数值分析4(牛顿迭代法)
分析论述牛顿迭代法
分析论述牛顿迭代法
牛顿迭代法(Newton's Iteration Method)是一种常用的数
值计算方法,它是由英国数学家牛顿发明的。
它的最大优点是收敛速度快,可以快速地求解方程的根,有效地减少计算时间,是解决方程组和非线性方程的有效方法。
牛顿迭代法是一种基于牛顿插值多项式的数值计算方法。
它把待求解函数f(x)看做一个多项式,然后按照牛顿插值
多项式的算法,从x0出发,反复求解f(x)的极值点,直至
收敛,从而找到函数f(x)的根。
牛顿迭代法的具体步骤如下:(1)给定函数f(x)的初
值x0;(2)计算f(x)的极值点x1;(3)根据误差e = |x1 - x0|,选定迭代次数或者误差界限;(4)更新x0 = x
1,重复(2)(3)步骤,直至误差小于指定界限;(5)得到函数f(x)的根。
牛顿迭代法的收敛速度很快,只需要几次迭代就可以求得函数f(x)的根,而且这种方法也比较简单易行,只要给出
初值,就可以用它来求解一般的非线性方程。
牛顿迭代法的主要缺点是只能求解单根问题,即一元函数的根。
另外,牛顿迭代法的初值必须比较接近函数f(x)的根,如果初值比较远,迭代收敛的速度就会变慢,甚至不收敛。
总之,牛顿迭代法是一种有效的求解一元函数的根的方法,它的收敛速度快,可以有效地减少计算时间。
但是,它只能求解单根问题,而且初值也必须比较接近函数f(x)的根,否
则它的收敛速度就会变慢。
牛顿迭代法 数值积分
牛顿迭代法数值积分牛顿迭代法(Newton's method)是一种用于求解方程的迭代数值计算方法,通过不断逼近方程的根来获得精确的解。
其基本思想是利用函数在某点的切线来逼近方程的根,然后通过不断迭代计算来逼近真实的根。
具体而言,假设要求解方程f(x) = 0,首先选择一个初始近似解x_0,然后通过切线的斜率来确定下一个近似解x_1。
切线的斜率可以通过函数的导数f'(x) 来计算,即:k = f'(x_0)。
然后,利用直线的斜截式公式y = k(x - x_0) + f(x_0),将其与x 轴相交得到新的近似解x_1,即使得f(x_1) = 0 的解。
迭代过程如下:1. 选择初始近似解x_0。
2. 计算切线斜率k = f'(x_0)。
3. 根据切线与x 轴相交的方程,求解f(x) = 0,得到新的近似解x_1。
4. 判断x_1 是否满足精度要求,若满足则停止迭代;若不满足,则令x_0 = x_1,返回步骤2。
需要注意的是,牛顿迭代法并不一定能够收敛到方程的根,可能会陷入局部最优解或者发散。
因此,在使用牛顿迭代法时,需要对初始近似解的选择和迭代过程的控制进行合理的调整。
关于数值积分(numerical integration),也称为数值求积,是通过数值计算来求解定积分的方法。
定积分表示曲线与坐标轴之间的面积,常用于求解函数在某个区间上的总体积、质量、电荷等物理量。
数值积分有多种方法,常见的包括梯形法则、辛普森法则、龙贝格法等。
这些方法的基本思想都是将定积分转化为对函数在一系列离散点上的取值进行计算。
以梯形法则为例,其基本思想是将积分区间等分成多个小区间,然后用每个小区间上的函数值构成的梯形的面积来近似表示积分的结果。
具体步骤如下:1. 将积分区间[a, b] 等分成n 个小区间,每个小区间的宽度为h = (b - a) / n。
2. 在每个小区间上计算函数的取值,得到函数在离散点上的值f(x_0), f(x_1), ..., f(x_n)。
牛顿迭代法原理
牛顿迭代法原理牛顿迭代法是一种数值计算方法,用于寻找方程的根。
它是由英国科学家牛顿提出的,因此得名。
牛顿迭代法的原理非常简单,但却在实际应用中具有广泛的意义和价值。
首先,让我们来了解一下牛顿迭代法的基本原理。
假设我们要求解一个方程f(x)=0的根,我们可以先随机选择一个初始值x0,然后利用切线的斜率来不断逼近方程的根。
具体来说,我们可以利用方程f(x)的导数f'(x)来得到切线的斜率,然后通过迭代的方式不断更新x的取值,直到满足精度要求为止。
具体的迭代公式如下: \[x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}\]其中,\(x_n\)表示第n次迭代的值,\(x_{n+1}\)表示第n+1次迭代的值,f(x)表示方程,f'(x)表示方程的导数。
牛顿迭代法的原理就是利用切线不断逼近方程的根,通过迭代更新x的取值,最终找到方程的根。
这种方法的优点在于收敛速度快,但也存在一些局限性,比如对初始值的选择比较敏感,可能会导致迭代过程发散。
接下来,让我们通过一个具体的例子来说明牛顿迭代法的原理。
假设我们要求解方程\(x^2-2=0\)的根,我们可以先对方程进行求导,得到导数为2x。
然后,我们随机选择一个初始值x0=1,带入迭代公式进行计算,直到满足精度要求为止。
具体的迭代过程如下:\[x_1 = x_0 \frac{x_0^2-2}{2x_0} = 1 \frac{1^2-2}{21} = 1.5\]\[x_2 = x_1 \frac{x_1^2-2}{2x_1} = 1.5 \frac{1.5^2-2}{21.5} = 1.4167\]\[x_3 = x_2 \frac{x_2^2-2}{2x_2} = 1.4167\frac{1.4167^2-2}{21.4167} = 1.4142\]通过不断迭代,我们可以得到方程\(x^2-2=0\)的根为 1.4142。
牛顿迭代法(Newton‘s Method)
牛顿迭代法(Newton’s Method)又称为牛顿-拉夫逊(拉弗森)方法(Newton-Raphson Method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。
与一阶方法相比,二阶方法使用二阶导数改进了优化,其中最广泛使用的二阶方法是牛顿法。
考虑无约束最优化问题:其中 \theta^{\ast} 为目标函数的极小点,假设 f\left( \theta \right) 具有二阶连续偏导数,若第 k 次迭代值为 \theta^{k} ,则可将f\left( \theta \right)在\theta^{k}近进行二阶泰勒展开:这里,g_{k}=x^{\left( \theta^{k} \right)}=∇f\left( \theta^{k} \right)是f\left( \theta \right) 的梯度向量在点 \theta^{k}的值, H\left( \theta^{k} \right) 是 f\left( \theta \right) 的Hessian矩阵:在点 \theta^{\left( k \right)}的值。
函数 f\left( \theta \right) 有极值的必要条件是在极值点处一阶导数为0,即梯度向量为0,特别是当H\left( \theta\right) 是正定矩阵时,函数 f\left( \theta \right) 的极值为极小值。
牛顿法利用极小点的必要条件:这就是牛顿迭代法。
迭代过程可参考下图:在深度学习中,目标函数的表面通常非凸(有很多特征),如鞍点。
因此使用牛顿法是有问题的。
如果Hessian矩阵的特征值并不都是正的,例如,靠近鞍点处,牛顿法实际上会导致更新朝错误的方向移动。
这种情况可以通过正则化Hessian矩阵来避免。
常用的正则化策略包括在Hessian矩阵对角线上增加常数α 。
正则化更新变为:这个正则化策略用于牛顿法的近似,例如Levenberg-Marquardt算,只要Hessian矩阵的负特征值仍然相对接近零,效果就会很好。
牛顿迭代法
牛顿迭代法一、 牛顿迭代法牛顿迭代法也称为牛顿-拉夫森(Newton-Raphson)迭代法,它是数值分析中最重要的方法之一,它不仅适用于方程或方程组的求解,还常用于微分方程和积分方程求解。
二、 迭代公式,...2,1,0,)()(1='-=+k x f x f x x k k k k用迭代法解非线性方程时,如何构造迭代函数是非常重要的,那么怎样构造的迭代函数才能保证迭代法收敛呢?牛顿迭代法就是常用的方法之一,其迭代格式的来源大概有以下几种方式(主要是第一种):1、设],[)(2b a C x f ∈,对)(x f 在点],[0b a x ∈作泰勒展开: !2))((''))((')()(20000x x f x x x f x f x f -+-+=ξ略去二次项,得到)(x f 的线性近似式:))((')()(000x x x f x f x f -+≈。
由此得到方程=)(x f 0的近似根(假定≠)('0x f 0),)(')(000x f x f x x -=即可构造出迭代格式(假定≠)('k x f 0):)(')(1k k k k x f x f x x -=+ 公式(1)这就是牛顿迭代公式,若得到的序列{k x }收敛于α,则α就是非线性方程的根。
2、 牛顿迭代法也称为牛顿切线法,这是由于)(x f 的线性化近似函数)(x l =))((')(000x x x f x f -+是曲线y =)(x f 过点))(,(00x f x 的切线而得名的,求)(x f 的零点代之以求)(x l 的零点,即切线)(x l 与x 轴交点的横坐标,如右图所示,这就是牛顿切线法的几何解释。
实际上,牛顿迭代法也可以从几何意义上推出。
利用牛顿迭代公式,由k x 得到1+k x ,从几何图形上看,就是过点))(,(k k x f x 作函数)(x f 的切线k l ,切线k l 与x 轴的交点就是1+k x ,所以有1)()('+-=k k k k x x x f x f ,整理后也能得出牛顿迭代公式:)(')(1k k k k x f x f x x -=+。
计算方法---牛顿迭代法的应用
牛顿迭代法的应用一、牛顿法简介牛顿迭代法(Newton's method )又称为牛顿-拉夫逊方法(Newton-Raphson method ),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。
多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。
牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收敛。
该方法广泛用于计算机编程中。
简单迭代法是用直接的方法从原方程中隐含地解出x ,从而确定出)(x ϕ。
而牛顿迭代法是用一种间接而特殊的方法来确定)(x ϕ的。
下面具体推到牛顿迭代公式。
假设k x 是非线性方程为0)(=x f 的一个近似根,把)(x f 在k x 处作泰勒展开:+-+-+=2''')(!2)())(()()(k k k k k x x x f x x x f x f x f若取前两项来近似代替)(x f (称为)(x f 的线性化),则得近似的线性方程0))(()()('=-+≈k k k x x x f x f x f设0)('≠k x f ,令其解为1+k x ,则得)()('1k k k k x f x f x x -=+ (1)这称为0)(=x f 的牛顿迭代公式。
它对应的迭代方程为)()('x f x f x x -=显然是0)(=x f 的同解方程,故其迭代函数为)()()('k k k x f x f x x -=ϕ (0)('≠x f ) 在0)(=x f 的根α的某个邻域)|(|δα≤-x R 内,0)(≈x f1|)('||)(||)(||)(|2'''<≤•=L x f x f x f x ϕ 在α的邻域R 内,对任意初值x 0,应用由公式(1)来解方程的方法称为牛顿迭代法,它是解代数方程和超越方程的有效方法之一。
数值分析中的牛顿迭代法
数值分析中的牛顿迭代法在现代科学技术领域中,数值计算是一项不可忽视的内容。
牛顿迭代法是数值计算中的一种重要方法,被广泛应用于数学、物理、化学、航空航天等领域。
下面就让我们来了解一下什么是牛顿迭代法,以及它的原理、特点和应用。
1. 概述牛顿迭代法又称为牛顿-拉夫逊迭代法,是一种求解非线性方程组的数值计算方法。
它的基本思想是:从已知函数的一个近似解出发,借助函数的切线逼近函数的零点,直到达到指定的精度要求为止。
牛顿迭代法的应用非常广泛,如求解函数的根、优化问题、最小二乘拟合、时间依赖问题等。
2. 原理假设$f(x)$是一个在$x0$处有连续二阶导数的函数。
如果要找到它在$x0$处的零点,那么牛顿迭代法的基本公式为:$$ x_{n+1} = x_n -\frac{f(x_n)}{f'(x_n)} $$其中,$n$表示迭代的次数,$x_{n+1}$表示迭代后的值,$x_n$表示当前的值,$f(x_n)$表示函数在$x_n$点的值,$f'(x_n)$表示函数在$x_n$点的导数。
公式的物理意义是:先用当前的$x$值求出函数值$f(x)$,然后用当前的$x$值求出函数的导数$f'(x)$,接着用$f(x)$和$f'(x)$计算出一个斜率,最后用当前的$x$值减去这个斜率,得到一个新的近似解$x_{n+1}$。
迭代过程如下:(1)选取初始值$x_0$;(2)计算出第一个近似值$x_1$,即$x_1=x_0-\frac{f(x_0)}{f'(x_0)}$;(3)计算出第二个近似值$x_2$,即$x_2=x_1-\frac{f(x_1)}{f'(x_1)}$;(4)依此类推,直到$f(x_n)$的值小到满足预设的精度为止。
3. 特点牛顿迭代法具有以下几个特点:(1)收敛速度快。
迭代公式是二阶收敛的,收敛速度远远超出了线性迭代法和高斯-赛德尔迭代法。
(2)精度高。
根据牛顿迭代法的收敛次数和精度估计定理,只要初值足够接近所求的跟,牛顿迭代法就能收敛,并且有二阶精度。
牛顿迭代法的基本原理知识点
牛顿迭代法的基本原理知识点牛顿迭代法是一种求解方程近似解的数值计算方法,通过不断逼近方程的根,以获得方程的解。
它基于牛顿法则和泰勒级数展开,被广泛应用于科学和工程领域。
本文将介绍牛顿迭代法的基本原理和相关知识点。
一、牛顿迭代法的基本原理牛顿迭代法的基本原理可以总结为以下几个步骤:1. 假设要求解的方程为 f(x) = 0,给定一个初始近似解 x0。
2. 利用泰勒级数展开,将方程 f(x) = 0 在 x0 处进行二阶近似,得到近似方程:f(x) ≈ f(x0) + f'(x0)(x - x0) + 1/2 f''(x0)(x - x0)^23. 忽略近似方程中的高阶无穷小,并令f(x) ≈ 0,得到近似解 x1:0 ≈ f(x0) + f'(x0)(x1 - x0) + 1/2 f''(x0)(x1 - x0)^2求解上述方程,得到近似解 x1 = x0 - f(x0)/f'(x0)。
4. 通过反复迭代的方式,不断更新近似解,直到满足精度要求或收敛于方程的解。
二、牛顿迭代法的收敛性与收敛速度牛顿迭代法的收敛性与收敛速度与初始近似解 x0 的选择和方程本身的性质有关。
1. 收敛性:对于某些方程,牛顿迭代法可能无法收敛或者收敛到错误的解。
当方程的导数为零或者初始近似解离根太远时,迭代可能会发散。
因此,在应用牛顿迭代法时,需要对方程和初始近似解进行合理的选择和判断。
2. 收敛速度:牛顿迭代法的收敛速度通常较快,二阶收敛的特点使其在数值计算中得到广泛应用。
在满足收敛条件的情况下,经过每一次迭代,近似解的有效数字将至少加倍,迭代次数的增加会大幅提高精度。
三、牛顿迭代法的优点与局限性1. 优点:1) 收敛速度快:牛顿迭代法的二阶收敛特性决定了它在求解方程时的高效性和快速性。
2) 广泛适用:牛顿迭代法可以用于求解非线性方程、方程组和最优化问题等,具有广泛的应用领域。
牛顿迭代法的最优化方法和应用
牛顿迭代法的最优化方法和应用牛顿迭代法是一种优化算法,它基于牛顿法和迭代法的思想,广泛应用于最优化问题的求解中。
在计算机科学、数学和工程等领域,牛顿迭代法被广泛应用于解决各种实际问题,如机器学习、数值分析和物理模拟等。
一、基本原理牛顿迭代法的基本思想是在当前点的邻域内用二次函数近似目标函数,然后在近似函数的极小点处求解最小化问题。
具体而言,假设我们要最小化一个凸函数$f(x)$,我们可以在当前点$x_k$处利用泰勒级数将其近似为:$$f(x_k+p)\approx f(x_k)+\nabla f(x_k)^Tp+\frac12p^T\nabla^2f(x_k)p$$其中,$p$是一个向量,$\nabla f(x_k)$和$\nabla ^2f(x_k)$分别是$f(x_k)$的一阶和二阶导数,也称为梯度和黑塞矩阵。
我们可以令近似函数的一阶导数等于零,即$\nabla f(x_k)+\nabla^2f(x_k)p=0$,然后解出$p$,得到$p=-\nabla ^{-1}f(x_k)\nablaf(x_k)$。
于是我们可以将当前点更新为$x_{k+1}=x_k+p$。
我们可以重复这个过程,直到目标函数收敛到我们所需的精度。
二、应用实例1. 机器学习:牛顿迭代法可以用于训练神经网络和逻辑回归等机器学习模型。
在神经网络中,牛顿迭代法可以帮助我们优化网络的权重和偏置,以提高网络的准确性和鲁棒性。
在逻辑回归中,牛顿迭代法可以帮助我们学习双分类问题的参数和概率分布。
2. 数值分析:牛顿迭代法可以用于求解非线性方程和方程组的根。
例如,我们可以使用牛顿迭代法来解决$sin(x)=0$和$x^2-2=0$这样的方程。
当然,为了保证迭代收敛,我们需要选择一个合适的初始点,并且要确保目标函数是连续和可微的。
3. 物理模拟:牛顿迭代法可以用于求解物理方程组的数值解。
它可以帮助我们模拟地球的运动轨迹、热力学系统的稳态和弹性材料的应力分布等。
牛顿迭代法
一 .牛顿迭代法简介1.牛顿迭代法的产生背景牛顿迭代法(Newton's method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。
多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。
方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x)=0的根。
牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x)=0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收敛。
另外该方法广泛用于计算机编程中。
利用牛顿迭代法来解决问题需要做好的工作:(1)确定迭代变量。
在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。
(2)建立迭代关系式。
所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。
迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。
(3)对迭代过程进行控制。
在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。
不能让迭代过程无休止地重复执行下去。
迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。
对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件。
2.牛顿迭代法的概述牛顿迭代法(Newton's method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。
多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。
方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x)=0的根。
数值分析的算法研究
数值分析的算法研究数值分析是一门涉及数值计算和算法设计的学科。
它的主要目标是通过使用计算机来解决数值计算问题。
本文将着重讨论数值分析中一些重要且广泛应用的算法。
一、牛顿迭代法牛顿迭代法是一种用于求解方程近似解的方法。
假设我们要求方程f(x)=0的解,通过迭代的方式可以逐步逼近这个解。
迭代公式如下:```x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}```其中,x_n是第n次迭代的近似解,f'(x)是f(x)的导数。
牛顿迭代法在实际应用中广泛用于求解非线性方程、优化问题和插值问题等。
它的收敛速度较快,但需要注意初始解的选取,不同的初始解可能会导致不同的迭代结果。
二、高斯消元法高斯消元法是一种线性方程组求解的常用算法。
给定一个n×n的线性方程组Ax=b,其中A是一个系数矩阵,b是一个已知向量,求解x 使得Ax=b成立。
高斯消元法的基本思想是通过一系列行变换将系数矩阵A变为上三角形矩阵,然后通过回代求解出未知向量x。
这个算法的时间复杂度为O(n^3),在求解较大规模的线性方程组时要注意矩阵的稀疏性,以减少计算量。
三、插值算法插值算法用于根据已知数据点之间的关系,构造一个函数来逼近这些数据点之间的未知函数值。
常见的插值算法有拉格朗日插值和样条插值。
拉格朗日插值是通过构造一个满足已知数据点的条件的多项式来逼近函数。
考虑n+1个数据点(x_0, y_0), (x_1, y_1), ..., (x_n, y_n),插值多项式的表达式如下:```P(x) = \sum_{i=0}^{n} y_i \prod_{j \neq i} \frac{x-x_j}{x_i-x_j}```样条插值则是将整个插值区间分为若干段,每段都用一个低次多项式来逼近函数。
这样可以得到一个整体上更平滑的插值函数。
插值算法在数值计算和数据处理中具有广泛的应用,例如曲线拟合、图像处理等。
牛顿迭代法讲解
牛顿迭代法讲解牛顿迭代法是一种优秀的高精度计算方法,其能够快速地求解函数零点和方程的根。
该方法利用了函数在某一点处的导数信息,通过迭代的方式不断逼近真实解,具有快速收敛、高效稳定等优点。
下面将详细地介绍牛顿迭代法的原理和步骤。
一、牛顿迭代法的原理牛顿迭代法的基本思想是:一条曲线在某一点的切线斜率可以近似代替该点处的函数斜率,通过连续斜线的交点,不断逼近真实解。
由此可知,牛顿迭代法的基本原理是利用局部的导数信息来近似全局的函数性质,从而加速问题的求解。
与其他迭代方法相比,牛顿迭代法具有收敛速度快、精度高等优点。
对于平滑的函数而言,它的收敛速度甚至可以达到二次速度,这使得它成为许多求解方程的首选算法。
二、牛顿迭代法的步骤下面我们将介绍牛顿迭代法的具体步骤。
1.确定迭代公式设函数f(x)在x0点可导,则其在x0点的导数可以用以下公式表示:f'(x0) = lim(x->x0) [f(x)-f(x0)]/(x-x0)当x逐渐逼近x0时,上式右边的分数会逼近导数。
因此,我们可以用该式确定迭代公式:xk+1 = xk - f(xk) / f'(xk)其中,x0是初始估计值,xk+1为新的迭代值,xk为上一次的迭代值,f(xk)是函数在xk处的函数值,f'(xk)是函数在xk处的导数值。
2.计算迭代值通过迭代公式,我们可以计算新的迭代值xk+1。
由于初始估计值x0不一定能够很好地逼近真实解,因此我们需要多次迭代,直到迭代值足够接近真实解。
3.判断是否收敛在计算新的迭代值后,我们需要检查其与上一个迭代值之间的差距是否足够小,如果达到了我们预设的收敛精度,则停止计算。
否则,我们需要继续迭代,直到收敛。
4.使用牛顿迭代法求函数零点和方程的根通过上述过程,我们可以利用牛顿迭代法求解函数的零点和方程的根。
具体操作方法如下:(1)将目标函数转化成零点函数,即f(x) = 0(2)选择一个初始估计值x0(3)利用迭代公式计算新的迭代值xk+1 = xk - f(xk) / f'(xk)(4)判断是否达到了收敛精度,如果是,则输出最终结果;如果否,则继续迭代。
数值分析实验报告之迭代法求非线性方程的根
数值分析实验报告之迭代法求非线性方程的根1.实验目的掌握迭代法求非线性方程根的基本原理和使用方法,加深对数值计算方法的理解与应用。
2.实验原理迭代法是一种通过不断逼近的方法求解非线性方程的根。
根据不同的函数特点和问题需求,可以选择不同的迭代公式进行计算,如牛顿迭代法、二分法、弦截法等。
3.实验内容本次实验使用牛顿迭代法求解非线性方程的根。
牛顿迭代法基于函数的局部线性逼近,通过不断迭代逼近零点,直至满足收敛条件。
具体步骤如下:Step 1:选择初始点X0。
Step 2:计算函数f(x)在X0处的导数f'(x0)。
Step 3:计算迭代公式Xn+1 = Xn - f(Xn) / f'(Xn)。
Step 4:判断收敛准则,若满足则迭代结束,输出解Xn;否则返回Step 2,继续迭代。
Step 5:根据实际情况判断迭代过程是否收敛,并输出结果。
4.实验步骤步骤一:选择初始点。
根据非线性方程的特点,选择恰当的初始点,以便迭代公式收敛。
步骤二:计算导数。
根据选择的非线性方程,计算函数f(x)的导数f'(x0),作为迭代公式的计算基础。
步骤三:迭代计算。
根据迭代公式Xn+1=Xn-f(Xn)/f'(Xn),计算下一个迭代点Xn+1步骤四:判断收敛。
判断迭代过程是否满足收敛条件,通常可以通过设置迭代次数上限、判断前后两次迭代结果的差值是否足够小等方式进行判断。
步骤五:输出结果。
根据实际情况,输出最终的迭代结果。
5.实验结果与分析以求解非线性方程f(x)=x^3-x-1为例,选择初始点X0=1进行迭代计算。
根据函数f(x)的导数计算公式,得到导数f'(x0)=3x0^2-1,即f'(1)=2根据迭代公式Xn+1=Xn-f(Xn)/f'(Xn),带入计算可得:X1=X0-(X0^3-X0-1)/(3X0^2-1)=1-(1-1-1)/(3-1)=1-0/2=1根据收敛准则,判断迭代结果是否满足收敛条件。
数值分析-牛顿迭代法
������ (������ )
方程 1:设f1 (x)=x������ -1
������
当∣ ������������ +1 − ������������ ∣≤ ������ =10−5 时停止循环
∴ ������������+1 = ������������ − ������ ������ ,k=0,1,2,3…… x������ +������
四、 实为 x=0.5671
方程 2:
所以得出结果为 x=1.7556
五、 说明与分析
牛顿迭代法公式:������������ +1 = ������������ − ������ (������ ������ ),k=0,1,2,3……
������
������ (������ )
对于方程 1,由于方程简单,并且初始值与最终值相差较小,所以迭代次数 也少,方法快捷、准确。 对于方程 2,因为涉及到对数并且初始值与最终值相差有一定距离,所以迭 代次数较多。 在以上两个方程的计算中,我发现初始值对牛顿迭代法影响很大。 牛顿迭代法在初始值接近于近似根处的迭代速度要比远离近似根初始值的 迭代速度快很多, 而且近似值和函数近似值要精确很多,所以在进行牛顿迭代法 进行根的近似求解时,初始值的选择非常重要。 牛顿迭代法能快速求出其他方法求不出或者难以求出的解,但牛顿迭代法计 算量比较大。因每次迭代除计算函数值外还要计算其他数据。
fprintf('The procedure was successful.') return else n=n+1; x0=x1;f0=f1; end end if n==N+1 fprintf('the method failed after N iterations. '), end 保存为:newton1.m 方程 1: fx='x-exp(-x)'; dfx='1+exp(-x)'; newton1(fx,dfx,.5,10^(-5),10) 方程 2: fx='log(10)+x-2'; dfx='log(10)/x+1'; newton1(fx,dfx,1.5,10^(-5),15)
数值分析4 Newton迭代法
13/18
Newton迭代法的变形-弦截法
设x*是方程 f(x)=0 的根, x0和x1是x*附近 的两个点. 曲线 y=f(x) 在点(x0, f(x0)) 和点 (x1,f(x1))处的割线 与X轴交点
f(x) = 0
f ( x1 ) f ( x1 ) f ( x 0 ) x1 x 0 ( x x1 ) 0
7/18
例2.求 f(x)=xex – 1= 0 在 x0=0.5 附近的根 解: f ( x ) (1 x ) e x 迭代格式为
x n1 x n xne
xn
1
xn
1
x exp(x)-1
(1 x n ) e (n = 0, 1, ·· ·· ·)
f=inline('x*exp(x)-1'); f1=inline('(x+1)*exp(x)'); x0=1.5;er=1;k=0; while er>0.00001 x=x0-f(x0)/f1(x0); er=abs(x-x0) x0=x;k=k+1 end
100
0
-100
-200 -6 -4 -2 0 x 2 4 6
y = arctan x
9/18
取 x0=0,
x n1 x n
xn xn 3
3
3x 1
2 n
(n = 0, 1, ·· ·· ·)
y x1 x2 x3 x0 x
y=x – x – 3
3
Newton迭代法陷入死循环的另一个例子
《数值分析》4
Newton迭代格式
Newton迭代法的收敛性
Newton迭代法的变形
数值分析4牛顿迭代法课件
x1
x0
f ( x0 ) f ( x0 )
x*
x0 x1
x1比x0更接近于x*
02:12
4/25
应用——求正数平方根算法
设C > 0, x C
x2 – C = 0
令 f(x) = x2 – C , 则
xn1
xn
xn2 C 2 xn
f ( x) 2x
xn1
1 2 [xn
C ]
xn
02:12
5/25
1.414213562373095 2.22e-016
1.414213562373095 2.22e-016
02:12
6/25
收敛性: (1) 符合不动点框架
(2) 从序列收敛的角度(单调有界序列)
xn1
2
1 2 [xn
2 xn
]
2
1
[ 2
xn
2 xn
]2
1 2 xn
( xn
2 )2
只要x0 0, xn 2 (n 1) (有界)
x0, x1, x2,···, xn, ···
02:12
3/25
设 x*是方程 f(x)=0 的根, x0是x*的近似值。
在 x0 附近对函数做局部线性化
化难为易
f ( x) f ( x0 ) f ( x0 )( x x0 )化繁为简
f(x) = 0
f ( x0 ) f ( x0 )( x x0 ) 0
代入牛顿迭代格式
xn1
xn
f (xn ) f ( xn )
x1 x0
xn1
xn
f
( xn
f (xn ) ) f ( xn1 )
数值分析-牛顿法
例题2
求函数 f x x3 10x2 19的.6正8x实1根0.944
精度要求: 106
用Matlab画图,查看根的分布情形
从图形中我们可 以看出:
➢ 在x=7和x=8 之 间有一单根;
➢ 在x=1和x=2 之 间有一重根。
➢初值x0=8.0 时,计算的是单根, The
iterative number is 28,The numerical
g(x) x f (x) f (x)
g(x*)
f (x*) f (x*) 01
f 2 (x*)
在x*的附近收敛
由Taylor 展开:
0
f (x*)
f (xk )
f (xk )(x * xk )
f
(k
2!
)
(
x
*
xk
)2
x*
xk
f f
(xk ) (xk )
f (k )
2 f (xk )
保证Newton迭 代函数将[a,b]映
射于自身
保证产生的序列
{xk}单调有界
证明:以
f '( x) 0, f "( x) 0, f ( x ) 0 0
为例证明
将f(x*)在 xk 处作Taylor展开
0=f (x*)
f
(x
)
f
'(x
)(x*
x
)
f
"( k
)
(
x*
x
)2
k
k
k
x* x
f (x ) k
f (x)
f (x0 )
f (x0 )(x x0 )
f
数值分析实习作业牛顿迭代法
数值分析实习作业牛顿迭代法用牛顿法求解方程组x^2+x*y^3 = 9,3*x^2-y^3 = 4;初始点分别取为(1.2,2.5),(-2,2.5),(2,-2.5)%依据不同初始点按照牛顿迭代法求解方程组x^2+x*y^3 = 9 ,3*x^2-y^3 = 4%初始点x0 = [1.2,2.5]clearclcformat longsyms x yf(1) = x^2+x*y^3-9;f(2) = 3*x^2*y-y^3-4;X = [x,y];x0 =[1.2,2.5];eps = 0.1*10^(-10);[Rx,time] = newton_interation(f,X,x0,eps);disp('利用牛顿迭代法求解方程x^2+x*y^3 = 9 ,3*x^2-y^3 = 4') disp('当初始点x0 = [1.2,2.5]的根是 Rx = ')disp(Rx')disp('迭代次数')disp (time)%%%初始点x0 = [-2,2.5]X = [x,y];x0 =[-2,2.5];eps = 0.1*10^(-10);[Rx,time] = newton_interation(f,X,x0,eps);disp('利用牛顿迭代法求解方程x^2+x*y^3 = 9 ,3*x^2-y^3 = 4') disp('当初始点x0 = [-2,2.5]的根是 Rx = ')disp('迭代次数')disp (time)%%%3?ê?μ?x0 = [2,-2.5]x0 =[2,-2.5];[Rx,time] = newton_interation(f,X,x0,eps);disp('利用牛顿迭代法求解方程x^2+x*y^3 = 9 ,3*x^2-y^3 = 4') disp('当初始点x0 = [-2,2.5] 的根是Rx = ')disp(Rx')disp('迭代次数')disp (time)牛顿迭代函数:function [gen,time] = newton_interation(f,X,x0,eps)x = sym(X);%求f的一阶jacobian矩阵df = jacobian(f,x);time = 0;D = 1;while norm(D)>=epstime = time+1;df_x0 = subs(df,{x},{x0}); df_x0 = eval(df_x0);dfx0 =inv(df_x0);fx = subs(f,{x},{x0});fx = eval(fx);df_fx = dfx0*fx';x1 = x0'- df_fx;D = x1-x0';x0 = x1';end。
数值分析745牛顿法弦截法青苗教育
x
*
xk
)
2
xk 1
x * xk1 (x * xk )2
f (k )
2 f ( xk )
在单根
/*simple root */ 附近收敛快
只要 f ’(x*) 0,则令 k 可得结论。
注: Newton’s Method 收敛性依赖于x0 的 选取。
x0
x0
✓
x0
x*
注 (1) 牛顿法要求初值充分接近根以保证 局部收敛性。
p 1 (1 5) 1.618 2
即
|
| x xk1 | x xk |1.618
c
0, ( k
)
例 用弦截法求方程 xe x 1 0 在x=0.5附近的根。取 0.00005
解 取x0=0.5,x1=0.6作为初始近似 根,令
f (x) x ex 0
其弦截法迭代公式为
xk1
0 f ( x*) f ( x0 ) f ( x0 )(x * x0 )
x*
x0
f (/
y
x*
x0
xk 1
xk
f ( xk ) f ( xk )
只要 每一步迭代都
x 有f ’( xk ) 0, 而
且
lim
k
xk
x*
,
则 x*就是 f 的根。
1
2
3
xk 0.5 0.57102 0.56716 0.56714
➢抛物线法
本质:将非线性方程转化为一元二次方程的 求解。 有两种转化方法!
作业: 习题 7,12,13
lim
k
x * xk1 (x * xk )2
f ( x*) 2 f ( x*)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13:30
16/25
表5 初值取 1.5 时牛顿迭代法速度
n xn 0 1.5 1 1.2666666 2 1.1385620 3 1.0707773 4 1.0357918 5 1.0180008 6 1.0090271 7 1.0045203 8 1.0022618 9 1.0011313 10 1.0005657 11 1.0002829 13:30
2
2
xn 1 2 1 2 2 xn ( xn 2 )
| x n1 2 | 1 lim 2 n | x 2| 2 2 n
l i mxn 2
n
由此可知平方根算法具有 2 阶收敛速度。
思考: 如何求倒数、平方根和立方根?
9/25
Newton迭代法的局部收敛性 定理2.7 设 f(x) 在点x*的某邻域内具有二阶连 续导数, 且 f(x*)=0和 f′(x*) ≠ 0, 则对充分靠近 点x*的初值x0, Newton迭代法至少平方收敛。 f ( x) f ( xn ) ( x) x xn 1 xn f ( x ) f ( xn ) * * * * 2 ( x ) f ( x ) f ( x ) / [ f ( x )] 0 1 收敛
11/25
注释1:
牛顿迭代法 : xn1 xn f ( xn ) / f ( xn )
为了二次收敛有意义我们需要f′(x)相除, 这 个假设是关键的。
f(x)=x3 –3x + 2 = 0 在x*=1附近 源自 ( x ) 013:30
12/25
注释2:
Newton方法收敛性依赖于x0 的选取。存 在 x0使Newton迭代法陷入死循环。
xn
| en | 5.00e-001 5.00e-001 1.62e-001 4.57e-002 5.52e-003 1.72e-004 6.31e-007 7.24e-011
| en+1 |/| en |1.618
1.5347 0.4978 0.8691 0.8109 0.7742 0.7785 0.7778
给定初值 x0 , 迭代产生数列
x0, x1, x2,· · · , xn, · · ·
13:30
4/25
设 x*是方程 f(x)=0 的根, x0是x*的近似值。 在 x0 附近对函数做局部线性化 化难为易
化繁为简 f ( x) f ( x0 ) f ( x0 )( x x0 )
f(x ) = 0
1 m重根, ( x ) 1 1 n
*
13:30
18/25
若 x*是 f(x)=0 的 m 重根,修正的牛顿迭代法 f ( xn ) 1/m或f(x)/f′(x) [ f ( x )] xn1 xn m f ( xn ) 单根 为二阶收敛
m=2
xn1
f ( xn ) xn 2 f ( xn )
x
0
x0 x 0
x*
13:30
13/25
Newton迭代法的变型-弦截法
由于
f ( xn ) f ( x n 1 ) f ( xn ) xn xn -1
代入牛顿迭代格式
xn 1 f ( xn ) xn f ( xn )
x1 x0
13:30
f ( xn ) xn 1 xn ( x n x n 1 ) f ( x n ) f ( x n 1 )
| en | 5.00e-001 2.66e-001 1.38e-001 7.07e-002 3.57e-002 1.80e-002 9.02e-003 4.52e-003 2.26e-003 1.13e-003 5.65e-004 2.82e-004
| en+1 |/| en |
0.5333 0.5196 0.5108 0.5057 0.5029 0.5015 0.5007 0.5004 0.5002 0.5001 0.5000
| en | 5.00e-001 3.33e-002 1.85e-004 5.52e-009 | en+1 |/| en |2 0.1333 0.1639 0.1667
19/25
表5 x*为二重根时修正的牛顿迭代实验
n
0 1 2 3
13:30
xn 1.5 1.03333333333 1.00018214936 1.00000000552
f n ( x ) x2
f 2 ( x ) xn f n ( x ) xn
f1 ( x ) xn
f ( x0 ) f ( x0 )( x x0 ) 0 f ( x0 ) x1 x0 f ( x0 )
x*
x0 x1
x1比x0更接近于x*
13:30
5/25
应用——求正数平方根算法
设C > 0,
x C
2 n
x2 – C = 0
f ( x ) 2 x
令 f(x ) = x 2 – C , 则
20/25
迭代方法比较 二分法
收敛速度慢
函数值的正负号
不动点家族(牛顿法)
收敛速度快(特别快)
函数值(函数的导数值) 收敛是有条件的
总是收敛
13:30
21/25
非线性方程组: Gauss–Newton方法
F ( x) 0
F ( x ) F ( x ( k ) ) F ( x ( k ) )( x x ( k ) ) F ( x ( k ) )( x x ( k ) ) F ( x ( k ) )
3 n
x 10 xn 20 牛顿迭代格式 xn1 xn 2 3 xn 10 表2 牛顿迭代法实验 n xn | en | 0 1.5 1 1.59701492537 0.002452808741981 2 1.59456374876 1.632137654805e-06 3 1.59456211663 7.227551890309e-13 4 1.59456211663 2.220446049250e-16 13:30
n
*
13:30
1/25
《数值分析》4
Newton迭代格式
Newton迭代法的收敛性
Newton迭代法收敛速度
弦截法迭代格式
13:30
2/25
Nature and Nature' law lay hid in night. God said, "Let Newton be," and all was light. Alexander Pope 13:30
15/25
表4 初值取 – 1.5 时牛顿迭代法速度
n 0 1 2 3 4 5
xn | en | | en+1 |/| en |2 -1.5 5.00e-001 -2.33333333333 3.33e-001 1.3333 -2.05555555555 5.55e-002 0.5000 -2.00194931773 1.94e-003 0.6316 -2.00000252829 2.52e-006 0.6654 -2.00000000000 4.26e-012 0.6667
14/25
例3.已知方程
有两根:
x 3x 2 0 * * 参考: 数值分析基础, 关冶 陆金甫 x1 2 x2 1
3
取根附近值做初值,分析牛顿迭代法实验的数据。
表3 弦截法收敛速度实验
n 1 2 3 4 5 6 7 8
-1.5 -2.5 -1.83783783783 -1.95420890762 -2.00552244119 -1.99982796307 -1.99999936831 -2.00000000007
不动点框架:
| ( x) | 1
收敛性
( x*) ( x*) ( r 1) ( x*) 0 ( r ) ( x*) 0
收敛速度
x0 x1 ( x0 ) xn ( xn1 )
lim ( xn ) x
set the interval or the starting point (find a range of xvalues over which the function changes sign) iteratively refine the initial guess with a root-finding algorithm (bisection is dependable but slow; Newton is fast if the initial value is good)
2
2
只要x0 0, xn 2 (n 1) (有界)
2 2 xn 1 2 xn1 xn [ xn ] xn = 0 (单调下降) 2 xn 2 xn
13:30
8/25
1 2 xn1 2 [ xn ] 2 2 xn
1 [ xn 2 1 ] ( xn 2)2 2 xn xn
17/25
推论: 设 x*是 f(x)=0 的二重根, 则牛顿迭代法只具
有一阶收敛。
证: x*是二重根 f(x)=(x – x*)2g(x) * * f ( x) ( x x )[2 g( x) ( x x ) g( x)] ( x x * ) g( x ) ( x) x * 2 g( x ) ( x x ) g( x ) 1 * ( x ) 1 牛顿迭代法只是一阶收敛。 2
3/25
x x ( x) f ( x) ( x)
( x ) 1 ( x ) f ( x ) 0