高一数学下学期必修2知识点总结归纳
高中数学必修二知识点总结及公式大全
高中数学必修二知识点总结及公式大全高中数学是培养学生逻辑思维和抽象能力的重要学科。
《必修二》作为高中数学课程的重要组成部分,涉及了许多核心知识点和基础公式。
本文将为您详细总结《必修二》的知识点,并整理出一份公式大全,帮助您更好地掌握这门学科。
一、高中数学必修二知识点总结1.函数概念与性质- 函数的定义、表示方法、分类- 函数的性质(单调性、奇偶性、周期性、对称性等)- 反函数及其求法2.指数函数与对数函数- 指数函数的定义、性质、图像- 对数函数的定义、性质、图像- 指数方程与对数方程的解法3.三角函数- 角度制与弧度制互换- 三角函数的定义、图像、性质- 三角恒等变换- 三角方程与不等式的解法4.数列- 等差数列与等比数列的定义、性质、求和公式- 数列的通项公式与求和公式- 数列的极限5.平面向量- 向量的定义、表示、线性运算- 向量的坐标表示与几何表示- 向量的数量积与垂直关系- 向量的平行四边形法则与三角形法则6.解析几何- 直线方程的求法(点斜式、截距式、一般式等)- 圆的方程与性质- 常见图形的面积、周长、体积计算二、高中数学必修二公式大全1.函数类- y=f(x) 的反函数:y=f^(-1)(x)- 幂函数:y=x^a(a 为常数)- 指数函数:y=a^x(a>0 且a≠1)- 对数函数:y=log_a(x)(a>0 且a≠1)2.三角函数类- 正弦函数:y=sin(x)- 余弦函数:y=cos(x)- 正切函数:y=tan(x)- 三角恒等变换公式(和差公式、倍角公式、半角公式等)3.数列类- 等差数列通项公式:a_n=a_1+(n-1)d- 等差数列求和公式:S_n=n/2(a_1+a_n)- 等比数列通项公式:a_n=a_1q^(n-1)- 等比数列求和公式:S_n=a_1(1-q^n)/(1-q)(q≠1)4.向量类- 向量加法:A+B=(a_x+b_x, a_y+b_y)- 向量减法:A-B=(a_x-b_x, a_y-b_y)- 向量数量积:A·B=a_xb_x+a_yb_y- 向量模长:|A|=√(a_x^2+a_y^2)5.解析几何类- 点斜式直线方程:y-y_1=k(x-x_1)- 截距式直线方程:x/a+y/b=1- 圆的标准方程:(x-a)^2+(y-b)^2=r^2总结:本文为您详细总结了高中数学必修二的知识点,并整理了一份公式大全。
高一数学下册必修二知识点
高一数学下册必修二知识点(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如幼儿教案、音乐教案、语文教案、知识梳理、英语教案、物理教案、化学教案、政治教案、历史教案、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as preschool lesson plans, music lesson plans, Chinese lesson plans, knowledge review, English lesson plans, physics lesson plans, chemistry lesson plans, political lesson plans, history lesson plans, and other sample texts. If you want to learn about different data formats and writing methods, please stay tuned!高一数学下册必修二知识点本店铺为各位同学整理了《高一数学下册必修二知识点》,希望对你的学习有所帮助!1.高一数学下册必修二知识点篇一(1)不等关系感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。
新课标高中数学必修2知识点总结经典
新课标高中数学必修2知识点总结经典第一章空间几何体1.1空间几何体的结构1、棱柱定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱'''''EDCBA ABCDE-几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
2、棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥'''''EDCBAP-几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
3、棱台定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如四棱台ABCD—A'B'C'D'几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点4、圆柱定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
5、圆锥定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
6、圆台定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
高一数学必修2知识点梳理
高一数学必修2知识点梳理一、立体几何初步(一)空间几何体1. 棱柱- 定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的多面体。
- 分类:按底面多边形的边数分为三棱柱、四棱柱、五棱柱等。
- 性质:侧棱都平行且相等;侧面都是平行四边形。
2. 棱锥- 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形的多面体。
- 分类:按底面多边形的边数分为三棱锥(四面体)、四棱锥等。
- 性质:如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的平方比。
3. 棱台- 定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。
- 分类:三棱台、四棱台等。
- 性质:棱台的各侧棱延长后交于一点。
4. 圆柱- 定义:以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。
- 性质:圆柱的轴截面是矩形;圆柱的侧面展开图是矩形。
5. 圆锥- 定义:以直角三角形的一条直角边所在直线为轴旋转,其余两边旋转所成的曲面所围成的几何体。
- 性质:圆锥的轴截面是等腰三角形;圆锥的侧面展开图是扇形。
6. 圆台- 定义:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分。
- 性质:圆台的轴截面是等腰梯形;圆台的侧面展开图是扇环。
7. 球- 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体。
- 性质:球的截面是圆;球心和截面圆心的连线垂直于截面。
(二)点、线、面之间的位置关系1. 平面的基本性质- 公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
- 公理2:过不在一条直线上的三点,有且只有一个平面。
- 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
- 推论1:经过一条直线和这条直线外一点,有且只有一个平面。
- 推论2:经过两条相交直线,有且只有一个平面。
- 推论3:经过两条平行直线,有且只有一个平面。
高中数学必修2知识点总结归纳
高中数学必修2知识点一:直线方程1、直线的斜率 过两点的直线的斜率公式:)(211212x x x x y y k ≠--= 且tan k α=,当[)90,0∈α时,0≥k ; 当()180,90∈α时,0<k ; 当 90=α时,k 不存在。
2、直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x ④截矩式:1x y a b+= ⑤一般式:0=++C By Ax (A ,B 不全为0)3、平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线可设为:000=++C y B x A (C 为常数)4、当0:1111=++C y B x A l ,0:2222=++C y B x A l 时,,//2121k k l l =⇔或212211C C B A B A ≠=(01221=-B A B A ) 12121-=⇔⊥k k l l 或 02121=+B B A A5、两条直线的交点0:1111=++C y B x A l 0:2222=++C y B x A l 相交交点坐标即方程组⎩⎨⎧=++=++00222111C y B x A C y B x A 的一组解。
6、两点间距离公式:设1122(,),A x y B x y,()是平面直角坐标系中的两个点,则||AB7、点到直线距离公式:点()00,y x P 到直线0:1=++C By Ax l 的距离2200B A CBy Ax d +++=8、两平行直线距离公式:2221B A C C d +-=二:圆的方程1、圆的方程(1)标准方程222)(r b y a x =-+-)(,圆心),(b a ,半径为r ;(2)一般方程022=++++F Ey Dx y x当0422>-+F E D 时,方程表示圆,此时圆心为⎪⎭⎫ ⎝⎛--2,2E D ,半径为:F E D r 42122-+= 2、求圆方程的方法:若利用圆的标准方程,需求出a ,b ,r ;若利用一般方程,需要求出D ,E ,F ;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
高中数学必修2知识点总结归纳全
高中数学於修2知5点一、丸戏与方程HJ直戌的慎斜角定义:x朝正勺与直爱,上方•句之间所成的角制宜发的倾斜角.特别地,当宜爱与x轴平行式重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值闽是0° <a <180°〔2〕直钱的科率①定义:倾斜角不是90°的直爱,它的倾斜角的正切叫做这条立线的斜率.直爱的斜率常用k就示.即々 =tana.斜率反映直线与轴的倾斜程度.当ae[〔r,90°〕时,AN0;当a e〔90° ,180°〕时,k<0;当a = 90°时,k不存在.②过两点的左线的斜率公式:k = > —〞〔2W x、〕为一匹'注意下面四点:⑴当西=々时,公式右边无意义,直发的斜率不存在,领斜角为90.;Q〕k与汽、E的顺序无关;〔3〕以后求斜率可不通过倾斜角而由直发上两点的生标宜林求得;⑷求在线的倾斜角可由直线上两皮的生标先求斜率得列.〔3〕女院方程①点号K: y-y =k〔x-X1〕直发斜率片且过点〔X],yj注意:当直戈的斜率为0°时,k=0,直发的方程是片必.当直发的斜率为90°时,直发的斜率不存在,它的方程不能用点斜式表示,但因/上每一点的横生标都等于不,所以它的方程是4小.②寻&犬;y = kx+〃,直线斜率为片直发在y轴上的熊痘卫b③两点K: -—— = -—― 〔 x l^x2,y i *>', J直发两点〔演,四〕,〔方,以〕%一凹占一芯④就矩式:- + y = l a h其中成发/与X轴交于点〔a,o〕,与y轴交于点〔0⑼.即/与X轴.y轴的就足分别为a,b o⑤一般式:Ax+3y+C = 0 〔A, B不全为0〕注意:①各式的适.用国©特殊的方程如:平行于x轴的立线:y = h fb为常泰J;平行于V轴的立线:x = a fa为常数〕;⑸卢晓东方程:即具有某一具同性质的友然f-J平行直娱氽平行于立线A/ + 8°y + Co=.但凡不全为.的常数〕的女线条:-X + B o y + C = 0 〔 C 为常教Jr二〕过定点的直珑东〔〕斜率%々的直发余:>一〕’0=女〔无一玉〕〕,成线过定点〔八,九〕;()过两条立线J] :4x + 8]〉+ G =0,,2 :+ + =0的交点的直战条方程为(A l x+B l y + C l)+A(A2x + B2y + C2) = 0(2为参数人其中直线不在立战东中. (6)两直线平行与妻直当/1 : y = k i x + b l, 4 : 4 = k?x + b?时,L 〃/2 <=>〃]= k?,b、W 与,i,,2 = k1k? = —1 当4 : 4工+8]),+ £ =.,l2: A X+^2>? + C2 = 0 时/|/〃2 =察=导工9 |/J/2OAA + 8H =._______ A2 .2|注意:利用仰牟其新女戏的平行与垂支时,要注专舒卒的存在与否. (7)两条直送的支支4 :A{x+B1y + C[ =0 l2 :A2x + B2y + C2 = 0 和交 ,交点生标即方程组、4"+4y + G =°的一组斛.A2x + B2y + C2 = 0方程组无筹O/J〃2 ;方程组有无数解O,|与乙重合f8J两8间距喜公式:设AJ,y),以电,必)是平面直角生标条中的两个点,那么IA81= 丁5一3尸+⑵一凹尸J9)点灯友我J&害公式:一点凡飞,打)到直发/1 :Ax + By + C = O的痘毒<, _ I"'.+ B、.+q\A2 +B'no;两平行直战距*公式在任一直线上任取一A,再转化为A到直发的跑雷进行求二、团的才•程1、圆的定义:平面到一定点的距禽等于定长的点的集合例回,定点为回心,定长为回的半饯.2,回的方程HJ标准方程(X —4)2+()」〃『=〃,回心(4力),半及%r;(2)一般方程V+V+DX + EF + /7 = 0当O? +石?一4尸> 0时,方程表示回,此时回心为j ,半校为,=L X!D2+E2-4F2当.2+E? - 4尸=0时,表示一个皮;当£>2+石2—4尸 <.时,方程不就示任何图形.(3)求固4r做的方法:一般却采用柠走余数法:先设后求.确定一个回需要三个独立条件,假设利用回的标准方程,需求出a, b, r;假设利用一般方程,需要求出D, E, F;另外要过专多利用圆的几何枝质:七弦的中垂戡於^过原点,以凡泉碉定国心的枚五.3、女钱与圆的住置关东:直我与回的位置关未有和禽,粕切,粕交三种情况,根本上由以下两种方法判断:(1)设立线/: Ax+3y+C = 0,圆+(y-bp =户,囿7、C(a,b)到 / 的距南为,_\^Bb +C\ , 5,,j 有">/• =/与C相离;d = ro,与C 相切;"<,• = /与.相交(2)设立爱/: Ax+&y + C = O,回C:(x-a)2+(y-〃)2 =/,先将方程麟立曲元, 得到一个一元二次方程之后,令其中的判别式为△,那么有△ v 0 <=> /与C相离;△ = 0 o /与C相切;△ > 0 <=> /与C相交注:如果回心的核置在原点,可使用公式刀〞+ »o =都去解直发与回和切的问题,其中(小,为)表示切点生标,r表示半役.(3)过圆上一点的切然疗技:,①回/+)/=/,回上一点为(Xo,y0)>那么过此点的切发方程为xx()+ »o =,(课本命题).②回仅^^+付上了二*,回上一点为自,yo).那么过此点的切线方程为(x(ra)(x-a)-l-(y(rb)(y-b)= t2 (课本命题的推广).4,圆与圆的位JL关东:通过两回半发的和(爰人与囿心距(d)之间的大小比较来确定.1殳回C[ : (x-%+(V —仇F = / , C, : (x - u2 y + (y - b2 )2 = R2两圆的位置关系后通过两圆半法的和(爰人与囿心距(d)之间的大小比拟来确定.当d>R + r时两回外南,此时有公切珑四条;当4 = 7? +r时两回外切,连心爱过切点,有外公切珑两条,公切岗一条;当R-r<d<H + r时两回粕交,连心线垂直平分公共弦,有两条外公切珑;当"=7?一r时,两回切,连心战经过切点,只有一条公切珑;当c/vR-r时,两回含;当4=0时,为同心回.三、立体几何初步1,粒.底面flj极桂:定义:有两个面互相平行,其余各面都是刃边形,且每相邻两个囚边形的公共边都互相平行,由这些面所闺成的几何体.分类:以底面多边形的边数作为分类的标准分为三核粒.四梗粒.五枚粒等.表示:用各顶点字母,如五极柱A8C.石一48 co E或用对角戏的满点字母, 如五根板A.几何将征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧极平行且相等;平行于底面的脱面是与底面令等的多边形.(2) «定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所闽成的几何体分类:以底面多边形的边数作务分类的标准分为三极雄、四极/、五极椎苦袅示:用各顶点字母,如五根椎P — A B C D E几何特征:倒面、对狗面都是三角形;平行于底面的机面与底面相似,其粕仞比等于顶点到机面距禽与高的比的平方.(3J机台:定义:用一个平行于被碓底面的平面去截极般,截面和底面之间的局部分美:以底面多边形的边教作为分类的标准分为三极台.四极台.五极台等表示:用各顶点字母,如五极台P — ABC DE几何就征:①上下底面是相似的平行多边形②侧面是梯形⑶侧长交于原校钺的顶A(4)圆桩:定义:以矩形的一边所在的直爱为轴旗转,其余三边施转所成的曲面所囱成的几何体几何特征:①底面是全等的回;②母线与轴平行;G)轴与底面回的半役垂直;© 侧面展开图是一个矩形. (5)圆靠:丈义:以直角三角形的一条直角边为旗转朝.夜特一周所成的曲面所囱成的几何体几何将征:①底面是一个回;②母线交于回推的顶点;⑶侧面展开图是一个扇形. (6)回台:定义:用一个平行于回碓底面的平面去也回钺,机面和底面之间的局部几何聘征:①上下底面是两个回;②例面母线交于原回雄的顶点;⑶侧面展开图是一个弓形.(7)冰体:定义:以半回的直彼所在直发为旅转轴,半回面旋转一周形成的几何体几何特征:①球的机面是圆;②球面上任意一点到球7、的能害等于半投.2、空问几何体的三视图定义三视图:正视图(光线从几何体的的面曲后面正投影人侧视图(从左右右人俯视图(从上向下)注:正视图反映了物体上下.左右的位置关余,即反映了物体的高度和长度;俯视图反映了物体左右.看后的位置关东,即反映了物体的长度和宽度; 侧视图反映了物体上下、前后的住匿关系,即反映了物体的高度和宽度.3、空间几何体妁直现圄——当二测量柒仰二洲面濡将点:①原来与x轴平行的线段仍然与x平行旦长度不变;②原来与y轴平行的线段仍然与y平行,长度为原来的一半. 4,粒体、碓体、台体的森面积与体软H)几何体的薮面收为几何体各个面的面稹的新.(2)特珠几何体袅面余公式化处底面周长,h为高,力为号高,I 为母钱)〔3〕壮体.碓体.台体的体积公式<4J 球体的外表积新体新公式:V 球二〔汗R 、; S 球而二4乃太 4、空间点、直战、平面的秩JL 关东0〕平面① 平面的机念:A.描述性说明;B.平面是无限伸展的;②平面的袅示:通常用希腊字母a, 0, 丫就示,如平面a 〔通行写在一个锐 角〕;也可以用两个相对顶点的字母来就示,如平面BC .③ 点与平面的关东:点/在平面a ,记作A e 2 ;点A 不在平面a ,记作Aea 点与近端的关东:点4的直发/上,记作:/4 € /; 皮工在立线/外,记作4m我戡与平面的关东:成爱/在平面a,记作ya ;直发/不在平面a ,记作 /2 oc o〔2〕小以1:如枭一条直线的两点在一个平面,那么这条直戈是所有的点都在 这个平面.〔即直为在平面,或者平面经过直线J应用:检除案面是否平;判新直我是否在平面 用符号语言袅示公a1: Ae/,3w/,Aea,3ea = /ua〔3〕心理2:经过不在同一条直线上的三点,有且只有一个平面.推论:一直我和直战外一点确定一平面;两相交直均确定一平面;两平行 我或确定一平面.公痉2及其推先作用:①它是空间确定平面的依据 ②它是证实平面重合的依 据〔4〕公痉3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直爱符号:平面a 科6粕交,交线是a,记作ar)6二a . 符号语言:PeaCl) = an4=,,Pe/ 公双3的作用:①它是判定两个平面相交的方生.S 宜极柱侧面积-ch Sgi 柱例=29力S 正梭惟侧面积=2.〞S|用锥侧面积=加S 正技台M 向枳=]〔G +c 2〕h'S 圜台〔M 面枳=〔r + R 〕就“锥表=•〔,. +,〕5阳台?■> =而'+ H + RI + R‘V 柱=Sh嗫柱=Sh = "h K. 3h雄3网惟3E. =1(S +V?S+S)/?匕帕=_L(S + 4^S + S)h = -7r(r 2+ rR + R 2)h33上联缩小上恢犷d 枝缩生J②它说明两个平面的交线与两个平面公共点之间的关余:文战必过公共方、.③它可以判新点在直线上,即证假设干个疝共线的重要依据.(5)公延4:平行于同一条直发的两条直发互相平行⑸空间直战与友然之河的信五关东①异面立端定义:不同在任何一个平面的两条我为②畀面近端性质:既不平行,又不相交.③畀面女族打走:过平面外一点与平面一皮的jt线与平面不过,该点的直爱是异面直发④畀时立端所成角:直爱狼b是界面直发,经过空问任意一点O,分别引直线,//a, b II b,叫把.玄线3'科〞所成的锐角(或直角)叫做界面直发d和b 所成的角.两条界面直战所成角的闺是(0° ,90° ],假设两条界面宜爱所成的角是直角,我们就说这两条弁面玄端互相妻女.说明:(1)判定•空间直珑是界面直发方法:①根据界而立线的定义;②弁面直发的判定定理(2)在界面成线所成角定义中,无间一点.是任取的,而和点.的位置无关. ②束弁面直我所成角步骤:A.利用定义构爱角,可固定一条,平移另一条,或两条同时平移列架个特殊的位置,顶点选在特殊的住置上.B.证实作出的角即为所求角C,利用三角形来求角(7)等角定理:的系一小角的西也/另一小角的西也分别平行,坪以这两食和等贰M补.⑻空间直战与平面之河的柱,关东直为在平面——有无数个公共点.直线不在平面内理交一一只有一个公共点.(或直线在平面外)(平行一一没有公共点.三种枚五关东的符号袅示:oua;aQa = A ; alia(9)平面与平面之间的桂丑关东:平行——没有公共点;allp相交----- 有一条公共立为.aC\P = b5、文词中的平行问题HJ直或与平面平行的州定及其性质端面平行的村定走M:平面外一条直戏与此平面一条直或平行,那么核克瑞与此平面平行.线线平行=> 版而平行然面平行的性质定理:如枭一条直发"一个平面平行,经过这条直爱的平面和这个平面相交,那么这条直线的父战平行.爱而平行=>为疑平行(2)平面与平面平行的打走及其性质两个平面平行的利走走双(V如果一个平面的两条和交直线都平行于另一个平面,那么这两个平面平行 (爱而平行一面面平行人(2)如果在两个平面,各有两组相交成线对应平行,邛么这两个平面平行.(发线平行一面面平行人(3)垂克于同一条我爱的两个平面平行,两个平面平行的性质定双(1)如果两个平面平行,那么某一个平面的直珑与另一个平面平行.(面面平行一线面平行)(2)如果两个平行平面都的第三个平面相交,那么它们的交战平行.(面面平行一线线平行)7、空间中的塞女问题fU族然、面面、然面妻友的定义①两条界面直线的垂直:如果两条界面立线所成的角是直角,就说这两条界面直线互粕垂直.②为面生直:如果一条直或和一个平面的任何一条在爱垂直,就说这条直戏打这个平面垂直.③平面和平面垂皮:如果两个平面相交,所成的二面角(从一条左发出发的两个率平面所组成的图形)是左二面角(平面角是衣角人就说这两个平面垂去.⑵垂女关东的划定利性质定理①婉面妻女利定定理R性质定理判定定理:如果一条直线和一个平面的两条相交由线都垂直,那么这条直战垂直这个平面.性质定理:如果两条直发同垂直于一个平面,那么这两条直发平行.②面面妻女的利定定理R性质定理判定定理:如果一个平面经过另一个平面的一条垂珑,那么这两个平面互相垂直. 性质定理:如果两个平面互相垂直,那么在一个平面垂直于他们的交爱的直爱垂直于另一个平面.9,空间角问题HJ直婉与女戡所成的角①两平行直发所成的角:规定为0,②两条相交直发所成的角:两条直线相交其中不大于五角的角,叫这两条直戏所成的角.③两条异面直发所成的角:过空间任意一点.,分别作与两条弁面在爱a, 5平行的直珑〃,〃',形成两条粕交直珑,这两条相交直爱所成的不大于五角的希叫做两条弁面直线所成的角.(2)女姚/平面所出的角①平面的平行或与平面所成的角:规定为0°. ②平面的垂发与平面所成的角:规定为90」③平面的斜线与平面所成的角:平面的一条仰端和它在平面的射影所成的优角, 叫做这条直戈和这个平面所成的角.求仰武与聿面所成富的思路类效于求界面立线所成角:“一作.二证,三计算〞. 在“作角〞时依定义关缄作射影,由豺影定义知关使在于向爱上一点到面的垂战, 在斛题时,注意挖掘题设中两个主要信息:(1)斜珑上一点到面的垂发;(2)过斜戈上的一点或过斜戈的平面与面垂直,由面面垂直性质易径垂发.(3)二面角/二面角的平面角①二面角的定义:从一条在戏出发的两个半平面所组成的图形叫做二面角,这条直均叫做二面角的枝,这两个半平面叫做二面角的面.②二面角的平面角:以二面角的极上任意一点为顶点,在两个面分别作垂直于极• • • •的两条射发,这两条封发所成的角叫二面角的平面角.③直二面角:平面角是直角的二面角叫直二面角.两粕交平面如果所组晟的二面角是直二面角,那么这两个平面垂加反过来,如果两个平面垂直,那么所成的二面角为直二面角④求二面角的方决定义法:在枝上选择有关点,过这个点分别在两个面作垂直于极的射线得到平面角垂面头:二面角一点到两个面的垂线时,过两垂战作平面与两个面的交战所成的角为二面角的平面角_____ Q 7、空间直角生标东B1 Zj 71D,flj定义:如图,OBCD — DABC关隼伉正方体.以A为原点, 分别以ODQ A ,OB的方力为正方白,建立三条数轴x轴.y轴.z轴o. A……沙T 这时建立了一个空间直角生标条Oxyz. ^ 1J.叫做坐标点点2) x轴,y轴,z轴叫做生标轴.3)过每两个尘标轴的平面叫做生标面.(2)右手袅示法:令右孑大拇指、食指和中指粕互垂直时,可能形成的伉置. 大拇指指指为x轴正方白,食指指指为y轴正白,中指指右那么为2轴正白,这样也可以决定三轴间的粕位匿.C3)任意点生标嘉示:空间一点M的生标可以用有序实数组a,),,,z)来表示,有序实救组(x,y,z)叫做点M在此空间直角生标系中的生标,记作M(x,y,z) (x 叫做点M的横生标,y叫做点M的纵支标,z叫做点M 的竖坐标)(4)会间两点距禽生标公K:d = yl(X2 -Xj)2 +(% - Jl)2 +(句一句)2资资。
高中数学必修2知识点归纳
高中数学必修2知识点归纳高中数学必修2知识点归纳高中数学必修2是数学学科的一门重要课程,主要内容包括函数、二次函数与一元二次方程、直线和三角形的研究等。
下面是对这些知识点的归纳总结。
一、函数1. 函数的概念:函数是具有输入输出关系的一种映射关系。
通常用f(x)表示函数关系,其中x是自变量,f(x)是因变量。
2. 函数的性质:可递性、奇偶性、周期性、单调性等。
3. 特殊函数:常数函数、一次函数、幂函数、指数函数、对数函数、三角函数等。
4. 函数的运算:函数的四则运算、复合函数、反函数等。
5. 函数的图像:函数的图像可以通过函数的定义域和值域来确定,常见的有常数函数图像、线性函数图像、幂函数图像、指数函数图像、对数函数图像、三角函数图像等。
二、二次函数与一元二次方程1. 二次函数的概念:二次函数是一个带有二次项的函数,一般定义为f(x) = ax² + bx + c,其中a、b、c为常数,a ≠ 0。
2. 二次函数的性质:最值、对称轴、开口方向、零点等。
3. 一元二次方程:一元二次方程是一个以变量x为未知数的二次方程,一般表示为ax² + bx + c = 0,其中a、b、c为常数,且a ≠ 0。
4. 一元二次方程的解:一元二次方程有两个解,可以通过求根公式或配方法求得。
5. 一元二次方程与二次函数的关系:一元二次方程的解即为对应二次函数的零点,可以通过一元二次方程的解来求二次函数的零点。
三、直线1. 直线的表示:直线可以通过斜率截距式、一般式、点斜式等表示。
2. 直线的性质:平行直线、垂直直线、两直线交点的坐标、直线的倾斜角等。
3. 直线方程的求解:通过已知条件,可以利用直线的性质来求解直线的方程。
四、三角形1. 三角形的分类:根据边的长、内角的大小,三角形可以分为等边三角形、等腰三角形、直角三角形、锐角三角形、钝角三角形等。
2. 三角函数:正弦函数、余弦函数、正切函数等。
3. 三角函数关系:倍角公式、半角公式、和差化积公式等。
【最新】高一数学必修二各章知识点总结
【最新】高一数学必修二各章知识点总结高一数学必修二各章知识点总结如下:第一章:函数与二次函数1. 函数的概念及性质:定义域、值域、奇偶性、单调性等。
2. 二次函数的基本性质:顶点、对称轴、单调性、零点、图像的开口方向。
3. 一次函数与二次函数的比较与关系:求解一次函数与二次函数的交点等。
4. 二次函数的图像与方程:画出给定二次函数的图像,根据图像确定二次函数的方程等。
5. 二次函数与根式、指数、对数的应用。
第二章:三角函数1. 角度制与弧度制的转换。
2. 弧度制下的任意角的三角函数值的计算。
3. 三角函数的简单性质及其关系:同角三角函数的相互关系、倒数三角函数的相互关系等。
4. 三角函数的图像与性质:正弦函数、余弦函数、正切函数的图像与性质等。
5. 三角函数的应用:三角函数在几何、物理、工程等领域的应用。
第三章:指数与对数函数1. 指数的定义、性质及运算规律:指数与乘法、除法、乘方运算规律等。
2. 对数的定义、性质及运算规律:对数与指数的关系、对数运算法则等。
3. 指数函数与对数函数的简单性质与图像:指数函数与对数函数的基本性质、图像和性质等。
4. 指数函数与对数函数的应用:指数与对数在增长与衰减、微积分、金融等领域的应用。
第四章:数列1. 数列的概念与性质:等差数列、等比数列、通项公式、前n 项和等。
2. 数列的运算:数列的加减乘除等。
3. 等差数列与等差中项:等差数列的通项公式、等差数列的求和公式、等差数列的奇数项和、以及奇数和与偶数和等。
4. 等比数列与等比中项:等比数列的通项公式、等比数列的求和公式、等比数列的前n项和、无穷等比级数等。
5. 等差数列与等差中项的应用:等差数列在等价代换、简化形式、利润计算等方面的应用。
第五章:排列与组合1. 排列与组合的基本概念:排列、组合的定义与计算方法等。
2. 排列与组合的计算:排列与组合的计算公式、乘法原理、加法原理等。
3. 排列与组合的应用:排列与组合在概率、几何、数学问题解法等领域的应用。
高一必修二每章知识点公式总结
高一必修二每章知识点公式总结第一章:函数与导数1. 函数概念函数是一种特殊的关系,将自变量的值映射到因变量的值上,通常表示为y=f(x),其中x为自变量,y为因变量。
2. 定义域和值域定义域是自变量可能取值的范围,对于有理函数而言,需要考虑分母为零的情况。
值域是函数在定义域上取到的所有可能值。
3. 函数的基本性质a) 奇偶性:f(-x) = f(x)为偶函数,f(-x) = -f(x)为奇函数。
b) 单调性:f'(x)>0,函数递增;f'(x)<0,函数递减。
c) 最值:通过求导或者化简函数表达式,可以得到函数的最值。
d) 零点:函数取零值的点叫做零点,通过解方程f(x)=0,可以求得函数的零点。
4. 极值和最值a) 极值:函数在一定区间内取得的最大值或最小值。
通过求导,可以找到函数的驻点,再通过二阶导数判定其为极大值、极小值还是无极值。
b) 最值:函数在定义域上取得的最大值或最小值。
第二章:三角函数1. 基本概念a) 正弦函数sin(x):对于任意实数x,都可以通过单位圆上的一个点,该点与原点的连线与x轴正半轴之间的夹角所确定。
b) 余弦函数cos(x):对于任意实数x,都可以通过单位圆上的一个点,该点与原点的连线与x轴正半轴之间的夹角的余弦值。
c) 正切函数tan(x):tan(x) = sin(x)/cos(x),在直角三角形中,tan(x)表示斜边与对边之比。
2. 基本性质a) 周期性:sin(x)和cos(x)的周期均为2π,tan(x)的周期为π。
b) 奇偶性:sin(-x) = -sin(x),cos(-x) = cos(x),tan(-x) = -tan(x)。
c) 值域:-1 ≤ sin(x) ≤ 1,-1 ≤ cos(x) ≤ 1,tan(x)的值域为全体实数。
3. 三角函数的图像与性质a) 正弦函数的图像:周期为2π,对称于x轴。
当x=0时,取得最小值-1;当x=π/2时,取得最大值1。
高中数学必修2知识点总结归纳
高中数学必修2知识点总结归纳
1、二次函数及其图像的性质:二次函数的定义,形式,及其未知量的解析解,二次
函数图像的性质,凹凸性和极值点位置,及其判定方法。
2、三角函数及其图形:正弦函数、余弦函数、正切函数的定义,平面直角坐标系下
的正弦余弦正切函数图像的性质及其判定方法,正弦定理,余弦定理,根据图形求三角函
数值,及其应用。
3、小数和分数的运算:常用的小数转分数的方法,小数和分数的加减乘除运算,及
其规律性的分析。
4、指数及对数:指数的定义,特殊指数的运算及其规律性,指数函数的图像及性质,对数的定义及其特殊性质,对数函数及其图形性质,及其一元二次多项式的变换。
5、多项式及其因子分解:多项式的基本定义,及其分母和分子的几何概念,多项式
的因子分解,及其唯一性的判断。
6、不定积分及其应用:不定积分的定义及其特殊性,常用的不定积分计算方法,及
其实际应用,求积分近似值的方法,以及实际的应用案例。
7、应用题中的数字变换:应用题中常见的实数变化,及其最高次数的判定,同时变
化的最小公倍数及其关系,求解应用题中特殊方程组的方法,及其实际案例。
8、圆的参数方程及极坐标方程:圆的定义,参数方程与极坐标方程的转换,园的性质,及其圆上点的定位方法,过定点且与圆的关系及应用。
9、高等函数及应用:高次函数的定义,及其图像的特点,高次函数的求解及其实际
应用,对数及指数函数的求解及应用,以及多项式、二次曲线等拟合应用。
10、三角型函数与几何图形的关系:三角型函数的定义及其特殊性质,三角型函数的
变换及其图形改变,及其三角函数与几何图形联系的应用。
高一年级数学下册必修二知识点:直线的方程
【导语】我们学会忍受和承担。
但我们⼼中永远有⼀个不灭的⼼愿。
是雄鹰,要翱翔⽻天际!是骏马,要驰骋于疆域!要堂堂正正屹⽴于天地!努⼒!坚持!拼搏!成功!⼀起来看看⾼⼀频道为⼤家准备的《⾼⼀年级数学下册必修⼆知识点:直线的⽅程》吧,希望对你的学习有所帮助! 定义: 从平⾯解析⼏何的⾓度来看,平⾯上的直线就是由平⾯直⾓坐标系中的⼀个⼆元⼀次⽅程所表⽰的图形。
求两条直线的交点,只需把这两个⼆元⼀次⽅程联⽴求解,当这个联⽴⽅程组⽆解时,两直线平⾏;有⽆穷多解时,两直线重合;只有⼀解时,两直线相交于⼀点。
常⽤直线向上⽅向与X轴正向的夹⾓(叫直线的倾斜⾓)或该⾓的正切(称直线的斜率)来表⽰平⾯上直线(对于X轴)的倾斜程度。
可以通过斜率来判断两条直线是否互相平⾏或互相垂直,也可计算它们的交⾓。
直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。
直线在平⾯上的位置,由它的斜率和⼀个截距完全确定。
在空间,两个平⾯相交时,交线为⼀条直线。
因此,在空间直⾓坐标系中,⽤两个表⽰平⾯的三元⼀次⽅程联⽴,作为它们相交所得直线的⽅程。
表达式: 斜截式:y=kx+b 两点式:(y-y1)/(y1-y2)=(x-x1)/(x1-x2) 点斜式:y-y1=k(x-x1) 截距式:(x/a)+(y/b)=0 补充⼀下:最基本的标准⽅程不要忘了,AX+BY+C=0, 因为,上⾯的四种直线⽅程不包含斜率K不存在的情况,如x=3,这条直线就不能⽤上⾯的四种形式表⽰,解题过程中尤其要注意,K不存在的情况。
练习题: 1.已知直线的⽅程是y+2=-x-1,则() A.直线经过点(2,-1),斜率为-1 B.直线经过点(-2,-1),斜率为1 C.直线经过点(-1,-2),斜率为-1 D.直线经过点(1,-2),斜率为-1 【解析】选C.因为直线⽅程y+2=-x-1可化为y-(-2)=-[x-(-1)],所以直线过点(-1,-2),斜率为-1. 2.直线3x+2y+6=0的斜率为k,在y轴上的截距为b,则有()A.k=-,b=3B.k=-,b=-2C.k=-,b=-3D.k=-,b=-3 【解析】选C.直线⽅程3x+2y+6=0化为斜截式得y=-x-3,故k=-,b=-3. 3.已知直线l的⽅程为y+1=2(x+),且l的斜率为a,在y轴上的截距为b,则logab的值为() A.B.2C.log26D.0 【解析】选B.由题意得a=2,令x=0,得b=4,所以logab=log24=2. 4.直线l:y-1=k(x+2)的倾斜⾓为135°,则直线l在y轴上的截距是()A.1B.-1C.2D.-2 【解析】选B.因为倾斜⾓为135°,所以k=-1, 所以直线l:y-1=-(x+2), 令x=0得y=-1. 5.经过点(-1,1),斜率是直线y=x-2的斜率的2倍的直线是()A.x=-1B.y=1C.y-1=(x+1)D.y-1=2(x+1) 【解析】选C.由已知得所求直线的斜率k=2×=. 则所求直线⽅程为y-1=(x+1).。
人教版高一数学必修二知识点总结
人教版高一数学必修二知识点总结
一、函数的概念
1、定义:函数是将一些特定的元素映射成另外一些特定的元素的规律性变化。
2、概念:可以把一组值一一对应起来,并具有相同的规律性的数列称为函数,函数的概念可以用计算、图示、代数表达式等方法表达。
3、函数的特性:函数的特性有唯一性和对称性,即任意一个自变量对应唯一的因变量,而且两个自变量互换,两个因变量也一定会互换。
二、一元函数的图象
1、一元函数的图像:一元函数的图象反映函数的变化规律,是比较直观的表示形式,可以根据函数的表达式,画出函数的图像。
2、特殊的图像:当函数关系是y=x时,则函数的图像是一条直线,当函数关系是y=(1/x)时,则函数的图像是一个反比例曲线,当函数关系是y=k时,则函数的图像是一条水平线。
三、函数的特殊性
1、单调性:函数f(x)在定义域内有且仅有一个最值,称为该函数关系的单调性,当函数f(x)在定义域内单调递增时,称为单调递增;当函数f(x)在定义域内单调递减时,称为单调递减。
2、连续性:在定义域内,任意一点处的函数值之差都可以接近于零,则该函数关系称为连续的。
3、奇偶性:函数f(x)的奇偶性,是指函数f(x)在x=a处的值与函数f(-a)
在x=-a处的值是否有关联性。
如果f(a)=f(-a),则说明函数f(x)具有奇偶性,此时函数的图像关于y轴是对称的。
高一下册数学必修二知识点总结
高一下册数学必修二知识点总结【定理总结】公理1:如果一条一条直线上能的两点在一个平面内,那么这条直线上以及以的所有的点都在这个平面内。
公理2:如果三个两个平面有一个公共点,那么它们有且只有一条通过这个点的公共。
公理3:过不在同一条直线上才的三个点,有且只有一个平面。
推论1:经过一条直线和这条直线外同时一点,有且只有一个平面。
推论2:经过五条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个投影。
公理4:平行于同一条直线的直线互相平行。
等角定理:如果一个角的两边和另一个角的两边分别平行并且朝向圆周相同,那么这两个角相等。
【空间两直线的位置关系】空间两条暧昧关系直线只有三种边线关系:平行、相交、异面1、按除非共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个交叉点平面内的两条直线或既不平行也不相交。
异面直线判定定理:用平面内一点与平面外一点的圆周,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为(0°,90°)esp.空间向量法两异面抛物线间距离:公垂线段(有且只有一条)esp.空间向量法2、若从有无公共点的角度看可分为两类:(1)有且仅有一个公共两点——相交直线;(2)没有公共点——平行或异面直线和平面的位置互动关系:直线和平面只有互动关系三种位置关系:在平面内、与平面相交、与平面平行①直线在平面内——有无数个公共点②直线和平面相交——有且只有一个公营点直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。
空间向量法(找平面的法向量)规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角由此得直线和所成角的取值范围为[0°,90°]最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角三垂线定理及解是:如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直直线和平面垂直直线和平面平行的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。
高中数学必修2知识点总结归纳(人教版最全)
高中数学必修2知识点总结归纳(人教版最全)高中数学必修二知识点汇总第一章:立体几何初步1、柱、锥、台、球的结构特征1) 棱柱:是由两个平行的多边形底面和若干个侧面组成的几何体。
根据底面多边形的边数不同,可以分为三棱柱、四棱柱、五棱柱等。
棱柱的侧面和对角面都是平行四边形,侧棱平行且相等,平行于底面的截面是与底面全等的多边形。
2) 棱锥:是由一个多边形底面和若干个三角形侧面组成的几何体。
根据底面多边形的边数不同,可以分为三棱锥、四棱锥、五棱锥等。
棱锥的侧面和对角面都是三角形,平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
3) 棱台:是由一个平行于棱锥底面的平面截取棱锥,截面和底面之间的部分组成的几何体。
根据底面多边形的边数不同,可以分为三棱台、四棱台、五棱台等。
棱台的上下底面是相似的平行多边形,侧面是梯形,侧棱交于原棱锥的顶点。
4) 圆柱:是由一个圆形底面和一个平行于底面的圆柱面组成的几何体。
底面是全等的圆,母线与轴平行,轴与底面圆的半径垂直,侧面展开图是一个矩形。
5) 圆锥:是由一个圆形底面和一个以底面圆心为顶点的锥面组成的几何体。
底面是一个圆,母线交于圆锥的顶点,侧面展开图是一个扇形。
6) 圆台:是由一个圆形底面和一个平行于底面的圆台面组成的几何体。
上下底面是两个圆,侧面母线交于原圆锥的顶点,侧面展开图是一个弓形。
7) 球体:是由一个半圆面绕其直径旋转一周所形成的几何体。
球的截面是圆,球面上任意一点到球心的距离等于半径。
2、空间几何体的三视图三视图是指正视图(光线从几何体的前面向后面正投影)、侧视图(从左向右)和俯视图(从上向下)组成的视图。
正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度。
俯视图和侧视图是用来反映物体在不同方向上的位置关系的,前者反映长度和宽度,后者反映高度和宽度。
斜二测画法是一种直观的图示方法,它的特点是原来与x轴平行的线段仍然与x轴平行且长度不变,原来与y轴平行的线段仍然与y轴平行,但长度为原来的一半。
高一数学必修二知识点总结log
高一数学必修二知识点总结log一、对数与指数1. 概念和性质对数的定义、指数的定义、对数与指数的关系、对数的性质(对数的基本运算、幂函数的求值、对数函数的图像)2. 常用对数与自然对数常用对数的定义、自然对数的定义、常用对数与自然对数的换算、对数、指数与幂函数的图像二、指数函数与对数函数的分析1. 指数函数的性质指数函数的定义、指数函数的图像、指数函数的性质(增减性、奇偶性、单调性、零点、极限)2. 对数函数的性质对数函数的定义、对数函数的图像、对数函数的性质(增减性、奇偶性、单调性、零点、极限)三、对数与指数方程1. 对数方程对数方程的定义、对数方程的解法(变底公式、利用对数性质化简)2. 指数方程指数方程的定义、指数方程的解法(变底公式、变量转换)四、对数与指数不等式1. 对数不等式对数不等式的定义、对数不等式的解法(基本不等式、利用对数性质化简)2. 指数不等式指数不等式的定义、指数不等式的解法(基本不等式、变量转换)五、指数函数、对数函数与幂函数的应用1. 复利问题复利的概念、复利公式的推导与应用、连续复利的概念与应用2. 半衰期问题半衰期的概念、半衰期公式的推导与应用、放射性元素的衰变六、对数尺度与指数尺度1. 对数尺度对数尺度的定义、对数尺度的转换、对数尺度的应用(音量、测震等)2. 指数尺度指数尺度的定义、指数尺度的转换、指数尺度的应用(星等系统等)七、指数函数的增长速度与单调性1. 指数函数增长速度指数函数的导数与斜率、指数函数的限制性与趋势2. 指数函数的单调性指数函数的增减性、极值、拐点与曲线段数八、对数函数与指数函数的应用1. 相关变量的变化关系对数函数与指数函数的引入、基本模型与实际应用2. 模型的建立与求解实际问题的数学模型、通过对数函数与指数函数进行建模与求解以上是高一数学必修二知识点总结log,希望对你的学习有所帮助。
祝你取得优异的成绩!。
数学必修二所有知识点总结
数学必修二所有知识点总结数学必修二是高中数学课程的一部分,主要涵盖了解析几何、三角函数、数列和递推、概率统计等知识点。
这些知识点既有理论基础又有实际应用,对学生的数学思维能力和解决问题的能力有较高要求。
下面将对数学必修二中的各知识点进行总结和归纳。
一、函数与方程1.函数的概念函数是一种对应关系,将自变量的值映射到因变量的值。
函数通常用f(x)表示,其中x为自变量,f(x)为因变量。
函数的定义域、值域、性质等都是研究函数的重要内容。
2.特殊函数常见的特殊函数有一次函数、二次函数、幂函数、指数函数、对数函数和三角函数等。
这些函数在数学中有着广泛的应用,学生需要了解它们的图像、性质和变化规律。
3.方程与不等式一元一次方程、一元二次方程、一元一次不等式、一元二次不等式等都是学生需要掌握的内容。
解方程和不等式是数学中的基本技能,对于建模和解决实际问题有着重要的意义。
二、直线和圆1.直线的性质直线是解析几何中的基本对象,学生需要了解直线的斜率、方程、位置关系等内容。
直线的方程可以用点斜式、截距式、一般式等形式表示,学生需要熟练掌握这些表示方法并能灵活运用。
2.圆的性质圆是解析几何中的常见图形,学生需要了解圆的半径、直径、周长、面积等基本概念,同时还要掌握圆的方程和位置关系,以及与直线的关系等内容。
三、三角函数1.三角函数的概念三角函数是数学中的重要分支,是三角学的基础。
学生需要了解正弦函数、余弦函数、正切函数、余切函数等三角函数的定义和性质,包括周期性、奇偶性、单调性、图像等方面。
2.三角函数的变换学生需要了解三角函数的基本变换,包括平移、伸缩、反转等操作,以及将三角函数图像与三角函数方程相联系的应用问题。
四、数列和递推1.数列的概念数列是由一系列按照一定规律排列的数构成的序列。
学生需要了解等差数列、等比数列、等差数列和等比数列的和等基本概念,以及它们的性质和应用。
2.递推公式递推公式是数列中常见的一种表示方法,通过递推公式可以方便地表示数列的通项公式和前n项和。
高中数学必修二知识点
高中数学必修二知识点
一、函数基本概念
函数是一种中介关系,即一个输入和另一个输出之间的数学关系,是由一个变量与另一个变量之间的对应关系组成,也可用“自变量与因变量之间的函数关系”来表示。
自变量表示“输入”,因变量表示“输出”,函数则表示输入与输出之间的关系
二、函数的基本性质
1、唯一性。
假定函数f(x)是定义在D上的连续函数,若对x∈D有f(x)=f(y)(x≠y),那么令x=y,从而可得矛盾结论,即函数的值有唯一性。
2、有界性。
函数值的范围是定义域D或定义域D的子集,取值有边界,且返回的值不会超出这个范围。
3、连续性。
函数取值连续,不可突变,这是状态变化的基础。
三、函数的表达式
1、定义式。
定义式表示指定某函数时用来决定函数关系的公式。
常用的函数定义式包括一次函数式,二次函数式,指数函数式,对数函数式等。
2、函数图像。
函数图像就是将函数定义式替换成对应的点对连线图形,可以帮助我们更好地理解函数表达式与函数关系。
四、函数的分类
1、多项式函数。
多项式函数是按照指数大小进行组合,其图像是一段一段连续的连线图形。
2、三角函数。
三角函数是通过极坐标和直角坐标间的关系来研究函数关系的函数,其图像是一段一段的波浪曲线。
3、指数函数。
指数函数是按照指数的大小组成的函数,其图像是一条以负斜率上升的连线图形。
4、对数函数。
对数函数就是以底数为参数,参数为10时为常用对数,其图像是一条以正斜率上升的连线图形。
高一数学必修2知识点总结
高中数学必修2知识点一、直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0 °WaV 180 °(2)直线的斜率①定义:倾斜角不是90 °的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k表示。
即k tan 。
斜率反映直线与轴的倾斜程度。
当0 ,90时,k 0; 当90 ,180 时,k 0; 当90时,k不存在。
②过两点的直线的斜率公式:k 上一(x1 x2)x2 x1注意下面四点:(1)当X1 X2时,公式右边无意义,直线的斜率不存在,倾斜角为90°; (2) k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3 )直线方程①点斜式:y y1 k(x x1)直线斜率k,且过点x1, y1注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。
当直线的斜率为90。
时,直线的斜率不存在,它的方程不能用点斜式表示•但因I 上每一点的横坐标都等于X1,所以它的方程是X=X1。
②斜截式:y kx b,直线斜率为k,直线在y轴上的截距为b③两点式:y y1xx!(x1 X2, y1 y2)直线两点x, W ,X2, y2 y2y1 X2 X1④截矩式:X y 1a b其中直线I与〕x轴交于点(a,0),与y轴交于点(0,b),即1与x轴、y轴的截距分别为a,b。
⑤一般式:Ax By C 0 (A, B 不全为0)注意:①各式的适用范围②特殊的方程如:平行于x轴的直线:y b ( b为常数);平行于y轴的直线:x a (a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线A°x B°y C。
高一必修2计算知识点归纳
高一必修2计算知识点归纳计算是数学学科的重要组成部分,也是高中数学学习的基础。
在高一必修2课程中,我们学习了许多与计算相关的知识点,包括大数的运算、分数的运算、根式的运算、实数的运算等。
下面是对这些知识点的归纳总结。
一、大数的运算1.大数的读法:亿、亿分之一、亿分之一亿等。
2.大数的比较:可以按位比较,从高位到低位逐个比较数字的大小。
3.大数的加减法:分别按位进行加法或减法运算,注意进位和借位的处理。
4.大数的乘法:采用竖式计算或列式计算,注意进位的处理。
5.大数的除法:采用长除法进行计算,要注意整除和带余除法的区别。
二、分数的运算1.分数的定义:分数由分子和分母组成,表示部分与整体的比例关系。
2.分数的四则运算:分别对分子和分母进行运算,注意约分和通分的处理。
3.分数的加减法:通分后按照分子进行加减运算,注意分子的符号保持一致。
4.分数的乘法:将分子和分母分别相乘,然后进行约分。
5.分数的除法:将除数的倒数乘以被除数,然后进行约分。
三、根式的运算1.根式的定义:根式由根号和被开方数组成,表示求平方根或其他次方根的运算。
2.根式的基本性质:根号下的数值必须大于等于0,不能出现负数或分母为0的情况。
3.根式的化简:将根号下的数值分解成素数的乘积,然后求出根号的值。
4.根式的运算:可以进行加减法、乘法和除法运算,按照数学规律进行处理。
四、实数的运算1.整数的运算:包括正整数和负整数的加减乘除运算。
2.有理数的运算:包括整数和分数的加减乘除运算。
3.无理数的运算:包括根式和π的加减乘除运算。
4.实数的运算法则:满足交换律、结合律、分配律等基本性质。
以上是高一必修2课程中涉及的计算知识点的归纳总结。
通过学习这些知识点,我们可以更好地理解和掌握计算方法,提高解题能力和运算速度。
在实际应用中,我们可以运用这些知识点解决生活中的问题,例如计算购物所需的金额、计算比例关系等。
希望同学们能够通过不断的练习和应用,巩固和提升计算能力,为进一步学习数学打下坚实的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
yy 0 r 2 去解直线与圆相切的问题,其中 x0 , y 0 表示切点坐标,r 表示
yy 0 r 2
2
(课本命题).
②圆(x-a) +(y-b) =r ,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2 (课本命题的推广). 4、圆与圆的位置关系:通过两圆半径的和(差) ,与圆心距(d)之间的大小比较来确定。 设圆 C1 : x a1 y b1 r 2 , C 2 : x a 2 y b2 R 2
;
方程组有无数解 l1 与 l 2 重合 B x2 , y2) (8)两点间距离公式:设 A( x1 , y1 ),( 是平面直角坐标系中的两个点,
// l 2
则|
AB | ( x2 x1 )2 ( y2 y1 )2
(9)点到直线距离公式:一点 P
x0 , y0 到直线 l1 : Ax By C 0 的距离 d
tan 。斜率反映
90 ,180 时, k 0 ; 当 90 时, k 不存在。 y 2 y1 ②过两点的直线的斜率公式: k ( x1 x2 ) x2 x1 注意下面四点:(1)当 x1 x 2 时,公式右边无意义,直线的斜率不存在,倾斜角为 90°; 0 ,90
,其中直线 l 2 不在直线系中。 A1x B1 y C1 A2 x B2 y C2 0 ( 为参数) (6)两直线平行与垂直 当 l1
: y k1 x b1 , l 2 : y k 2 x b2 时, l1 // l 2 k1 k 2 , b1 b2 ; l1 l 2 k1k 2 1
' ' ' ' '
表示:用各顶点字母,如五棱台 P A B C D E 几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点 (4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
③两点式:
Ax By C 0 (A,B 不全为 0) 注意:○ 1 各式的适用范围 2 特殊的方程如: ○
⑤一般式: 平行于 x 轴的直线:
y b (b 为常数) ;
平行于 y 轴的直线: x a (a 为常数) ;
(5)直线系方程:即具有某一共同性质的直线 (一)平行直线系 平行于已知直线 A0 x (二)过定点的直线系 (ⅰ)斜率为 k 的直线系: (ⅱ)过两条直线 l1
2
② 平面的表示:通常用希腊字母α 、β 、γ 表示,如平面α (通常写在一个锐角内) ; 也可以用两个相对顶点的字母来表示,如平面 BC。 ③ 点与平面的关系:点 A 在平面 内,记作 A ;点 A 不在平面 内,记作 A 点与直线的关系:点 A 的直线 l 上,记作:A∈l; 点 A 在直线 l 外,记作 A l; 直线与平面的关系:直线 l 在平面α 内,记作 l α ;直线 l 不在平面α 内,记作 l α 。 (2)公理 1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。 (即直线在平面内,或者平面经 过直线)应用:检验桌面是否平; 判断直线是否在平面内用符号语言表示公理 1: A l , B l , A , B l (3)公理 2:经过不在同一条直线上的三点,有且只有一个平面。 推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。 公理 2 及其推论作用:①它是空间内确定平面的依据 记作α ∩β =a。符号语言: P A ②它是证明平面重合的依据 (4) 公理 3: 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号: 平面α 和β 相交, 交线是 a,
当 (2)k 与 P1、P2 的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 (3)直线方程 ①点斜式:
时, k 0 ;
y y1 k ( x x1 ) 直线斜率 k,且过点 x1, y1
(2)设直线 l :
Ax By C 0 ,圆 C : x a y b r 2 ,先将方程联立消元,得到一个一元二次方程之后,令 其中的判别式为 ,则有
0 l与C相离 ; 0 l与C相切 ; 0 l与C相交
注:如果圆心的位置在原点,可使用公式 xx 0 半径。 (3)过圆上一点的切线方程: ①圆 x2+y2=r2,圆上一点为(x0,y0),则过此点的切线方程为 xx 0
B0 y C0 0 ( A0 , B0 是不全为 0 的常数)的直线系: A0 x B0 y C 0 (C 为常数)
y y0 k x x0 ,直线过定点 x0 , y0 ;
: A1 x B1 y C1 0 , l2 : A2 x B2 y C2 0 的交点的直线系方程为
注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。 (7)两条直线的交点
l1 : A1 x B1 y C1 0 l 2 : A2 x B2 y C2 0 相交
交点坐标即方程组 方程组无解 l1
A1 x B1 y C1 0 的一组解。 A2 x B2 y C 2 0
' ' ' ' '
'
表示:用各顶点字母,如五棱锥 P A B C D E 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。 (3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
'
S 直棱柱侧面积 ch
S正棱台侧面积
S圆柱侧 2rh S正棱锥侧面积 ch'
S圆台侧面积 (r R)l S圆锥表 r r l
1 2
S圆锥侧面积 rl
S圆柱表 2r r l
V柱 Sh
1 (c1 c2 )h' 2
S圆台表 r 2 rl Rl R 2
高中数学必修 2 知识点
一、直线与方程
(1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与 x 轴平行或重合时,我们规定它的倾斜角为 0 度。因此,倾斜角的取值范围是 0°≤α <180° (2)直线的斜率 ①定义:倾斜角不是 90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用 k 表示。即 k 直线与轴的倾斜程度。 当
注意:当直线的斜率为 0°时,k=0,直线的方程是 y=y1。 当直线的斜率为 90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因 l 上每一点的横坐标都等于 x1,所以它 的方程是 x=x1。 ②斜截式: y kx b ,直线斜率为 k,直线在 y 轴上的截距为 b
y y1 x x1 ( x1 x2 , y1 y2 )直线两点 x1, y1 , x2 , y2 y2 y1 x2 x1 x y ④截矩式: 1 a b 其中直线 l 与 x 轴交于点 (a,0) ,与 y 轴交于点 (0, b) ,即 l 与 x 轴、 y 轴的截距分别为 a, b 。
2
(2)一般方程 x 当D
2
y 2 Dx Ey F 0
2 2
1 D E ,半径为 E 2 4F 0 时,方程表示圆,此时圆心为 r ,
2 2 2
2
D 2 E 2 4F
当 D E 4F 0 时,表示一个点; 当 D E 4F 0 时,方程不表示任何图形。 (3)求圆方程的方法: 一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出 a,b,r;若利用一般方程,需要求出 D,E,F; 另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。 3、直线与圆的位置关系: 直线与圆的位置关系有相离,相切,相交三种情况,基本上由下列两种方法判断:
3、空间几何体的直观图——斜二测画法 斜二测画法特点:①原来与 x 轴平行的线段仍然与 x 平行且长度不变; ②原来与 y 轴平行的线段仍然与 y 平行,长度为原来的一半。 4、柱体、锥体、台体的表面积与体积 (1)几何体的表面积为几何体各个面的面积的和。 (2)特殊几何体表面积公式(c 为底面周长,h 为高, h 为斜高,l 为母线)
2 2
2
两圆的位置关系常通过两圆半径的和(差) ,与圆心距(d)之间的大小比较来确定。
R r 时两圆外离,此时有公切线四条; 当 d R r 时两圆外切,连心线过切点,有外公切线两条,内公切线一条;
当d 当Rr
d R r 时两圆相交,连心线垂直平分公共弦,有两条外公切线; 当 d R r 时,两圆内切,连心线经过切点,只有一条公切线; 当 d R r 时,两圆内含; 当 d 0 时,为同心圆。
2
(1)设直线 l :
Ax By C 0 ,圆 C : x a 2 y b2 r 2 ,圆心 C a, b 到 l 的距离为 d Aa Bb C
A2 B 2
2 2ห้องสมุดไป่ตู้
,则有
d r l与C相离 ; d r l与C相切 ; d r l与C相交
三、立体几何初步
1、柱、锥、台、球的结构特征
(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的 几何体。 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。 表示:用各顶点字母,如五棱柱 ABCDE A B C D E 或用对角线的端点字母,如五棱柱 AD 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面 全等的多边形。 (2)棱锥 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等