高中物理相遇和追及问题(完整版)
高一物理相遇及追及问题
显然,甲车停止后乙再追上甲。
甲车刹车的位移
s甲=v02/2a=152/2=112.5m
乙车的总位移
s乙=s甲+32=144.5m t=s乙/v乙=144.5/9=16.06s
第五页,共18页。
例3、甲乙两车同时同向从同一地点出发,
甲车以v1=16m/s的初速度,a1=-2m/s2的 加速度作匀减速直线运动,乙车以v2=4m /s的速度,a2=1m/s2的加速度作匀加 速直线运动,求两车再次相遇前两车相 距最大距离和再次相遇时两车运动的时 间?
at′=6 t′=6s
在这段时间里,人、车的位移分别为: s人=v人t=6×6=36m s车=at′2/2=1×62/2=18m
△s=s0+s车-s人=25+18-36=7m
第三页,共18页。
例2、甲车在前以15m/s的速度匀速行驶, 乙车在后以9m/s的速度行驶。当两车相距 32m时,甲车开始刹车,加速度大小为
第十七页,共18页。
求解追击问题的常用方法
1、通过运动过程的分析,找到隐含条件,从而顺利列方程求解,例 如:
⑴、匀减速物体追赶同向匀速物体时,能追上或恰好追不上的 临界条件: 即将靠近时,追赶者速度等于被追赶者速度(即当追赶者速度大 于被追赶者速度时,能追上;当追赶者速度小于被追赶者速度时, 追不上) ⑵、初速为零的匀加速物体追赶同向匀速物体时,追上前两者具 有最大距离的条件:追赶者的速度等于被追赶者的速度。
当t=-b/2a时,即t=4s时,两车相距最远
△s=12×4-3×42/2=24m
当两车相遇时,△s=0,即12t-3t2/2=0
∴
t=8s 或t=0(舍去)
第八页,共18页。
高一物理追及相遇问题
高一物理追及相遇问题追及和相遇是高一物理中常见的运动学问题,这类问题涉及到两个或多个物体在同一时间或不同时间运动的情况。
解决这类问题的关键是掌握运动学的基本公式和定理,理解物体之间的相对运动关系,并运用数学工具进行计算和分析。
一、追及问题追及问题通常是指两个物体在同一时间开始运动,其中一个物体追赶另一个物体,直到追上或超过被追物体。
解决追及问题的关键是找出两个物体之间的位移差、速度差和时间关系。
定义变量设被追物体为A,追赶物体为B。
设t时刻A、B的位移分别为x1、x2,速度分别为v1、v2。
建立数学方程根据运动学公式,我们可以建立以下方程:(1) x1 = v1t + 1/2at^2(匀加速运动)(2) x2 = v2t(匀速运动)(3) 当A、B速度相等时,有v1 = v2 + at求解方程解方程组(1)(2)(3),可以求出t、x1、x2的值。
分析结果根据求出的t、x1、x2的值,可以判断A、B是否能够相遇,相遇时A、B的位移和速度关系。
二、相遇问题相遇问题是指两个物体在同一地点开始运动,其中一个物体迎向另一个物体,直到两个物体相遇或相离。
解决相遇问题的关键是找出两个物体之间的位移和速度关系。
定义变量设相遇的两个物体分别为A、B。
设t时刻A、B的位移分别为x1、x2,速度分别为v1、v2。
建立数学方程根据运动学公式,我们可以建立以下方程:(1) x1 + x2 = v1t + v2t(相对速度)(2) v1 - v2 = at(相对加速度)求解方程解方程组(1)(2),可以求出t、x1、x2的值。
分析结果根据求出的t、x1、x2的值,可以判断A、B是否能够相遇,相遇时A、B的位移和速度关系。
如果A、B不能相遇,还可以求出它们之间的距离。
高中物理追击和相遇问题专题(含详解)
第3页 共8页
13.汽车以 3 m/s2 的加速度开始启动的瞬间,一辆以 6 m/s 的速度沿同方向做匀速直线运动的自行车
12
x v(t0 t1) at1 60m
此时
2
(2)警车发动到达到最大速度需要 t2= vm/a=8s
(1) 小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少?
(2) 小汽车什么
时候追上自行车,此时小汽车的速度是多少?
( 二 ) .匀速运动追匀加速运动的情况 (开始时 v1> v 2):
1.当 v1> v 2 时,两者距离变小;
2.当 v1= v 2 时,①若满足 x1< x 2+Δ x,则永远追不上,此时两者距离最近;
———— -( 3)
由上面 3 式可解得 sAB 60km sAB 表示 AB 间的距离
4.设轿车行驶的速度为 v1,卡车行驶的速度为 v2,
则 v1= 108 km/h=30 m/s ,
v2=72 km/h=20 m/s , 在反应时间Δ t 内两车行驶的距离分别为 s1、 s2,则
s1= v1Δt ① s2= v2Δt ② 轿车、卡车刹车所通过的距离分别为
直线运动中的追及和相遇问题
一、相遇和追及问题的实质
研究的两物体能否在相同的时刻到达相同的空间位置的问题。
二、 解相遇和追及问题的关键 1. 画出物体运动的情景图 2. 理清三大关系
( 1)时间关系 : tA tB t0
( 2)位移关系: xA xB x0
(完整)高中物理追击和相遇问题专题带答案
专题:直线运动中的追击和相遇问题一、相遇和追击问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。
二、解相遇和追击问题的关键画出物体运动的情景图,理清三大关系(1)时间关系:t A t B t0(2)位移关系:x A x B x0(3)速度关系:两者速度相等。
它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
三、追击、相遇问题的分析方法:A. 画出两个物体运动示意图,根据两个物体的运动性质, 选择同一参照物, 列出两个物体的位移方程;B. 找出两个物体在运动时间上的关系C. 找出两个物体在运动位移上的数量关系D. 联立方程求解.说明:追击问题中常用的临界条件:⑴速度小者追速度大者,追上前两个物体速度相等时, 有最大距离;⑵速度大者减速追赶速度小者, 追上前在两个物体速度相等时, 有最小距离. 即必须在此之前追上,否则就不能追上.四、典型例题分析:(一).匀加速运动追匀速运动的情况(开始时v1< v2):v1< v2时,两者距离变大;v1= v2时,两者距离最大;v1>v2 时,两者距离变小,相遇时满足x1= x2+Δx,全程只相遇(即追上)一次。
【例1】一小汽车从静止开始以3m/s2的加速度行驶,恰有一自行车以6m/s的速度从车边匀速驶过.求:(1)小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少?(2)小汽车什么时候追上自行车,此时小汽车的速度是多少?答案:(1)2s 6m (2)12m/s(二).匀速运动追匀加速运动的情况(开始时v1> v2):v1> v2时,两者距离变小;v1= v2时,①若满足x1< x2+Δx,则永远追不上,此时两者距离最近;②若满足x1=x2+Δx ,则恰能追上,全程只相遇一次;③若满足x1> x2+ Δx,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。
高一物理追击与相遇问题
中矩形的面积与三角形面积的差,不难看出,当t=t0时矩形与三
角形的面积之差最大。
v/ms-1
v-t图像的斜率表示物体的加速度
6 tan 3
t0
t0 2s
当t=2s时两车的距离最大
6
o α t0
汽车
自 行
车 t/s
xm
1 2 6m 6m 2
动态分析随着时间的推移,矩 形面积(自行车的位移)与三角形面
运动。要使两车不相撞,a应满足什么条件?
方法一:公式法 两车恰不相撞的条件是两车速度相同时相遇。
由A、B 速度关系: v1 at v2
由A、B位移关系:v1t
1 2
at 2
v2t
x0
a (v1 v2 )2 (20 10)2 m/s2 0.5m/s2
2x0
2 100
则a 0.5m / s2
第一章 匀变速直线运动
追击和相遇问题
一、几种典型追击问题
v
甲
乙
甲的初速度大于乙的速度 o
t
t0
甲一定能追上乙,v甲=v乙的时刻为甲、乙有
最大距离的时刻。
例1:一辆汽车在十字路口等候绿灯,当绿灯亮时汽 车以3m/s2的加速度开始加速行驶,恰在这时一辆自 行车以6m/s的速度匀速驶来,从后边超过汽车。试 求:汽车从路口开动后,在追上自行车之前经过多长 时间两车相距最远?此时距离是多少?
vt2 v02 2ax0
a vt2 v02 0 102 m / s2 0.5m / s2 2x0 2100
a 0.5m / s2
以B为参照物,公式中的各个量都应是相对于B的物理量. 注意物理量的正负号。
方法四:二次
v2t x0
高中物理追击、追及和相遇问题
高中物理追击、追及和相遇问题一、追击问题追和被追的两物体的速度相等(同向运动)是能追上、追不上,两者距离有极值的临界条件:1、做匀减速直线运动的物体追赶同向做匀速直线运动的物体.(1)两物体的速度相等时,追赶者仍然没有追上被追者,则永远追不上,这种情况下当两者的速度相等时,它们间的距离最小.(2)两物体的速度相等时,如它们处在空间的同一位置,则追赶者追上被追者,但两者不会有第二次相遇的机会.(3)若追赶者追上被追者时,其速度大于被追者的速度,则被追者还可以再追上追赶者,两者速度相等时,它们间的距离最大.2、初速度为零的匀加速直线运动追赶同向做匀速直线运动的物体.(1)追上前,两者的速度相等时,两者间距离最大.(2)后者与前者的位移大小之差等于它们初始位置间的距离时,后者追上前者.二、相遇问题1、同向运动的两物体追及即相遇.2、相向运动的物体,当各自发生位移大小之和等于开始时两物体间的距离时即相遇.例1、两辆车同时同地同向做直线运动,甲以4m/s的速度做匀速运动,乙由静止开始以2m/s2的加速度做匀加速直线运动. 求:(1)它们经过多长时间相遇?相遇处离原出发地多远?(2)相遇前两物体何时距离最大?最大距离多少?解析:(1)经过t时间两物体相遇,位移为s,根据各自的运动规律列出方程:代入数据可得t=4s,s=16m.(2)甲乙经过时间t'它们之间的距离最大,则从上面分析可知应该满足条件为:,,解得:此时它们之间最大距离为什么当时,两车间的距离最大?这是因为在以前,两车间距离逐渐变大,当以后,,它们间的距离逐渐变小,因此当时,它们间的距离最大.例2、羚羊从静止开始奔跑,经过50m的距离能加速到最大速度为25m/s,并能保持一段较长的时间;猎豹从静止开始奔跑,经过60m的距离能加速到最大速度30m/s,以后只能维持这一速度4.0s. 设猎豹距羚羊x时开始攻击,羚羊在猎豹开始攻击后1.0s才开始奔跑,假定羚羊和猎豹在加速阶段分别做匀加速运动,且均沿同一直线奔跑,则:(1)猎豹要在减速前追到羚羊,x值应在什么范围?(2)猎豹要在其加速阶段追到羚羊,x值应在什么范围?解析:解决这类题目,关键是要读懂题目,比如:猎豹在减速前一共用了多长时间,减速前的运动是何种运动等等.(1)由下图可知,猎豹要在减速前追到羚羊:对猎豹:,对羚羊同理可得:,即;当x≤55m时,猎豹能在减速前追上羚羊(2)猎豹要在其加速阶段追到羚羊,则:对猎豹:对羚羊:则:即:当x≤31.9m时,猎豹能在加速阶段追上羚羊.。
高中物理追击和相遇问题专题(含详解)
直线运动中的追及和相遇问题一、相遇和追及问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。
二、 解相遇和追及问题的关键1.画出物体运动的情景图2.理清三大关系(1)时间关系 :0t t t B A ±= (2)位移关系:0A B x x x =± (3)速度关系:v A =v B两者速度相等往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
三、追及、相遇问题的分析方法:A. 画出两个物体运动示意图,根据两个物体的运动性质,选择同一参照物,列出两个物体的位移方程;B. 找出两个物体在运动时间上的关系C. 找出两个物体在运动位移上的数量关系D. 联立方程求解.说明:追及问题中常用的临界条件:⑴速度小者加速追速度大者,速度在接近,但距离在变大。
追上前两个物体速度相等时,有最大距离; ⑵速度大者减速追赶速度小者, 速度在接近,但距离在变小。
追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上.四、典型例题分析:(一).匀加速运动追匀速运动的情况(开始时v 1< v 2):2.当v1= v2时,两者距离最大;3.v1>v2时,两者距离变小,相遇时满足x1= x2+Δx,全程只相遇(即追上)一次。
【例1】一小汽车从静止开始以3m/s2的加速度行驶,恰有一自行车以6m/s的速度从车边匀速驶过.求:(1)小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少?(2)小汽车什么时候追上自行车,此时小汽车的速度是多少?(二).匀速运动追匀加速运动的情况(开始时v1> v2):1.当v1> v2时,两者距离变小;2.当v1= v2时,①若满足x1< x2+Δx,则永远追不上,此时两者距离最近;②若满足x1=x2+Δx,则恰能追上,全程只相遇一次;③若满足x1>x2+Δx,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。
(完整版)高中物理追击和相遇问题专题(含详解)
直线运动中的追及和相遇问题一、相遇和追及问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。
二、 解相遇和追及问题的关键1.画出物体运动的情景图2.理清三大关系(1)时间关系 :0t t t B A ±= (2)位移关系:0A B x x x =±(3)速度关系:v A =vB两者速度相等往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
三、追及、相遇问题的分析方法: A. 画出两个物体运动示意图,根据两个物体的运动性质,选择同一参照物,列出两个物体的位移方程; B. 找出两个物体在运动时间上的关系 C. 找出两个物体在运动位移上的数量关系 D. 联立方程求解.说明:追及问题中常用的临界条件:⑴速度小者加速追速度大者,速度在接近,但距离在变大。
追上前两个物体速度相等时,有最大距离; ⑵速度大者减速追赶速度小者, 速度在接近,但距离在变小。
追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上. 四、典型例题分析:(一).匀加速运动追匀速运动的情况(开始时v 1< v 2): 1.当v 1< v 2时,两者距离变大; 2.当v 1= v 2时,两者距离最大;3.v 1>v 2时,两者距离变小,相遇时满足x 1= x 2+Δx ,全程只相遇(即追上)一次。
【例1】一小汽车从静止开始以3m/s 2的加速度行驶,恰有一自行车以6m/s 的速度从车边匀速驶过.求:(1)小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少? (2)小汽车什么时候追上自行车,此时小汽车的速度是多少?(二).匀速运动追匀加速运动的情况(开始时v 1> v 2): 1.当v 1> v 2时,两者距离变小;2.当v 1= v 2时,①若满足x 1< x 2+Δx ,则永远追不上,此时两者距离最近;②若满足x 1=x 2+Δx ,则恰能追上,全程只相遇一次; ③若满足x 1> x 2+Δx ,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。
高中物理追击和相遇问题专题(含详解)
直线运动中的追与和相遇问题一、相遇和追与问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。
二、 解相遇和追与问题的关键1.画出物体运动的情景图2.理清三大关系(1)时间关系 :0t t t B A ±= (2)位移关系:0A B x x x =± (3)速度关系:两者速度相等往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
三、追与、相遇问题的分析方法:A. 画出两个物体运动示意图,根据两个物体的运动性质,选择同一参照物,列出两个物体的位移方程;B. 找出两个物体在运动时间上的关系C. 找出两个物体在运动位移上的数量关系D. 联立方程求解.说明:追与问题中常用的临界条件:⑴速度小者加速追速度大者,速度在接近,但距离在变大。
追上前两个物体速度相等时,有最大距离;⑵速度大者减速追赶速度小者, 速度在接近,但距离在变小。
追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上. 四、典型例题分析:(一).匀加速运动追匀速运动的情况(开始时v1< v2):1.当v1< v2时,两者距离变大;2.当v1= v2时,两者距离最大;3.v1>v2时,两者距离变小,相遇时满足x1= x2+Δx,全程只相遇(即追上)一次。
【例1】一小汽车从静止开始以32的加速度行驶,恰有一自行车以6的速度从车边匀速驶过.求:(1)小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少? (2)小汽车什么时候追上自行车,此时小汽车的速度是多少?(二).匀速运动追匀加速运动的情况(开始时v1> v2):1.当v1> v2时,两者距离变小;2.当v1= v2时,①若满足x1< x2+Δx,则永远追不上,此时两者距离最近;②若满足x12+Δx,则恰能追上,全程只相遇一次;③若满足x1> x2+Δx,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。
(完整版)高中物理相遇和追及问题(完整版)
相遇追及问题一、考点、热点回顾一、追及问题1.速度小者追速度大者类型图象说明匀加速追匀速①t=t0以前,后面物体与前面物体间距离增大②t=t0时,两物体相距最远为x0+Δx③t=t0以后,后面物体与前面物体间距离减小匀速追匀减速④能追及且只能相遇一次匀加速追匀减速2.速度大者追速度小者度大者追速度小者匀减速追匀速开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即t=t0时刻:①若Δx=x0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件匀速追匀加速②若Δx<x0,则不能追及,此时两物体最小距离为x0-Δx③若Δx>x0,则相遇两次,设t1时刻Δx1=x0,两物体第一次相遇,则t2时刻两物体第二次相遇匀减速追匀加速①表中的Δx是开始追及以后,后面物体因速度大而比前面物体多运动的位移;②x0是开始追及以前两物体之间的距离;③t2-t0=t0-t1;④v1是前面物体的速度,v2是后面物体的速度.二、相遇问题这一类:同向运动的两物体的相遇问题,即追及问题.第二类:相向运动的物体,当各自移动的位移大小之和等于开始时两物体的距离时相遇.解此类问题首先应注意先画示意图,标明数值及物理量;然后注意当被追赶的物体做匀减速运动时,还要注意该物体是否停止运动了.求解追及问题的分析思路(1)根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物体运动时间之间的关系.(2)通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式.追及的主要条件是两个物体在追上时位置坐标相同.(3)寻找问题中隐含的临界条件.例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离,等等.利用这些临界条件常能简化解题过程.(4)求解此类问题的方法,除了以上所述根据追及的主要条件和临界条件解联立方程外,还有利用二次函数求极值,及应用图象法和相对运动知识求解.相遇问题相遇问题的分析思路:相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同.(1)列出两物体运动的位移方程、注意两个物体运动时间之间的关系. (2)利用两物体相遇时必处在同一位置,寻找两物体位移间的关系. (3)寻找问题中隐含的临界条件.(4)与追及中的解题方法相同.二、典型例题【例1】物体A 、B 同时从同一地点,沿同一方向运动,A 以10m/s 的速度匀速前进,B 以2m/s 2的加速度从静止开始做匀加速直线运动,求A 、B 再次相遇前两物体间的最大距离. 【解析一】 物理分析法A 做 υA =10 m/s 的匀速直线运动,B 做初速度为零、加速度a =2 m/s 2的匀加速直线运动.根据题意,开始一小段时间内,A 的速度大于B 的速度,它们间的距离逐渐变大,当B 的速度加速到大于A 的速度后,它们间的距离又逐渐变小;A 、B 间距离有最大值的临界条件是υA =υB . ① 设两物体经历时间t 相距最远,则υA =at ② 把已知数据代入①②两式联立得t =5 s 在时间t 内,A 、B 两物体前进的距离分别为 s A =υA t =10×5 m=50 ms B =12at 2=12×2×52m =25 mA 、B 再次相遇前两物体间的最大距离为 Δs m =s A -s B =50 m -25 m =25 m 【解析二】 相对运动法因为本题求解的是A 、B 间的最大距离,所以可利用相对运动求解.选B 为参考系,则A 相对B 的初速度、末速度、加速度分别是υ0=10 m/s 、υt =υA -υB =0、a =-2 m/s 2. 根据υt 2-υ0=2as .有0-102=2×(-2)×s AB 解得A、B 间的最大距离为s AB =25 m . 【解析三】 极值法物体A 、B 的位移随时间变化规律分别是s A =10t ,s B =12at 2=12×2×t 2 =t 5.则A 、B 间的距离Δs =10t -t 2,可见,Δs 有最大值,且最大值为Δs m =4×(-1)×0-1024×(-1) m =25 m【解析四】 图象法根据题意作出A 、B 两物体的υ-t 图象,如图1-5-1所示.由图可知,A 、B 再次相遇前它们之间距离有最大值的临界条件是υA =υB ,得t 1=5 s . A 、B 间距离的最大值数值上等于ΔOυA P 的面积,即Δs m =12×5×10 m=25 m .【答案】25 m【点拨】相遇问题的常用方法(1)物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,按(解法一)中的思路分析.(2)相对运动法:巧妙地选取参考系,然后找两物体的运动关系.(3)极值法:设相遇时间为t ,根据条件列方程,得到关于t 的一元二次方程,用判别式进行讨论,若△>0,即有两个解,说明可以相遇两次;若△=0,说明刚好追上或相碰;若△<0,说明追不上或不能相碰.(4)图象法:将两者的速度时间图象在同一个坐标系中画出,然后利用图象求解. 拓展如图1-5-2所示是甲、乙两物体从同一地点,沿同一方向做直线运动的υ-t 图象,由图象可以看出 ( 〕A .这两个物体两次相遇的时刻分别是1s 末和4s 末B .这两个物体两次相遇的时刻分别是2s 末和6s 末C .两物体相距最远的时刻是2s 末D .4s 末以后甲在乙的前面【解析】从图象可知两图线相交点1s 末和4s 末是两物速度相等时刻,从0→2s,乙追赶甲到2s 末追上,从2s 开始是甲去追乙,在4s 末两物相距最远,到6s 末追上乙.故选B . 【答案】B【实战演练1】(2011·新课标全国卷)甲乙两辆汽车都从静止出发做加速直线运动,加速度方向一直不变。
高三物理追及和相遇问题
高三物理追及和相遇问题
高三物理中的追及和相遇问题是指有两个物体,一个物体从静止开始追赶另一个物体,当两个物体相遇时,求出相遇时的时间、距离、速度等相关物理量。
通常情况下,追及和相遇问题可以分为两种情况来讨论:
1.追及问题:已知两个物体的速度和初始位置,求出多长时间后一个物体能追到另一个物体。
2.相遇问题:在追及问题的基础上,已知第一个物体的速度、初始位置和时间,求出第二个物体的速度。
解决这类问题的一般步骤如下:
1.设第一个物体在第n秒时追上第二个物体,设相遇的时间为t。
2.根据已知的速度和时间,可以得到第一个物体追上的距离为
D1=n*v1,第二个物体走过的距离为D2=t*v2。
3.由于追及时两物体的距离相等,所以有D1=D2,即n*v1=t*v2。
4.根据以上关系式,可以求得相遇时间t。
5.根据已知的时间和速度,可以求出第二个物体的位置。
同时,还需要注意以下几点:
1.在解决问题时,要注意判断追及问题中的是否会相遇,即要保证追击的速度要大于被追逐物体的速度。
2.在相遇问题中,要注意判断解的合理性,即要保证得出的速度为正值,表示物体的运动方向正确。
3.多进行思维转化,可以使用代数解法或图形解法来解决问题,根据具体情况选择最合适的解法。
高中物理相遇和追及问题(全套完整版)(K12教育文档)
高中物理相遇和追及问题(全套完整版)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中物理相遇和追及问题(全套完整版)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中物理相遇和追及问题(全套完整版)(word版可编辑修改)的全部内容。
相遇追及问题一、考点、热点回顾一、追及问题1。
速度小者追速度大者类型 图象 说明匀加速追匀速①t=t 0以前,后面物体与前面物体间距离增大②t=t 0时,两物体相距最远为x 0+Δx③t=t 0以后,后面物体与前面物体间距离减小④能追及且只能相遇一次匀速追匀减速匀加速追匀减速2。
速度大者追速度小者 度大者追速度小者匀减速追匀速开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即t=t0时刻:①若Δx=x0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件②若Δx<x0,则不能追及,此时两物体最小距离为x0-Δx③若Δx 〉x0,则相遇两次,设t1时刻Δx1=x0,两物体第一次相遇,则t2时刻两物体第二次相遇匀速追匀加速匀减速追匀加速①表中的Δx 是开始追及以后,后面物体因速度大而比前面物体多运动的位移; ②x 0是开始追及以前两物体之间的距离; ③t 2-t 0=t 0—t 1;④v 1是前面物体的速度,v 2是后面物体的速度。
二、相遇问题这一类:同向运动的两物体的相遇问题,即追及问题.第二类:相向运动的物体,当各自移动的位移大小之和等于开始时两物体的距离时相遇。
解此类问题首先应注意先画示意图,标明数值及物理量;然后注意当被追赶的物体做匀减速运动时,还要注意该物体是否停止运动了。
高中物理-追及和相遇问题
V自
t/s
t t′
t=v自/a= 6 / 3=2(s)
s
v自t
1 2
t
v自
6m
/
s
2s
1 2
2s
6m
/
s
6m
2)在t时刻以后,由v自线与v汽线组成的三角形面积与标
有斜线的三角形面积相等时,两车的位移相等(即相遇)。
所以由图得相遇时t′=2t=4 s v′ = 2v自=12 m/s
思考:若自行车超过汽车2s后,汽车才开始加
者距离有一个较大值。
速度小 的加速 追速度 大的
当两者速度相等时有最大距离 若两者位移相等,则追上。
练习1. 做直线运动的甲、乙物体的位移—时间
图象,由图象可知( ABD )
A.甲起动的时间比乙早t1秒 B.当t=t2时两物体相遇 C.当t=t2时两物体相距最远图3 D.当t=t3时两物体相距S0米
2m/s2的加速度做匀减速直线运动,则从此时 开始A车经多长时间可追上B车?
v汽= 10m/s a= -6m/s2
v自= 4m/s
10m
追上处
A车追上B车可能有两种不同情况:
B车停止前被追及和B车停止后被追及。
解答:设经时间t 追上。依题意:vBt + at2/2 + x = vAt
10t - t 2 + 7 = 4 t t=7s t=-1s(舍去)
追和被追的两物体的速度相等是关键。
速度大 的减速 追速度 小的
当速度相等时,若追者位移仍小于被追击者位移,则 永远追不上,此时两者间有最小距离。
当两者位移相等时,且两者速度相等时,则恰 能追上,也是两者避免碰撞的临界条件。
若两者位移相等时,追者速度仍大于被追者的速度, 则被追击者还有一次追上的机会,其间速度相等时两
高中物理追击和相遇问题专题(含详解)
直线运动中的追及和相遇问题一、相遇和追及问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。
二、 解相遇和追及问题的关键1.画出物体运动的情景图2.理清三大关系(1)时间关系 :0t t t B A ±= (2)位移关系:0A B x x x =±(3)速度关系:v A=v B两者速度相等往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
三、追及、相遇问题的分析方法: A. 画出两个物体运动示意图,根据两个物体的运动性质,选择同一参照物,列出两个物体的位移方程; B. 找出两个物体在运动时间上的关系 C. 找出两个物体在运动位移上的数量关系 D. 联立方程求解.说明:追及问题中常用的临界条件:⑴速度小者加速追速度大者,速度在接近,但距离在变大。
追上前两个物体速度相等时,有最大距离; ⑵速度大者减速追赶速度小者, 速度在接近,但距离在变小。
追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上. 四、典型例题分析:(一).匀加速运动追匀速运动的情况(开始时v 1< v 2): 1.当v 1< v 2时,两者距离变大; 2.当v 1= v 2时,两者距离最大;3.v 1>v 2时,两者距离变小,相遇时满足x 1= x 2+Δx ,全程只相遇(即追上)一次。
【例1】一小汽车从静止开始以3m/s 2的加速度行驶,恰有一自行车以6m/s 的速度从车边匀速驶过.求:(1)小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少? (2)小汽车什么时候追上自行车,此时小汽车的速度是多少?(二).匀速运动追匀加速运动的情况(开始时v 1> v 2): 1.当v 1> v 2时,两者距离变小;2.当v 1= v 2时,①若满足x 1< x 2+Δx ,则永远追不上,此时两者距离最近;②若满足x 1=x 2+Δx ,则恰能追上,全程只相遇一次; ③若满足x 1> x 2+Δx ,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。
高一物理相遇、追及问题
【答案】25 m
【点拨】相遇问题的常用方法
(1)物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,按(解法一)中的思路分析.
(2)相对运动法:巧妙地选取参考系,然后找两物体的运动关系.
(3)极值法:设相遇时间为t,根据条件列方程,得到关于t的一元二次方程,用判别式进行讨论,若△>0,即有两个解,说明可以相遇两次;若△=0,说明刚好追上或相碰;若△<0,说明追不上或不能相碰.
【正解】如图1-5汽车A以v0=20m/s的初速做匀减速直线运动经40s停下来。据加速度公式可求出a=-0.5m/s2当A车减为与B车同速时是A车逼近B车距离最多的时刻,这时若能超过B车则相撞,反之则不能相撞。
据 可求出A车减为与B车同速时的位移
此时间t内B车的位移速s2,则
△x=364-168=196>180(m)
过程.
(4)求解此类问题的方法,除了以上所述根据追及的主要条件和临界条件解联立方程外,还有利用二次
函数求极值,及应用图象法和相对运动知识求解.
【例1】物体A、B同时从同一地点,沿同一方向运动,A以10m/s的速度匀速前进,B以2m/s2的加速度从静止开始做匀加速直线运动,求A、B再次相遇前两物体间的最大距离.
D.Ⅰ、Ⅱ两个物体的平均速度大小都是
【答案】B
【详解】速度—时间图象中Ⅰ物体的斜率逐渐减小,即Ⅰ物体的加速度逐渐减小,所以Ⅰ物体所受合外力不断减小,A错误;在0~t1时间内,Ⅱ物体的速度始终大于Ⅰ物体的速度,所以两物体间距离不断增大,当两物体速度相等时,两物体相距最远,B正确;在速度—时间图象中图线与坐标轴所围面积表示位移,故到t2时刻,Ⅰ物体速度图线所围面积大于Ⅱ物体速度图线所围面积,两物体平均速度不可能相同,C、D错误.
高中物理相遇及追及问题[(完整版)]
相遇追及问题一、考点、热点回顾一、追及问题1.速度小者追速度大者类型图象说明匀加速追匀速①t=t0以前,后面物体与前面物体间距离增大②t=t0时,两物体相距最远为x0+Δx③t=t0以后,后面物体与前面物体间距离减小匀速追匀减速④能追及且只能相遇一次匀加速追匀减速2.速度大者追速度小者度大者追速度小者匀减速追匀速开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即t=t0时刻:①若Δx=x0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件匀速追匀加速②若Δx<x0,则不能追及,此时两物体最小距离为x0-Δx③若Δx>x0,则相遇两次,设t1时刻Δx1=x0,两物体第一次相遇,则t2时刻两物体第二次相遇匀减速追匀加速①表中的Δx是开始追及以后,后面物体因速度大而比前面物体多运动的位移;②x0是开始追及以前两物体之间的距离;③t2-t0=t0-t1;④v1是前面物体的速度,v2是后面物体的速度.二、相遇问题这一类:同向运动的两物体的相遇问题,即追及问题.第二类:相向运动的物体,当各自移动的位移大小之和等于开始时两物体的距离时相遇.解此类问题首先应注意先画示意图,标明数值及物理量;然后注意当被追赶的物体做匀减速运动时,还要注意该物体是否停止运动了.求解追及问题的分析思路(1)根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物体运动时间之间的关系.(2)通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式.追及的主要条件是两个物体在追上时位置坐标相同.(3)寻找问题中隐含的临界条件.例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离,等等.利用这些临界条件常能简化解题过程.(4)求解此类问题的方法,除了以上所述根据追及的主要条件和临界条件解联立方程外,还有利用二次函数求极值,及应用图象法和相对运动知识求解.相遇问题相遇问题的分析思路:相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同.(1)列出两物体运动的位移方程、注意两个物体运动时间之间的关系. (2)利用两物体相遇时必处在同一位置,寻找两物体位移间的关系. (3)寻找问题中隐含的临界条件.(4)与追及中的解题方法相同.二、典型例题【例1】物体A 、B 同时从同一地点,沿同一方向运动,A 以10m/s 的速度匀速前进,B 以2m/s 2的加速度从静止开始做匀加速直线运动,求A 、B 再次相遇前两物体间的最大距离. 【解析一】 物理分析法A 做 υA =10 m/s 的匀速直线运动,B 做初速度为零、加速度a =2 m/s 2的匀加速直线运动.根据题意,开始一小段时间内,A 的速度大于B 的速度,它们间的距离逐渐变大,当B 的速度加速到大于A 的速度后,它们间的距离又逐渐变小;A 、B 间距离有最大值的临界条件是υA =υB . ① 设两物体经历时间t 相距最远,则υA =at ② 把已知数据代入①②两式联立得t =5 s 在时间t 内,A 、B 两物体前进的距离分别为 s A =υA t =10×5 m=50 ms B =12at 2=12×2×52m =25 mA 、B 再次相遇前两物体间的最大距离为 Δs m =s A -s B =50 m -25 m =25 m 【解析二】 相对运动法因为本题求解的是A 、B 间的最大距离,所以可利用相对运动求解.选B 为参考系,则A 相对B 的初速度、末速度、加速度分别是υ0=10 m/s 、υt =υA -υB =0、a =-2 m/s 2. 根据υt 2-υ0=2as .有0-102=2×(-2)×s AB 解得A、B 间的最大距离为s AB =25 m . 【解析三】 极值法物体A 、B 的位移随时间变化规律分别是s A =10t ,s B =12at 2=12×2×t 2 =t 5.则A 、B 间的距离Δs =10t -t 2,可见,Δs 有最大值,且最大值为Δs m =4×(-1)×0-1024×(-1) m =25 m【解析四】 图象法根据题意作出A 、B 两物体的υ-t 图象,如图1-5-1所示.由图可知,A 、B 再次相遇前它们之间距离有最大值的临界条件是υA =υB ,得t 1=5 s . A 、B 间距离的最大值数值上等于ΔOυA P 的面积,即Δs m =12×5×10 m=25 m .【答案】25 m【点拨】相遇问题的常用方法(1)物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,按(解法一)中的思路分析.(2)相对运动法:巧妙地选取参考系,然后找两物体的运动关系.(3)极值法:设相遇时间为t ,根据条件列方程,得到关于t 的一元二次方程,用判别式进行讨论,若△>0,即有两个解,说明可以相遇两次;若△=0,说明刚好追上或相碰;若△<0,说明追不上或不能相碰.(4)图象法:将两者的速度时间图象在同一个坐标系中画出,然后利用图象求解. 拓展如图1-5-2所示是甲、乙两物体从同一地点,沿同一方向做直线运动的υ-t 图象,由图象可以看出 ( 〕A .这两个物体两次相遇的时刻分别是1s 末和4s 末B .这两个物体两次相遇的时刻分别是2s 末和6s 末C .两物体相距最远的时刻是2s 末D .4s 末以后甲在乙的前面【解析】从图象可知两图线相交点1s 末和4s 末是两物速度相等时刻,从0→2s,乙追赶甲到2s 末追上,从2s 开始是甲去追乙,在4s 末两物相距最远,到6s 末追上乙.故选B . 【答案】B【实战演练1】(2011·新课标全国卷)甲乙两辆汽车都从静止出发做加速直线运动,加速度方向一直不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相遇追及问题一、考点、热点回顾一、追及问题1.速度小者追速度大者类型图象说明匀加速追匀速①t=t0以前,后面物体与前面物体间距离增大②t=t0时,两物体相距最远为x0+Δx③t=t0以后,后面物体与前面物体间距离减小匀速追匀减速④能追及且只能相遇一次匀加速追匀减速2.速度大者追速度小者度大者追速度小者匀减速追匀速开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即t=t0时刻:①若Δx=x0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件匀速追匀加速②若Δx<x0,则不能追及,此时两物体最小距离为x0-Δx③若Δx>x0,则相遇两次,设t1时刻Δx1=x0,两物体第一次相遇,则t2时刻两物体第二次相遇匀减速追匀加速①表中的Δx是开始追及以后,后面物体因速度大而比前面物体多运动的位移;②x0是开始追及以前两物体之间的距离;③t2-t0=t0-t1;④v1是前面物体的速度,v2是后面物体的速度.二、相遇问题这一类:同向运动的两物体的相遇问题,即追及问题.第二类:相向运动的物体,当各自移动的位移大小之和等于开始时两物体的距离时相遇.解此类问题首先应注意先画示意图,标明数值及物理量;然后注意当被追赶的物体做匀减速运动时,还要注意该物体是否停止运动了.求解追及问题的分析思路(1)根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物体运动时间之间的关系.(2)通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式.追及的主要条件是两个物体在追上时位置坐标相同.(3)寻找问题中隐含的临界条件.例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离,等等.利用这些临界条件常能简化解题过程.(4)求解此类问题的方法,除了以上所述根据追及的主要条件和临界条件解联立方程外,还有利用二次函数求极值,及应用图象法和相对运动知识求解.相遇问题相遇问题的分析思路:相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同.(1)列出两物体运动的位移方程、注意两个物体运动时间之间的关系. (2)利用两物体相遇时必处在同一位置,寻找两物体位移间的关系. (3)寻找问题中隐含的临界条件.(4)与追及中的解题方法相同.二、典型例题【例1】物体A 、B 同时从同一地点,沿同一方向运动,A以10m/s的速度匀速前进,B 以2m/s 2的加速度从静止开始做匀加速直线运动,求A 、B 再次相遇前两物体间的最大距离. 【解析一】 物理分析法A做 υA =10 m /s 的匀速直线运动,B 做初速度为零、加速度a =2 m/s2的匀加速直线运动.根据题意,开始一小段时间内,A的速度大于B 的速度,它们间的距离逐渐变大,当B 的速度加速到大于A 的速度后,它们间的距离又逐渐变小;A 、B 间距离有最大值的临界条件是υA =υB. ① 设两物体经历时间t 相距最远,则υA =a t ② 把已知数据代入①②两式联立得t =5 s 在时间t 内,A、B 两物体前进的距离分别为 s A =υA t =10×5 m=50 ms B=12at 2=\f(1,2)×2×52m=25 mA 、B 再次相遇前两物体间的最大距离为 Δsm =s A -sB =50 m-25 m=25 m 【解析二】 相对运动法因为本题求解的是A、B 间的最大距离,所以可利用相对运动求解.选B 为参考系,则A相对B的初速度、末速度、加速度分别是υ0=10 m /s 、υt=υA -υB =0、a=-2 m/s 2. 根据υt2-υ0=2as.有0-102=2×(-2)×s A B 解得A 、B 间的最大距离为s AB =25 m. 【解析三】 极值法物体A、B的位移随时间变化规律分别是sA=10t ,s B =12at 2=12×2×t 2 =t5.则A、B间的距离Δs =10t -t2,可见,Δs 有最大值,且最大值为错误! 【解析四】 图象法根据题意作出A 、B 两物体的υ-t 图象,如图1-5-1所示.由图可知,A 、B再次相遇前它们之间距离有最大值的临界条件是υA=υB,得t 1=5 s . A 、B 间距离的最大值数值上等于ΔOυA P 的面积,即Δsm =\f(1,2)×5×10 m=25 m. 【答案】25 m【点拨】相遇问题的常用方法(1)物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,按(解法一)中的思路分析.(2)相对运动法:巧妙地选取参考系,然后找两物体的运动关系.(3)极值法:设相遇时间为t,根据条件列方程,得到关于t的一元二次方程,用判别式进行讨论,若△>0,即有两个解,说明可以相遇两次;若△=0,说明刚好追上或相碰;若△<0,说明追不上或不能相碰.(4)图象法:将两者的速度时间图象在同一个坐标系中画出,然后利用图象求解.拓展如图1-5-2所示是甲、乙两物体从同一地点,沿同一方向做直线运动的υ-t图象,由图象可以看出(〕A.这两个物体两次相遇的时刻分别是1s末和4s末B.这两个物体两次相遇的时刻分别是2s末和6s末C.两物体相距最远的时刻是2s末D.4s末以后甲在乙的前面【解析】从图象可知两图线相交点1s末和4s末是两物速度相等时刻,从0→2s,乙追赶甲到2s末追上,从2s开始是甲去追乙,在4s末两物相距最远,到6s末追上乙.故选B. 【答案】B【实战演练1】(2011·新课标全国卷)甲乙两辆汽车都从静止出发做加速直线运动,加速度方向一直不变。
在第一段时间间隔内,两辆汽车的加速度大小不变,汽车乙的加速度大小是甲的两倍;在接下来的相同时间间隔内,汽车甲的加速度大小增加为原来的两倍,汽车乙的加速度大小减小为原来的一半。
求甲乙两车各自在这两段时间间隔内走过的总路程之比。
【思路点拨】解答本题时可由运动学公式分别写出两汽车的速度和位移方程,再根据两车加速度的关系,求出两车路程之比。
【精讲精析】设汽车甲在第一段时间间隔末(时刻t0)的速度为v,第一段时间间隔内行驶的路程为s1,加速度为a,在第二段时间间隔内行驶的路程为s2,由运动学公式有,v=a t0①s1=\F(1,2) a t02②s2=v t0+错误!2a t02③设汽车乙在时刻t0的速度为v′,在第一、二段时间间隔内行驶的路程分别为s1′、s2′,同理有,v′=2a t0④s1′=错误!2a t02⑤s2′=v′ t0+错误!a t02⑥设甲、乙两车行驶的总路程分别为s、s′,则有s= s1+s2 ⑦s′=s1′+s2′⑧联立以上各式解得,甲、乙两车各自行驶路程之比为错误!=错误!答案:57【实战演练2】(2011·安徽省级示范高中名校联考)甲、乙两辆汽车,同时在一条平直的公路上自西向东运动,开始时刻两车平齐,相对于地面的v -t图象如图所示,关于它们的运动,下列说法正确的是( )A .甲车中的乘客说,乙车先以速度v 0向西做匀减速运动,后向东做匀加速运动B .乙车中的乘客说,甲车先以速度v 0向西做匀减速运动,后做匀加速运动C .根据v -t 图象可知,开始乙车在前,甲车在后,两车距离先减小后增大,当乙车速度增大到v0时,两车恰好平齐D.根据v -t 图象可知,开始甲车在前,乙车在后,两车距离先增大后减小,当乙车速度增大到v 0时,两车恰好平齐【答案】A【详解】甲车中的乘客以甲车为参考系,相当于甲车静止不动,乙车以初速度v 0向西做减速运动,速度减为零之后,再向东做加速运动,所以A正确;乙车中的乘客以乙车为参考系,相当于乙车静止不动,甲车以初速度v 0向东做减速运动,速度减为零之后,再向西做加速运动,所以B 错误;以地面为参考系,当两车速度相等时,距离最远,所以C 、D错误.考点2 相遇问题相遇问题的分析思路:相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同.(1)列出两物体运动的位移方程、注意两个物体运动时间之间的关系. (2)利用两物体相遇时必处在同一位置,寻找两物体位移间的关系. (3)寻找问题中隐含的临界条件. (4)与追及中的解题方法相同.【例2】甲、乙两物体相距s ,同时同向沿同一直线运动,甲在前面做初速度为零、加速度为a 1的匀加速直线运动,乙在后做初速度为υ0,加速度为a2的匀加速直线运动,则 ( ) A.若a 1=a 2,则两物体可能相遇一次 B .若a1>a 2,则两物体可能相遇二次 C.若a 1<a 2,则两物体可能相遇二次D.若a1>a 2,则两物体也可相遇一次或不相遇【解析】 设乙追上甲的时间为t ,追上时它们的位移有υ0t+12a 2t 2-\f(1,2)a 2t 2=s图1-5-3 上式化简得:(a1-a2)t2-2υ0t +2s =0 解得:错误!(1)当a 1>a2时,差别式“△”的值由υ0、a 1、a 2、s 共同决定,且△<2υ0,而△的值可能小于零、等于零、大于零,则两物体可能不相遇,相遇一次,相遇两次,所以选项B 、D 正确.(2)当a 1<a 2时,t 的表达式可表示为错误!显然,△一定大于零.且\r(△)>2υ0,所以t 有两解.但t 不能为负值,只有一解有物理意义,只能相遇一次,故C 选项错误.(3)当a 1=a 2时,解一元一次方程得t =s /υ0,一定相遇一次,故A 选项正确. 【答案】A、B 、D【点拨】注意灵活运用数学方法,如二元一次方程△判别式.本题还可以用v —t 图像分析求解。
拓展A 、B 两棒均长1m,A 棒悬挂于天花板上,B 棒与A 棒在一条竖直线上,直立在地面,A 棒的下端与B 棒的上端之间相距20m ,如图1-5-3所示,某时刻烧断悬挂A棒 的绳子,同时将B 棒以v 0=20m/s 的初速度竖直上抛,若空气阻力可忽略不计,且g =10m/s 2,试求:(1)A 、B 两棒出发后何时相遇?(2)A 、B 两棒相遇后,交错而过需用多少时间?【解析】本题用选择适当参考系,能起到点石成金的效用。
由于A、B 两棒均只受重力作用,则它们之间由于重力引起的速度改变相同,它们之间只有初速度导致的相对运动,故选A 棒为参考系,则B棒相对A 棒作速度为v 0的匀速运动。
则A 、B 两棒从启动至相遇需时间s s v L t 1202001===当A、B 两棒相遇后,交错而过需时间 s s v l t 1.0202202===【答案】(1) 1s (2) 0.1s【例3】(易错题)经检测汽车A 的制动性能:以标准速度20m/s 在平直公路上行驶时,制动后40s 停下来。