与圆有关的计算1教案设计——数学中考专题复习

合集下载

与圆有关的计算复习教案

与圆有关的计算复习教案

与圆有关的计算复习教案第一篇:与圆有关的计算复习教案第三十五课时与圆有关的计算复习内容:冀教版数学九年级上册第二十七章复习目标:1.掌握弧长和扇形面积公式,会计算圆的弧长和扇形面积.2.了解圆锥侧面展开图为一个扇形,会计算圆锥的侧面积和全面积.复习重点:圆的弧长和扇形面积的计算.复习难点:有关弧长和扇形面积的综合应用.复习过程:一、复习回顾考点一弧长的有关计算1.(2011.安徽)如图(1)⊙○的半径为1,A、B、C是圆周上三点,∠BAC=36°,则劣弧BC的长是()π234A. B.π C.π D.π5555思考与解答:弧长公式是_________ 考点二扇形面积的计算2.(2010长沙)已知扇形面积为12π,半径等于6,则该扇形的圆心角等于________.3.已知扇形的弧长为4πcm,半径为3cm,则扇形面积为__________cm2.思考与解答:扇形面积计算公式是__________________ 考点三计算圆锥的侧面积和全面积4.(2011同仁)某盏路灯照射的空间可以看成如图所示的圆锥,它2的高AO=8m,底面半径OB=6m,则圆锥的侧面积是________m.思考与解答:(1)圆锥侧面展开图是一个____形,它的弧长等于圆锥的_________,它的半径长等于圆锥的_________.(2)已知圆锥的底面半径为r,母线为a,则圆锥侧面积是_________,表面积是_________.二探究总结5.如图所示,这是一个零件示意图,A、B、C处都是直角,弧MN是圆心角为90°的弧,AB=BC=7,AM=CN=3,则A.π B.32的长是()π C.2π D.4π6.(2012内江)如图AB是εo的直径,弦CD⊥AB,∠CDB=30°,CD=23,则阴影部分图形的面积为()A.4πB.2πC.πD.4π3思考与解答:解决这道题利用了我们复习过的哪些知识?三拓展提高7.如图是一个用来盛爆米花的圆锥形纸杯,纸杯口圆的直径EF长为10cm,母线OE(OF)长为10cm.在母线OF上的点A处有一块爆米花残渣,且FA=2cm,一只蚂蚁从杯口的点E处沿圆锥表面爬行到A 点,则此蚂蚁爬行的最短路程为________cm.思考与解答:解决这个曲面上的最短路程问题你是怎么想的?8.(2011山西)如图,△ABC是等腰直角三角形,∠ACB=90°,AC =BC.把△ABC绕点A按顺时针方向旋转45°后得到△AB′C′,若AB=2,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是________.(结果保留π)思考与解答:(1)解决问题的关键是知道图形旋转时,图形上各点经过的路线是___________,要明确它的圆心、半径以及圆心角.(2)求不规则图形面积的方法是什么?四反思评价(一)反思(1)你认为这节课重点要掌握哪些知识?请写出来(2)你在哪些方面有所提高?(二)自测9.已知扇形的圆心角是150°,扇形的面积为240π,则该扇形的弧长为()A.5πB.10π C.20π D.40π10.线段AB与⊙O相切于点C,连结OA、OB,OB交⊙O 于点D,已知OA=OB=6cm,AB=63 cm,求:(1)⊙O的半径(2)图中阴影部分的面积.11.(2012广安)如图,Rt△ABC的边BC位于直线MN上,AC=,∠ACB=90°,∠A=30°.若Rt△ABC由现在的位置向右无滑动地旋转,当点A第3次落在直线MN上时,点A所经过的路线的长为_______(结果用含有π的式子表示)第三十五课时答案1.B2.120°3.6π4.60π5.C6.D7.解析:求在曲面上的最短距离需要转化为平面上两点之间的距离.如图6-3-6所示,将圆锥的侧面展开,连接AE,AE即为蚂蚁爬行的最短路线.再借助于△AOE计算AE之长:AE=OE2+OA2=2418.π4 9.C 10.(1)如图所示,连结OC,∵AB与⊙O相切于点C ∴ OC⊥AB,∵OA=OB,∴AC=BC=12AB=122×63=33 c m.-AC2在Rt△AOC中,OC=OA3cm.(2)在Rt△COB中∵OC==3cm.∴⊙O的半径为12OB,∴∠B=30°,∠COD=60°.2∴扇形OCD的面积为60π⋅3360=32πS⊿OBC=12OC⋅BC=12⨯3⨯33=932 ∴阴影部分的面积为93-3π2cm211.解:∵Rt△ABC中,AC=,∠ACB=90°,∠A=30°,∴BC=1,AB=2BC=2,∠ABC=60°;∵Rt△ABC在直线MN上无滑动的翻转,且点A第3次落在直线MN上时,有3个的长,2个的长,∴点A经过的路线长=×3+)π.×2=(4+)π.故答案为:(4+第二篇:圆的整理与复习教案课题:第四单元圆整理和复习课型:复习学习目标:进一步的理解圆各部分的名称及特征,理解周长和面积的区别。

初中数学初三数学下册《圆中的计算问题》教案、教学设计

初中数学初三数学下册《圆中的计算问题》教案、教学设计
(一)导入新课
1.教学活动设计
在本节课的导入阶段,我将通过展示生活中常见的圆形物体,如硬币、圆桌、车轮等,引发学生对圆的关注。接着,提出问题:“你们觉得圆有什么特别之处?”让学生思考并回答,从而激发学生对圆的性质和计算问题的兴趣。
2.教学内容
(1)引导学生观察圆形物体,发现圆的形状特点。
(2)让学生用自己的语言描述圆的定义和性质。
4.通过典型例题的分析与讲解,使学生掌握解题方法和技巧,提高解题能力。
(三)情感态度与价值观
1.培养学生热爱数学、勇于探索的精神,增强学生对数学学科的兴趣和信心。
2.培养学生严谨、细致的学习态度,使学生养成独立思考、自主学习的好习惯。
3.通过对圆的性质和计算问题的研究,使学生体会数学的和谐美、逻辑美,提高学生的审美情趣。
三、教学重难点和教学设想
(一)教学重难点
1.理解和掌握圆的基本性质,如圆的对称性、圆周角定理等。
2.运用垂径定理、切线定理、弦长公式等解决圆中的计算问题。
3.将实际问题转化为数学模型,运用数学知识解决与圆相关的问题。
(二)教学设想
1.创设情境,导入新课
通过展示生活中常见的圆形物体,如车轮、硬币等,引发学生对圆的兴趣,为新课的学习打下基础。
(3)简要回顾已学的圆的基本知识,为新课的学习做好铺垫。
(二)讲授新知
1.教学活动设计
在此环节,我将采用讲解、示范、提问等方式,向学生传授圆的基本性质和计算方法。同时,结合实际例子,让学生更好地理解和掌握新知识。
2.教学内容
(1)讲解圆的半径、直径、周长和面积的定义及计算方法。
(2)介绍圆的对称性质、圆周角定理、圆内接四边形的性质。
当前学生正处于青春期,思维活跃,好奇心强,对新鲜事物充满兴趣。他们对数学学科的兴趣和信心是教学的重要基础。此外,学生在学习过程中可能存在以下问题:对复杂题目的畏惧心理、解题思路不清晰、对知识点掌握不牢固等。

与圆有关的计算教案

与圆有关的计算教案
3. 介绍圆的周长和面积在工程、科学等领域的应用。
九、教学评价方法
1. 课堂提问:检查学生对圆的周长和面积公式的掌握情况;
2. 作业批改:了解学生运用圆的周长和面积公式解决实际问题的能力;
3. 小组讨论:评估学生在团队合作中的表现,以及对圆的周长和面积公式的理解程度。
十、教学计划调整
根据学生的学习进度和掌握情况,教师可适当调整教学计划,如增加练习题的难度,拓展相关知识,以提高学生的学习兴趣和能力。
4. 学生具备观察、思考、动手操作的能力;
5. 学生形成合作学习的意识,提高解决问题的能力。
七、教学反思
本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高教学效果。
八、教学拓展
1. 引导学生探究其他几何图形的周长和面积计算方法;
2. 让学生尝试解决更复杂的实际问题,如圆形场地、圆形花坛等;
重点在于让学生熟练掌握圆的周长和面积的计算公式,并能够运用这些公式解决实际问题。难点则在于圆的周长和面积公式的推导过程以及如何灵活运用这些公式解决实际问题。通过本文档的指导,教师可以更好地进行教学设计和实施,学生也能更有效地学习和掌握相关知识。
(2)教师点评学生表现,查漏补缺。
6. 布置作业
(1)请学生运用圆的周长和面积公式解决实际问题;
(2)复习圆的周长和面积公式,为下一节课做准备。
六、教学评价
1. 学生能熟练掌握圆的周长和面积的计算公式;
2. 学生能运用圆的周长和面积公式解决实际问题;
3. 学生能理解圆的周长和面积公式在实际生活中的应用;
十一、教学资源
1. 圆的周长和面积计算的相关教材和教辅资料;
2. 多媒体课件和教学软件;
3. 圆形物体模型和实物;

中考复习之——与圆有关的计算 优秀教案

中考复习之——与圆有关的计算 优秀教案

一、课题:中考复习之——与圆有关的计算二、学习目标:知识与能力:了解正多边形的概念及正多边形和圆的关系;会计算圆的弧长及扇形面积过程与方法:1、指导学生经历观察、猜想、验证、计算,归纳平移、旋转、轴对称、割补、等积变换等方法,掌握平行线、三角形、圆的有关性质定理的运用;2、鼓励学生在认真观察之后进行小组讨论,交流解题方法,探索最优解题途径;3、引导学生利用知识把复杂图形转化成简单几何图形进行求解,掌握转化的思想.情感态度与价值观:培养学生计算认真、细致、耐心的良好品质。

通过自主编题,激发学生学习热情和求知欲望,在探究过程中体会到成功的喜悦和学习的快乐,通过合作交流,培养学生的团队精神。

三、重点、难点:重点:与圆有关的面积计算难点:灵活运用转化思想,将复杂问题(图形)转化为简单问题(图形),提高求综合图形面积的计算能力四、学法、教法:学法:熟练运用公式进行正多边形、弧长、扇形面积的计算;学会运用转化的数学思想探究问题的本质,寻求到解决问题的最优方法。

教法:采用启发式教学,从学生原有知识出发,充分发挥学生的主体作用。

同时注重知识间的联系,类比迁移。

重视分层,使不同层次的学生让学生在主动中学数学、用数学,领悟数学的基本思想方法。

五、教学过程图1 图2 图3②在图2中画出上述的角和线段。

③就这三个图你能否尝试编一道、知识点二:弧长及扇形面积公1,圆内接正六边形、从图中找出一段弧________、一个扇形______________图1 图2 图3你能否计算出你找的弧长,扇形的面积?并思考是否有更简单的图1 图2 图3图4 图5课件准备:C 3πD 9π2图1 图22、如图2,ABCD⊥AB,∠CDB23,则阴影部分的面积为___________★★智力冲浪六、评价分析:为了达到最佳教学效果,在课堂教学中,一方面根据课堂上学生的态度、表情而做出即时性评价。

在评价时,坚持“积极评价”的原则,采用“激励”机制,始终运用以下三种“激励”方法:①预先性激励(期待性激励);②及时性激励;③总结性激励。

初三数学专题复习:与圆有关的计算复习教案

初三数学专题复习:与圆有关的计算复习教案

第23讲与圆有关的计算一、教学目标: 1、理解并掌握正多边形与圆、扇形的弧长和扇形的面积、圆锥的侧面积的有关计算,并能解决相关实际问题。

2、灵活运用公式进行与圆有关的计算,提高分析问题、解决问题的能力;3、在合作学习中增进师生间的交流,关注学困生的学习,使学生感受成功的喜悦。

二、教学重难点:1、灵活运用公式进行与圆有关的计算。

2、灵活运用公式的互化、准确计算是重点,也是难点。

三、教学用具:PP、三角板、彩色粉笔四、学情分析:学生已经具备一定的逻辑分析和计算能力,教学中注重分析计算的合理性和常规解法,教学中要注重培养学生分析的方法和思维的严谨性以及计算的准确性。

五、教学方法:讨论、交流、讲练结合法。

六、教学资源:教学设计、教材、复习练习册七、教学过程:(一)正多边形和圆的有关计算2、填表3、要用圆形铁片截出边长为4cm的正方形铁片,则选用的圆形铁片的直径最小要____cm.2=360n r S π扇形34、如图,四边形ABCD 是⊙O 的内接正方形,若正方形的面积等于4,求⊙O 的面积. 5、如图,M,N 分别是☉O 内接正多边形AB,BC 上的点,且BM=CN . (1)求图①中∠MON=_______;图②中∠MON = ; 图③中∠MON = ;(2)试探究∠MON 的度数与正n 边形的边数n 的(二)、扇形的弧长和扇形的面积公式直接应用:1、已知弧所对的圆心角为60°,半径是4,则弧长为____. 2、已知半径为2cm 的扇形,其弧长为43π ,则这个扇形的面积S 扇=3、已知扇形的圆心角为120°,半径为2,则这个扇形的面积S 扇= .4、已知弧所对的圆周角为90°,半径是4,则弧长为5、如图,☉A 、☉B 、 ☉C 、 ☉D 两两不相交,且半径都是2cm ,则图中阴影部分的面积是5、如图,Rt △ABC 中,∠C =90°, ∠A =30°,BC =2,O 、H 分别为AB 、AC 的中点,将△ABC 顺时针旋转120°到△A 1BC 1的位置,则整个旋转过程中线段OH 所扫过的面积为多少?6、如图,Rt △ABC 的边BC 位于直线l 上,AC , ∠ACB =90°,∠A =30°.若Rt △ABC由现在的位置向右无滑动地翻转,当点A 第3次落在直线l 上时,点A 所经过的路线的长为________(结果用含π的式子表示)2360180n n Rl R ==ππ2=+=S S r rlππ+侧全底 S(三)圆锥的侧面积和全面积1、已知一个圆锥的底面半径为12cm ,母线长为20cm ,则这个圆锥的侧面积为 ,全面积为 .2、一个圆锥的侧面展开图是一个圆心角为120°、弧长为20 的扇形,试求该圆锥底面的半径及它的母线的长.3、 如图,圆锥形的烟囱帽,它的底面直径为80cm,母线为50cm.在一块大铁皮上裁剪时,如何画出这个烟囱帽的侧面展开图?求出该侧面展开图的面积.(思政元素:体会生活中的数学,数学源于生活,又服务于生活,用数学眼光发现生活中的数学)(六)课堂小结:总结本课知识点和常规解法指导。

九年级与圆有关计算专题教案

九年级与圆有关计算专题教案

苏州新希望教育个性化教案教师姓名 陆战 学生姓名 年级 九年级 辅导科目 数学上课时间课时2课题名称与圆有关的计算问题教 学 及 辅 导 过 程一、同步知识梳理 正多边形和圆:1、各边相等, 也相等的多边形是正多边形。

2、每一个正多边形都有一个外接圆,外接圆的圆心叫正多边形的 外接圆的半径叫正多边形的 一般用字母R 表示,每边所对的圆心角叫 用α表示,中心到正多边形一边的距离叫做正多边形的 用r 表示。

3、每一个正几边形都被它的半径分成一个全等的 三角形,被它的半径和边心距分成一个全等的 三角形。

弧长扇形面积公式1. 圆周长:r 2C π=; 圆面积:2r S π=2. 圆的面积C 与半径R 之间存在关系R 2C π=,即360°的圆心角所对的弧长,因此,1°的圆心角所对的弧长就是360R2π。

n °的圆心角所对的弧长是180Rn π3. 由组成圆心角的两条半径和圆心角所对的弧所围成的圆形叫做扇形。

发现:扇形面积与组成扇形的圆心角的大小有关,圆心角越大,扇形面积也就越大。

4. 在半径是R 的圆中,因为360°的圆心角所对的扇形的面积就是圆面积2R S π=,所以圆心角为n °的扇形面积是:R 21360R n S 2l =π=扇形(n 也是1°的倍数,无单位) 圆锥的性质 由图可得(1)圆锥的高所在的直线是圆锥的轴,它垂直于底面,经过底面的圆心;(2)圆锥的母线长都相等 7. 圆锥的侧面展开图与侧面积计算 圆锥的全面积为:2r r π+πl圆锥侧面积:rl π。

二、同步题型分析题型一:圆与正多边形计算例1.正六边形两条对边之间的距离是2,则它的边长是( )A 、B 、C 、D 、解:如图1,BF=2,过点A 作AG ⊥BF 于G ,则FG=1, 又∵ ∠FAG=60°,B1RrCBAO说明:正六边形是正多边形中最重要的多边形,要注意正六边形的一些特殊性质。

数学人教版九年级上册与圆有关的计算复习课教案设计

数学人教版九年级上册与圆有关的计算复习课教案设计

《与圆有关的计算》复习课教学设计北兴初级中学李金环一、课题:与圆有关计算的复习课二、学情分析:《与圆有关的计算》复习课这节课的内容是中考选择题或填空题甚至是在大题也要考的知识,这节课的知识对于记住有关的公式非常重要。

结合本校学生的具体情况,本人在教学中不按照传统的教师复习基础知识-学生做练习-教师讲解的模式进行,而是采用练习发现-归纳方法-综合应用-数学思想转化的模式。

这种教法主要是针对初三学生已经具有与圆有关计算的基础知识,但又记忆不清的情况下进行,通过让学生在解题中回忆知识、运用知识,最后把知识系统化、情境化。

让不同层次的学生在这样模式下获得不同程度的成功体验。

三、教学设想:本节课采用练习-归纳-应用-转化的教学思想通过让学生练习,在练习中有目的的回顾旧知识和梳理有关圆计算的知识网络,接着应用知识解决问题,最后回归到数学学习的灵魂——数学转化思想,让学生的数学思维得到进一步的拓展和提升。

四、教学目标:1、熟练掌握弧长、扇形的面积、圆锥侧面积及全面积等有关圆计算的公式2、能应用有关圆的公式进行计算五、重点:有关圆的公式应用六、难点:知识的迁移,变式和综合运用七、教学过程:(一)以题点知:1、已知圆的半径是5cm,则圆的周长是 cm2、已知圆的半径是4cm,则圆的面积是 cm23、半径为6cm的圆中,1200的圆心角所对的弧长为 cm4、已知扇形的半径是4cm,圆心角为450,则扇形的面积是 cm25、扇形的半径R=5cm,弧长是6πcm,则扇形的面积是 cm26、如果圆锥的母线长为5cm,底面半径为2cm,则圆锥的侧面积是cm27、已知圆锥的底面半径为4,母线长为6,则它的全面积是设计意图:让学生先独立完成练习,再进行小组合作议论的形式,让学生回顾学习过的相关公式。

(二)、知识归纳: 名称 公式 名称公式 圆的周长 扇形面积圆的面积 圆锥侧面积弧长圆锥全面积 设计意图:把公式归纳并板书黑板,便于学生更牢固的记住公式。

与圆有关的计算1教案设计——数学中考专题复习

与圆有关的计算1教案设计——数学中考专题复习

与圆有关的计算1复习目标:1. 会计算弧长和扇形面积,会计算圆锥的侧面积和全面积。

2.能用利用割补、变换拼凑等方法解决一些不规则图形的面积问题。

复习重点:1.会用公式求弧长和扇形面积,会用公式求圆锥侧面积和全面积。

2.能够把一些不规则图形转化成的规则图形的组合,并利用公式求出这些不规则图形的面积。

复习难点:不规则图形的面积问题如何转换成若干个规则图形的组合。

知识回顾一:结合右图,弧长公式:l=扇形面积公式:S= 如果弧AB 长为l ,扇形半径为r ,扇形面积公式还可以记为 :S=【基础训练一】1.半径为6cm 的圆中,120°的圆心角所对的弧长为 cm2.已知扇形的半径为4cm,圆心角为45°,求扇形的面积为3.扇形的半径R=5cm,弧长是6πcm,则扇形的面积为考题回顾一:4.(2017浙江台州)如图,扇形纸扇完全打开后,外侧两竹条AB 、AC 的夹角为120°,AB 长为30厘米,则弧BC 的长为 厘米。

(结果保留π)5.(2017江苏泰州)扇形的半径为3cm,弧长为2πcm,则该扇形的面积为 cm 26. 如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为A.6B.7C.8D.9【变式练习】 7.扇形所对的弧长6πcm,圆的半径为6cm,则该扇形的圆心角的度数为A BOn°知识回顾二:圆锥的侧面展开图(底面圆周长=侧面扇形的弧长)侧面积公式:S 侧=S 全=S 侧+S 底【基础训练二】8.如上图,已知底面半径为3,母线长为5,求圆锥的侧面积和侧面扇形的圆心角n 的度数。

(结果保留π)考题回顾二:9、(16广东省)如图5,把一个圆锥沿母线OA 剪开,展开后得到扇形AOC ,已知圆锥的高h 为12cm ,OA=13cm ,则扇形AOC 中的长是 cm ;(结果保留)【变式练习】10.如上图,已知底面半径为3,圆锥高为4,求圆锥的侧面积和全面积。

中考一轮复习教案:与圆有关的计算

中考一轮复习教案:与圆有关的计算

与圆有关的计算辅导教案1.会计算圆的弧长和扇形的面积.2.会计算圆锥的侧面积和全面积.3.了解正多边形与圆的关系.课前热身1.用一个圆心角为120°,半径为18cm 的扇形作一个圆锥的侧面,则这个圆锥的底面半径应等于()A.9cmB.6cmC.4cmD.3cm 2.圆内接正方形半径为2,则面积为()A.2 B.4 C.8 D.16 3.如图,⊙O的半径为1,A、B、C是圆周上的三点,∠BAC=36°,则劣弧BC的长是()A.15πB.25πC.35πD.45π4.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=23,则阴影部分的面积为( )A.2 πB.πC.23πD.3π5.一圆锥的侧面展开后是扇形,该扇形的圆心角为120°,半径为6cm,则此圆锥的表面积为cm2.6.如图,AD是正五边形ABCDE的一条对角线,则∠BAD= .7.在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的半径为R,扇形的圆心角等于90°,则r与R之间的关系是r = .遗漏分析知识精讲【基础知识重温】1. 圆的周长为,1°的圆心角所对的弧长为,n°的圆心角所对的弧长为,弧长公式为.2.圆的面积为,1°的圆心角所在的扇形面积为,n°的圆心角所在的扇形面积为S= ×πr2 = = .r lπ.(其中为的半径,为的长);3. 圆锥的侧面积公式:S=rl圆锥的全面积:S全=S侧+S底=πrl+πr2.四、例题分析题型一弧长、扇形的面积例1.(2016·贵州安顺)如图,在边长为4的正方形ABCD中,先以点A为圆心,AD的长为半径画弧,再以AB边的中点为圆心,AB长的一半为半径画弧,则阴影部分面积是(结果保留π).例2.(2016·浙江台州)如图,△ABC的外接圆O的半径为2,∠C=40°,则AB 的长是.【趁热打铁】1.圆心角为120,弧长为12π的扇形半径为()A.6B.9C.18D.362.半径为4cm,圆心角为60°的扇形的面积为cm2.题型二圆锥的侧面积和全面积例.(2016·四川自贡)圆锥的底面半径为4cm,高为5cm,则它的表面积为()+cm2 A.12πcm2B.26πcm2C.41πcm2D.(44116)π【趁热打铁】1.如图,圆锥的侧面展开图使半径为3,圆心角为90°的扇形,则该圆锥的底面周长为()A.34πB.32πC.34D.322.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是()A. 15πB. 20πC.24πD.30π3.一圆锥体形状的水晶饰品,母线长是10cm,底面圆的直径是5cm,点A为圆锥底面圆周上一点,从A点开始绕圆锥侧面缠一圈彩带回到A点,则彩带最少用多少厘米(接口处重合部分忽略不计)()A.10πcm B.10cm C.5πcm D.5cm题型三阴影部分的面积例.(2016·四川广安)如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=43,则S阴影=()A.2π B.83π C.43π D.38π【趁热打铁】1如图,将半径为3的圆形纸片,按下列顺序折叠.若和都经过圆心O,则阴影部分的面积是(结果保留π)2.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()A.2332π-B.233π-C.32π-D.3π-题型四正多边形和圆例.(2016·四川广安).以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A.38B.34C.24D.28【趁热打铁】1若正六边形的半径长为4,则它的边长等于()A.4 B.2 C.23D.43 2. 如图,正方形ABCD内接于⊙O,其边长为4,则⊙O的内接正三角形EFG 的边长为.牛刀小试1、小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为()A.23cm B.43cm C.63cm D.83cm2、如图,圆锥底面半径为rcm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,则r的值为()A .3B .6C .3πD .6π 3、在Rt △ABC 中,∠ACB=90°,AC=23,以点B 为圆心,BC 的长为半径作弧,交AB 于点D ,若点D 为AB 的中点,则阴影部分的面积是( )A .2233π-B .2433π-C .4233π-D .23π 4、如图,在扇形AOB 中∠AOB=90°,正方形CDEF 的顶点C 是弧AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDE F 的边长为22时,则阴影部分的面积为( )A .42-πB .84-πC .82-πD .44-π5、如图,圆O 的半径为2,点A 、C 在圆O 上,线段BC 经过圆心O ,∠ABD=∠CDB=90°,AB=1,CD=,图中阴影部分面积为 .6、如图,CD 为⊙O 的弦,直径AB 为4,AB ⊥CD 于E ,∠A=30°,则的长为 (结果保留π).3CDAB OBC巩固练习1.如图,点A 在以BC 为直径的⊙O 内,且AB=AC ,以点A 为圆心,AC 长为半径作弧,得到扇形ABC ,剪下扇形ABC 围成一个圆锥(AB 和AC 重合),若∠BAC=120°,BC=2,则这个圆锥底面圆的半径是( )A .B .C .D . 2.如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为S 1,正八边形外侧八个扇形(阴影部分)面积之和为S 2,则=( )A .B .C .D .13.已知圆锥的母线长是12,它的侧面展开图的圆心角是120°,则它的底面圆的直径为( )A .2B .4C .6D .8 4.一个扇形的圆心角是120°,面积为3πcm 2,那么这个扇形的半径是( ) A .1cm B .3cm C .6cm D .9cm13232312S S 3435235.半径为6,圆心角为120°的扇形的面积是( )A .3πB .6πC .9πD .12π 6.如图,在等腰Rt △ABC 中,AC =BC =,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点.当点P 沿半圆从点A 运动至点B 时,点M 运动的路径长是( )A .B .πC .D .2 7.如图,在Rt △AOB 中,∠AOB=90°,OA=3,OB=2,将Rt △AOB 绕点O 顺时针旋转90°后得Rt △FOE ,将线段EF 绕点E 逆时针旋转90°后得线段ED ,分别以O ,E 为圆心,OA 、E D 长为半径画弧AF 和弧DF ,连接AD ,则图中阴影部分面积是( )A .πB .1.25πC .3+πD .8﹣π 8.如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm ,则这块扇形铁皮的半径是( )A.40cmB.50cmC.60cmD.80cm 9.如图,用一个半径为5cm 的定滑轮带动重物上升,滑轮上一点P 旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了( )22π222A .πcmB .2πcmC .3πcmD .5πcm 10.如图,AB 是⊙O 的切线,B 为切点,AC 经过点O ,与⊙O 分别相交于点D ,C .若∠ACB=30°,AB=,则阴影部分的面积是( )A .B .C .D . 课堂小结强化提升1. 如图,正六边形ABCDEF 内接于半径为4的圆,则B 、E 两点间的距离为 .2.如图,正六边形ABCDEF 内接于半径为3的圆O ,则劣弧AB 的长度为 .3326π326π-336π-3.如图,△ABC是等边三角形,AB=2,分别以A,B,C为圆心,以2为半径作弧,则图中阴影部分的面积是.4.小杨用一个半径为36cm、面积为324πcm2的扇形纸板制作一个圆锥形的玩具帽(接缝的重合部分忽略不计),则帽子的底面半径为cm.5.如图,AC是汽车挡风玻璃前的雨刷器,如果AO=45cm,CO=5cm,当AC 绕点O顺时针旋转90°时,则雨刷器AC扫过的面积为cm2(结果保留π).6.已知圆锥的底面半径是2,母线长是4,则圆锥的侧面积是.7.如图,在半径AC为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则图中阴影部分的面积是.8.一个扇形的圆心角为120°,面积为12πcm2,则此扇形的半径为cm.9.如图,在△ACB中,∠BAC=50°,AC=2,AB=3,现将△ACB绕点A逆时针旋转50°得到△AC1B1,则阴影部分的面积为.10.如图,扇形OAB中,∠AOB=60°,OA=6cm,则图中阴影部分的面积是.课后作业1.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交线段BC,AC于点D,E,过点D作DF⊥AC,垂足为F,线段FD,AB的延长线相交于点G.(1)求证:DF是⊙O的切线;3(2)若CF=1,DF=,求图中阴影部分的面积.2.如图,在四边形ABCD 中,AD ∥BC ,AD=2,AB=,以点A 为圆心,AD 为半径的圆与BC 相切于点E ,交AB 于点F .(1)求∠ABE 的大小及的长度;(2)在BE 的延长线上取一点G ,使得上的一个动点P 到点G 的最短距离为,求BG 的长.22DEF DE 2223.如图,⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,AB=8.(1)利用尺规,作∠CAB 的平分线,交⊙O 于点D ;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接CD ,OD ,若AC=CD ,求∠B 的度数;(3)在(2)的条件下,OD 交BC 于点E .求出由线段ED ,BE ,所围成区域的面积.(其中表示劣弧,结果保留π和根号)BD BD4.如图,在△ABC中,以AB为直径的⊙O分别于BC,AC相交于点D,E,BD=CD,过点D作⊙O的切线交边AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为5,∠CDF=30°,求的长(结果保留π).。

圆复习课教案初中数学

圆复习课教案初中数学

圆复习课教案初中数学教学目标:1. 复习并巩固圆的基本概念、性质和公式;2. 提高学生解决与圆相关的实际问题的能力;3. 培养学生的逻辑思维能力和团队合作精神。

教学内容:1. 圆的基本概念:圆的定义、圆心、半径;2. 圆的性质:圆的对称性、圆的周长和面积公式;3. 与圆相关的实际问题:圆的周长和面积的计算、圆的直径和半径的关系。

教学过程:一、导入(5分钟)1. 复习圆的定义:一个平面上所有点到一个固定点的距离都相等的点的集合;2. 引导学生回顾圆的基本性质,如对称性、周长和面积公式等。

二、自主学习(15分钟)1. 学生自主复习圆的性质,总结圆的周长和面积公式;2. 学生通过练习题巩固圆的性质和公式的应用。

三、合作探究(15分钟)1. 学生分组讨论与圆相关的实际问题,如圆的周长和面积的计算、圆的直径和半径的关系;2. 各小组选取一道实际问题,进行展示和讲解,其他小组成员进行评价和补充。

四、巩固练习(15分钟)1. 学生独立完成练习题,巩固圆的性质和公式的应用;2. 教师选取部分学生的练习题进行讲解和分析,指出错误和不足之处。

五、总结和反思(5分钟)1. 学生总结本节课的收获和不足,制定下一步的学习计划;2. 教师对学生的表现进行评价,鼓励学生继续努力。

教学评价:1. 学生课堂参与度:观察学生在课堂上的发言和练习情况,了解学生的学习状态;2. 学生练习题完成情况:检查学生的练习题,评估学生对圆的性质和公式的掌握程度;3. 学生合作探究能力:评价学生在小组合作中的表现,如沟通、协作、解决问题等能力。

教学资源:1. 圆的性质和公式PPT;2. 与圆相关的实际问题练习题。

初中与圆有关的计算教案

初中与圆有关的计算教案

初中与圆有关的计算教案一、教学目标:1. 让学生掌握圆的周长和面积的计算公式。

2. 培养学生运用圆的周长和面积公式解决实际问题的能力。

3. 培养学生对数学的兴趣,提高学生的数学素养。

二、教学内容:1. 圆的周长公式:C = 2πr2. 圆的面积公式:S = πr²三、教学重点与难点:1. 圆的周长公式的推导和应用。

2. 圆的面积公式的推导和应用。

四、教学过程:1. 导入:利用实物或图片展示,引导学生观察生活中与圆相关的实例,如车轮、圆桌等,引发学生对圆的周长和面积的思考。

2. 新课讲解:a. 圆的周长讲解圆的周长概念,引导学生理解圆的周长与半径的关系,推导出圆的周长公式C = 2πr。

b. 圆的面积讲解圆的面积概念,引导学生理解圆的面积与半径的关系,推导出圆的面积公式S = πr²。

3. 例题讲解:讲解典型例题,让学生理解并掌握圆的周长和面积的计算方法。

4. 课堂练习:布置练习题,让学生巩固所学知识,提高解题能力。

5. 拓展与应用:引导学生运用圆的周长和面积公式解决实际问题,如计算圆形花坛的周长和面积、计算圆桌的直径等。

6. 总结与反思:对本节课的内容进行总结,强调圆的周长和面积公式的运用,鼓励学生在日常生活中发现和解决与圆相关的问题。

五、教学评价:1. 课堂讲解:关注学生的学习状态,及时调整教学节奏和方法。

2. 课堂练习:检查学生的解题正确率和解答过程,了解学生对知识的掌握程度。

3. 拓展与应用:评价学生解决实际问题的能力,鼓励创新和发散思维。

六、教学反思:根据学生的反馈和教学效果,调整教学策略,提高教学质量,使学生更好地理解和掌握圆的周长和面积的计算方法。

初中数学_《圆的有关计算专题复习》教学设计学情分析教材分析课后反思

初中数学_《圆的有关计算专题复习》教学设计学情分析教材分析课后反思

《圆有关的计算(专题复习课)》教学设计一、教学目标(一)知识目标:1.掌握正多边形、弧长、扇形面积计算公式;2.熟悉平行线、三角形、四边形以及多边形等基本几何图形的性质;3.熟悉圆的性质.(二)能力目标:1.能运用平移、旋转、轴对称等图形变换等方法对图形进行再构造;2.在解决问题的过程中能合理运用转化的数学思想把复杂图形转化为基本几何图形求解.(三)情感目标:通过本专题的学习,培养学生自主探究与合作交流的能力,收获解题的成功感,并受到数学图形美的熏陶.二、过程与方法1、指导学生经历观察、猜想、验证、计算,归纳平移、旋转、轴对称、割补、等积变换等方法,掌握平行线、三角形、圆的有关性质定理的运用;2、鼓励学生在认真观察之后进行小组讨论,交流解题方法,探索最优解题途径;3、引导学生利用知识把复杂图形转化成简单几何图形进行求解,掌握转化的思想.三、教学重难点:重点:正多边形的有关计算、与圆有关的面积计算;难点:如何将复杂问题(图形)转化为简单问题(图形).四、教学过程:(一)运用知识,发现方法本环节主要是通过三个引例,达到让学生回顾知识,归纳出解决面积计算的基本思路和方法。

23,则该圆的内接正六边形3393183363引例2:在矩形ABCD中,AB=5,AD=12,将矩形ABCD沿直线l向右翻滚两次至如图所示位置,则点B所经过的路线长是(结果不取近似值).变式训练:求矩形ABCD一次翻滚后扫过的区域面积本题在让学生充分观察图形、相互讨论交流.学生讨论后求出。

教师先引领学生回顾弧长及扇形面积公示。

在次基础上对点B的运动路线进行描述后有学生得出。

引例3:3.(2011•连云港校级一模)如图,在△ABC中,AB=4cm,BC=2cm,∠ABC=30°,把△ABC以点B为中心按逆时针方向旋转,使点C旋转到AB边的延长线上的点C′处,那么AC边扫过的图形(图中阴影部分)的面积是 cm2.采用先让学生独立思考探究,然后鼓励学生在自己独立思考探究的基础上,充分的发表自己的意见.教师参与到小组的讨论中,引导学生利用图形变化求出.归纳:通过以上的三个引例,引导学生归纳得出正多边形及计算方法及与圆有关的面积计算的问题所涉及到的有关知识和主要方法.主要有三种方法:1、正多边形计算与解直角三角形的联系2、和差法求阴影图形面积:S总体-S空白=S阴影3.图形变换法:通过图形变换 (平移、旋转、对称、割补)使其转化为基本几何图形的面积计算,或者为使用和差法提供条件.此法包括割补、平移、旋转、等积代换等方法.(二) 巩固提高,强化方法(对应上环节,在知识、方法及思维层面进行适度拓展.该环节设置了几各联系.)问题学生活动教师活动23,23,23)的位置,则图中阴影部分的面积为.2.如图,直径AB为12的半圆,绕A点逆时针旋转60°,此时点B旋转到点B′,则图中阴影部分的面积是()学生分小组进行交流和讨论,充分说明思路和解题方法.由于该题难度不大,在提问时要多关注中下学生.4.如图,扇形AOB中,半径OA=2,∠AOB=120°,C是的中点,连接AC、BC,则图中阴影部分面积是()A.﹣2 B.﹣2 C.﹣D.﹣教师可先适当引导学生分析,(三)灵活运用。

中考数学复习第30课时《与圆有关的计算》教案

中考数学复习第30课时《与圆有关的计算》教案

中考数学复习第30课时《与圆有关的计算》教案一. 教材分析《与圆有关的计算》是中考数学的重要内容之一,主要包括圆的周长、面积、弧长、扇形的面积等计算方法。

这部分内容在中考中占有较大比重,是学生必须掌握的知识点。

通过本节课的学习,使学生理解圆的计算方法,提高解决实际问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了相似多边形的性质、圆的定义、圆的性质等基础知识。

但部分学生在理解圆的计算方法,尤其是涉及到圆的周长、面积等公式的灵活运用上还存在困难。

因此,在教学过程中,教师需要关注学生的学习情况,针对性地进行辅导。

三. 教学目标1.理解圆的周长、面积、弧长、扇形的面积等计算方法。

2.能够灵活运用圆的计算公式解决实际问题。

3.提高学生的数学思维能力和解决问题的能力。

四. 教学重难点1.圆的周长、面积公式的理解和运用。

2.弧长、扇形面积的计算方法。

五. 教学方法1.采用问题驱动法,引导学生主动探究圆的计算方法。

2.利用多媒体辅助教学,直观展示圆的计算过程。

3.采用小组合作学习,培养学生团队合作精神。

4.注重个体差异,针对性地进行辅导。

六. 教学准备1.多媒体教学设备。

2.教学课件。

3.练习题。

七. 教学过程1.导入(5分钟)利用多媒体展示生活中的圆形物体,如硬币、地球等,引导学生关注圆的周长和面积。

提问:你知道这些物体的周长和面积是如何计算的吗?2.呈现(10分钟)讲解圆的周长和面积公式,以及如何运用这些公式解决实际问题。

通过例题,展示圆的周长和面积的计算过程。

3.操练(10分钟)学生独立完成练习题,巩固圆的周长和面积的计算方法。

教师巡回指导,针对性地进行辅导。

4.巩固(5分钟)针对学生练习中出现的问题,进行讲解和辅导。

再次强调圆的周长和面积公式的运用。

5.拓展(10分钟)讲解弧长和扇形面积的计算方法,引导学生运用所学知识解决实际问题。

6.小结(5分钟)对本节课的主要内容进行总结,强调圆的计算方法及其应用。

中考数学《与圆有关的计算》复习教案苏科版

中考数学《与圆有关的计算》复习教案苏科版

1 江苏省连云港市岗埠中学中考数学《与圆有关的计算》复习教案苏
科版
教学目标: 1.理解并掌握弧长、扇形面积、圆锥的侧面积和表面积的计算方法
2.能够根据相关定理解决一
些实际问题教学重难点:相关性质和定理的应用
教学过程:
【查漏补缺】根据学生完成中考指南情况(学案—知识建构与基础训练)进行解疑答疑
【典例精析】
例1 如图,CD 切⊙O 于点D ,连结OC ,交⊙O 于点B ,过点B 作弦AB ⊥OD ,
点E 为垂足,已知⊙O 的半径为10,si n ∠COD =
54.(1)求弦AB 的长;(2)CD 的长;(3)劣弧AB 的长.(结果保留三个有效数字,sin53.130.8≈,π≈3.142)例2 如图,AB 为⊙O 的直径,CD AB 于点E ,交⊙O 于点D ,
OF AC 于点F .
(1)请写出三条与BC 有关的正确结论;
(2)当30D ,1BC
时,求圆中阴影部分的面积.例 3 如图,线段AB 与⊙O 相切于点C ,连结OA 、OB ,OB 交⊙O 于点D ,已知
6cm OA OB ,63cm AB .。

中考数学复习圆专题复习教案

中考数学复习圆专题复习教案

中考数学复习-圆专题复习-教案一、教学目标1. 知识与技能:(1)掌握圆的定义、性质、公式等基本知识;(2)学会运用圆的相关知识解决实际问题。

2. 过程与方法:(1)通过复习,巩固已学过的圆的相关知识;(2)培养学生的逻辑思维能力和解决问题的能力。

3. 情感态度与价值观:(2)培养学生团队协作、积极进取的精神。

二、教学内容1. 圆的定义与性质(1)圆的定义;(2)圆的性质:圆心到圆上任意一点的距离相等,圆上任意一点到圆心的连线与圆的切线垂直。

2. 圆的直径与半径(1)直径与半径的定义;(2)直径与半径的关系。

3. 圆的周长与面积(1)周长的计算公式:C = 2πr;(2)面积的计算公式:S = πr²。

4. 圆的方程(1)圆的标准方程:(x h)²+ (y k)²= r²(2)圆的一般方程:x²+ y²+ Dx + Ey + F = 05. 圆与圆的位置关系(1)外切;(2)内切;(3)相离;(4)相交;(5)内含。

三、教学重点与难点1. 重点:圆的定义、性质、公式、方程及位置关系的理解与应用。

2. 难点:圆的方程求解及圆与圆的位置关系的判断。

四、教学方法1. 采用讲解、示范、练习、讨论等多种教学方法,引导学生掌握圆的相关知识;2. 通过例题、习题,培养学生的实际应用能力;3. 组织学生进行小组讨论,提高学生的合作能力。

五、教学过程1. 导入:回顾已学过的圆的相关知识,引导学生进入复习状态;2. 讲解:讲解圆的定义、性质、公式、方程及位置关系,重点讲解圆的方程求解及圆与圆的位置关系的判断;3. 示范:通过示例,展示圆的相关知识的应用;4. 练习:布置练习题,让学生巩固所学知识;5. 讨论:组织学生进行小组讨论,分享解题心得;6. 总结:对本节课的内容进行总结,强调重点知识;7. 作业:布置课后作业,巩固所学知识。

六、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

《与圆有关的计算》复习课教学设计

《与圆有关的计算》复习课教学设计

《与圆有关的计算》复习课教学设计一、知识内容分析本节课是基于沪科版教材九年级下册的《与圆有关的计算》专题复习课。

由于圆本身所具有的数学美、趣味、规则、对称等特点,使得研究圆可以系统、规范、严谨地培养学生的数学思维。

本节课运用弧长、扇形面积、圆锥侧面积与圆的关系解决实际问题。

同时通过本专题的学习,提高学生观察图形、分析、归纳整理信息以及应用转化的数学思想方法解决问题的能力,为后续的深入复习与提高打下良好的基础。

二、学情诊断分析初三学生经过将近三年的学习有一定的数学基础,但是学习层次各有不同大致可分为以下三个层次:1.能通过观察发现图形所具有的特点,并能大概判断解题方向,但对计算公式不熟悉;2.熟悉计算公式,但不知道在什么样的条件下用什么公式和方法将知识综合运用;3.对计算公式熟练,并掌握一定数学思想方法,在解题过程中能较为自如地运用。

由于学生的学习层次不一样,基础差的学生在得不到小组或者教师的支持时可能会放弃学习和讨论,因此教师要充分关注基础差的学生的学习状态,及时给予帮助和指导。

三、教学目标(一)知识与技能:1.掌握弧长和扇形面积公式,会计算圆的弧长和扇形面积.2.了解圆锥侧面展开图为一个扇形,会计算圆锥的侧面积和全面积.(二)过程与方法:1.让学生通过习题训练,加深对弧长公式和扇形面积公式的理解。

2.在探索弧长、扇形面积、圆锥的侧面积和全面积有关计算的过程中,体会转化思想、类比迁移思想在解决问题中的重要性。

(三)情感、态度与价值观:通过本专题的学习,培养学生自主探究与合作交流的能力,收获解题的成功感,并受到数学图形美的熏陶.四、教学重难点:重点:1.圆的弧长和扇形面积的计算;2.掌握圆锥侧面积与全面积的计算难点:有关弧长和扇形面积的综合应用.五、教学方法:通过大量的中考模拟题,采用启发式教学,从学生原有知识出发,充分发挥学生的主体作用。

同时注重知识间的联系,类比迁移。

六、教学手段:采用多媒体辅助教学,使有限的时间成为无限的空间,促进学生自主学习。

中考数学圆复习教案

中考数学圆复习教案

中考数学圆复习教案1.1 设计意图:通过复习圆的相关知识,帮助学生巩固和加深对圆的理解,提高解题能力。

1.2 适用对象:初中九年级学生1.3 教学时长:2课时二、知识点讲解2.1 圆的定义及性质2.1.1 圆是平面上所有点到一个固定点(圆心)距离相等的点的集合。

2.1.2 圆心决定圆的位置,半径决定圆的大小。

2.1.3 圆的基本性质:圆的对称性、连续性、旋转不变性。

2.2 圆的方程2.2.1 标准方程: (xa)² + (yb)² = r²2.2.2 一般方程: x² + y² + Dx + Ey + F = 02.2.3 圆的方程与圆的性质的关系。

2.3 圆的切线和弦2.3.1 切线的性质:切线与半径垂直,切线过半径的外端点。

2.3.2 弦的性质:弦的中垂线垂直于弦,且平分弦。

2.3.3 圆的切线和弦的判定方法。

三、教学内容3.1 圆的定义及性质3.1.1 圆的定义3.1.2 圆心的作用3.1.3 半径与圆的大小3.2 圆的方程3.2.1 标准方程的推导3.2.2 一般方程的转化3.2.3 圆的方程与圆的性质的运用3.3 圆的切线和弦3.3.1 切线的判定和性质3.3.2 弦的判定和性质3.3.3 切线和弦的综合应用四、教学目标4.1 知识与技能:理解和掌握圆的定义及性质、圆的方程、圆的切线和弦的基本知识。

4.2 过程与方法:通过自主学习、合作交流,提高分析问题、解决问题的能力。

4.3 情感态度价值观:培养对数学的兴趣,提高自信心,培养克服困难的勇气。

五、教学难点与重点5.1 教学难点:圆的方程的转化、圆的切线和弦的判定方法的运用。

5.2 教学重点:圆的定义及性质、圆的方程、圆的切线和弦的基本知识。

六、教具与学具准备6.1.1 圆规6.1.2 直尺6.1.3 三角板6.1.4 多媒体教学设备6.2.1 圆规6.2.2 直尺6.2.3 练习本6.2.4 彩色笔七、教学过程7.1.1 复习已学过的圆的相关知识7.1.2 提出问题,引发学生思考7.1.3 导入新课7.2 知识讲解7.2.1 圆的定义及性质7.2.1.1 引导学生通过实际操作理解圆的定义7.2.1.2 讲解圆心的作用7.2.1.3 引导学生通过实例理解半径与圆的大小7.2.2 圆的方程7.2.2.1 讲解标准方程的推导过程7.2.2.2 讲解一般方程的转化方法7.2.2.3 引导学生运用圆的方程解决实际问题7.2.3 圆的切线和弦7.2.3.1 讲解切线的判定和性质7.2.3.2 讲解弦的判定和性质7.2.3.3 引导学生运用切线和弦的知识解决实际问题7.3 巩固练习7.3.1 针对本节课的知识点设计练习题7.3.2 学生自主练习,教师巡回指导7.3.3 学生交流解题思路,教师点评并讲解八、板书设计8.1 圆的定义及性质8.1.1 圆的定义8.1.2 圆心的作用8.1.3 半径与圆的大小8.2 圆的方程8.2.1 标准方程8.2.2 一般方程8.2.3 圆的方程与圆的性质8.3 圆的切线和弦8.3.1 切线的性质8.3.2 弦的性质8.3.3 切线和弦的判定方法九、作业设计9.1 针对本节课的知识点设计作业题9.1.1 巩固圆的定义及性质9.1.2 巩固圆的方程9.1.3 巩固圆的切线和弦的知识9.2 要求学生在规定时间内完成作业,并认真检查9.3 教师及时批改作业,反馈问题,并进行讲解十、课后反思及拓展延伸10.1 课后反思10.1.1 总结本节课的教学效果10.1.2 反思教学过程中的不足之处10.1.3 制定改进措施10.2 拓展延伸10.2.1 引导学生探索圆与其他几何图形的联系10.2.2 引导学生运用圆的知识解决实际问题10.2.3 鼓励学生参加数学竞赛和课外活动,提高数学素养重点和难点解析一、重点环节1.1 圆的定义及性质1.1.1 圆的定义是理解圆的基础,需要通过实际操作和几何图形来让学生直观地感受圆的特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与圆有关的计算1
复习目标:
1. 会计算弧长和扇形面积,会计算圆锥的侧面积和全面积。

2.能用利用割补、变换拼凑等方法解决一些不规则图形的面积问题。

复习重点:
1.会用公式求弧长和扇形面积,会用公式求圆锥侧面积和全面积。

2.能够把一些不规则图形转化成的规则图形的组合,并利用公式求出这些不规则图形的面积。

复习难点:不规则图形的面积问题如何转换成若干个规则图形的组合。

知识回顾一:
结合右图,弧长公式:l=
扇形面积公式:S= 如果弧AB 长为l ,扇形半径为r ,扇形面积公式还可以记为 :
S=
【基础训练一】
1.半径为6cm 的圆中,120°的圆心角所对的弧长为 cm
2.已知扇形的半径为4cm,圆心角为45°,求扇形的面积为
3.扇形的半径R=5cm,弧长是6πcm,则扇形的面积为
考题回顾一:
4.(2017浙江台州)如图,扇形纸扇完全打开后,外侧
两竹条AB 、AC 的夹角为120°,AB 长为30厘米,则弧
BC 的长为 厘米。

(结果保留π)
5.(2017江苏泰州)扇形的半径为3cm,弧长为2πcm,则
该扇形的面积为 cm 2
6. 如图,某数学兴趣小组将边长为3的正方形铁丝
框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽
略铁丝的粗细),则所得的扇形DAB 的面积为
A.6
B.7
C.8
D.9
【变式练习】 7.扇形所对的弧长6πcm,圆的半径为6cm,则该扇形的圆心角的度数为
A B
O

知识回顾二:
圆锥的侧面展开图(底面圆周长=侧面扇形的弧长)
侧面积公式:S 侧=
S 全=S 侧+S 底
【基础训练二】
8.如上图,已知底面半径为3,母线长为5,求圆锥的侧面积和侧面扇形的圆心角n 的度数。

(结果保留π)
考题回顾二:
9、(16广东省)如图5,把一个圆锥沿母线OA 剪开,展开后得到扇形AOC ,
已知圆锥的高h 为12cm ,OA=13cm ,则扇形AOC 中的长是 cm ;(结果保留)
【变式练习】
10.如上图,已知底面半径为3,圆锥高为4,求圆锥的侧面积和全面积。

(结果保留π)
【综合应用】
11.(13广东省)如题16图,三个小正方形的边长都为1,则图中阴影部分面积的和是__________(结果保留).
12.(14上学期末)如图,ABT ∆是等腰直角三角形,AB 是⊙O 的直径,且AB=4,则图中阴影部分的面积是 .(结果保留π)
13.(佛山南海)如图,在R△ABC 中,∠ACB=90°,AC=1,∠ABC=30°,将R△AC 绕A 点逆时针旋转30°后得到Rt△ADE,点B 经过的路径为弧BD,则图中阴影部分的面积是___________
AC ⋂ππA .O B T 第12题图 第11题图 第9题图 第10题图 第13题图
课后补充练习:
14.(16-17上学期改编)在如图所示的直角坐标系中,
解答下列问题:
(1)将△ABC 绕点O 顺时针旋转90°,画出旋转后
的△A 1B 1C 1;
(2)求出在ABC ∆旋转的过程中,点A 经过的路径长
以及OA 扫过的面积。

15. (12广东省)如图,在□ABCD 中,AD=2,AB=4,∠A=300,以点A 为
圆心,AD 的长为半径画弧交AB 于点E ,连结CE ,则阴影部分的面积是 (结果保留)。

16.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60,则图中阴影部分的面积是__________________
17.如图,在扇形AOB 中,∠AOB=45°,点C 为OB 的中点,以点C 为圆心,以OC 的长为半径画半圆交OA 于点D,若OB=2,则阴影部分的面积为_______.
π第14题图 第17题图
A
E B D C 题15题图
300 第16题图。

相关文档
最新文档