19.2.2一次函数与实际问题教案- 第4课时
人教版数学八年级下册19.2第4课时一次函数教学设计
3.拓展题:设计一些综合性的题目,提高学生的解题能力和思维水平。
针对学生的不同水平,设计不同难度的题目,使每个学生都能在练习中巩固所学知识。
(五)总结归纳
在总结归纳环节,我将引导学生从以下几个方面进行总结:
1.一次函数的定义、图像和性质;
2.一次函数在实际问题中的应用;
3.本节课所学到的解题方法和技巧;
4.课堂学习过程中的收获和不足。
五、作业布置
为了巩固学生对一次函数知识的掌握,提高学生的应用能力,我将布置以下几类作业:
1.基础巩固题:设计一些关于一次函数定义、图像和性质的练习题,让学生通过解答,加深对一次函数基础知识的理解。
-例如:求解以下一次函数的解析式,并分析其图像性质:y=2x+3,y=-0.5x+6。
-例如:请简要描述本节课你对一次函数的学习体会,以及在学习过程中遇到的困难和解决方法。
作业布置时,注意以下几点:
1.作业量适中,避免过多导致学生负担过重;
2.关注学生的个体差异,设计不同难度的作业,使每个学生都能得到有效巩固;
3.鼓励学生自主完成作业,培养独立思考和解决问题的能力;
4.及时批改作业,给予反馈,指导学生改进学习方法。
-设计丰富的变式练习,巩固学生对一次函数的理解,提高学生的解题技巧。
2.教学过程:
-导入:通过一个与生活密切相关的问题,如气温变化对农作物生长的影响,引出一次函数的学习;
-基础知识学习:详细讲解一次函数的定义,通过图像和实例,让学生理解和掌握一次函数的基本性质;
-深入探究:通过探究一次函数图像的变换,使学生理解函数图像的平移、伸缩等概念;
人教版八年级数学下册19.2.2一次函数的概念优秀教学案例
1.通过生活实例引入一次函数的概念,激发学生的学习兴趣。
2.引导学生通过观察、分析、归纳一次函数的性质,加深对一次函数的理解。
3.运用一次函数解决实际问题,提高学生的应用能力。
五、案例亮点
1.生活实例引入:通过生动的打车软件费用计算实例,将一次函数的概念与学生的生活实际紧密联系起来,增强了学生的学习兴趣,提高了学生的课堂参与度。
2.问题导向:本节课以问题为导向,引导学生主动探究一次函数的性质,激发了学生的求知欲和自主学习能力,培养了学生的批判性思维。
3.小组合作:通过小组合作讨论,学生不仅能够共享彼此的知识和经验,还能培养团队合作意识和沟通能力,提高了学习效果。
3.运用一次函数解决实际问题,提高学生的应用能力,培养学生的实践操作能力。
4.采用小组合作、讨论交流的形式,培养学生的团队合作意识和沟通能力。
(三)情感态度与价值观
1.培养学生对数学学科的热爱,激发学生学习数学的兴趣,树立学生学习数学的自信心。
2.通过对一次函数的学习,使学生体会数学的严谨性、逻辑性,培养学生的求真精神。
(三)学生小组讨论
1.设计具有挑战性的问题,引导学生进行小组讨论,探究一次函数的性质。
2.鼓励学生提出疑问,引导学生敢于挑战权威,培养学生的批判性思维。
3.教师巡回指导,及时解答学生在讨论过程中遇到的问题。
(四)总结归纳
1.让学生回顾本节课所学内容,总结一次函数的概念、性质和解法。
2.引导学生通过归纳总结,提高对一次函数的理解和记忆。
在教学过程中,我将注重启发式教学,引导学生主动探究,培养学生的动手操作能力和思维能力。同时,关注学生的个体差异,给予不同程度的学生适当的指导,使他们在课堂上都能有所收获。课后,及时进行教学反思,不断调整教学策略,以提高教学效果。
八年级数学下册19.2.2一次函数第4课时教案新人教版
尝
试
应用Biblioteka 1.如图,某航空公司托运行李的费用与托运行李重量的关系为线型函数,由图可知行李的重量只要不超过______公斤,就可免费托运.
教师出示问题,学生先自主,再合作,交流展示,师生共同评价
1.解:本题只给出了一次函数的图象,若能求得一次函数的解析式,问题即可解决.
根据图象不难发现直线过以下三点:
分析:本题y随x变化的规律分成两段:当0≤x≤5时,y=0.72x,当x>5时,y=0.9x-0.9. 画图象时也要分成两段来画,且要注意各自变量的取值范围.
教师出示问题,学生自主尝试,合作交流,师生共同评价
解:(1)图象如下
(2)根据图象可知,当x=10时,y=8.1(元)
自
主
探
究
合
作
交
流
自
主
探
究
【教学流程】
环节
导 学 问 题
师 生 活 动
二次备课
情
境
引
入
【问题1】今年某地区发生严重干旱,自来水公司为了鼓励市民节约用水,采取分段收费标准,若某户居民每月应交水费y(元)是用水量x(吨)的函数,当0≤x≤5时,y=0.72x,当x>5时,y=0.9x-0.9.
(1)画出函数的图象;
(2)利用函数图象,说出当市民本月用水10吨时,应缴水费多少元.
教师布置作业,提出具体要求
学生认定作业,课下独立完成
合
作
交
流
【问题2】“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子的价格打8折.
(1)填表:
(2)写出购买种子数量与付款金额之间的函数解析式,并画出函数图象?
人教版数学八年级下册19.2.2《一次函数与实际问题(第4课时)教案
人教版数学八年级下册19.2.2《一次函数与实际问题(第4课时)教案一. 教材分析人教版数学八年级下册19.2.2《一次函数与实际问题(第4课时)》教案,主要讲述了如何将一次函数应用于实际问题中。
本节课通过具体案例,使学生理解一次函数在现实生活中的应用,提高学生运用数学知识解决实际问题的能力。
教材内容丰富,案例贴近生活,有利于激发学生的学习兴趣。
二. 学情分析八年级的学生已经掌握了了一次函数的基本知识,对一次函数的图像和性质有一定的了解。
但学生在应用一次函数解决实际问题方面还需加强。
因此,在教学过程中,教师要注重引导学生将所学知识与实际问题相结合,提高学生运用一次函数解决实际问题的能力。
三. 教学目标1.理解一次函数在实际问题中的应用;2.学会将实际问题转化为一次函数问题,提高解决实际问题的能力;3.培养学生的数学思维能力和创新意识。
四. 教学重难点1.一次函数在实际问题中的运用;2.将实际问题转化为一次函数问题。
五. 教学方法1.情境教学法:通过设置生活情境,引导学生理解一次函数在实际问题中的应用;2.案例分析法:分析具体案例,让学生学会将实际问题转化为一次函数问题;3.小组讨论法:分组讨论,培养学生的合作精神和数学思维能力。
六. 教学准备1.准备相关的生活案例,用于引导学生分析实际问题;2.准备一次函数的图像和性质资料,方便学生复习巩固知识;3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用生活案例,如商场打折问题,引导学生思考如何用一次函数表示折扣,激发学生的学习兴趣。
2.呈现(10分钟)呈现一次函数的图像和性质,让学生回顾一次函数的基本知识。
3.操练(10分钟)让学生尝试将实际问题转化为一次函数问题,如打车费用问题、手机套餐费用问题等。
教师引导学生进行分析,找出关键信息,列出一次函数关系式。
4.巩固(10分钟)学生分组讨论,分享各自解决的实际问题,互相交流心得。
教师点评并指导,帮助学生巩固所学知识。
八年级数学下册19.2一次函数(第4课时)教案(新版)新人教版
一次函数第4课时.教学目标1. 总结函数三种表示方法.2. 了解三种表示方法的优缺点.3. 会根据具体情况选择适当方法.教学重点1. 认清函数的不同表示方法,知道各自优缺点.2. 能按具体情况选用适当方法.教学难点函数表示方法的应用.一、导入新课我们在前几节课里知道函数解析式、列表格、画函数图象,都可以表示具体的函数.这三种表示函数的方法,分别称为解析式法、列表法和图象法.思考一下,从前面的例子看,你认为三种表示函数的方法各有什么优缺点?在遇到具体问题时,该如何选择适当的表示方法呢?二、新课教学从前面几节课所见到的或自己做的练习可以看出.列表法比较直观、准确地表示出函数中两个变量的关系.解析式法则比较准确、全面地表示出了函数中两个变量的关系.至于图象法它则形象、直观地表示出函数中两个变量的关系.相比较而言,列表法不如解析式法全面,也不如图象法形象;而解析式法却不如列表法直观,不如图象法形象;图象法也不如列表法直观准确,不如解析式法全面.从全面性、直观性、准确性及形象性四个方面来总结归纳函数三种表示方法的优缺点.从所填表中可清楚看到三种表示方法各有优缺点.在遇到实际问题时,就要根据具体情况、具体要求选择适当的表示方法,有时为了全面地认识问题,需要几种方法同时使用.例4 一个水库的水位在最近5 h内持续上涨.下表记录了这5 h内6个时间点的水位高度,其中t表示时间,y 表示水位高度.(1)在平面直角坐标系中描出表中数据对应的点,这些点是否在一条直线上?由此你能发现水位变化有什么规律吗?(2)水位高度y是否为时间t的函数?如果是,试写出一个符合表中数据的函数解析式,并画出这个函数的图象.这个函数能表示水位的变化规律吗?(3)据估计这种上涨规律还会持续2 h,预测再过2 h水位高度将为多少米.解:(1)如下图,描出上表中数据对应的点.可以看出,这 6 个点在一条直线上.再结合表中数据,可以发现每小时水位上升0.3 m.由此猜想,如果画出这5 h内其他时刻(如t=2.5 h等)及其水位高度所对应的点,它们可能也在这条直线上,即在这个时间段中水位可能是始终以同一速度均匀上升的.(2)由于水位在最近5 h内持续上涨,对于时间t 的每一个确定的值,水位高度y都有唯一的值与其对应,所以y是t的函数.开始时水位高度为3 m,以后每小时水位上升0.3 m.函数y=0.3t+3(0≤t≤5)是符合表中数据的一个函数,它表示经过t h水位上升0.3t m,即水位y为(0.3t+3)m.其图象是下图中点A(0,3)和点B(5,4.5)之间的线段AB.如果在这5 h 内,水位一直匀速上升,即升速为0.3 m/h,那么函数y=0.3t+3(0≤t≤5)就精确地表示了这种变化规律.即使在这5 h内,水位的升速有些变化,而由于每小时水位上升0.3 m 是确定的,因此这个函数也可以近似地表示水位的变化规律.(3)如果水位的变化规律不变,则可利用上述函数预测,再过2 h,即t=5+2=7 (h)时,水位高度y=0.3×7+3=5.1(m).把本例第一幅图中的函数图象(线段AB)向右延伸到t=7 所对应的位置,得到第二幅图,从中也能看出这时的水位高度约为5.1 m.三、课堂练习:教材第81页练习1、2、3.四、布置作业:习题第19.2第11、12、13题.教学反思:中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
人教版数学八年级下册19.2.2《一次函数与实际问题(第4课时)教学设计
人教版数学八年级下册19.2.2《一次函数与实际问题(第4课时)教学设计一. 教材分析人教版数学八年级下册19.2.2《一次函数与实际问题(第4课时)》主要讲述了如何运用一次函数解决实际问题。
本节课通过具体的实例,让学生了解一次函数在实际生活中的应用,培养学生的应用意识。
教材内容主要包括一次函数的定义、一次函数图像的特点以及如何根据实际问题列出一次函数等。
二. 学情分析学生在学习本节课之前,已经掌握了函数的基本概念,一次函数的定义和图像特点。
但学生在解决实际问题时,往往会把理论知识和实际应用相脱离,不能很好地将一次函数运用到解决实际问题中。
因此,在教学过程中,教师需要注重引导学生将理论知识与实际问题相结合,提高学生的应用能力。
三. 教学目标1.知识与技能目标:理解一次函数在实际问题中的应用,学会如何根据实际问题列出一次函数,并能运用一次函数解决简单的实际问题。
2.过程与方法目标:通过观察、分析实际问题,培养学生的抽象思维能力,提高学生运用一次函数解决实际问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生积极参与数学学习的积极性,培养学生的应用意识。
四. 教学重难点1.教学重点:一次函数在实际问题中的应用,如何根据实际问题列出一次函数。
2.教学难点:如何引导学生将实际问题抽象为一次函数,并运用一次函数解决实际问题。
五. 教学方法1.情境教学法:通过创设实际问题的情境,引导学生观察、分析,激发学生的学习兴趣。
2.案例教学法:通过分析具体的实例,使学生了解一次函数在实际问题中的应用。
3.互动教学法:在教学过程中,教师与学生积极互动,引导学生主动参与学习,提高学生的动手操作能力。
4.启发式教学法:教师引导学生从实际问题中发现规律,培养学生独立思考的能力。
六. 教学准备1.教师准备:熟悉教材内容,了解学生的学习情况,设计好教学过程和教学活动。
2.学生准备:预习相关知识,了解一次函数的基本概念和图像特点。
部审人教版八年级数学下册教学设计19.2.2 第4课时《一次函数与实际问题》
部审人教版八年级数学下册教学设计19.2.2 第4课时《一次函数与实际问题》一. 教材分析人教版八年级数学下册第19.2.2节《一次函数与实际问题》是建立在学生已经掌握了函数基本概念、一次函数的定义、图像和性质的基础上。
这部分内容主要让学生了解一次函数在实际问题中的应用,培养学生的数学应用能力。
教材通过引入实际问题,让学生探究一次函数的性质,从而解决实际问题。
本节课的内容对于学生来说是一个从理论到实践的过渡,对于培养学生的数学素养和解决问题的能力具有重要意义。
二. 学情分析学生在学习本节课之前,已经掌握了函数的基本概念,一次函数的定义、图像和性质。
但是,对于如何将一次函数应用于实际问题中,可能还存在一定的困惑。
因此,在教学过程中,需要帮助学生建立起一次函数与实际问题之间的联系,引导学生运用一次函数解决实际问题。
三. 教学目标1.了解一次函数在实际问题中的应用;2.能够运用一次函数解决实际问题;3.培养学生的数学应用能力和问题解决能力。
四. 教学重难点1.一次函数在实际问题中的应用;2.如何引导学生从实际问题中发现一次函数的关系。
五. 教学方法采用问题驱动法,引导学生从实际问题中发现一次函数的关系,通过小组合作、讨论交流的方式,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备一些与学生生活息息相关的实际问题;2.准备一次函数的图像和性质的相关资料。
七. 教学过程1.导入(5分钟)通过引入一些与学生生活息息相关的实际问题,激发学生的学习兴趣,引导学生思考如何运用数学知识解决这些问题。
2.呈现(10分钟)呈现一次函数的图像和性质的相关资料,让学生回顾一次函数的基本知识,为解决实际问题打下基础。
3.操练(10分钟)让学生分组讨论,每组选取一个实际问题,尝试运用一次函数的知识解决。
教师在这个过程中给予适当的引导和帮助。
4.巩固(10分钟)让学生汇报他们的解题过程和结果,其他组的学生对他们的解题过程进行评价和讨论。
最新八年级下册.2一次函数第4课时一次函数与实际问题教案新人教版
1第4课时 一次函数与实际问题1.根据问题及条件找出能反映出实际问题的函数;(重点)2.能利用一次函数图象解决简单的实际问题,能够将实际问题转化为一次函数的问题.(重点)一、情境导入联通公司手机话费收费有A 套餐(月租费15元,通话费每分钟0.1元)和B 套餐(月租费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为y 1(元),B 套餐每月话费为y 2(元),月通话时间为x (分钟).(1)分别表示出y 1与x ,y 2与x 的函数关系式;(2)月通话时间为多长时,A 、B 两种套餐收费一样?(3)什么情况下A 套餐更省钱? 二、合作探究探究点:一次函数与实际问题【类型一】 利用一次函数解决最值问题广安某水果店计划购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:则这两种水果各购进多少千克?(2)若该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?解析:(1)根据计划购进甲、乙两种新出产的水果共140千克,进而利用该水果店预计进货款为1000元,列出等式求出即可;(2)利用两种水果每千克的利润表示出总利润,再利用一次函数增减性得出最大值即可.解:(1)设购进甲种水果x 千克,则购进乙种水果(140-x )千克,根据题意可得5x+9(140-x )=1000,解得x =65,∴140-x=75(千克).答:购进甲种水果65千克,乙种水果75千克;(2)由图表可得甲种水果每千克利润为3元,乙种水果每千克利润为4元.设总利润为W ,由题意可得W =3x +4(140-x )=-x +560.∵该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,∴140-x ≤3x ,解得x ≥35.∵-1<0,∴W 随x 的增大而减小,则x 越小W 越大.∴当x =35时,W 最大=-35+560=525(元),140-35=105(千克).答:当购进甲种水果35千克,购进乙种水果105千克时,此时利润最大为525元. 方法总结:利用一次函数增减性得出函数最值是解题关键. 【类型二】利用一次函数解决有关路程问题为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行”活动.自行车队从甲地出发,途经乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1h 后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2h 装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,并且邮政车行驶速度是自行车队行驶速度的2.5倍,如图表示自行车队、邮政车离甲地的路程y (km)与自行车队离开甲地的时间x (h)的函数关系图象,请根据图象提供的信息解答下列各题:(1)自行车队行驶的速度是________km/h ;(2)邮政车出发多久与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远? 解析:(1)由“速度=路程÷时间”就可以求出结论;(2)由自行车的速度就可以求出邮政车的速度,再由追及问题设邮政车出发a h 与自行车队首次相遇建立方程求出其解即可;(3)由邮政车的速度可以求出B 的坐标和C 的坐标,由自行车的速度就可以求出D 的坐标,由待定系数法求出BC ,ED 的解析式就可以求出结论.解:(1)由题意得自行车队行驶的速度为72÷3=24(km/h). (2)由题意得邮政车的速度为24×2.5=60(km/h).设邮政车出发a h 与自行车队首次相2遇,由题意得24(a +1)=60a ,解得a =23.答:邮政车出发23h 与自行车队首次相遇;(3)由题意得邮政车到达丙地的时间为135÷60=94(h),∴邮政车从丙地出发返回甲地前共用时为94+2+1=214(h),∴B (214,135),C (7.5,0).自行车队到达丙地的时间为135÷24+0.5=458+0.5=498(h),∴D (498,135).设直线BC 的解析式为y 1=k 1+b 1,由题意得⎩⎪⎨⎪⎧135=214k 1+b 1,0=7.5k 1+b 1,解得⎩⎪⎨⎪⎧k 1=-60,b 1=450.∴y 1=-60x +450.设ED 的解析式为y 2=k 2x +b 2,由题意得⎩⎪⎨⎪⎧72=3.5k 2+b 2,135=498k 2+b 2,解得⎩⎪⎨⎪⎧k 2=24,b 2=-12,∴y 2=24x -12.当y 1=y 2时,-60x +450=24x -12,解得x =5.5.y 1=-60×5.5+450=120.答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.方法总结:本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一次函数与一元一次方程的运用,解答时求出函数的解析式是关键.【类型三】 利用一次函数解决图形面积问题如图①,底面积为30cm 2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h (cm)与注水时间t (s)之间的关系如图②所示.请根据图中提供的信息,解答下列问题: (1)圆柱形容器的高为多少?匀速注水的水流速度(单位:cm 3/s)为多少?(2)若“几何体”的下方圆柱的底面积为15cm 2,求“几何体”上方圆柱的高和底面积.解析:(1)根据图象,分三个部分:注满“几何体”下方圆柱需18s ;注满“几何体”上方圆柱需24-18=6(s),注满“几何体”上面的空圆柱形容器需42-24=18(s).再设匀速注水的水流速度为x cm 3/s ,根据圆柱的体积公式列方程,再解方程;(2)由图②知几何体下方圆柱的高为a cm ,根据圆柱的体积公式得a ·(30-15)=18×5,解得a =6,于是得到“几何体”上方圆柱的高为5cm ,设“几何体”上方圆柱的底面积为S cm 2,根据圆柱的体积公式得5×(30-S )=5×(24-18),再解方程即可.解:(1)根据函数图象得到圆柱形容器的高为14cm ,两个实心圆柱组成的“几何体”的高度为11cm ,水从刚满过由两个实心圆柱组成的“几何体”到注满用了42-24=18(s),这段高度为14-11=3(cm).设匀速注水的水流速度为x cm 3/s ,则18·x =30×3,解得x =5,即匀速注水的水流速度为5cm 3/s ;(2)由图②知“几何体”下方圆柱的高为a cm ,则a ·(30-15)=18×5,解得a =6,所以“几何体”上方圆柱的高为11-6=5(cm).设“几何体”上方圆柱的底面积为S cm 2,根据题意得5×(30-S )=5×(24-18),解得S =24,即“几何体”上方圆柱的底面积为24cm 2.方法总结:本题考查了一次函数的应用:把分段函数图象中自变量与对应的函数值转化为实际问题中的数量关系,然后运用方程的思想解决实际问题.【类型四】利用一次函数解决销售问题牌的羽毛球拍,每副球拍配x (x ≥2)个羽毛球,供社区居民免费借用.该社区附近A 、B 两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A 超市:所有商品均打九折(按标价的90%)销售;B 超市:买一副羽毛球拍送2个羽毛球. 设在A 超市购买羽毛球拍和羽毛球的费用为y A (元),在B 超市购买羽毛球拍和羽毛球的费用3 为y B (元).请解答下列问题:(1)分别写出y A 、y B 与x 之间的关系式; (2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.解析:(1)根据购买费用=单价×数量建立关系就可以表示出y A 、y B 的解析式;(2)分三种情况进行讨论,当y A =y B 时,当y A >y B 时,当y A <y B 时,分别求出购买划算的方案;(3)分两种情况进行讨论计算求出需要的费用,再进行比较就可以求出结论.解:(1)由题意得y A =(10×30+3×10x )×0.9=27x +270;y B =10×30+3(10x -20)=30x +240;(2)当y A =y B 时,27x +270=30x +240,得x =10;当y A >y B 时,27x +270>30x +240,得x <10.∵x ≥2,∴2≤x <10;当y A <y B 时,27x +270<30x +240,得x >10;∴当2≤x <10时,到B 超市购买划算,当x =10时,两家超市一样划算,当x >10时,在A 超市购买划算;(3)由题意知x =15,15>10,∴只在一家超市购买时,选择A 超市划算,y A =27×15+270=675(元).在两家超市购买时,先选择B 超市购买10副羽毛球拍,送20个羽毛球,然后在A 超市购买剩下的羽毛球:(10×15-20)×3×0.9=351(元),共需要费用10×30+351=651(元).∵651元<675元,∴最佳方案是先选择B 超市购买10副羽毛球拍,然后在A 超市购买130个羽毛球.方法总结:本题考查了一次函数的解析式的运用,分类讨论的数学思想的运用,方案设计的运用,解答时求出函数的解析式是关键.【类型五】 利用图表信息解决实际问题某工厂生产甲、乙两种不同的产品,所需原料为同一种原材料,生产每吨产品所需原材料的数量和生产过程中投入的生产成本的关系如表所示:若该工厂生产甲种产品m 吨,乙种产品n 吨,共用原材料160吨,销售甲、乙两种产品的利润y (万元)与销售量x (吨)之间的函数关系如图所示,全部销售后获得的总利润为200万元.(1)求m 、n 的值;(2)该工厂投入的生产成本是多少万元? 解析:(1)求出甲、乙两种产品每吨的利润,然后根据两种原材料的吨数和全部销售后的总利润,列出关于m 、n 的二元一次方程组,求解即可;(2)根据“生产成本=甲的成本+乙的成本”,列式计算即可得解.解:(1)由图可知,销售甲、乙两种产品每吨分别获利6÷2=3(万元)、6÷3=2(万元).根据题意可得⎩⎪⎨⎪⎧m +2n =160,3m +2n =200,解得⎩⎪⎨⎪⎧m =20,n =70;(2)由(1)知,甲、乙两种产品分别生产20吨、70吨,所以投入的生产成本为20×4+70×2=220(万元).答:该工厂投入的生产成本为220万元. 方法总结:本题考查了一次函数的应用,主要利用了列二元一次方程组解决实际问题,根据表格求出两种产品每吨的利润,然后列出方程组是解题的关键.三、板书设计1.利用一次函数解决最值问题 2.利用一次函数解决有关路程问题 3.利用一次函数解决图形面积问题 4.利用一次函数解决销售问题 5.利用图表信息解决实际问题本节课的设计,力求体现新课程改革的理念,结合学生自主探究的时间,为学生营造宽松、和谐的氛围,让学生学得更主动、更轻松,力求在探索知识的过程中,培养学生的探索能力和创新能力,激发学生学习的积极性.在学生选择解决问题的诸多方法的过程中,不过多地干涉学生的思维,而是通过引导学生自己去探究选择合适的办法解决问题.。
人教版八年级数学下册教案 19-2-2 第4课时 一次函数的实际应用
第4课时一次函数的实际应用教学目标【知识与技能】能利用一次函数解决某些有关的实际问题.【过程与方法】经历函数模型解决实际问题的过程,体会利用函数思想解决问题的方法.【情感、态度与价值观】通过让学生经历用一次函数来解决实际问题的函数模型的过程,使学生感受到数学与生活的联系,让学生参与到教学活动中,提高学习及运用数学知识的积极性.教学重难点【教学重点】利用一次函数知识解决相关实际问题.【教学难点】建立契合实际问题的函数模型.教学过程一、问题导入小明从家里出发去菜地浇水,又去玉米地锄草,然后回家,其中x表示时间,y表示小明离他家的距离.该图表示的函数是正比例函数吗?是一次函数吗?你是怎样认为的?二、合作探究探究点一次函数的实际应用典例学校需要添置教师办公桌椅A,B两型共200 套,已知2 套A型桌椅和1 套B型桌椅共需2000 元,1 套A型桌椅和3 套B型桌椅共需3000 元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120 套,B型桌椅不少于70 套,平均每套桌椅需要运费10 元.设购买A型桌椅x套时,总费用为y元,求y与x之间的函数解析式,并直接写出x的取值范围;(3)求出(2)中总费用最少的购置方案.[解析](1)设A型桌椅的单价为a元,B型桌椅的单价为b元.根据题意得{2a+b=2000,a+3b=3000,解得{a=600,b=800.答:A,B两型桌椅的单价分别为600元,800元.(2)根据题意得y=600x+800(200-x)+200×10=-200x+162000(120≤x≤130).(3)由(2)知y=-200x+162000(120≤x≤130),∴当x=130时,总费用最少,最少费用为136000元.答:购买A型桌椅130套,B型桌椅70套,总费用最少,最少费用为136000元.在解决有关函数的实际问题时,如果问题中对于两个变量的关系,没有确定是不是“一次函数”,这时求函数的解析式,是不能用“待定系数法”的,只能根据题意直接写出函数解析式,再判定是不是一次函数,如果是一次函数,就可以利用一次函数的性质,解决有关的其他问题.另外,解决函数的实际问题时,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.三、板书设计一次函数的实际应用1.建立一次函数模型解决实际问题2.利用图象(表)解决实际问题教学反思在实际的教学中,这部分给学生很多思考的时间,让整节课的课堂节奏慢下来.经过教师的几次追问、启发,学生充分思考,对一次函数的实际应用有了更深的理解.。
19.2.2一次函数(4)一次函数的实际应用
学习目标
能够灵活运用一次函数的有关知识解 决相关实际问题。
自学指导
阅读课本第94页例5至95页练习上的内容: 1.完成94页表19-11 2.例5中以多少千克为界限,购买价格发生变化? 发生怎样的变化? 3.根据上题的分界, 列出函数的解析式,并写出其 自变量取值范围。你写的与书上的一致吗? (注 意P95的“黄色书签”) 4.注意观察P95的图19.2-5,思考图象为什么在 (2,10)这一点发生变化。 5.完成P95的思考。 (限时5分钟,看谁完成得又快又好)
学以致用:(5分钟)
某城市出租车采取分段计费,乘客应交车费y(元) 是行驶里程x(公里)的函数,其图象如图所示: (1)分别写出时,y与x的函数解析式; (2)若该乘客乘车行驶了10公里,问应交车费多 少元?若该乘客乘车花费18元,则出租车行驶多 少公里?
自学检测:请在5分钟内完成
1.课本P95的练习2 2. 图中折线ABC表示从甲地向乙地打长途电话时所 需付的电话费y(元)与通话时间t(分钟)之间 的关系图像. (1)从图像知,通话2分钟需付的电话费是 元. (2)当t≥3时求出该图像的解析式 (3)通话7分钟需付的电话费是多少元? y
5.4
C
2.4
O
A
B
3
5
t
当堂训练:
必做题:1. P99习题11
选做
人教版初中数学八年级下册19.2.2《一次函数的概念》教案
1.教学重点
-一次函数的定义:y=kx+b(k≠0,k、b是常数),这是本节课的核心内容,教师需通过讲解和示例,使学生深刻理解一次函数的基本形式。
-一次函数图像的特点:一次函数的图像是一条直线,教学中应通过绘制图像和观察,让学生掌握这一特点。
-一次函数的增减性:根据k的值判断函数图像的增减趋势,教师需引导学生通过实例分析,掌握增减性的判断方法。
五、教学反思
在今天的教学中,我尝试通过生活实例导入一次函数的概念,希望以此激发学生的兴趣。从课堂反应来看,大部分同学能够积极参与,但我也注意到有些学生在理解一次函数的定义上还存在困难。这让我意识到,对于基础概念的教学,需要更加细致和耐心。
在理论介绍环节,我尽力用简洁明了的语言解释一次函数的定义和图像特点,同时配合图示,希望让学生能够直观地理解。然而,从学生的提问和作业来看,对于k、b取值范围的理解仍然是他们的一个难点。未来,我考虑引入更多的实际例子,让学生在具体情境中感受这些参数的变化,以便更好地理解。
3.重点难点解析:在讲授过程中,我会特别强调一次函数的定义和图像特点这两个重点。对于难点部分,如k、b的取值范围和一次函数图像的绘制,我会通过举例和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示一次函数图像的绘制方法。
人教版初中数学八年级下册19.2.2《一次函数的概念》教案
一、教学内容
人教版初中数学八年级下册19.2.2《一次函数的概念》教案:
1.理解一次函数的定义:形如y=kx+b(k≠0,k、b是常数)的函数,称为一次函数。
人教版八年级数学下册教案:19.2.2一次函数(教案)
一、教学内容
人教版八年级数学下册教案:19.2.2一次函数
本节课我们将学习以下内容:
1.一次函数的定义:形如y=kx+b(k≠0,k、b是常数)的函数,称为一次函数。
2.一次函数的图像:直线图像,以及其与k、b的关系。
3.一次函数的性质:斜率k的正负与图像的走势;截距b与图像在y轴上的截距。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一次函数的基本概念。一次函数是形如y=kx+b的函数,其中k和b是常数,且k≠0。它是描述两个变量之间线性关系的重要数学模型,广泛应用于生活和经济等领域。
2.案例分析:接下来,我们来看一个具体的案例。假设一个人的速度是固定的,那么他走的距离和时间之间的关系就可以用一次函数来表示。这个案例展示了如何将实际问题转化为一次函数模型,以及如何通过一次函数来解决问题。
-一次函数的性质:掌握斜率k的正负与图像的上升或下降关系,截距b与图像在y轴的截距。
-实际应用:运用一次函数解决相关问题,如行程问题、价格问题等。
举例:讲解一次函数定义时,通过具体实例让学生理解k、b对图像的影响,如当k>0时,图像呈现上升趋势;当k<0时,图像呈现下降趋势。同样,b的值决定了直线与y轴的交点位置。
五、教学反思
今天在教授一次函数这一章节时,我发现学生们对于函数的概念已经有了初步的了解,但在具体应用到实际问题中时,还存在一些困难。在教学中,我尝试了多种方法来帮助学生理解一次函数的定义和图像,以及它们在实际生活中的应用。
首先,通过引入日常生活中的例子,我发现学生们能更容易地接受抽象的数学概念。在讲解斜率和截距的意义时,我将它们与实际情境联系起来,让学生们感受到数学的实用性和趣味性。这种做法在一定程度上激发了学生的学习兴趣,但仍有个别学生对此感到困惑。
19.2.2一次函数图像和性质(第四课时)
y
0
x
提问复习,引入新课
1、什么叫正比例函数、一次函数?它们之间 有什么关系? 一般地,形如 y=kx(k是常数,k≠0) 的函数,叫做正比例函数; 一般地,形如 y=kx+b(k,b是常数,k≠0) 的函数,叫做一次函数。 y=kx 当b=0时,y=kx+b就变成了 ,
所以说正比例函数是一种特殊的一次函数。 2、正比例函数的图象是什么形状? 正比例函数的图象是 经过原点的一条直线 (
对于直线y=k1x+b1与直线 y=k2x+b2 比较下列一对一次函数的图象有什么共同点, 当k1=k2 , b1≠b2 时,两直线平行 ; 有什么不同点? 当k1 ≠ k2 , b1=b2 时,两直线相交于点(0,b) ; 直线(图象)平行 K相同 b不同
y 3 x 2 y 3x
K不同 b相同 直线(图象)相交
的函数值y随x的增大而增大,且图 象经过一、二、三象限,则k的取 0﹤k﹤1/2 值范围是__________.
11. 直线y=2x-3与x轴交点坐标为 (0,-3) (3/2,0) ______;与y轴的交点坐标为______;图 一、三、四象限,y随x的增大而 象经过________ 增大 ____ 12.若直线平行于直线y=-3x-5,则k= -3 ______ .
推广:
一条直线;
(1)所有一次函数y=kx+b的图象都是______ (3)直线 y=kx+b可以看作由直线y=kx 平移 b 个单位 而得到 _________ 当b>0,向上平移b个单位; 当b<0,向下平移b个单位。
互相平行 ; (2)直线 y=kx+b与直线y=kx__________
2019年人教版初中八年级数学下册19.2.2 第4课时 一次函数与实际问题学案
19.2.2 一次函数第4课时一次函数与实际问题学习目标:会写简单的分段函数的解析式,会用一次函数解决实际问题.学习重难点:1、会写简单的分段函数的解析式;2、从各种问题情境中寻找条件,确定一次函数的表达式;确定分段函数的解析式.学习过程一、复习1、直线)0bkxy中,k 、b的取值决定直线的位置:k确定函数=k(≠+的性,b确定图象与的交点。
因此,要确定一次函数关系式y=kx+b(k≠0),就必须确定k与b的值,常用待定系数法来确定k和b。
2、用待定系数法求函数的表达式步骤:(1)写出函数解析式的一般形式;(2)把已知条件(通常是自变量和函数的对应值或图像上某点的坐标等)代入函数解析式中,得到关于的方程或方程组。
(3)解方程或方程组求出的值,(4)把求出的k,b值代回到表达式中。
二、自主学习:阅读教材回答下列问题:“黄金1号”玉米种子的价格为5元/kg.。
如果一次购买2kg以上的种子,超过2kg部分的种子价格打8折。
(1)填写下表:(2)写出购买量关于付款金额的函数解析式,并画出函数的图象。
注意:横轴和纵轴的意义不同,所以横轴和纵轴的单位长度可以不同。
解:设购买xkg种子的付款金额为y元。
自变量的取值范围是。
当02≤≤时,y= ,此时的图象为一条线段,故画它x的图象必须取它的两个端点O(,)和A(,),如图线段就是它的图象。
当2x>时,y= ,此时的图象为一条射线,故画它的图象必须取它的端点A ( , ),再另外适当地取一点B ( , ),如图射线 就是它的图象。
把以上两种情况合起来就可以写成如下的分段函数表达式:{________________(02)________________(2)x x y ≤≤>=三、课堂练习:1、小明家距学校3千米,星期一早上,小明步行按每小时5千米的速度去学校,行走1千米时,遇到学校送学生的班车,小明乘坐班车以每小时20千米的速度直达学校,则小明上学的行程s 关于行驶时间t 的函数的图像大致是下图中的 ( )[来源:Z#xx#]2、如图,折线ABC 是在某市乘出租车所付车费y(元)与行车里程x (km)之间的函数关系图象.(1)根据图象,写出当x ≥3时该图象的函数关系式;(2)某人乘坐2.5 km ,应付多少钱?(3)某人乘坐13 km ,应付多少钱?(4)若某人付车费30.8元,出租车行驶了多少千米?四、课后反思。
初中八年级下册数学1922 一次函数(第4课时)教案q
19.2.2 一次函数第4课时一、教学目标【知识与技能】1.巩固一次函数知识,灵活运用变量关系解决相关实际问题;2.有机地把各种数学模型通过函数统一起来使用,提高解决实际问题的能力;3.认识数学在现实生活中的意义,提高运用数学知识解决实际问题的能力.【过程与方法】1.经历用待定系数法求一次函数解析式的过程, 提高解答数学问题的技能.2.能根据函数的图象确定一次函数的表达式,体验数形结合,具体感知数形结合思想在一次函数中的实际应用.【情感态度与价值观】能把实际问题抽象为数学问题,也能把所学的知识运用于实际,让学生认识数学与人类生活的密切联系及对人类的历史发展作用.二、课型新授课三、课时第4课时共4课时四、教学重难点【教学重点】学会用一次函数解决实际问题.【教学难点】根据实际问题建立一次函数模型.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2-3)乌鸦喝水,是《伊索寓言》中一个有趣的寓言故事.故事梗概为:"一只口渴的乌鸦看到窄口瓶内有半瓶水,于是将小石子投入瓶中,使水面升高,从而喝到了水."告诉人们遇到困难要积极想解决办法,认真思考才能让问题迎刃而解的道理.数学问题也一样哦!如果将乌鸦喝水的故事进行量化,你能判断乌鸦丢进多少颗石子,水能刚好在瓶口?说说你的做法!(二)探索新知考点1:一次函数解答实际问题如图,大拇指与小拇指尽量张开时,两指间的距离称为指距.某项研究表明,一般情况下人的身高h是指距d的一次函数.下表是测得的指距与身高的一组数据:①求出h与d之间的函数解析式(不要求写出自变量d的取值范围).②某人身高为196 cm,一般情况下他的指距应是多少?(出示课件5)师生共同讨论解答如下:解:(1)设h与d之间的函数关系式为:h=kd+b.把d=20,h=160,d=21,h=169,分别代入得,20k+b=160,21k+b=169.解得k=9,b=-20,即h=9d-20.(2)当h=196时,196=9d-20,解得d=24(cm).出示课件7-8,学生自主练习后口答,教师订正.考点2:分段函数的解析式与图象“黄金1号”玉米种子的价格为5 元/kg,如果一次购买2 kg 以上的种子,超过2 kg 部分的种子的价格打8 折.(1)填写下表:(2)写出购买量关于付款金额的函数解析式,并画出函数图象.(出示课件9-12)师生共同分析:从题目可知,种子的价格与购买种子量有关.若购买种子量为0≤x≤2时,种子价格y为:y=5x.若购买种子量为x>2时,种子价格y为:y=4(x-2)+10=4x+2 学生独立思考后,师生共同解答.解:(1) 填写表格如下:(2)设购买量为x千克,付款金额为y元.当0≤x≤2时,y=5x;当x >2时,y=4(x-2)+10=4x+2. y={5x(0≤x ≤2)4x +2(x >2)教师:上面的函数关系叫做分段函数. 强调:1.它是一个函数;2.要写明自变量取值范围. 教师:试着画出它的图象吧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4课时一次函数与实际问题1.根据问题及条件找出能反映出实际问题的函数;(重点)2.能利用一函数图象解决简单的实际问题,能够将实际问题转化为一次函数的问题.(重点)一、情境导入联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A套餐每月话费为y1(元),B套餐每月话费为y2(元),月通话时间为x(分钟).(1)分别表示出y1与x,y2与x的函数关系式;(2)月通话时间为多长时,A、B两种套餐收费一样?(3)什么情况下A套餐更省钱?二、合作探究探究点:一次函数与实际问题【类型一】利用一次函数解决最值问题广安某水果店计划购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:进价(元/千克)售价(元/千克)甲种58乙种913(1)若该水果店预计进货款为1000元,则这两种水果各购进多少千克?(2)若该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?解析:(1)根据计划购进甲、乙两种新出产的水果共140千克,进而利用该水果店预计进货款为1000元,列出等式求出即可;(2)利用两种水果每千克的利润表示出总利润,再利用一次函数增减性得出最大值即可.解:(1)设购进甲种水果x千克,则购进乙种水果(140-x)千克,根据题意可得5x+9(140-x)=1000,解得x=65,∴140-x=75(千克).答:购进甲种水果65千克,乙种水果75千克;(2)由图表可得甲种水果每千克利润为3元,乙种水果每千克利润为4元.设总利润为W,由题意可得W=3x+4(140-x)=-x+560.∵该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,∴140-x≤3x,解得x≥35.∵-1<0,∴W随x的增大而减小,则x 越小W 越大.∴当x =35时,W 最大=-35+560=525(元),140-35=105(千克).答:当购进甲种水果35千克,购进乙种水果105千克时,此时利润最大为525元. 方法总结:利用一次函数增减性得出函数最值是解题关键. 【类型二】 利用一次函数解决有关路程问题为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行”活动.自行车队从甲地出发,途经乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1h 后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2h 装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,并且邮政车行驶速度是自行车队行驶速度的2.5倍,如图表示自行车队、邮政车离甲地的路程y (km)与自行车队离开甲地的时间x (h)的函数关系图象,请根据图象提供的信息解答下列各题:(1)自行车队行驶的速度是________km/h ;(2)邮政车出发多久与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?解析:(1)由“速度=路程÷时间”就可以求出结论;(2)由自行车的速度就可以求出邮政车的速度,再由追及问题设邮政车出发a h 与自行车队首次相遇建立方程求出其解即可;(3)由邮政车的速度可以求出B 的坐标和C 的坐标,由自行车的速度就可以求出D 的坐标,由待定系数法求出BC ,ED 的解析式就可以求出结论.解:(1)由题意得自行车队行驶的速度为72÷3=24(km/h).(2)由题意得邮政车的速度为24×2.5=60(km/h).设邮政车出发a h 与自行车队首次相遇,由题意得24(a +1)=60a ,解得a =23. 答:邮政车出发23h 与自行车队首次相遇; (3)由题意得邮政车到达丙地的时间为135÷60=94(h),∴邮政车从丙地出发返回甲地前共用时为94+2+1=214(h),∴B (214,135),C (7.5,0).自行车队到达丙地的时间为135÷24+0.5=458+0.5=498(h),∴D (498,135).设直线BC 的解析式为y 1=k 1+b 1,由题意得⎩⎪⎨⎪⎧135=214k 1+b 1,0=7.5k 1+b 1,解得⎩⎪⎨⎪⎧k 1=-60,b 1=450.∴y 1=-60x +450.设ED 的解析式为y 2=k 2x +b 2,由题意得⎩⎪⎨⎪⎧72=3.5k 2+b 2,135=498k 2+b 2,解得⎩⎪⎨⎪⎧k 2=24,b 2=-12,∴y 2=24x -12.当y 1=y 2时,-60x +450=24x -12,解得x=5.5.y1=-60×5.5+450=120.答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.方法总结:本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一次函数与一元一次方程的运用,解答时求出函数的解析式是关键.【类型三】利用一次函数解决图形面积问题如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答下列问题:(1)圆柱形容器的高为多少?匀速注水的水流速度(单位:cm3/s)为多少?(2)若“几何体”的下方圆柱的底面积为15cm2,求“几何体”上方圆柱的高和底面积.解析:(1)根据图象,分三个部分:注满“几何体”下方圆柱需18s;注满“几何体”上方圆柱需24-18=6(s),注满“几何体”上面的空圆柱形容器需42-24=18(s).再设匀速注水的水流速度为x cm3/s,根据圆柱的体积公式列方程,再解方程;(2)由图②知几何体下方圆柱的高为a cm,根据圆柱的体积公式得a·(30-15)=18×5,解得a=6,于是得到“几何体”上方圆柱的高为5cm,设“几何体”上方圆柱的底面积为S cm2,根据圆柱的体积公式得5×(30-S)=5×(24-18),再解方程即可.解:(1)根据函数图象得到圆柱形容器的高为14cm,两个实心圆柱组成的“几何体”的高度为11cm,水从刚满过由两个实心圆柱组成的“几何体”到注满用了42-24=18(s),这段高度为14-11=3(cm).设匀速注水的水流速度为x cm3/s,则18·x=30×3,解得x=5,即匀速注水的水流速度为5cm3/s;(2)由图②知“几何体”下方圆柱的高为a cm,则a·(30-15)=18×5,解得a=6,所以“几何体”上方圆柱的高为11-6=5(cm).设“几何体”上方圆柱的底面积为S cm2,根据题意得5×(30-S)=5×(24-18),解得S=24,即“几何体”上方圆柱的底面积为24cm2.方法总结:本题考查了一次函数的应用:把分段函数图象中自变量与对应的函数值转化为实际问题中的数量关系,然后运用方程的思想解决实际问题.【类型四】利用一次函数解决销售问题某社区活动中心准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B(元).请解答下列问题:(1)分别写出y A、y B与x之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.解析:(1)根据购买费用=单价×数量建立关系就可以表示出y A、y B的解析式;(2)分三种情况进行讨论,当y A=y B时,当y A>y B时,当y A<y B时,分别求出购买划算的方案;(3)分两种情况进行讨论计算求出需要的费用,再进行比较就可以求出结论.解:(1)由题意得y A=(10×30+3×10x)×0.9=27x+270;y B=10×30+3(10x-20)=30x +240;(2)当y A=y B时,27x+270=30x+240,得x=10;当y A>y B时,27x+270>30x+240,得x<10.∵x≥2,∴2≤x<10;当y A<y B时,27x+270<30x+240,得x>10;∴当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时,在A超市购买划算;(3)由题意知x=15,15>10,∴只在一家超市购买时,选择A超市划算,y A=27×15+270=675(元).在两家超市购买时,先选择B超市购买10副羽毛球拍,送20个羽毛球,然后在A超市购买剩下的羽毛球:(10×15-20)×3×0.9=351(元),共需要费用10×30+351=651(元).∵651元<675元,∴最佳方案是先选择B超市购买10副羽毛球拍,然后在A 超市购买130个羽毛球.方法总结:本题考查了一次函数的解析式的运用,分类讨论的数学思想的运用,方案设计的运用,解答时求出函数的解析式是关键.【类型五】利用图表信息解决实际问题某工厂生产甲、乙两种不同的产品,所需原料为同一种原材料,生产每吨产品所需原材料的数量和生产过程中投入的生产成本的关系如表所示:产品甲乙原材料数量(吨)1 2生产成本(万元)4 2若该工厂生产甲种产品m吨,乙种产品n吨,共用原材料160吨,销售甲、乙两种产品的利润y(万元)与销售量x(吨)之间的函数关系如图所示,全部销售后获得的总利润为200万元.(1)求m 、n 的值;(2)该工厂投入的生产成本是多少万元?解析:(1)求出甲、乙两种产品每吨的利润,然后根据两种原材料的吨数和全部销售后的总利润,列出关于m 、n 的二元一次方程组,求解即可;(2)根据“生产成本=甲的成本+乙的成本”,列式计算即可得解.解:(1)由图可知,销售甲、乙两种产品每吨分别获利6÷2=3(万元)、6÷3=2(万元).根据题意可得⎩⎪⎨⎪⎧m +2n =160,3m +2n =200,解得⎩⎪⎨⎪⎧m =20,n =70; (2)由(1)知,甲、乙两种产品分别生产20吨、70吨,所以投入的生产成本为20×4+70×2=220(万元).答:该工厂投入的生产成本为220万元.方法总结:本题考查了一次函数的应用,主要利用了列二元一次方程组解决实际问题,根据表格求出两种产品每吨的利润,然后列出方程组是解题的关键.三、板书设计1.利用一次函数解决最值问题2.利用一次函数解决有关路程问题3.利用一次函数解决图形面积问题4.利用一次函数解决销售问题5.利用图表信息解决实际问题本节课的设计,力求体现新课程改革的理念,结合学生自主探究的时间,为学生营造宽松、和谐的氛围,让学生学得更主动、更轻松,力求在探索知识的过程中,培养学生的探索能力和创新能力,激发学生学习的积极性.在学生选择解决问题的诸多方法的过程中,不过多地干涉学生的思维,而是通过引导学生自己去探究来选择合适的办法解决问题.。