〔a﹣4〕〔a+1〕=0,解得:a=4或a=﹣1,经检验a=4是增根,故分式方程的解为a=﹣1,不等式组解得:﹣1<x≤b,∵不等式组只有4个整数解,∴3≤b<4.应选:D【点评】此题考察了分式方程的解,以及一元一次不等式组的整数解,弄清题意是解此题的关键.7.观察以下方程:〔1〕;〔2〕;〔3〕;〔4〕其中是关于x的分式方程的有〔〕A.〔1〕B.〔2〕C.〔2〕〔3〕D.〔2〕〔4〕【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程判断.第10页〔共30页〕【解答】解:〔1〕〔4〕中的方程分母中不含未知数,故不是分式方程;而〔2〕〔3〕的方程分母中含未知数x,所以是分式方程.应选C.【点评】判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数〔注意:仅仅是字母不行,必须是表示未知数的字母〕.8.〔2021 ?XX〕当1≤x≤2时,ax+2>0,那么a的取值X围是〔〕A.a>﹣1B.a>﹣2C.a>0D.a>﹣1且a≠0【分析】当x=1时,a+2>0;当x=2,2a+2>0,解两个不等式,得到a的X围,最后综合得到a的取值X围.【解答】解:当x=1时,a+2>0解得:a>﹣2;当x=2,2a+2>0,解得:a>﹣1,∴a的取值X围为:a>﹣1.【点评】此题考察了不等式的性质,解决此题的关键是熟记不等式的性质.9.〔2021?鼓楼区一模〕假设关于x的不等式整数解共有2个,那么m的取值X围是〔〕A.3≤m<4B.3<m<4C.3<m≤4D.3≤m≤4【分析】首先确定不等式组的解集,先利用含m的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于m的不等式,从而求出m的X围.【解答】解:解得不等式组的解集为:2≤x<m,因为不等式组只有2个整数解,所以这两个整数解为:2,3,因此实数m的取值X围是3<m≤4.应选:C.【点评】此题考察了一元一次不等组的整数解,正确解出不等式组的解集,确定第11页〔共30页〕m的X围,是解决此题的关键.10.〔2021?XX模拟〕为引导居民节约用水,某市出台了城镇居民作用水阶梯水价制度.每年水费的计算方法为:年交水费=第一阶梯水价×第一阶梯用水量+第二阶梯水价×第二阶梯用水量+第三阶梯水价×第三阶梯用水量.该市某同学家在实施阶梯水价制度后的第一年缴纳水费1730元,那么该同学家这一年的用水量为〔〕某市居民用水阶梯水价表3〕水价〔元/m3〕阶梯户年用水量v〔m第一阶梯0≤v≤1805第二阶梯180<v≤2607第三阶梯v>26093B.270m3C.290m3D.310m3A.250m【分析】利用表格中数据得出水费不超过1460元时包括第三阶梯水价费用,进而得出等量系求出即可.【解答】解:设该同学这一年的用水量为x,根据表格知,180×5+80×7=1460<1730,那么该同学家的用水量包括第三阶梯水价费用.依题意得:180×5+80×7+〔x﹣260〕×9=1730,解得x=290.应选:C.【点评】此题考察了一元一次方程的应用.根据表格中数据得出正确是等量关系是解题关键.11.〔2021?XX一模〕父子二人并排垂站立于游泳池中时,爸爸露出水面的高度是他自身身高的,儿子露出水面的高度是他自身身高的,父子二人的身高之和为3.2米.假设设爸爸的身高为x米,儿子的身高为y米,那么可列方程组为〔〕A.B.第12页〔共30页〕C.D.【分析】根据题意可得两个等量关系:①爸爸的身高+儿子的身高=3.2米;②父亲在水中的身高〔1﹣〕x=儿子在水中的身高〔1﹣〕y,根据等量关系可列出方程组.【解答】解:设爸爸的身高为x米,儿子的身高为y米,由题意得:,应选:D.【点评】此题主要考察了由实际问题抽象出二元一次方程组,关键是弄清题意,找出题目中的等量关系,解决此题的关键是知道父亲和儿子没在水中的身高是相等的.12.〔2021春?沈丘县期末〕方程3x+y=9在正整数X围内的解的个数是〔〕A.1个B.2个C.3个D.有无数个【分析】由题意求方程的解且要使x,y都是正整数,将方程移项将x和y互相表示出来,在由题意要求x>0,y>0根据以上两个条件可夹出适宜的x值从而代入方程得到相应的y值.【解答】解:由题意求方程3x+y=9的解且要使x,y都是正整数,∴y=9﹣3x>0,∴x≤2,又∵x≥0且x为正整数,∴x值只能是x=1,2,代入方程得相应的y值为y=6,3.∴方程3x+y=9的解是:,;应选:B.【点评】此题是求不定方程的整数解,主要考察方程的移项,合并同类项,系数化为1等技能,先将方程做适当变形,确定其中一个未知数的取值X围,然后枚举出适合条件的所有整数值,再求出另一个未知数的值.第13页〔共30页〕2﹣4x+1=0,配成〔x+p〕2=q的形式,那么13.〔2021?XX模拟〕把一元二次方程xp、q的值是〔〕A.p=﹣2,q=5B.p=﹣2,q=3C.p=2,q=5D.p=2,q=3【分析】移项后,两边配上一次项系数一半的平方即可得.【解答】解:∵x2﹣4x=﹣1,22=3,∴x﹣4x+4=﹣1+4,即〔x﹣2〕那么p=﹣2,q=3,应选:B.【点评】此题主要考察解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择适宜、简便的方法是解题的关键.2﹣2x﹣k+1=0有两个不相等的实数14.〔2021?XX〕假设关于x的一元二次方程x根,那么一次函数y=kx﹣k的大致图象是〔〕A.B.C.D.【分析】首先根据一元二次方程有两个不相等的实数根确定k的取值X围,然后根据一次函数的性质确定其图象的位置.【解答】解:∵关于x的一元二次方程x2﹣2x﹣k+1=0有两个不相等的实数根,∴〔﹣2〕2﹣4〔﹣k+1〕>0,即k>0,∴﹣k<0,∴一次函数y=kx﹣k的图象位于一、三、四象限,应选B.【点评】此题考察了根的判别式及一次函数的图象的问题,解题的关键是根据一元二次方程的根的判别式确定k的取值X围,难度不大.15.〔2021?XX〕在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得第14页〔共30页〕的值比正确答案小5.依上述情形,所列关系式成立的是〔〕A.=﹣5B.=+5C.=8x﹣5D.=8x+5【分析】根据题意知:8x的倒数+5=3x的倒数,据此列出方程即可.【解答】解:根据题意,可列方程:=+5,应选:B.【点评】此题考察了由实际问题抽象出分式方程,关键是读懂题意,找到3x的倒数与8x的倒数间的等量关系,列出方程.16.〔2021?米东区校级一模〕假设不等式组的解集是x>3,那么m的取值X围是〔〕A.m>3B.m≥3C.m≤3D.m<3【分析】先将每一个不等式解出,然后根据不等式的解集是x>3求出m的X围【解答】解:①x+8<4x﹣1﹣3x<﹣9x>3②x>m∵不等式组的解集为x>3∴m≤3应选〔C〕【点评】此题考察不等式组的解法,解题的关键是熟练一元一次不等式的解法,以及正确理解不等式组的解集,此题属于中等题型.二.填空题〔共14小题〕n〕′=n n﹣x1,假设〔x2〕′﹣=2,那么x= 17.〔2021?丰台区一模〕对于实数x,规定〔x﹣1.【分析】根据规定,得:当n=2时,那么〔x2〕′=2,x解方程即可.【解答】解:根据题意得:2x=﹣2,x=﹣1.第15页〔共30页〕故答案为:﹣1.【点评】此题的关键是正确理解规定的运算,能够把方程的左边按要求进展转换.18.〔2005?乌鲁木齐〕销售某件商品可获利30元,假设打9折每件商品所获利润比原来减少了10元,那么该商品的进价是70元.【分析】此题的等量关系为:原售价的9折=新售价,而原售价=30+进价,新售价=30+进价﹣10.【解答】解:设该商品的进价是x元,那么〔30+x〕×0.9=30+x﹣10解得x=70,那么该商品的进价是70元.【点评】此题首先读懂题目的意思,根据题目给出的条件,找出适宜的等量关系,列出方程,再求解.19.〔1998?XX〕假设关于x、y的二元一次方程组的解是,那么关于x、y的二元一次方程组的解是x=4,y=3.【分析】此题先代入解求出得,再将其代入二元一次方程组得到,解出即可.【解答】解:∵二元一次方程组的解是,∴有,解得;将代入二元一次方程组,得,解得.【点评】此题主要考察二元一次方程组的解法,关键是熟练掌握二元一次方程组的解法即代入消元法和加减消元法.注意:在运用加减消元法消元时,两边同时乘以或除以一个不为0的整数或整式,第16页〔共30页〕一定注意不能漏项.20.〔2021?XX〕实数m,n满足m﹣n2=1,那么代数式m2+2n2+4m﹣1的最小值等于4.【分析】等式变形后代入原式,利用完全平方公式变形,根据完全平方式恒大于等于0,即可确定出最小值.2=1,即n2=m﹣1≥0,m≥1,【解答】解:∵m﹣n∴原式=m2+2m﹣2+4m﹣1=m2+6m+9﹣12=〔m+3〕2﹣12,那么代数式m2+2n2+4m﹣1的最小值等于〔1+3〕2﹣12=4.故答案为:4.【点评】此题考察了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解此题的关键.2﹣3 21.〔2021?XX〕整数k<5,假设△ABC的边长均满足关于x的方程xx+8=0,那么△ABC的周长是6或12或10.【分析】根据题意得k≥0且〔3〕2﹣4×8≥0,而整数k<5,那么k=4,方程变形为x2﹣6x+8=0,解得x1=2,x2=4,由于△ABC的边长均满足关于x的方程x2﹣6x+8=0,所以△ABC的边长可以为2、2、2或4、4、4或4、4、2,然后分别计算三角形周长.【解答】解:根据题意得k≥0且〔3〕2﹣4×8≥0,解得k≥,∵整数k<5,∴k=4,∴方程变形为x2﹣6x+8=0,解得x=2,x2=4,1∵△ABC的边长均满足关于x的方程x2﹣6x+8=0,∴△ABC的边长为2、2、2或4、4、4或4、4、2.∴△ABC的周长为6或12或10.故答案为:6或12或10..第17页〔共30页〕【点评】此题考察了一元二次方程ax2+bx+c=0〔a≠0〕的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考察了因式分解法解一元二次方程以及三角形三边的关系.22 22.〔2021?黔东南州〕假设两个不等实数m、n满足条件:m﹣2m﹣1=0,n﹣2n﹣1=0,那么m2+n2的值是6.【分析】根据题意知,m、n是关于x的方程x2﹣2x﹣1=0的两个根,所以利用根与系数的关系来求m2+n2的值.【解答】解:由题意知,m、n是关于x的方程x2﹣2x﹣1=0的两个根,那么m+n=2,mn=﹣1.所以,m2+n2=〔m+n〕2﹣2mn=2×2﹣2×〔﹣1〕=6.故答案是:6.【点评】此题主要考察了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.23.〔2021?武城县模拟〕某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮被感染后就会有144台电脑被感染.每轮感染中平均一台电脑会感染11台电脑.【分析】此题可设每轮感染中平均一台电脑会感染x台电脑,那么第一轮共感染x+1台,第二轮共感染x〔x+1〕+x+1=〔x+1〕〔x+1〕台,根据题意列方程解答即可.【解答】解:设每轮感染中平均一台电脑会感染x台电脑,根据题意列方程得〔x+1〕2=144解得x1=11,x2=﹣13〔不符合题意,舍去〕,即每轮感染中平均一台电脑会感染11台电脑.【点评】找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.判断所求的解是否符合题意,舍去不合题意的解.2﹣mx++m+=0的根的24.〔2003?XX〕假设m是实数,那么关于x的方程x情况是无解.【分析】计算一元二次方程的根的判别式△的值的符号后,再根据根的判别式与根的关系求解.【解答】解:∵关于x的方程x2﹣mx++m+=0可化为2x2﹣2mx+m2+2m+3=0,∴△=〔﹣2m〕2﹣4×2×〔m2+2m+3〕=﹣4m2﹣16m﹣24=﹣4〔m+2〕2﹣8<0∴方程没有实数根.【点评】总结:一元二次方程根的情况与判别式△的关系:〔1〕△>0?方程有两个不相等的实数根;〔2〕△=0?方程有两个相等的实数根;〔3〕△<0?方程没有实数根25.〔2021?XX〕假设关于x的方程=+1无解,那么a的值是2或1.【分析】把方程去分母得到一个整式方程,把方程的增根x=2代入即可求得a的值.【解答】解:x﹣2=0,解得:x=2.方程去分母,得:ax=4+x﹣2,即〔a﹣1〕x=2当a﹣1≠0时,把x=2代入方程得:2a=4+2﹣2,解得:a=2.当a﹣1=0,即a=1时,原方程无解.故答案是:2或1.【点评】首先根据题意写出a的新方程,然后解出a的值.26.〔2021?大丰市一模〕数学家们在研究15、12、10这三个数的倒数时发现:﹣=﹣.因此就将具有这样性质的三个数称之为调和数,如6、3、2也是一组调和数.现有一组调和数:x、5、3〔x>5〕,那么x的值是15.【分析】根据题意,利用规律求未知数,从x>5判断,x相当于规律中的15.【解答】解:∵x>5∴x相当于调和数15,代入得,﹣=﹣,解得,x=15.经检验得出:x=15是原方程的解.故答案为:15.【点评】此题主要考察了分式方程的应用,解决此题的关键是通过观察分析,未知调和数利用调和数来解得..27.〔2021?XX〕假设不等式组有解,那么a的取值X围是a>﹣1.【分析】先解出不等式组的解集,根据不等式组有解,即可求出a的取值X围.【解答】解:∵由①得x≥﹣a,由②得x<1,故其解集为﹣a≤x<1,∴﹣a<1,即a>﹣1,∴a的取值X围是a>﹣1.故答案为:a>﹣1.【点评】考察了不等式组的解集,求不等式组的公共解,要遵循以下原那么:同大取较大,同小取较小,小大大小中间找,大大小小解不了.此题是不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作数处理,求出不等式组的解集并与解集比较,进而求得另一个未知数的取值X围.28.〔2021春?XX月考〕如图A、B、C、D四人在公园玩跷跷板,根据图中的情况,这四人体重从小到大排列的顺序为B<A<D<C.【分析】先由第一幅图可得A<D,第二幅图可得B+D<A+C,第三幅图可得B+C=A+D,再根据等式与不等式的性质即可求解.【解答】解:由题意可得A<D,B+D<A+C,B+C=A+D.∵B+C=A+D,∴C=A+D﹣B,代入B+D<A+C中,得B+D<A+A+D﹣B,∴B<A,B﹣A<0,∵A<D,∴B<A<D.∵B+C=A+D,∴D﹣C=B﹣A<0,∴D<C,∴B<A<D<C.故答案为B<A<D<C.【点评】此题考察了不等式与等式性质的应用.解题的关键是采用代入法解不等式,并能使用统一的不等号进展连接,此题对式子的变形能力要求比较高,有一定难度.29.〔2021?XX〕在一次数学知识竞赛中,竞赛题共30题.规定:答对一道题得4分,不答或答错一道题倒扣2分,得分不低于60分者得奖.得奖者至少应答对20道题.【分析】答对题所得的分减去不答或答错题所扣的分数应>等于60分,列出不等式进展求解即可.【解答】解:设得奖者至少应答对x道题,那么答错或不答的题为30﹣x道,依题意得:4x﹣2〔30﹣x〕≥60解得:x≥20即得奖者至少应答对20道题.【点评】解决问题的关键是读懂题意,依题意列出不等式进展求解.30.〔1997?XX〕假设关于x的不等式的解集为x<2,那么k的取值X围是k≤﹣2.【分析】先化简不等式组,然后利用同小取小的原那么可判断﹣k≥2,即可求出k≤﹣2,注意不要漏掉相等时的关系.【解答】解:化简关于x的不等式为因为不等式组的解集为x<2,所以﹣k≥2,即k≤﹣2.故填k≤﹣2.【点评】主要考察了一元一次不等式解集求不等式中的字母的值,同样也是利用口诀求解,但是要注意当两数相等时,解集也是x<2,不要漏掉相等这个关系.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到.三.解答题〔共10小题〕31.〔2021?XX模拟〕甲,乙两位同学在解方程组时,甲正确地解得方程组的解为.乙因大意,错误地将方程中系数C写错了,得到的解为;假设乙没有再发生其他错误,试确定a,b,c的值.【分析】所谓“方程组〞的解,指的是该数值满足方程组中的每一方程的值,根据题意可得,解方程组可得原方程组中a、b、c的值.【解答】解:把代入到原方程组中,得可求得c=2,乙仅因抄错了c而求得,但它仍是方程ax+by=1的解,所以把代入到ax+by=1中得2a﹣b=1,.把2a﹣b=1与﹣a+b=1组成一个二元一次方程组,解得,所以a=2,b=3,c=2.【点评】此题主要考察了二元一次方程组解的定义以及解二元一次方程组的根本方法.32.〔2021?XX市校级模拟〕解方程组.【分析】利用代入消元法将y=x+1代入第②个方程求出即可.【解答】解:,将①代入②得:2﹣〔x+1〕2=﹣5, x解得:x=2,那么y=2+1=3,故方程组的解为:.【点评】此题主要考察了二元二次方程组的解法,利用代入消元的法得出是解题关键.33.〔2021?XX市模拟〕参加一次篮球联赛的每两队之间都进展两次比赛,共要比赛30场,共有多少个队参加比赛?【分析】设共有x个队参加比赛,根据参加一次篮球联赛的每两队之间都进展两次比赛,共要比赛30场,可列方程求解.【解答】解:设共有x个队参加比赛.⋯〔1分〕由题意得,x〔x﹣1〕=30.⋯〔3分〕解得,x1=6,x2=﹣5.⋯〔4分〕经检验,x1=6符合题意,x2=﹣5不符合题意舍去.∴x=6.⋯〔5分〕1答:共有6个队参加比赛.⋯〔6分〕【点评】此题考察理解题意的能力,设有x个对,每个对都要参加〔x﹣1〕场,根据总场数可列方程求解.34.〔2004?XX〕甲、乙两班同学同时从学校沿一路线走向离学校S千米的军训地参加训练.甲班有一半路程以V1千米/小时的速度行走,另一半路程以V2千米/小时的速度行走;乙班有一半时间以V1千米/小时的速度行走,另一半时间以V2千米/小时的速度行走.设甲、乙两班同学走到军训基地的时间分别为t1小时、t2小时.〔1〕试用含S、V1、V2的代数式表示t1和t2;〔2〕请你判断甲、乙两班哪一个的同学先到达军训基地并说明理由.【分析】〔1〕此题的等量关系是路程=速度×时间.根据甲到军训基地的时间=甲在一半路程内以速度V1行驶的时间+甲在另一半路程内以速度V2行驶的时间.来列出关于关于t1的代数式.根据乙以速度V1行驶一半时间走的路程+乙以速度V2行驶另一半时间走的路程=总路程S,来求出关于t2的代数式;〔2〕可将表示t1和t2的式子相减,按照分式的加减法进展合并化简后,看看当V1,V2在不同的条件下,t1和t2谁大谁小即可.【解答】解:〔1〕由,得:=t1=s解得:;〔2〕∵t1﹣t2=﹣=。
部编数学九年级上册专题03二次方程有整数根(解析版)含答案
专题03 二次方程有整数根1.已知关于x的一元二次方程22240x x k-+-=有两个不相等的实数根,则:(1)字母k的取值范围为____________;(2)若k为正整数,且该方程的根都是整数,那么k的值为____________.【答案】52k< 2【解析】【分析】(1)根据方程有两个不相等的实数根,得到根的判别式的值大于0列出关于k的不等式,求出不等式的解集即可得到k的范围;(2)找出k范围中的整数解确定出k的值,经检验即可得到满足题意k的值.【详解】解:(1)根据题意得:△=4-4(2k-4)=20-8k>0,解得:k<52,故答案为:k<52;(2)由k为正整数,得到k=1或2,利用求根公式表示出方程的解为∵方程的解为整数,∴5-2k为完全平方数,则k的值为2,故答案为:2.【点睛】此题考查了根的判别式,一元二次方程的解,以及公式法解一元二次方程,弄清题意是解本题的关键.2.已知关于x的一元二次方程x2+2x+2k﹣4=0有两个不相等的实数根.(1)求k的取值范围;(2)当k=1时,设方程的两根分别为x1,x2,求x12+x22的值;(3)若k为正整数,且该方程的根都是整数,求k的值.【答案】(1)52k<;(2)8;(3)2【解析】【分析】(1)根据方程有两个不相等的实数根得到0D >,求出k 的取值范围即可;(2)把x =1代入方程,求出121222x x x x +==-,-,进而求出2212x x +的值;(3)首先求出方程的根为1x =-,且根为整数,则52k ﹣为完全平方数,结合k 的取值范围即可求出k 的值.【详解】解:(1)∵一元二次方程22240x x k ++-=有两个不相等的实数根,∴()2241242080k k D ´´=--=->,解得52k <;(2)当1k =时,方程为2220x x +-=,解得121222x x x x +==-,-,则()22212121228x x x x x x +=+-=.(3)∵k 为正整数,且52k <,∴k =1或2.根据一元二次方程根的公式可得方程的根为1x =-又根为整数,∴52k -为完全平方数,∴2k =.【点睛】本题考查的是二次函数根与系数的关系,掌握二次函数根与系数的公式是解决本题的关键.3.已知关于x 的一元二次方程()2223880x m x m m --+-+=⑴说明该方程根的情况.⑵若424m <<(m 为整数),且方程有两个整数根,求m 的值.【答案】(1)见详解;(2)12【解析】【分析】(1)先计算判别式的值得到△=4(m-3)2-4(m2-8m+8),化简后得到△=8m+4,再根据8m+4的正负性即可判断方程根的情况;(2)由于4<m<24且m为整数,则根据求根公式得到2m+1为完全平方数时,方程可能有整数根,则2m+1=16或25或36,再根据m为整数可求得m=12时,方程有两个整数根.【详解】(1)解:∵a=1,b=-2(m-3),c=m2-8m+8,∴△=4(m-3)2-4(m2-8m+8)=8m+4,当8m+4>0时,m>12-,此时方程有两个不相等的实数根,当8m+4=0时,m=12-,此时方程有两个相等的实数根,当8m+4<0时,m<12-,此时方程没有实数根;(2)解:∵a=1,b=-2(m-3),c=m2-8m+8,△=8m+4,∴xx3x m=-∵方程有两个整数根,∴2m+1为完全平方数∵4<m<24,∴9<2m+1<49,∴2m+1=16或25或36,∴m=7.5或12或17.5,又∵m为整数,∴m=12.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.4.已知关于x的一元二次方程22250x x k++-=有两个不相等的实数根.()1求k 的取值范围;()2若k 为正整数,且该方程的根都是整数,求k 的值.【答案】(1)k<3;(2)1.【解析】【分析】(1)根据判别式的意义得到()224250k =-->V ,,然后解不等式即可;(2)由(1)的范围得到k=1或k=2,然后把k=1和2代入原方程,然后解方程确定满足条件的k 值.【详解】解:()1根据题意得()224250k =-->V ,解得3k <;()2∵k 为正整数,∴1k =或2k =,当1k =时,原方程为2230x x +-=,解得11x =,23x =-,当2k =是,原方程为2210x x +-=,解得11x =,21x =,所有k 的值为1.【点睛】考查一元二次方程()200++=¹ax bx c a 根的判别式24b ac D =-,当240b ac D =->时,方程有两个不相等的实数根.当240b ac D =-=时,方程有两个相等的实数根.当240b ac D =-<时,方程没有实数根.5.已知关于x 的一元二次方程()()22200mx m x m -++=¹.(1)求证:方程一定有两个实数根;(2)若此方程的两根为不相等的整数,求正整数m 的值.【答案】(1)证明见解析;(2)m 的值为1.【解析】【分析】(1)根据根与系数的关系即可解答.(2)根据因式分解法解方程可得出1221,x x m==,由此方程的两个根为不相等的整数即可得出2m 为不等于1的整数,结合m 为整数即可求出m 的值.【详解】(1)由题意可知:0m ¹()()222820m m m +-=-D =³Q \方程一定有两个实数根.(2)由题意得0D >,解得2m ¹Q 方程()()22200mx m x m -++=¹()(12)0x mx \--=11x \=或22x m=. Q 方程有两个不相等的整数根\正整数m 的值为1.【点睛】本题考查了根的判别式,解题关键是熟练运用根的判别式以及因式分解法解一元二次方程.6.已知关于x 的一元二次方程mx 2-(m-3)x-3=0(m≠0).(1)求证:不论m 为何值,这个方程都有两个实数根.(2)若此方程的两根均为整数,求正整数m 的值,【答案】(1)见解析;(2)1或3【解析】【分析】(1)先计算判别式的值得到△22[(3)]4(3)(3)m m m =---´-=+,再根据非负数的值得到△0…,然后根据判别式的意义得到方程总有两个实数根;(2)利用因式分解法解方程得到(1)(3)0x mx -+=,解得11x =,23x m =-,这个方程的两根都是整数,分析3m-为整数确定正整数m 的值.【详解】解:(1)证明:0m ¹Q ,△2[(3)]4(3)m m =---´-=269=++m m 2(3)=+m ,而2(3)0m +…,即△0…,\不论m 为何值,这个方程都有两个实数根;(2)解:2(3)30mx m x ---=,(1)(3)0x mx -+=,10x -=或30mx +=,11x \=,23x m=-,当m 为正整数1或3时,2x 为整数,即方程的两根均为整数.【点睛】本题考查了一元二次方程20(a 0)++=¹ax bx c 的根的判别式△=-24b ac :当△0>,方程有两个不相等的实数根;当△0=,方程有两个相等的实数根;当△0<,方程没有实数根.7.关于x 的一元二次方程()21210m x mx m --++=(1)求证:方程总有两个不相等的实数根.(2)m 为何整数时,此方程的两个根都是正整数?(3)若△ABC 的两边AB ,AC 的长是这个方程的两个实数根,第三边BC 的长为5,当△ABC 是等腰三角形时,求m 的值.【答案】(1)答案见解析;(2)m =2或者m =3;(3)m =32【解析】【分析】(1)计算根的判别式V ,证明0>V ;(2)求出原方程的两个根,根据m 为整数、两个不相等的正整数根得到m 的值;(3)分情况讨论:当AB =BC ,或AC =BC 时,5是一元二次方程的根,代入即可求出m 的值,当AB =AC 时AB 、AC 的长是这个方程的两个是实数根,由(1)可知方程有两个不相等的实数根,故此种情况不存在.【详解】解:(1)∵()21210m x mx m --++=∴2-24(1)(1)m m m D =-´-´+()=224-4-1m m ()=4>0∴方程总有两个不相等的实数根(2)∵()21210m x mx m --++=∴2=-m 4(1)(1)=4m m D -´-´+(2)∴1121-1-1m x m m +===+,2-11-1m x m ===∵方程的两个根都是正整数,且方程有两个不相等的实数根∴121-1x m =+是正整数,且11x ¹∴m =2或者m =3(3)∵△ABC 是等腰三角形,BC 的长为5∴当AB =BC ,或AC =BC 时,5是一元二次方程的根即()2152510m m m -´-´++=∴m =32当AB =AC 时∵AB 、AC 的长是这个方程的两个是实数根由(1)可知方程有两个不相等的实数根∴此种情况不存在∴m =32【点睛】本题考查了一元二次方程根的判别式、一元二次方程的解法,解决(2)的关键是用公式法求出方程的两个根.掌握公式法解方程是解题的关键.8.已知关于x 的方程()23130kx k x +++=.(1)求证:无论k 取任何实数时,此方程总有实数根;(2)若关于x 的一元二次方程()23130kx k x +++=两个根均为整数,且k 为正整数,求k 的值.【答案】(1)见解析;(2)1【解析】【分析】(1)①当该方程是一元一次方程时,解方程即可;②当该方程是一元二次方程时,根据已知方程的根的判别式的符号进行判定该方程的根的情况;(2)先利用求根公式求出两根,x 1=﹣3,x 2=1k-,只要1被k 整除,并且有k ≥1的整数,即可得到k 的值.【详解】(1)证明:①当k =0时,方程为x +3=0,解得x =﹣3,∴此时方程有实数根;②当k ≠0时,∵a =k ,b =3k +1,c =3,∴24b ac -=(3k +1)2﹣12k =(3k ﹣1)2,∵(3k ﹣1)2≥0,∴△≥0,∴此时方程有实数根;∴综上,无论k 取任何实数时,此方程总有实数根;(2)解:∵a =k ,b =3k +1,c =3,∴(31)(31)2k k x k-+±-=,∴x 1=﹣3,x 2=1k-.∵关于x 的一元二次方程kx 2+(3k +1)x +3=0的两个根均为整数,且k 为正整数∴k =1.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0,a ,b ,c 为常数)根的判别式Δ=b 2﹣4ac .当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.同时考查了解一元二次方程的方法和整数的整除性质.9.已知关于x 的一元二次方程x 2﹣(m+3)x+m+2=0.(1)求证:无论实数m取何值,方程总有两个实数根;(2)若方程两个根均为正整数,求负整数m的值.【答案】(1)见解析;(2) m=-1.【解析】【分析】(1)根据方程的系数结合根的判别式,即可得出△=1>0,由此即可证出:无论实数m取什么值,方程总有两个不相等的实数根;(2)利用分解因式法解原方程,可得x1=m,x2=m+1,在根据已知条件即可得出结论.【详解】(1)∵△=(m+3)2﹣4(m+2)=(m+1)2∴无论m取何值,(m+1)2恒大于等于0∴原方程总有两个实数根(2)原方程可化为:(x-1)(x-m-2)=0∴x1=1,x2=m+2∵方程两个根均为正整数,且m为负整数∴m=-1.【点睛】本题考查了一元二次方程与根的判别式,解题的关键是熟练的掌握根的判别式与根据因式分解法解一元二次方程.10.关于x的一元二次方程x2﹣4x+m﹣1=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为正整数,且该方程的根都是整数,求m的值.【答案】(1) m<5;(2) m的值为1,4.【解析】【分析】(1)根据根的判别式即可列出不等式求出m的取值;(2)代入合适的m即可求解.【详解】解:(1)△=16﹣4(m﹣1)=﹣4m+20,∵原方程有两个不相等的实数根,∴﹣4m+20>0,解得m<5;(2)符合条件的m的正整数值是1,2,3,4,当m=1时,该方程为x2﹣4x=0,解得x1=0,x2=4,根都是整数;当m=2时,该方程为x2﹣4x+1=0,解得x1=2,x2=2,根不是整数;当m=3时,该方程为x2﹣4x+2=0,解得x1=2,x2=2根不是整数;当m=4时,该方程为x2﹣4x+3=0,解得x1=1,x2=3,根都是整数;所以符合条件的m的值为1,4.【点睛】此题主要考查一元二次方程根的判别式,解题的关键是熟知根的判别式.11.关于x的一元二次方程x2+2mx+m2+m﹣2=0有两个实数根.(1)求m的取值范围;(2)若m为正整数,且方程的根都是负整数,求m的值.【答案】(1)m≤2;(2)m=2.【解析】【分析】(1)根据方程的系数结合根的判别式△≥0,即可得出关于m的一元一次不等式,解之即可得出m的取值范围;(2)由m的值得到原方程,解一元二次方程,即可得出结论.【详解】(1)由题意,得△=(2m)2﹣4(m2+m﹣2)≥0,∴m≤2;(2)∵m≤2,且m为正整数,∴m=1或2,当m=1时,方程x2+2x=0 的根x1=﹣2,x2=0.不符合题意;当m=2时,方程x2+4x+4=0 的根x1=x2=﹣2.符合题意;综上所述,m=2.【点睛】本题考查了根的判别式以及因式分解法解一元二次方程,解题的关键是:牢记“当△≥0时,方程有两个实数根”.12.已知关于x 的一元二次方程x 2+2(m ﹣1)x+m 2﹣4=0有两个不相等的实数根.(1)求m 的取值范围;(2)若m 为正整数,且该方程的两个根都是整数,求m 的值.【答案】(1)52m <;(2)2m =【解析】【分析】(1)根据方程有两个不相等的实数根,得到根的判别式的值大于0,列出关于m 的不等式,求出不等式的解集即可得到m 的范围;(2)由m 为正整数,可得出m=1、2,将m=1或m=2代入原方程求出x 的值,由该方程的两个根都是整数,即可确定m 的值,【详解】解:(1)∵一元二次方程x 2+2(m ﹣1)x+m 2﹣4=0有两个不相等的实数根,∴()()22=214148200m m m --´´-=-+éùëûV >∴52m <;(2)∵m 为正整数,∴m=1或2,当m=1时,方程为:x 2﹣3=0,解得:12x x ==(不是整数,不符合题意,舍去),当m=2时,方程为:x 2+2x=0,解得:1220x x =-=,都是整数,符合题意,综上所述:m=2.【点睛】本题主要考查了根的判别式,掌握根的判别式是解题的关键.13.已知:关于x 的一元二次方程x 2-4x +2m =0有两个不相等的实数根.(1)求m 的取值范围;(2)如果m 为非负整数,且该方程的根都是整数,求m 的值.【答案】(1)m <2;(2)m=0.【解析】【分析】根据根的判别式直接确定m 的范围,通过第一问中确定的m 的范围,结合m 为非负整数,直接代入进去m 存在的两个值来验证方程的根是否都是整数来确定m 值.【详解】(1)∵方程有两个不相等的实数根,∴△>0.∴△=16-8m >0.∴m <2(2)∵m <2,且m 为非负整数,∴m=0或1当m=0时,方程为x 2-4x=0,解得x 1=0,x 2=4,符合题意;当m=1时,方程为x 2-4x+2=0,根不是整数,不符合题意,舍去.综上m=0【点睛】本题考查了学生通过根的判别式来确定一元二次方程中待定系数范围,掌握代入法解题是解决此题的关键.14.已知:关于x 的方程240x x m ++=有两个不相等的实数根.(1)求m 的取值范围;(2)若m 为正整数,且该方程的根都是整数,求m 的值.【答案】(1)4m <;(2)m 的值为3.【解析】【分析】(1)根据题意得出△>0,代入求出即可;(2)求出m=1,2或3,代入后求出方程的解,即可得出答案.【详解】解:(1)∵关于x 的方程240x x m ++=有两个不相等的实数根,∴△=2440m ->.∴4m <;(2)∵4m <且m 为正整数,∴m 可取1、2、3.当m =1时,2410x x ++=的根不是整数,不符合题意;当m =2时,2420x x ++=的根不是整数,不符合题意;当m =3时,2430x x ++=,根为11x =-,23x =-,符合题意.∴m 的值为3.【点睛】本题考查根的判别式和解一元二次方程,能根据题意求出m 的值和m 的范围是解题的关键.15.已知关于x 的方程2220x x a -+-=.(1)若该方程有两实数根,求实数a 的取值范围;(2)若该方程的根为整数,求正整数a 的值及方程的根.【答案】(1)a ≤3(2)a =2时,x =0或2;a =3时,x 1=x 2=1【解析】【分析】(1)根据根的判别式求出b 2-4ac ≥0,再求出不等式的解集即可;(2)根据a 的分为a ≤3和a 为正整数得出a =1或2或3,分别代入方程,再逐个判断即可.(1)∵△=b 2-4ac =(-2)2-4×1×(a -2)=12-4a ≥0,解得:a ≤3,∴a 的取值范围是a ≤3;(2)由(1)知a ≤3,又∵a 正整数,∴a =1或 2或3,当a =1时,△=8,方程的根为无理数,舍去;当a =2时,方程为x 2-2x =0,此时,x =0或2;当a =3时,方程为x 2-2x +1=0,此时,x 1=x 2=1,综上所述:a =2时,x =0或2;a =3时,x 1=x 2=1【点睛】本题考查了根的判别式和解一元二次方程,能根据根的判别式求出a 的范围是解此题的关键.16.关于x 的一元二次方程22(21)20x m x m m +-++-=有两个不相等的实数根.(1)求m 的取值范围;(2)若m 为正整数,写出一个符合条件的m 的值并求出此时方程的根.【答案】(1)98m <;(2)m=1;120,1x x ==-【解析】【分析】(1)根据一元二次方程根的判别式可直接进行求解;(2)由(1)及题意可选择一个合适的值,然后代入进行求解一元二次方程即可.【详解】解:(1)由题意得:22(21)4(2)0m m m D =--+->,解得 98m <;(2)由(1)及题意取当m =1时,此时方程为20x x +=,∴方程的根为120,1x x ==-.【点睛】本题主要考查一元二次方程根的判别式及解法,熟练掌握一元二次方程根的判别式及解法是解题的关键.17.已知关于x 的一元二次方程24250x x m --+=有两个不相等的实数根.(1)求实数m 的取值范围;(2)若该方程的两个根都是符号相同的整数,求整数m 的值.【答案】(1)12m >;(2)1【解析】【分析】(1)直接利用根的判别式即可求解;(2)根据韦达定理可得12250x x m =-+>,124x x +=,得到1522m <<,根据两个根和m 都是整数,进行分类讨论即可求解.【详解】解:(1)∵一元二次方程24250x x m --+=有两个不相等的实数根,∴()164250m D =--+>,解得12m >;(2)设该方程的两个根为1x 、2x ,∵该方程的两个根都是符号相同的整数,∴12250x x m =-+>,124x x +=,∴1522m <<,∴m 的值为1或2,当1m =时,方程两个根为11x =、23x =;当2m =时,方程两个根1x 与2x 不是整数;∴m 的值为1.【点睛】本题考查一元二次方程根的判别式、韦达定理,掌握上述知识点是解题的关键.。
01初三数学自主招生二次方程的整数根(1)(教师)
次方程的整数根(1)【因式分解】1.已知k 为整数,且关于 x 的方程(k 2 1)x 2 2(5k 1)x 24 0有两个不相等的正 整数根,求k 的值。
解:易知k 1 ,原方程可化为 k 1 x 4 k 1 x 646 x 1--------, x 2 ---k 1 k 1•••两根为正整数,, k 1取4、2、1, k 值为5、3、2;k 1 取 6、3、2、1 , k 值为 5、2、1、0 ;• . k 值为5或2 ,当k 5时,方程两根为等根,舍去; 当k 2时,方程有两个不相等的正整数根 x 1 4 , x 22。
. k 2。
2.当k 取何整数时,方程 4 k 8 k x 280 12kx 32 0的解都是整数?4时,原方程为 32x 32 0,解得x 1 ,符合题意;8时,原方程为16x 32 0,解得x 2,符合题意; 4且k 8时,原方程可化为4kx 88 kx 4 08 4<1 -------------, x 2。
4 k 8 k.「k 为整数,且x 1、x 2均为整数根,•• 4 k 1, 2, 4, 8,得 k 3,5,2,6,0,12, 4,4(舍) 8 k 1, 2, 4,得 k 7,9,6,10,12,8(舍)。
综上所述,当k 值为4、6、8、12时,原方程的根都为整数。
3.已知方程a 2x 2 (3a 28a)x 2a 213a 15 0 ( a 为非负整数)至少有一个整数 根,求a 的值。
解:①:当a 0时,方程变为15 0,无解。
②:当a 0时,方程可化为a 2x 2 (3a 2 8a)x (2a 3)(a 5) 0 即[ax (2a 3)][ ax (a 5)] 0。
2a 3 c 3 a 5 / 5x 1-------- 2 - ,x 2------- 1 —,a a a a当x 1为整数时,非负整数 a 1,3当x 2为整数时,非负整数 a 1,5 ・♦・当a 1,3,5时,方程至少有一个整数根。
人教版数学九年级上有理根与整数根练习题
人教版数学九年级上有理根与整数根练习题一、选择题(共4小题;共20分)1. 若为关于的一元二次方程的根,则的值为A. C.2. 如果,是奇数,关于的方程有两个实数根,则其实根的情况是A. 既没有奇数根也没有偶数根B. 有奇数根,也有偶数根C. 有偶数根,没有奇数根D. 有奇数根,没有偶数根3. 一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团人准备同时租用这三种客房共间,如果每个房间都住满,租房方案有A. 种B. 种C. 种D. 种4. 若关于的方程的根是整数,则满足条件的整数的个数为A. 个B. 个C. 个D. 个二、填空题(共3小题;共15分)5. 关于的方程中有整数解,为非负整数,写出个符合条件的的取值可以是.6. 已知,,,是整数,且,若,,,满足方程,则.7. 写出方程的一组正整数解.三、解答题(共3小题;共39分)8. 关于的一元二次方程.(1)求证:方程总有两个实数根;(2)若方程有一根大于,求的取值范围.9. 阅读理解:若,,为整数,且三次方程有整数解,则将代入方程,得,移项,得,即有,由于与及都是整数,所以是的因数.上述过程说明:整数系数方程的整数解只可能是的因数.例如:方程中的因数为和,将它们分别代入方程进行验证,得,,都不是方程的整数解.解决问题:(1)根据上面的学习,请你确定方程的整数解只可能是哪几个整数?(2)方程是否有整数解?若有,请求出其整数解;若没有,请说明理由.10. 关于的一元二次方程有两个不相等的实数根.(1)求的取值范围;(2)若方程的两个根都是有理数,写出一个满足条件的的值,并求出此时方程的根.答案第一部分1. B2. A3. C 【解析】设准备租二人间个,三人间个,四人间个,根据题意,得因为,,都是正整数,解得4. C第二部分5. 或6.7. (答案不唯一)第三部分8. (1),方程有两个实数根.(2),,,,若方程有一根大于.,.9. (1)由阅读理解可知:该方程如果有整数解,它只可能是的因数,而的因数只有:,这四个数.(2)该方程有整数解.理由:方程的整数解只可能是的因数,即,,将他们分别代人方程进行验证,得是该方程的整数解.10. (1)一元二次方程有两个不相等的实数根,且,解得:且.(2)方程的两个根都是有理数,的值是有理数即可,令,解得:,此时方程为:,解得:,.。
初三数学求根练习题
初三数学求根练习题1. 求方程 $2x+5=0$ 的根。
解答:将方程 $2x+5=0$ 移项得 $2x=-5$,再将方程两边同除以2,得到 $x=-\frac{5}{2}$。
因此,方程的根为 $x=-\frac{5}{2}$。
2. 求方程 $x^2-9=0$ 的根。
解答:将方程 $x^2-9=0$ 进行因式分解得 $(x+3)(x-3)=0$,由乘法原理可知,方程的根为 $x=-3$ 和 $x=3$。
3. 求方程 $3x^2-12x+9=0$ 的根。
解答:首先将方程 $3x^2-12x+9=0$ 进行因式分解得 $3(x-1)(x-3)=0$,由乘法原理可知,方程的根为 $x=1$ 和 $x=3$。
4. 求方程 $x^2+2x+1=0$ 的根。
解答:将方程 $x^2+2x+1=0$ 进行因式分解得 $(x+1)^2=0$。
由于平方数不可能为负数,所以方程的根为 $x=-1$。
5. 求方程 $2x^2+5x-3=0$ 的根。
解答:可以使用求根公式来解这个方程。
首先计算出 $b^2-4ac$ 的值,其中 $a=2$,$b=5$,$c=-3$。
代入公式得 $b^2-4ac=5^2-4(2)(-3)=49$。
因为 $b^2-4ac>0$,所以方程有两个不相等的实根。
接下来,计算出根的值。
根的公式为 $x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}$。
将变量带入公式可得:$x=\frac{-5 \pm \sqrt{49}}{2(2)}$。
化简得 $x=\frac{-5 \pm 7}{4}$。
从而得出两个根:$x_1=\frac{1}{2}$,$x_2=-\frac{3}{2}$。
因此,方程的根为 $x_1=\frac{1}{2}$,$x_2=-\frac{3}{2}$。
6. 求方程 $x^2-5x+6=0$ 的根。
解答:首先将方程 $x^2-5x+6=0$ 进行因式分解得 $(x-2)(x-3)=0$,由乘法原理可知,方程的根为 $x=2$ 和 $x=3$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学提高班 方程的整数根(练习)
1、设a 为整数,若存在整数b 和c,使(x+a)(x-15)-25=(x+b)x+c),则a 可取值为 。
2、设p 、q 为质数,则关于x 的方程x 2+px+q 4=0的整数解是 。
3、设k 为整数,关于x 方程(k 2-1)x 2-3(3k -1)x+18=0有两个不等正整数根,
则k= 。
4、方程(a 2-1)x 2-2(5a+1)x+24=0有两个不等负整数根,则整数a 的值是 。
5、已知0122=-+ax x 能分解成两个整系数的一次因式的乘积,则符合条件的整数
a 的个数为 。
6、若方程x 2+(4n+1)x+2n=0(n 为整数)有两个整数根,那么这两个根是( )
(A)都是奇数 (B)都是偶数 (C)一奇一偶 (D) 无法判断
7.若p 、q 都是自然数,方程px 2-qx+1985=0的两根都是质数,则12p 2+q 的值等于( )
(A) 404 (B) 1998 (C)414 (D) 1996
8、已知方程a 2x 2-(3a 2-8a)x+2a 2-13a+15=0(其中是a 正整数)至少有一个整数根,
求a 的值。
9、设m 为整数,且4<m <40, 方程x 2+2(2m -3)x+4m 2-14m+8=0有两个整数根,求m
的值
10、求所有实数k,使方程kx 2+(k+1)x+(k -1)=0的根都是整数。
11、若k 为正整数,且一元二次方程(k -1)x 2
-px+k=0的两根为正整数,
求k kp (p p +k k )+(p+k)的值。
12、求所有的正整数a ,b ,c ,使得关于x 的方程0232=+-b ax x ,0232=+-c bx x ,
0232=+-a cx x 的所有的根都是正整数。
13、试确定一切有理数r ,使得关于x 的方程rx 2
+(r+2)x+r-1=0有且只有整数根
14、周长为6面积为整数的直角三角形是否存在?若不存在,请给出证明,若存在,共有几个? .。