平面直角坐标系单元测试题
平面直角坐标系
1 平面直角坐标系单元测试题姓名 学号一.选择题(每题4分,共32分)1、在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比是( )A 、向右平移了3个单位B 、向左平移了3个单位C 、向上平移了3个单位D 、向下平移了3个单位2、三角形A ’B ’C ’是由三角形ABC 平移得到的,点A (-1,-4)的对应点为A ’(1,-1),则点B (1,1)的对应点B ’、点C (-1,4)的对应点C ’的坐标分别为( )A 、(2,2)(3,4)B 、(3,4)(1,7)C 、(-2,2)(1,7)D 、(3,4)(2,-2)3、一个长方形在平面直角坐标系中三个顶点的坐标为(– 1,– 1)、(– 1,2)、(3,– 1),则第四个顶点的坐标为( )A 、(2,2)B 、(3,2)C 、(3,3)D 、(2,3)4. 点E (a,b )到x 轴的距离是4,到y 轴距离是3,则有( )A .a=3, b=4B .a =±3,b=±4C .a=4, b=3D .a=±4,b=±35、点P (m +3, m +1)在直角坐标系得x 轴上,则点P 坐标为 ( )A .(0,-2)B .( 2,0)C .( 4,0)D .(0,-4)6. 若4,5==b a ,且点M (a ,b )在第三象限,则点M 的坐标是( )A 、(5,4)B 、(-5,C 、(-5,-4)D 、(5,-4)7. 已知点A ()2,2-,如果点A 关于x 轴的对称点是B ,点B 关于原点的对称点是C ,那么C 点的坐标是( )A 、()2,2B 、()2,2-C 、()1,1--D 、()2,2--8. 已知三角形的三个顶点坐标分别是(-1,4)、(1,1)、(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是( )A 、(-2,2),(3,4),(1,7)B 、(-2,2),(4,3),(1,7)C 、(2,2),(3,4),(1,7)D 、(2,-2),(3,3),(1,7)二、填空题(每题3分,共24分)9. 点A (-3,5)在第_____象限。
人教版七年级数学下册第7章-平面直角坐标系-单元测试卷(解析版)
第7章平面直角坐标系期末考好题精选训练一、选择题1.已知点P(2a﹣5,a+2)在第二象限,则符合条件的a的所有整数的和的立方根是()A.1 B.﹣1 C.0 D.2.平面直角坐标系中,点A(﹣3,2),B(3,4),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,4)B.2,(3,2) C.2,(3,0) D.1,(4,2)3.已知点P(2﹣a,3a+6)到两坐标轴距离相等,则P点坐标为() A.(3,3)B.(6,﹣6)C.(3,3)或(6,﹣6)D.(3,﹣3)4.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标是()A.(﹣4,0) B.(6,0)C.(﹣4,0)或(6,0) D.(0,12)或(0,﹣8)5.已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()A.B.C.D.6.下列命题是真命题的是()①a,b为实数,若a2=b2,则=②的平方根是±4③三角形ABC中,∠C=90°,则点到直线的距离是线段BC④建立一个平面直角坐标,点A(﹣2,4),点B(3,4),画直线AB,若点C在直线AB上,且AC=4,则C点坐标(1,4),(﹣6,4)A.0 B.1 C.2 D.37.如图,在平面直角坐标系上有点A(1,0),点A第一次向右跳动至A1(﹣1,1),第二次向左跳动至A2(2,1),第三次向右跳动至A3(﹣2,2),第四次向左跳动至A4(3,2)…依照此规律跳动下去,点A第100次跳动至A100的坐标()A.(50,49)B.(51,50)C.(﹣50,49)D.8.下列说法正确的是()A.若ab=0,则点P(a,b)表示原点B.点(1,﹣a2)在第四象限C.已知点A(2,3)与点B(2,﹣3),则直线AB平行x轴D.坐标轴上的点不属于任何象限9.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n 被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.D.(99,34)10.在△ABC内任意一点P(a,b)经过平移后对应点P1(c,d),已知A(3,2)在经过此次平移后对应点A1的坐标为(5,﹣1),则a+b﹣c﹣d的值为()A.﹣5 B.﹣1 C.1 D.511.周末,小明与小文相约一起到游乐园去游玩,如图是他俩在微信中的一段对话:根据上面两人的对话纪录,小文能从M超市走到游乐园门口的路线是()A.向北直走700米,再向西直走300米B.向北直走300米,再向西直走700米C.向北直走500米,再向西直走200米D.向南直走500米,再向西直走200米二、填空题12.如图,将边长为1个单位长度的正方形ABCD置于平面直角坐标系内,如果BC与x轴平行,且点A的坐标是(2,2),那么点C的坐标为.第12题图第13题图13.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次为A1,A2,A3,A4,…表示,则顶点A2018的坐标是.14.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图.则A20(,);点A4n的坐标为(,)(n是正整数).15.如图所示,直线BC经过原点O,点A在x轴上,AD⊥BC于D,若B(m,3),C(n,﹣5),A(4,0),则AD•BC=.16.平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形",现有点A(2,5),B(﹣1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是.17.如图,一个机器人从点O出发,向正东方向走3m到达点A1,再向正北方向走6m到达点A2,再向正西方向走9m到达点A3,再向正南方向走12m到达点A4,再向正东方向走15m到达点A5.按如此规律下去,当机器人走到点A6时,离点O的距离是m.18.定义:若点M、N分别是两条线段a和b上任意一点,则线段MN长度的最小值叫做线段a与线段b的“理想距离”.已知O(0,0),A(1,1),B(3,k),C(3,k+2)是平面直角坐标系中的4个点.根据上述概念,若线段BC与线段OA的理想距离为2,则k的取值范围是.三、解答题19.如图,这是某市部分简图,为了确定各建筑物的位置:(1)请你以火车站为原点建立平面直角坐标系.(2)写出市场、超市的坐标.(3)请将体育场、宾馆和火车站看作三点用线段连起来,得△ABC,然后将此三角形向下平移4个单位长度,画出平移后的△A1B1C1,并求出其面积.20.如图,在平面直角坐标系中,已知A(0,a),B(b,0),其中a,b满足|a ﹣2|+(b﹣3)2=0.(1)求a,b的值;(2)如果在第二象限内有一点M(m,1),请用含m的式子表示四边形ABOM的面积;(3)在(2)条件下,当m=﹣时,在坐标轴的负半轴上是否存在点N,使得四边形ABOM的面积与△ABN的面积相等?若存在,求出点N的坐标;若不存在,请说明理由.21.如图1,在平面直角坐标系中,第一象限内长方形ABCD,AB∥y轴,点A(1,1),点C(a,b),满足+|b﹣3|=0.(1)求长方形ABCD的面积.(2)如图2,长方形ABCD以每秒1个单位长度的速度向右平移,同时点E从原点O出发沿x轴以每秒2个单位长度的速度向右运动,设运动时间为t秒.①当t=4时,直接写出三角形OAC的面积为;②若AC∥ED,求t的值;(3)在平面直角坐标系中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P的伴随点,已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n.①若点A1的坐标为(3,1),则点A3的坐标为,点A2014的坐标为;②若点A1的坐标为(a,b),对于任意的正整数n,点A n均在x轴上方,则a,b 应满足的条件为.22.在平面直角坐标系xOy中,对于点P(x,y),我们把P'(y﹣1,﹣x﹣1)叫做点P的友好点,已知点A1的友好点为A2,点A2的友好点为A3,点A3的友好点为A4,…,这样依次得到点.(1)当点A1的坐标为(2,1),则点A3的坐标为,点A2016的坐标为;(2)若A2016的坐标为(﹣3,2),则设A1(x,y),求x+y的值;(3)设点A1的坐标为(a,b ),若A1,A2,A3,…A n,点A n均在y轴左侧,求a、b的取值范围.23.在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底"a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底"a=5,“铅垂高"h=4,“矩面积”S=ah=20.已知点A(1,2),B(﹣3,1),P(0,t).(1)若A,B,P三点的“矩面积"为12,求点P的坐标;(2)直接写出A,B,P三点的“矩面积”的最小值.一、选择题1.已知点P(2a﹣5,a+2)在第二象限,则符合条件的a的所有整数的和的立方根是()A.1 B.﹣1 C.0 D.【解答】解:∵点P(2a﹣5,a+2)在第二象限,∴解得:符合条件的a的所有整数为﹣1,0,1,2,∴﹣1+0+1+2=2,∴2的立方根为:,故选:D.2.平面直角坐标系中,点A(﹣3,2),B(3,4),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,4)B.2,(3,2)C.2,(3,0) D.1,(4,2)【解答】解:如图所示:由垂线段最短可知:当BC⊥AC时,BC有最小值.∴点C的坐标为(3,2),线段的最小值为2.故选:B.3.已知点P(2﹣a,3a+6)到两坐标轴距离相等,则P点坐标为()A.(3,3) B.(6,﹣6)C.(3,3)或(6,﹣6)D.(3,﹣3)【解答】解:∵点P(2﹣a,3a+6)到两坐标轴距离相等,∴|2﹣a|=|3a+6|,∴2﹣a=3a+6或2﹣a=﹣(3a+6),解得a=﹣1或a=﹣4,当a=﹣1时,2﹣a=2﹣(﹣1)=3,3a+6=3×(﹣1)+6=3,当a=﹣4时,2﹣a=2﹣(﹣4)=6,3a+6=3×(﹣4)+6=﹣6,∴点P的坐标为(3,3)或(6,﹣6).故选C.4.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标是()A.(﹣4,0)B.(6,0)C.(﹣4,0)或(6,0) D.(0,12)或(0,﹣8)【解答】解:∵A(1,0),B(0,2),点P在x轴上,∴AP边上的高为2,又△PAB的面积为5,∴AP=5,而点P可能在点A(1,0)的左边或者右边,∴P(﹣4,0)或(6,0).故选C5.已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()A.B.C.D.【解答】解:根据岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,故D 符合.故选:D.6.下列命题是真命题的是()①a,b为实数,若a2=b2,则=②的平方根是±4③三角形ABC中,∠C=90°,则点到直线的距离是线段BC④建立一个平面直角坐标,点A(﹣2,4),点B(3,4),画直线AB,若点C在直线AB上,且AC=4,则C点坐标(1,4),(﹣6,4)A.0 B.1 C.2 D.3【解答】解:a,b为实数,若a2=b2,则a=b或a=﹣b,所以①错误;的平方根是±2,所以②错误;三角形ABC中,∠C=90°,则点B到直线AC的距离是线段BC的长,所以③错误;建立一个平面直角坐标,点A(﹣2,4),点B(3,4),画直线AB,若点C在直线AB上,且AC=4,则C点坐标(2,4),(﹣6,4),所以④错误.故选A.7.如图,在平面直角坐标系上有点A(1,0),点A第一次向右跳动至A1(﹣1,1),第二次向左跳动至A2(2,1),第三次向右跳动至A3(﹣2,2),第四次向左跳动至A4(3,2)…依照此规律跳动下去,点A第100次跳动至A100的坐标()A.(50,49)B.(51,50)C.(﹣50,49)D.【解答】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),∴第100次跳动至点的坐标是(51,50).故选B.8.下列说法正确的是()A.若ab=0,则点P(a,b)表示原点B.点(1,﹣a2)在第四象限C.已知点A(2,3)与点B(2,﹣3),则直线AB平行x轴D.坐标轴上的点不属于任何象限【解答】解:A、a=0,b≠0时,点P(a,b)在y轴上,a≠0,b=0时,点P(a,b)在x轴上,a=b=0时,点P(a,b)表示原点,故本选项错误;B、a=0时,点(1,﹣a2)在x轴上,a≠0时,点(1,﹣a2)在第四象限,故本选项错误;C、∵点A(2,3)与点B(2,﹣3)的横坐标相同,∴直线AB平行y轴,故本选项错误;D、坐标轴上的点不属于任何象限正确,故本选项正确.故选D.9.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33) C.D.(99,34)【解答】解:由题意得,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,∵100÷3=33余1,∴走完第100步,为第34个循环组的第1步,所处位置的横坐标为33×3+1=100,纵坐标为33×1=33,∴棋子所处位置的坐标是.故选:C.10.在△ABC内任意一点P(a,b)经过平移后对应点P1(c,d),已知A(3,2)在经过此次平移后对应点A1的坐标为(5,﹣1),则a+b﹣c﹣d的值为()A.﹣5 B.﹣1 C.1 D.5【解答】解:∵A(3,2)在经过此次平移后对应点A1的坐标为(5,﹣1),∴△ABC的平移规律为:向右平移个单位,向下平移3个单位,∵点P(a,b)经过平移后对应点P1(c,d),∴a+2=c,b﹣3=d,∴a﹣c=﹣2,b﹣d=3,∴a+b﹣c﹣d=﹣2+3=1,故选C.11.周末,小明与小文相约一起到游乐园去游玩,如图是他俩在微信中的一段对话:根据上面两人的对话纪录,小文能从M超市走到游乐园门口的路线是()A.向北直走700米,再向西直走300米B.向北直走300米,再向西直走700米C.向北直走500米,再向西直走200米D.向南直走500米,再向西直走200米【解答】解:根据题意建立平面直角坐标系如图所示,小文能从M超市走到游乐园门口的路线是:向北直走700米,再向西直走300米.故选A.二、填空题12.如图,将边长为1个单位长度的正方形ABCD置于平面直角坐标系内,如果BC与x轴平行,且点A的坐标是(2,2),那么点C的坐标为.【解答】解:∵点A的坐标是(2,2),BC∥x轴,且AB=1,∴点B坐标为(2,1),又BC=1,∴点C的坐标为(3,1),故答案为:(3,1).13.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次为A1,A2,A3,A4,…表示,则顶点A2018的坐标是.【解答】解:∵每个正方形都有4个顶点,∴每4个点为一个循环组依次循环,∵2018÷4=504…2,∴点A2018是第505个正方形的第2个顶点,在第二象限,∵从内到外正方形的边长依次为2,4,6,8,…,∴A2(﹣1,1),A6(﹣2,2),A10(﹣3,3),…,A2018(﹣505,505).故答案为(﹣505,505).14.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图.则A20(,);点A4n的坐标为(,)(n是正整数).【解答】解:由图可知,A4,A8都在x轴上,∵小蚂蚁每次移动1个单位,∴OA4=2,OA8=4,则OA20=10,∴A20(10,0);根据以上可得:OA4n=4n÷2=2n,∴点A4n的坐标(2n,0).故答案为:10,0;2n,0.15.如图所示,直线BC经过原点O,点A在x轴上,AD⊥BC于D,若B(m,3),C(n,﹣5),A(4,0),则AD•BC=.【解答】解:过B作BE⊥x轴于E,过C作CF⊥y轴于F,∵B(m,3),∴BE=3,∵A(4,0),∴AO=4,∵C(n,﹣5),∴OF=5,∵S△AOB=AO•BE=×4×3=6,S△AOC=AO•OF=×4×5=10,∴S△AOB +S△AOC=6+10=16,∵S△ABC=S△AOB+S△AOC,∴BC•AD=16,∴BC•AD=32,故答案为:32.16.平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形",现有点A(2,5),B (﹣1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是.【解答】解:∵以O,A,B,C四点为顶点的四边形是“和点四边形”,①当C为A、B的“和点”时,C点的坐标为(2﹣1,5+3),即C(1,8);②当B为A、C的“和点”时,设C点的坐标为(x1,y1),则,解得C(﹣3,﹣2);③当A为B、C的“和点"时,设C点的坐标为(x2,y2),则,解得C(3,2);∴点C的坐标为(1,8)或(﹣3,﹣2)或(3,2).故答案为:(1,8)或(﹣3,﹣2)或(3,2).17.如图,一个机器人从点O出发,向正东方向走3m到达点A1,再向正北方向走6m到达点A2,再向正西方向走9m到达点A3,再向正南方向走12m到达点A4,再向正东方向走15m到达点A5.按如此规律下去,当机器人走到点A6时,离点O的距离是m.【解答】解:根据题意可知当机器人走到A6点时,A5A6=18米,点A6的坐标是(6+3=9,18﹣6=12),即(9,12).所以,当机器人走到点A6时,离点O的距离是=15.故答案为:15.18.定义:若点M、N分别是两条线段a和b上任意一点,则线段MN长度的最小值叫做线段a与线段b的“理想距离".已知O(0,0),A(1,1),B(3,k),C(3,k+2)是平面直角坐标系中的4个点.根据上述概念,若线段BC与线段OA的理想距离为2,则k的取值范围是.【解答】解:由题意可得,,解得,﹣1≤k≤1,故答案为:﹣1≤k≤1.三、解答题19.如图,这是某市部分简图,为了确定各建筑物的位置:(1)请你以火车站为原点建立平面直角坐标系.(2)写出市场、超市的坐标.(3)请将体育场、宾馆和火车站看作三点用线段连起来,得△ABC,然后将此三角形向下平移4个单位长度,画出平移后的△A1B1C1,并求出其面积.【解答】解:(1)如图所示:(2)如图所示:市场(4,3)、超市(2,﹣3);(3)如图所示,△A1B1C1的面积是:3×6﹣×1×6﹣×2×2﹣×3×4=7.20.如图,在平面直角坐标系中,已知A(0,a),B(b,0),其中a,b满足|a﹣2|+(b﹣3)2=0.(1)求a,b的值;(2)如果在第二象限内有一点M(m,1),请用含m的式子表示四边形ABOM的面积;(3)在(2)条件下,当m=﹣时,在坐标轴的负半轴上是否存在点N,使得四边形ABOM的面积与△ABN的面积相等?若存在,求出点N的坐标;若不存在,请说明理由.【解答】解:(1)∵a ,b 满足|a ﹣2|+(b ﹣3)2=0, ∴a ﹣2=0,b ﹣3=0,解得a=2,b=3.故a 的值是2,b 的值是3;(2)过点M 作MN 丄y 轴于点N .四边形AMOB 面积=S △AMO +S △AOB =MN•OA +OA•OB =×(﹣m )×2+×2×3=﹣m +3;(3)当m=﹣时,四边形ABOM 的面积=4。
2020--2021学年人教版数学七年级下册第7章《平面直角坐标系》单元测试题(含答案)
人教版数学七年级下册《平面直角坐标系》单元测试题一、选择题1.下列关于有序数对的说法正确的是( )A.(3,2)与(2,3)表示的位置相同B.(a,b)与(b,a)表示的位置一定不同C.(3,-2)与(-2,3)是表示不同位置的两个有序数对D.(4,4)与(4,4)表示两个不同的位置2.点P在第三象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为( )A.(-4,3)B.(-3,-4)C.(-3,4)D.(3,-4)3.如果点P(m+3,m+1)在直角坐标系的x轴上,那么P点坐标为( )A.(0,2)B.(2,0)C.(4,0)D.(0,-4)4.如果一个图案沿x轴负方向平移3个单位长度,那么这个图案上的点的坐标变化为( )A.横坐标不变,纵坐标减少3个单位长度B.纵坐标不变,横坐标减少3个单位长度C.横纵坐标都没有变化D.横纵坐标都减少3个单位长度5.如图,线段AB经过平移得到线段A1B1,其中点A,B的对应点分别为点A1,B1,这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A1B1上的对应点P′的坐标为( )A.(a-2,b+3)B.(a-2,b-3)C.(a+2,b+3)D.(a+2,b-3)6.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“車”的点的坐标为(﹣2,1),棋子“炮”的点的坐标为(1,3),则表示棋子“馬”的点的坐标为()A.(﹣4,3)B.(3,4)C.(﹣3,4)D.(4,3)7.如图,在平面直角坐标系中,已知点A(2,1),点B(3,﹣1),平移线段AB,使点A落在点A1(﹣2,2)处,则点B的对应点B1的坐标为( )A.(﹣1,﹣1) B.(1,0) C.(﹣1,0) D.(3,0)8.已知点P(m+2,2m﹣4)在x轴上,则点P的坐标是( )A.(4,0) B.(0,4) C.(﹣4,0) D.(0,﹣4)9.已知点A(﹣3,2)与点B(x,y)在同一条平行y轴的直线上,且B点到x轴的矩离等于3,则B点的坐标是()A.(﹣3,3)B.(3,﹣3)C.(﹣3,3)或(﹣3,﹣3)D.(﹣3,3)或(3,﹣3)10.已知点平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A.﹣3B.﹣5C.1或﹣3D.1或﹣511.若m是任意实数,则点P (m-4,m+1) 一定不在( )A.第一象限B.第二象限C.第三象限D.第四象限12.将一组整数按如图所示的规律排列下去.若有序数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示的数为8,则(7,4)表示的数是()A.32B.24C.25D.-25二、填空题13.在平面直角坐标系中,已知线段MN的两个端点的坐标分别是M(-4,-1),N(0,1),将线段MN平移后得到线段M′N′(点M,N分别平移到点M′,N′的位置).若点M′的坐标为(-2,2),则点N′的坐标为____________.14.若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标是.15.点N(x,y)的坐标满足xy<0,则点N在第象限.16.在平面直角坐标系中,若将点P (-1,4) 向右平移2个单位长度后,再向下平移3个单位长度,得到点P1,则点P1的坐标为.17.已知点P在第四象限,它的横坐标与纵坐标之和为1,则点P的坐标为(写出一个即可)18.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后,动点P的坐标是.三、作图题19.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,建立平面直角坐标系.(1)点A的坐标为,点C的坐标为;(2)将△ABC向左平移7个单位,请画出平移后的△A′B′C′,若M为△ABC内的一点,其坐标为(a,b),则平移后点M的对应点M'的坐标为.四、解答题20.已知平面直角坐标系中有一点M(m-1,2m+3).(1)当m为何值时,点M到x轴的距离为1?(2)当m为何值时,点M到y轴的距离为2?21.如图,机械手要将一个工件从图中的A处移动到B处,但是这个工件不能碰到图中的障碍(不包括坐标轴所表示的直线),试用坐标写出一条机械手在移动中可能要经过的路线(机械手的行走路线均经过格点).22.已知:A(0,1),B(2,0),C(4,3).(1)在坐标系中描出各点,画出△ABC;(2)求△ABC的面积;(3)若点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.23.如图,在平面直角坐标系中,四边形ABCD各顶点的坐标分别为A(0,1)、B(5,1)、C(7,3)、D(2,5).(1)填空:四边形ABCD内(边界点除外)一共有个整点(即横坐标和纵坐标都是整数的点);(2)求四边形ABCD的面积.24.如图,在平面直角坐标系中,A(-2,2),B(-3,-2).(1)若点D与点A关于y轴对称,则点D的坐标为___;(2)将点B先向右平移5个单位再向上平移1个单位得到点C,则点C的坐标为____;(3)求A,B,C,D组成的四边形ABCD的面积.25.如图所示,A(1,0),点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(-3,2).(1)直接写出点E的坐标;(2)在四边形ABCD中,点P从点B出发,沿“BC→CD”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:①当t= 秒时,点P的横坐标与纵坐标互为相反数;②求点P在运动过程中的坐标,(用含t的式子表示,写出过程);③当3秒<t<5秒时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,试问 x,y,z之间的数量关系能否确定?若能,请用含x,y的式子表示z,写出过程;若不能,说明理由.参考答案1.C.2.B.3.B.4.B5.B.6.D.7.C.8.A.9.C.10.C.11.D12.D13.答案为:(2,4);14.答案为:(-3,5).15.答案为:二、四.16.答案为:(1,1)17.答案为:(2,﹣1)18.答案为:(504,2).19.解:(1)利用图形得出:点A的坐标为:(2,8),点C的坐标为:(6,6);(2)∵将△ABC向左平移7个单位,M为△ABC内的一点,其坐标为(a,b),∴平移后点M的对应点M'的坐标为:(a﹣7,b).20.解:(1)∵|2m+3|=1,∴2m+3=1或2m+3=-1,解得m=-1或m=-2.(2)∵|m-1|=2,∴m-1=2或m-1=-2,解得m=3或m=-1.21.解:答案不唯一,如:A(1,-2)→(5,-2)→(5,5)→(-4,5)→B(-4,3).22.解:(1)如图所示.(2)S△ABC=3×4-×2×3-×2×4-×2×1=12-3-4-1=4.(3)当点P在x轴上时,S△ABP=AO·BP=4,即×1·BP=4,解得BP=8,∴点P的坐标为(10,0)或(-6,0);当点P在y轴上时,S△ABP=BO·AP=4,即×2AP=4,解得AP=4,∴点P的坐标为(0,5)或(0,-3),∴点P的坐标为(0,5)或(0,-3)或(10,0)或(-6,0).23.解:(1)填空:四边形ABCD内(边界点除外)一共有 13个整点.(2)如下图所示:∵S四边形ABCD=S△ADE+S△DFC+S四边形BEFG+S△BCGS△ADE=×2×4=4 S△DFC=×2×5=5 S四边形BEFG=2×3=6 S△BCG=×2×2=2 ∴S四边形ABCD=4+5+6+2=17 即:四边形ABCD的面积为1724.解:_(2,2) (2,-1)(3)15.5.25.解:(1)根据题意,可得三角形OAB沿x轴负方向平移3个单位得到三角形DEC,∵点A的坐标是(1,0),∴点E的坐标是(-2,0);故答案为:(-2,0);(2)①∵点C的坐标为(-3,2).∴BC=3,CD=2,∵点P的横坐标与纵坐标互为相反数;∴点P在线段BC上,∴PB=CD,即t=2;∴当t=2秒时,点P的横坐标与纵坐标互为相反数;故答案为:2;②当点P在线段BC上时,点P的坐标(-t,2),当点P在线段CD上时,点P的坐标(-3,5-t);③能确定,如图,过P作PE∥BC交AB于E,则PE∥AD,∴∠1=∠CBP=x°,∠2=∠DAP=y°,∴∠BPA=∠1+∠2=x°+y°=z°,∴z=x+y.。
人教版数学七年级下册第七章《平面直角坐标系》测试题(含答案)
人教版数学七年级下册第七章《平面直角坐标系》测试题(含答案)一、单选题(每小题只有一个正确答案)1.下面的有序数对的写法正确的是()A.(1、3) B.(1,3) C.1,3 D.以上表达都正确2.线段EF是由线段PQ平移得到的,点P(-1,4)的对应点为E(4,7).则点Q(-3,1)的对应点F的坐标为( )A.(-8,-2) B.(-2,-2) C.(2,4) D.(-6,-1)3.平面直角坐标系中有5个点:(2,3),(1,0),(0,-2),(0,0),(-3,2),其中不属于任何象限的有( )A.1个 B.2个 C.3个 D.4个4.在如图所示的单位正方形网格中,经过平移后得到,已知在上一点平移后的对应点为,则点的坐标为( )A.(1.4,-1) B.(-1.5,2) C.(-1.6,-1) D.(-2.4,1)5.根据下列表述,能确定位置的是( )A.孝义市府前街B.南偏东C.美莱登国际影城3排D.东经,北纬6.点P()在平面直角坐标系的轴上,则点P的坐标为( )A.(0,2) B.(2,0) C.(0,-2) D.(0,-4)7.下列说法中,正确的是( )A.平面直角坐标系是由两条互相垂直的直线组成的B.平面直角坐标系是由两条相交的数轴组成的C.平面直角坐标系中的点的坐标是唯一确定的D.在平面上的一点的坐标在不同的直角坐标系中的坐标相同8.下列与(2,5)相连的直线与y轴平行的是()A.(5,2) B.(1,5) C.(-2,2) D (2,1)9.在平面直角坐标系中,点P的横坐标是-3,且点P到x轴的距离为5,则P的坐标是()A.(5,-3)或(-5,-3)B.(-3,5)或(-3,-5)C.(-3,5)D.(-3,-3)10.直角坐标系中,点P(x,y)在第三象限,且P到x轴和y轴的距离分别为3、4,则点P的坐标为()A.(-3,-4)B.(3,4)C.(-4,-3)D.(4,3)11.雷达二维平面定位的主要原理是:测量目标的两个信息﹣距离和角度,目标的表示方法为(m,α),其中,m表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为A(5,30°),目标C的位置表示为C(3,300°).用这种方法表示目标B的位置,正确的是()A.(﹣4,150°) B.(4,150°) C.(﹣2,150°) D.(2,150°)12.若P(m,n)与Q(n,m)表示同一个点,那么这个点一定在()A.第二、四象限 B.第一、三象限C.平行于x轴的直线上 D.平行于y轴的直线上二、填空题13.早上8点钟时室外温度为2 ℃,我们记作(8,2),则晚上9点时室外温度为零下3 ℃,我们应该记作______.14.若点B(a,b)在第三象限,则点C(-a+1,3b-5)在第________象限.15.已知点A在x轴的下方,且到x轴的距离为5,到y轴的距离为3,则点A的坐标为_____.16.到轴的距离是________,到轴的距离是________,到原点的距离是________.17.如图,平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…根据这个规律,第2 019个点的坐标为________.三、解答题18.如图是某动物园的平面示意图,借助刻度尺、量角器,解决如下问题:(1)猴园和鹿场分别位于水族馆的什么方向?(2)与水族馆距离相同的地方有哪些场地?(3)如果用(5,3)表示图上的水族馆的位置,那么猛兽区怎样表示?(7,5)表示什么区?,19.如图所示,从2街4巷到4街2巷,走最短的路线,共有几种走法?请分别写出这些路线。
第七章平面直角坐标系单元测试卷2022-2023学年人教版七年级数学下册
第七章平面直角坐标系单元测试卷2022-2023学年人教版七年级数学下册一、选择题(共10小题,每小题3分,满分30分)1、点A(﹣2,1)在()A.第一象限B.第二象限C.第三象限D.第四象限2、下列能够确定位置的是()A.甲地在乙地北偏东30°的方向上B.一只风筝飞到距A地20米处C.影院座位位于一楼二排D.某市位于北纬30°,东经120°3、已知点A(1,2),过点A向y轴作垂线,垂足为M,则点M的坐标为()A.2 B.(2,0)C.(0,1)D.(0,2)4、点P(a,b),ab>0,a+b<0,则点P在()A.第一象限B.第二象限C.第三象限D.第四象限5、若点P(一m,3)与点Q(-5,m)关于y轴对称,则m,n的值分别为( )A.-5,3B.5,3C.5,-3D.-3,56、北京市为了促进全民健身,举办“健步走”活动,朝阳区活动场地位于奥林匹克公园(路线:森林公园一玲珑塔一国家体育场一水立方).如图,体育局的工作人员在奥林匹克公园设定玲现塔的坐标为(-1,0),森林公园的坐标为(-2,2),则终点水立方的坐标为( )A.(-2,-4)B.(-1,-4)C.(-2,4)D.(-4,-1)7、已知点A(a,b)为第二象限的一点,且点A到x轴的距离为4,且|a+1|=4,则√b−b=()A.3 B.±3 C.﹣3 D.√38、若点P(2a﹣5,4﹣a)到两坐标轴的距离相等,则点P的坐标是()A.(1,1)B.(﹣3,3)C.(1,﹣1)或(﹣3,3)D.(1,1)或(﹣3,3)9、如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角(∠AOM=∠BOM),当点P第2022次碰到矩形的边时,点P的坐标为()A.(0,3)B.(5,0)C.(1,4)D.(8,3)10、如图,一个粒子从(1,0)出发,每分钟移动一次,运动路径为(1,0)→(1,1)→(2,0)→(2,1)→(2,2)→(3,1)→(4,0)→…,即第1分钟末粒子所在点的坐标为(1,1),第2分钟末粒子所在点的坐标为(2,0),…,则第2022分钟末粒子所在点的坐标为()A.(991,41)B.(947,42)C.(947,41)D.(991,42)二、填空题(每小题3分,共18分)11、如图,若在象棋棋盘上建立平面直角坐标系,使“兵”位于点(1,﹣1),“炮”位于点(﹣1,0),则“马”位于点.12、在象限内x轴下方的一点A,到x轴距离为12,到y轴的距离为13,则点A的坐标为.13、线段MN是由线段EF经过平移得到的,若点E(﹣1,3)的对应点M(﹣4,7),则点F(﹣3,﹣2)的对应点N的坐标是.14、已知点M(﹣1,3),点N为x轴上一动点,则MN的最小值为.15、在平面直角坐标系中,点O为坐标原点,点A、B、C的坐标分别为(m﹣1,n),(m﹣1,n+6),(5,t),若△ABO的面积为△ABC面积的3倍,则m的值为.16、在平面直角坐标系中,已知A(﹣a,3a+2),B(2a﹣3,a+2),C(2a﹣3,a﹣2)三个点,下列四个命题:①若AB∥x轴,则a=2;②若AB∥y轴,则a=﹣1;③若a=1,则A,B,C三点在同一条直线上;④若a>1,三角形ABC的面积等于8,则点C的坐标为(73,23).其中真命题有(填序号).三、解答题(共8小题,共72分)17、(6分)已知:P(4x,x﹣3)在平面直角坐标系中.(1)若点P在第三象限的角平分线上,求x的值;(2)若点P在第四象限,且到两坐标轴的距离之和为9,求x的值.18、(6分)如图所示是某市区几个旅游景点的平面示意图.(1)选取一个景点为坐标原点,建立平面直角坐标系:(2)在所建立的平面直角坐标系中,写出其余各景点的坐标19、(6分)在平面直角坐标系中,已知A(2x,3x+1)(1)点A在x轴下方,在y轴的左侧,且到两坐标轴的距离相等,求x的值.(2)若x=1,点B在x轴上,且S△AOB=6,求点B的坐标.20、(6分)在平面直角坐标系中(1)已知点P(2a-6,a+4)在y轴上,求点P的坐标;(2)已知两点A(-3,m-1),B(n+1,4),若AB∥x轴,点B在第一象限,求m的值,并确定n 的取值范围;(3)在(1)(2)的条件下,如果线段AB的长度是6,试判断以P,A,B为顶点的三角形的形状,并说明理由。
第14章 平面直角坐标系数学七年级上册-单元测试卷-人教五四学制版(含答案)
第14章平面直角坐标系数学七年级上册-单元测试卷-人教五四学制版(含答案)一、单选题(共15题,共计45分)1、线段CD是由线段AB平移得到的,点A(﹣1,5)的对应点为C(4,8),则点B(﹣4,﹣2)的对应点D的坐标为()A.(﹣9,﹣5)B.(﹣9,1)C.(1,﹣5)D.(1,1)2、点A(﹣3,﹣4)到原点的距离为()A.3B.4C.5D.73、已知点A(﹣1,2)和点B(3,m﹣1),如果直线AB∥x轴,那么m的值为()A.1B.﹣4C.﹣1D.34、如图,在平面直角坐标系中,的斜边OA在第一象限,并与x轴的正半轴夹角为30度,C为OA的中点,BC=1,则A点的坐标为()A. B. C. D.5、已知(a-2)2+|b+3|=0,则p(-a,-b)的坐标为()A.(2,3)B.(2,-3)C.(-2,3)D.(-2,-3)6、已知点M(x,y)在第二象限内,且|x|=2,|y|=3,则点M关于原点对称点的坐标是()A.(-2,-3)B.(-2,3)C.(3,-2)D.(2,-3)7、下列四个图形中,可以由图通过平移得到的是()A. B. C. D.8、如图,的直角顶点D在y轴上,边上的点在抛物线上,将绕点O逆时针旋转,得到,点A恰好在抛物线上,则点A 的坐标为().A. B. C. D.9、一次函数y=2x+4交y轴于点A,则点A的坐标为()A.(0,4)B.(4,0)C.(﹣2,0)D.(0,﹣2)10、在平面直角坐标系中,将点A(x,y)向右平移1个单位长度,再向下平移1个单位长度后与点B(3,-2)重合,则点A的坐标是( )A.(2,-3)B.(4,1)C.(4,-1)D.(2,-1)11、如图,在平面直角坐标系中,等边三角形的边长为4,点在第二象限内,将沿射线平移,平移后点的横坐标为,则点的坐标为()A. B. C. D.12、一个长方形在直角坐标系中三个顶点的坐标为(-1,-1),(-1,2),(3,-1),则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(3,3)D.(2,3)13、在平面直角坐标系中,若点P(x-2,1-x)在第四象限,则x的取值范围是()A. 1< x<2B.x<1C.x>2D.x<214、如图,正方形ABCD的边长为4,点A的坐标为(﹣1,1),AB平行于x轴,则点C的坐标为()A.(2,4)B.(2,5)C.(3,4)D.(3,5)15、已知,点A(m-1,3)与点B(2,n-1)关于x轴对称,则(m+n)2020的值为()A.0B.1C.-1D.3 2020二、填空题(共10题,共计30分)16、一个长方形在平面直角坐标系中三个顶点的坐标为(3,2),(﹣1,2),(3,﹣1),则第四个顶点的坐标为________.17、如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头方向,每次移动1个单位长度,依次得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),…,则点A2018的坐标是________.18、点M(﹣2,3)到x轴的距离是________.19、将直线y=2x﹣2向右平移1个单位长度后所得直线的解析式为y=________.20、如图,四边形OABC为矩形,点A,C分别在x轴和y轴上,连接AC,点B的坐标为(8,6),∠CAO的平分线与y轴相交于点D,则点D的坐标为________.21、如图,在平面直角坐标系中,的直角顶点的坐标为,点在轴正半轴上,且.将先绕点逆时针旋转,再向左平移3个单位,则变换后点的对应点的坐标为________.22、如图,在平面直角坐标系中,等腰直角三角形的直角边在轴的正半轴上,且,以为直角边作第二个等腰直角三角形,以为直角边作第三个等腰直角三角,…,依此规律,得到等腰直角三角形,则点的坐标为________.23、如图,点,向右平移1个单位,再向上平移1个单位,得到点;点向上平移1个单位,再向右平移2个单位,得到点;点向上平移2个单位,再向右平移4个单位,得到点;点向上平移4个单位,再向右平移8个单位,得到点;……按这个规律平移得到点,则点的横坐标为________.24、如果点M(3,x)在第一象限,则x的取值范围是________.25、若点P(a+3,a﹣1)在x轴上,则点P的坐标为________.三、解答题(共5题,共计25分)26、在直角坐标系中,用线段顺次连结点(-2,0),(0,3),(3,3),(0,4),(-2,0)。
八年级 第5章平面直角坐标系单元测试卷(A卷基础篇)(苏科版)(解析版)
第5章平面直角坐标系单元测试卷(A卷基础篇)[苏科版】参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)根据下列表述,能确定一个点位置的是(A.北偏东40°B.某地江滨路C.光明电影院6排D.东经116°'北纬42°【分析】根据各个选项中的语句可以判断哪个选项是正确的,本题得以解决.【解析】解:根据题意可得,北偏东40°无法确定位置,故选项A错误;某地江滨路无法确定位置,故选项B错误;光明电影院6排无法确定位置,故选项C错误;东经116°'北纬42°可以确定一点的位置,故选项D正确,故选:D.【点睛】本题考查坐标位置的确定,解题的关键是明确题意,可以判断选项中的各个语句哪一个可以确定一点的位置2.(3分)在平面直角坐标系中,点M(20l9,—2019)在(A.第一象限B.第二象限C.第三象限D.第四象限【分析】四个象限的符号特点分别是:第一象限(十,+);第二象限(,+);第三象限(,);第四象限(十,),再根据点M的坐标的符号,即可得出答案【解析】解:了M(2019,-2019),.点M所在的象限是第四象限故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(—,+);第三象限(—,-);第四象限(+,-).3.(3分)已知点P(m+2,2m-4)在x轴上,则点P的坐标是(A.(4,0)B.(0,4)C.(-4,0)D .(0,-4)【分析】直接利用关千x 轴上点的坐标特点得出m 的值,进而得出答案【解析】解:..点P(m +2,2m -4)在x 轴上,:. 2m-4 = 0,解得:m =2,:.m+2=4,则点P 的坐标是:(4,0).故选:A .【点睛】此题主要考查了点的坐标,正确得出m 的值是解题关键.4.(3分)象棋在中国有着三千多年的历史,由千用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“黑”和“车"的点的坐标分别为(4,3),(—2,1),则表示棋子"炮”的点的坐标为(仁一--@@@__@ 汉界@-A .(-3,3) B.(3,2) C.(1,3) D.(0,3)【分析】根据题意可以画出相应的平面直角坐标系,从而可以解答本题.【解析】解:由题意可得,建立的平面直角坐标系如右图所示,则表示棋子"炮"的点的坐标为(1,3)'故选:c .v .诃于@)汉界勹竺@。
人教版数学《平面直角坐标系》单元测试A卷(含答案 )
人教版数学《平面直角坐标系》单元测试A 卷一、单选题1.在平面直角坐标系中,点()A 3,3-在A .第一象限B .第二象限C .第三象限D .第四象限 2.在平面直角坐标系中,点(–1,–2)在第( )象限.A .一B .二C .三D .四3.如图,手掌盖住的点的坐标可能是( )A .( 3, 4 )B .(-4,3 )C .(-4,-3 )D .(3,-4 )4.若点P (m ,3)与点Q (1,n )关于y 轴对称,则( )A .1,3m n =-=-B .1,3m n ==C .1,3m n =-=D .1,3m n ==-5.小李在平面直角坐标系中画了一张示意图,分别标出了学校、电影院、体育馆、超市的大致位置.如果张大妈从体育馆向南走150米,再向东走400米,再向南走250米,再向西走50米,最终到达的地点是( )A .学校B .电影院C .体育馆D .超市6.如图,下列各点在阴影区域内的是( )A .()4,3-B .()4,3C .()4,3-D .()4,3--7.在平面直角坐标系中,位于第二象限的点是( )A .(﹣1,0)B .(﹣2,﹣3)C .(2,﹣1)D .(﹣3,1)8.如图是棋盘的一部分,建立适当的平面直角坐标系,已知棋子“车”的坐标为(-2,1),棋子“马”的坐标为(3,-1),则棋子“炮”的坐标为( )A .(1,1)B .(2,1)C .(2,2)D .(3,1)9.如图所示,点A 的坐标是 ( )A .(3,2)B .(3,3)C .(3,-3)D .(-3,-3)10.若点A (a +1,b –2)在第二象限,则点B (1–b ,–a )在( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题11.点A 的坐标为(-3,4),它表示点A 在第____象限,它到x 轴的距离为_____,到y 轴的距离为____________.12.在平面直角坐标系中,点()2331P m ,m +-在第二、四象限的角平分线上,则P 点的坐标为_________.13.点P (5,﹣3)到x 轴距离为_____,到y 轴距离为_____.14.在如图所示的雷达定位系统上,如果约定A 点位置表示为(60°,1),B 点的位置表示为(300°,2),那么C 点的位置可以表示为____________.15.如图,半径为1个单位的圆片上有一点A 与数轴上的原点重合,AB 是圆片的直径.(8分)(1)把圆片沿数轴向左滚动1周,点B 到达数轴上点C 的位置,点C 表示的数是 数(填“无理”或“有理”),这个数是 .(2)把圆片沿数轴滚动2周,点A 到达数轴上点D 的位置,点D 表示的数是 .(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,-1,+3,-4,-3①第几次滚动后,A 点距离原点最近?第几次滚动后,A 点距离原点最远?②当圆片结束运动时,A 点运动的路程共有多少?此时点A 所表示的数是多少?16.在平面直角坐标系中,已知点()2,23A a a -+在第四象限.若点A 在两坐标轴夹角平分线上,则a 的值为__________.17.在直角坐标系中,点M(5a-2,a-1)在y 轴上,则a 的值等于_____.18.若(2,1)表示教室里第2列第1排的位置,则教室里第5列第6排的位置表示为________19.剧院里6排3座用(6,3)表示,则8排5号用 表示。
人教版七年级数学下册《第7章 平面直角坐标系》单元测试卷及答案解析
人教新版七年级下册《第7章平面直角坐标系》单元测试卷(1)一、选择题(共12小题,每小题0分,满分0分)1.如果电影票上的“5排2号”记作(5,2),那么(4,3)表示()A.3排5号B.5排3号C.4排3号D.3排4号2.如图,货船A与港口B相距35海里,我们用有序数对(南偏西40°,35海里)来描述港口B相对货船A的位置,那么货船A相对港口B的位置可描述为()A.(南偏西50°,35海里)B.(北偏西40°,35海里)C.(北偏东50°,35海里)D.(北偏东40°,35海里)3.如图,是小明所在学校的平面示意图,已知宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1).(1)根据题意,画出相应的平面直角坐标系;(2)分别写出教学楼、体育馆的位置;(3)若学校行政楼的位置是(﹣1,﹣1),在图中标出行政楼的位置.4.已知点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,则点C(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限5.在平面直角坐标系中,如果点P(a+b,ab)在第二象限,那么Q(a,﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限6.点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,则a的值为()A.﹣1B.﹣2C.1D.27.若点P在第二象限,且点P到x轴的距离为2,到y轴的距离为1,则点P的坐标为()A.(1,﹣2)B.(2,1)C.(﹣1,2)D.(2,﹣1)8.已知点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,则P点的坐标()A.(﹣2,2)B.(6,6)C.(2,﹣2)D.(﹣6,﹣6)9.已知点A的坐标为(1,2),直线AB∥x轴,且AB=5,则点B的坐标为()A.(5,2)或(4,2)B.(6,2)或(﹣4,2)C.(6,2)或(﹣5,2)D.(1,7)或(1,﹣3)10.若将点A(1,3)向左平移3个单位,再向下平移3个单位得到点B,则点B的坐标为()A.(﹣2,﹣1)B.(﹣1,0)C.(﹣2,0)D.(﹣1,﹣1)11.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,1)重合,则点A的坐标是()A.(2,﹣2)B.(2,4)C.(﹣8,﹣2)D.(﹣8,4)12.如图,线段AB经过平移得到线段A1B1,若点A1(3,0)、B1(0,﹣4)、A(﹣1,2),则点B的坐标为()A.(﹣2,﹣3)B.(﹣4,﹣1)C.(﹣4,﹣2)D.(﹣2,﹣2)二、解答题(共1小题,满分0分)13.在平面直角坐标系中,三角形ABC经过平移得到三角形A'B'C',位置如图所示.(1)分别写出点A,A'的坐标:A,A'.(2)请说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的.(3)若点M(m,4﹣n)是三角形ABC内部一点,则平移后对应点M'的坐标为(2m﹣8,n﹣4),求m和n的值.(4)求三角形ABC的面积.(5)设点P在y轴上,且△PB'C'与△ABC的面积相等,求P的坐标.三、选择题(共12小题,每小题0分,满分0分)14.在仪仗队列中,共有八列,每列8人,若战士甲站在第二列从前面数第3个,可以表示为(2,3),则战士乙站在第七列倒数第3个,应表示为()A.(7,6)B.(6,7)C.(7,3)D.(3,7)15.如图中的一张脸,小明说:“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成()A.(0,1)B.(2,1)C.(1,0)D.(1,﹣1)16.若点A(n,3)在y轴上,则点B(n+1,n﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限17.若点M(a,b)在第四象限,则点(﹣a﹣1,﹣b+3)在()A.第一象限B.第二象限C.第三象限D.第四象限18.在平面直角坐标系中,点M(m﹣3,m+1)在x轴上,则点M的坐标为()A.(﹣4,0)B.(0,﹣2)C.(﹣2,0)D.(0,﹣4)19.若点P(x,y)到x轴的距离为2,且xy=﹣8,则点P的坐标为()A.(2,﹣4)B.(﹣2,4)或(2,﹣4)C.(﹣2,4)D.(﹣4,2)或(4,﹣2)20.已知点P(4,m)到y轴的距离是它到x轴距离的2倍,则m的值为()A.2B.8C.2或﹣2D.8或﹣821.在平面直角坐标系中,坐标原点O是线段AB的中点,若点A的坐标为(﹣1,2),则点B的坐标为()A.(2,﹣1)B.(﹣1,﹣2)C.(1,﹣2)D.(﹣2,1)22.在直角坐标系中,过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴,则()A.,b=﹣3B.,b=﹣3C.,b≠﹣3D.,b≠﹣3 23.在平面直角坐标系中,点P(m﹣n,2m+n)在y轴正半轴上,且点P到原点O的距离为6,则m+3n的值为()A.5B.6C.7D.824.第一象限内有两点P(m﹣4,n),Q(m,n﹣2),将线段PQ平移,使平移后的点P、Q分别在x轴与y轴上,则点P平移后的对应点的坐标是()A.(﹣4,0)B.(4,0)C.(0,2)D.(0,﹣2)25.如图,动点P在平面直角坐标系中按“→”所示方向跳动,第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,按这样的跳动规律,点P2021的坐标是()A.(2020,﹣1011)B.(2021,﹣1011)C.(2020,1011)D.(2020,﹣1010)四、解答题(共3小题,满分0分)26.如图,在平面直角坐标系xOy中,A、B、C三点的坐标分别为(﹣5,4)、(﹣3,0)、(0,2).(1)画出三角形ABC,并求其面积;(2)如图,△A′B′C′是由△ABC经过平移得到的.(3)已知点P(a,b)为△ABC内的一点,则点P在△A′B′C′内的对应点P′的坐标是(,).27.如图,△ABO的三个顶点坐标分别为O(0,0)、A(5,0)、B(2,4).(1)求△OAB的面积;(2)若O、A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍?(3)若O(0,0)、B(2,4),点M在坐标轴上,且△OBM的面积是△OAB的面积的,求点M的坐标.28.在平面直角坐标系中,O为原点,点A(0,2),B(﹣2,0),C(4,0).(Ⅰ)如图①,则三角形ABC的面积为;(Ⅱ)如图②,将点B向右平移7个单位长度,再向上平移4个单位长度,得到对应点D.①求三角形ACD的面积;②点P(m,3)是一动点,若三角形PAO的面积等于三角形CAO的面积.请直接写出点P坐标.人教新版七年级下册《第7章平面直角坐标系》单元测试卷(1)参考答案与试题解析一、选择题(共12小题,每小题0分,满分0分)1.如果电影票上的“5排2号”记作(5,2),那么(4,3)表示()A.3排5号B.5排3号C.4排3号D.3排4号【考点】坐标确定位置.【分析】由于将“5排2号”记作(5,2),根据这个规定即可确定(4,3)表示的点.【解答】解:∵“5排2号”记作(5,2),∴(4,3)表示4排3号.故选:C.2.如图,货船A与港口B相距35海里,我们用有序数对(南偏西40°,35海里)来描述港口B相对货船A的位置,那么货船A相对港口B的位置可描述为()A.(南偏西50°,35海里)B.(北偏西40°,35海里)C.(北偏东50°,35海里)D.(北偏东40°,35海里)【考点】坐标确定位置;方向角.【分析】以点B为中心点,来描述点A的方向及距离即可.【解答】解:由题意知货船A相对港口B的位置可描述为(北偏东40°,35海里),故选:D.3.如图,是小明所在学校的平面示意图,已知宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1).(1)根据题意,画出相应的平面直角坐标系;(2)分别写出教学楼、体育馆的位置;(3)若学校行政楼的位置是(﹣1,﹣1),在图中标出行政楼的位置.【考点】坐标确定位置.【分析】(1)直接利用宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1)得出原点的位置进而得出答案;(2)利用所建立的平面直角坐标系即可得出答案;(3)根据点的坐标的定义可得.【解答】解:(1)如图所示:(2)由平面直角坐标系知,教学楼的坐标为(1,0),体育馆的坐标为(﹣4,3);(3)行政楼的位置如图所示.4.已知点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,则点C(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】直接利用x轴以及y轴上点的坐标得出m,n的值,进而得出答案.【解答】解:∵点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,∴2m+3=0,n﹣4=0,解得:m=﹣,n=4,则点C(m,n)在第二象限.故选:B.5.在平面直角坐标系中,如果点P(a+b,ab)在第二象限,那么Q(a,﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据题意可得a+b<0,ab>0,从而可得a<0,b<0,然后根据平面直角坐标系中点的坐标特征,即可解答.【解答】解:由题意得:a+b<0,ab>0,∴a<0,b<0,∴﹣b>0,∴Q(a,﹣b)在第二象限,故选:B.6.点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,则a的值为()A.﹣1B.﹣2C.1D.2【考点】点的坐标.【分析】首先根据点P(x,y)在第四象限,且到y轴的距离为3,可得点P的横坐标是3,可得2﹣a=3,据此可得a的值.【解答】解:∵点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,∴点P的横坐标是3;∴2﹣a=3,解答a=﹣1.故选:A.7.若点P在第二象限,且点P到x轴的距离为2,到y轴的距离为1,则点P的坐标为()A.(1,﹣2)B.(2,1)C.(﹣1,2)D.(2,﹣1)【考点】点的坐标.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【解答】解:∵点P在第二象限,且到x轴的距离为2,到y轴的距离为1,∴点P的横坐标是﹣1,纵坐标是2,∴点P的坐标为(﹣1,2).故选:C.8.已知点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,则P点的坐标()A.(﹣2,2)B.(6,6)C.(2,﹣2)D.(﹣6,﹣6)【考点】坐标与图形性质.【分析】根据点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,可以得到2x=x﹣1,然后求出x的值,再代入点P的坐标中,即可得到点P的坐标.【解答】解:∵点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,∴2x=x﹣1,解得x=﹣1,∴2x=﹣2,x+3=2,∴点P的坐标为(﹣2,2),故选:A.9.已知点A的坐标为(1,2),直线AB∥x轴,且AB=5,则点B的坐标为()A.(5,2)或(4,2)B.(6,2)或(﹣4,2)C.(6,2)或(﹣5,2)D.(1,7)或(1,﹣3)【考点】坐标与图形性质.【分析】根据平行于x轴的直线上的点的纵坐标相等求出点B的纵坐标,再分点B在点A的左边与右边两种情况求出点B的横坐标,即可得解.【解答】解:∵AB∥x轴,点A的坐标为(1,2),∴点B的纵坐标为2,∵AB=5,∴点B在点A的左边时,横坐标为1﹣5=﹣4,点B在点A的右边时,横坐标为1+5=6,∴点B的坐标为(﹣4,2)或(6,2).故选:B.10.若将点A(1,3)向左平移3个单位,再向下平移3个单位得到点B,则点B的坐标为()A.(﹣2,﹣1)B.(﹣1,0)C.(﹣2,0)D.(﹣1,﹣1)【考点】坐标与图形变化﹣平移.【分析】根据向左平移横坐标减,向下平移纵坐标减求解即可.【解答】解:点(1,3)向左平移3个单位,再向下平移3个单位得到点B的坐标为(1﹣3,3﹣3),即(﹣2,0),故选:C.11.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,1)重合,则点A的坐标是()A.(2,﹣2)B.(2,4)C.(﹣8,﹣2)D.(﹣8,4)【考点】坐标与图形变化﹣平移.【分析】根据向左平移,横坐标减,向上平移纵坐标加列方程求出x、y,然后写出即可.【解答】解:∵点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B (﹣3,1)重合,∴x﹣5=﹣3,y+3=1,解得x=2,y=﹣2,所以,点A的坐标是(2,﹣2).故选:A.12.如图,线段AB经过平移得到线段A1B1,若点A1(3,0)、B1(0,﹣4)、A(﹣1,2),则点B的坐标为()A.(﹣2,﹣3)B.(﹣4,﹣1)C.(﹣4,﹣2)D.(﹣2,﹣2)【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】】解:∵A1(3,0)、A(﹣1,2),∴求原来点的坐标,则为让新坐标的横坐标都减4,纵坐标都加2.则点B的坐标为(﹣4,﹣2).故选:C.二、解答题(共1小题,满分0分)13.在平面直角坐标系中,三角形ABC经过平移得到三角形A'B'C',位置如图所示.(1)分别写出点A,A'的坐标:A(1,0),A'(﹣4,4).(2)请说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的.(3)若点M(m,4﹣n)是三角形ABC内部一点,则平移后对应点M'的坐标为(2m﹣8,n﹣4),求m和n的值.(4)求三角形ABC的面积.(5)设点P在y轴上,且△PB'C'与△ABC的面积相等,求P的坐标.【考点】坐标与图形变化﹣平移;三角形的面积.【分析】(1)根据点的位置写出坐标即可;(2)利用平移变换的性质判断即可;(3)构建方程组求解即可;(4)设P(0,m),构建方程求解即可.【解答】解:(1)由题意A(1,0),A′(﹣4,4);故答案为:(1,0),(﹣4,4);(2)三角形ABC向左平移5个单位,向上平移4个单位得到三角形A′B′C′.(3)由题意,解得;(4)设P(0,m),则有×|m﹣3|×2=4×4﹣×2×4﹣×1×4﹣×2×3,∴m=﹣4或10,∴P(0,﹣4)或(0,10).三、选择题(共12小题,每小题0分,满分0分)14.在仪仗队列中,共有八列,每列8人,若战士甲站在第二列从前面数第3个,可以表示为(2,3),则战士乙站在第七列倒数第3个,应表示为()A.(7,6)B.(6,7)C.(7,3)D.(3,7)【考点】坐标确定位置.【分析】先求出倒数第3个为从前面数第6个,再根据第一个数为列数,第二个数为从前面数的数写出即可.【解答】解:∵每列8人,∴倒数第3个为从前面数第6个,∵第二列从前面数第3个,表示为(2,3),∴战士乙应表示为(7,6).故选:A.15.如图中的一张脸,小明说:“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成()A.(0,1)B.(2,1)C.(1,0)D.(1,﹣1)【考点】坐标确定位置.【分析】先根据左眼和右眼所在位置点的坐标画出直角坐标系,然后写出嘴的位置所在点的坐标即可.【解答】解:如图,嘴的位置可以表示成(1,0).故选:C.16.若点A(n,3)在y轴上,则点B(n+1,n﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据y轴上的点横坐标为0,可得n=0,从而求出点B的坐标,即可解答.【解答】解:由题意得:n=0,∴n+1=1,n﹣1=﹣1,∴点B(1,﹣1)在第四象限,故选:D.17.若点M(a,b)在第四象限,则点(﹣a﹣1,﹣b+3)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据第四象限点的横坐标是正数,纵坐标是负数,可得a>0,b<0,进而得出﹣a﹣1<0,﹣b+3>0,从而确定点(﹣a﹣1,﹣b+3)所在的象限.【解答】解:∵点M(a,b)在第四象限,∴a>0,b<0,则﹣a﹣1<0,﹣b+3>0,∴点(﹣a﹣1,﹣b+3)在第二象限,故选:B.18.在平面直角坐标系中,点M(m﹣3,m+1)在x轴上,则点M的坐标为()A.(﹣4,0)B.(0,﹣2)C.(﹣2,0)D.(0,﹣4)【考点】点的坐标.【分析】根据x轴上的点的纵坐标等于0列式求出m的值,即可得解.【解答】解:∵点M(m﹣3,m+1)在平面直角坐标系的x轴上,∴m+1=0,解得m=﹣1,∴m﹣3=﹣1﹣3=﹣4,点M的坐标为(﹣4,0).故选:A.19.若点P(x,y)到x轴的距离为2,且xy=﹣8,则点P的坐标为()A.(2,﹣4)B.(﹣2,4)或(2,﹣4)C.(﹣2,4)D.(﹣4,2)或(4,﹣2)【考点】点的坐标.【分析】根据有理数的乘法判断出x、y异号,根据点到x轴的距离等于纵坐标的绝对值,可得纵坐标为±2,进而得出横坐标.【解答】解:∵点P(x,y)到x轴的距离为2,∴点P的得纵坐标为±2,又∵且xy=﹣8,∴y=﹣4或4,∴点P的坐标为(﹣4,2)或(4,﹣2).故选:D.20.已知点P(4,m)到y轴的距离是它到x轴距离的2倍,则m的值为()A.2B.8C.2或﹣2D.8或﹣8【考点】点的坐标.【分析】根据点到坐标轴的距离公式列出绝对值方程,然后求解即可.【解答】解:∵点P(4,m)到y轴的距离是它到x轴距离的2倍,∴2|m|=4∴m=±2,故选:C.21.在平面直角坐标系中,坐标原点O是线段AB的中点,若点A的坐标为(﹣1,2),则点B的坐标为()A.(2,﹣1)B.(﹣1,﹣2)C.(1,﹣2)D.(﹣2,1)【考点】坐标与图形性质.【分析】根据中点坐标公式[(x A+x B),(y A+y B)]代入计算即可.【解答】解:设点B的坐标为(x,y),∵点A的坐标为(﹣1,2),∴=0,=0,∴x=1,y=﹣2,∴点B的坐标为(1,﹣2),故选:C.22.在直角坐标系中,过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴,则()A.,b=﹣3B.,b=﹣3C.,b≠﹣3D.,b≠﹣3【考点】坐标与图形性质.【分析】根据平行于x轴的直线上点的纵坐标相等列出方程计算即可得解.【解答】解:∵过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴,∴2a≠4+b,6=3﹣b,解得b=﹣3,a≠.故选:B.23.在平面直角坐标系中,点P(m﹣n,2m+n)在y轴正半轴上,且点P到原点O的距离为6,则m+3n的值为()A.5B.6C.7D.8【考点】坐标与图形性质.【分析】根据P在y轴正半轴上可得:横坐标m﹣n=0,点P到原点O的距离为6可得:2m+n=6,解方程组可得结论.【解答】解:由题意得:,解得:,∴m+3n=2+6=8.故选:D.24.第一象限内有两点P(m﹣4,n),Q(m,n﹣2),将线段PQ平移,使平移后的点P、Q分别在x轴与y轴上,则点P平移后的对应点的坐标是()A.(﹣4,0)B.(4,0)C.(0,2)D.(0,﹣2)【考点】坐标与图形变化﹣平移.【分析】根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减解答即可.【解答】解:设平移后点P、Q的对应点分别是P′、Q′.∵P′在x轴上,Q′在y轴上,则P′纵坐标为0,Q′横坐标为0,∵0﹣m=﹣m,∴m﹣4﹣m=﹣4,∴点P平移后的对应点的坐标是(﹣4,0);故选:A.25.如图,动点P在平面直角坐标系中按“→”所示方向跳动,第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,按这样的跳动规律,点P2021的坐标是()A.(2020,﹣1011)B.(2021,﹣1011)C.(2020,1011)D.(2020,﹣1010)【考点】规律型:点的坐标.【分析】观察图象,结合动点P第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,的出规律.【解答】解:观察图象,结合动点P第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,横坐标为:0,1,2,3,4,5,6,.....,纵坐标为:1,0,﹣2,0,3,0,﹣4,0,5,0,﹣6,可知P n的横坐标为n﹣1,当n为偶数时纵坐标为0,当n为奇数时,纵坐标为||,当为偶数时符号为负,当为奇数时符号为正,∴P2021的横坐标为2020,纵坐标为=1011,故选:C.四、解答题(共3小题,满分0分)26.如图,在平面直角坐标系xOy中,A、B、C三点的坐标分别为(﹣5,4)、(﹣3,0)、(0,2).(1)画出三角形ABC,并求其面积;(2)如图,△A′B′C′是由△ABC经过△ABC向右平移4个单位,再向下平移3个单位得到△A′B′C′,平移得到的.(3)已知点P(a,b)为△ABC内的一点,则点P在△A′B′C′内的对应点P′的坐标是(a+4,b﹣3).【考点】坐标与图形变化﹣平移.【分析】(1)根据点的位置作出图形,利用分割法求出三角形的面积即可;(2)结合图象,利用平移变换的性质解决问题;(3)利用平移变换的规律解决问题.=4×5﹣×2×4﹣×2×5﹣×3【解答】解:(1)如图,△ABC即为所求,S△ABC×2=8;(2)△ABC向右平移4个单位,再向下平移3个单位得到△A′B′C′,故答案为:△ABC向右平移4个单位,再向下平移3个单位得到△A′B′C′,(3)P′(a+4,b﹣3),故答案为:a+4,b﹣3.27.如图,△ABO的三个顶点坐标分别为O(0,0)、A(5,0)、B(2,4).(1)求△OAB的面积;(2)若O、A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍?(3)若O(0,0)、B(2,4),点M在坐标轴上,且△OBM的面积是△OAB的面积的,求点M的坐标.【考点】三角形的面积;坐标与图形性质.【分析】(1)利用分割法求三角形的面积即可.(2)由O、A两点的位置不变,△OAP的面积是△OAB面积的2倍,推出点P到x轴的距离是点B到x轴的距离的2倍,推出点P的纵坐标为8和﹣8,由此即可解决问题.(3)分两种情形分别构建方程求解即可.【解答】解:(1)∵O(0,0)、A(5,0)、B(2,4)=×5×4=10.∴S△OAB(2)∵O、A两点的位置不变,△OAP的面积是△OAB面积的2倍,∴点P到x轴的距离是点B到x轴的距离的2倍,∴点P的纵坐标为8和﹣8,∴P点在直线y=8或y=﹣8上时,△OAP的面积是△OAB面积的2倍.(3)当点M在x轴上时,设M(m,0),则有•|m|•4=×10,解得m=±2,∴M(2,0)或(﹣2,0).当点M在y轴上时,设M(0,n),则有:•|n|•2=×10,解得n=±4,∴M(0,4)或(0,﹣4),综上所述,满足条件的点M坐标为(2,0)或(﹣2,0)或(0,4)或(0,﹣4).28.在平面直角坐标系中,O为原点,点A(0,2),B(﹣2,0),C(4,0).(Ⅰ)如图①,则三角形ABC的面积为6;(Ⅱ)如图②,将点B向右平移7个单位长度,再向上平移4个单位长度,得到对应点D.①求三角形ACD的面积;②点P(m,3)是一动点,若三角形PAO的面积等于三角形CAO的面积.请直接写出点P坐标.【考点】坐标与图形变化﹣平移;三角形的面积.【分析】(Ⅰ)利用三角形的面积公式直接求解即可.(Ⅱ)①连接OD,根据S△ACD=S△AOD+S△COD﹣S△AOC求解即可.②构建方程求解即可.【解答】解:(Ⅰ)∵A(0,2),B(﹣2,0),C(4,0),∴OA=2,OB=2,OC=4,∴S△ABC=•BC•AO =×6×2=6.故答案为6.(Ⅱ)①如图②中由题意D(5,4),连接OD.S△ACD=S△AOD+S△COD﹣S△AOC=×2×5+×4×4﹣×2×4=9.②由题意:×2×|m|=×2×4,解得m=±4,∴P(﹣4,3)或(4,3).第21页(共21页)。
人教版七年级下册第7章平面直角坐标系单元测试题(含答案解析)
人教版七年级数学下册第7章平面直角坐标系单元测试题学校:姓名:班级:考号:一、单选题1.某同学的座位号为(2,4)那么该同学的位置是()A.第2排第4列B.第4排第2列C.第2列第4排D.不好确定2.下列四个点中,在第二象限的点是( ).A.(2,-3)B.(2,3)C.(-2,3)D.(-2,-3)3.若),轴上的点尸到x轴的距离为3,则点夕的坐标是( )A.(3,0)B.(0,3)C.(3,0)或(-3,0)D.(0,3)或(0,-3)4.点M(根+1,〃2+3)在y轴上,则点M的坐标为()A.(0,-4)B.(4,0)C.(-2,0)D.(0,2)5.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A.(2,3)B.(-2,-3)C.(-3,2)D.(3,-2)6.如果点P(5,y)在第四象限,则y的取值范围是( )A.y<0B.y>0C.y大于或等于0D.y小于或等于()7.如图:正方形ABCD中点A和点C的坐标分别为(・2,3)和(3,-2),则点B和点D的坐标分别为( ).A.(2,,2)和(3,3)B.(-2,-2)和(3,3)C.(-2,-2)和(-3,-3) D.(2,2)和(-3,-3)8.一个长方形在平面直角坐标系中,三个顶点的坐标分别是(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标是( )A.(2,2)B.(3,3)C.(3,2)D.(2,3)9.线段A8两端点坐标分别为A(-1,4),8(-4,1),现将它向左平移4个单位长度,得到线段4囱,则4、S的坐标分别为()A.Ai(-5,0),Bi(-8,-3)B.4(3,7),B\(0,5)10.在方格纸上有A、B两点,若以B点为原点建立直角坐标系,则A点坐标为(2,5),若以A 点为原点建立直角坐标系,则B 点坐标为( ).A.(-2,-5)B.(-2,5)C.(2,-5)D.(2,5)11 .七年级(2)班教室里的座位共有7排8歹U,其中小明的座位在第3排第7歹U,简记为(3,7),小华坐在第5排第2列,则小华的座位可记作.12 .若点P(a,-b)在第二象限,则点Q(-ab,a+b)在第象限.13 .若点P 到x 轴的距离是12JIJy 轴的距离是15,那么P 点坐标可以是 __________________ (写出一个即可).14 .小华将直角坐标系中的猫眼的图案向右平移了3个单位长度,平移前猫眼的坐标为 (-4,3)、(-2,3),则移动后猫眼的坐标为o15 .已知点P(x,y)在第四象限,且|x|二3,|y|=5,则点P 的坐标是 ___________________ . 16 .如图,中国象棋中的“象”,在图中的坐标为(1,0),•若"象''再走一步,试写出下一步它可能走到的位置的坐标.17 .如下图,小强告诉小华图中A 、B 两点的坐标分别为(-3,5),(3,5),•小华一下就说出了C 在同一坐标系下的坐标.三、解答题18 .已知点N 的坐标为(2-a,3a+6),且点N 到两坐标轴的距离相等,求点N 的坐标.C.Ai (-5, 4), Bi (-8, 1)D.Ai (3, 4), Bi (0, 1)19.如图,这是某市部分简图,请建立适当的平面直角坐标系,分别写出各地的坐标.20.适当建立直角坐标系,描出点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),并用线段顺次连接各点.⑴看图案像什么?⑵作如下变化:纵坐标不变,横坐标减2,并顺次连接各点,所得的图案与原来相比有什么变化?21.某学校校门在北侧,进校门向南走30米是旗杆,再向南走30米是教学楼,从教学楼向东走60米,再向北走20米是图书馆,从教学楼向南走60米,再向北走10米是实验楼,请你选择适当的比例尺,画出该校的校园平面图.22.已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),求△ABO的面积.23.请自己动手,建立平面直角坐标系,在坐标系中描出下列各点的位置:你发现这些点有什么位置关系?你能再找出类似的点吗?(再写出三点即可)A(-4,4),B(-2,2).C(3,-3).D(5,-5).E(-3,3)F(0,0)24.这是一个动物园游览示意图,试设计描述这个动物园图中每个景点位置的一个方法,参考答案1. D【分析】1、分析题意,回忆用坐标确定位置的方法;2、观察发现题中没有规定排和列的前后顺序;3、接下来根据有序实数对的知识,解答本题.【详解】解:题中没有规定排在前,列在后;还是列在前,排在后,因此无法确定该同学的所坐位置.故选D.【点睛】在使用有序数对前,一定要先对有序数进行定义,否则很可能导致前后数表示的意义不明确, 从而确定不出位置.例如本题没有规定有序数对的列和排谁在前,所以无法得知其所表示的含义.2. C【分析】根据第二象限内点的横坐标为负,纵坐标为正进行判断即可.【详解】解:A.(2,-3)在第四象限内;B.(2,3)在第一象限内;C.(-2,3)在第二象限内;D.(-2,-3)在第三象限内.故选C.【点睛】本题主要考查平面直角坐标系,熟练掌握各个象限的坐标特点是解此题的关键.3. D【分析】由点在y轴上首先确定点P的横坐标为0,再根据点P到x轴的距离为3,确定P点的纵坐标,要注意考虑两种情况,可能在原点的上方,也可能在原点的下方.【详解】・・万轴上的点P,・・・尸点的横坐标为0,又丁点P到x轴的距离为3,・・・P点的纵坐标为±3,所以点。
(完整版)平面直角坐标系单元测试题及答案
第七章平面直角坐标系测试题(9 班专用)一、填空题1.已知点 A ( 0,1)、 B (2,0)、 C( 0,0)、D ( -1,0)、 E( -3,0),则在y轴上的点有个。
2.假如点 A a,b在x轴上,且在原点右边,那么a,b3.假如点M a, a 1 在 x 轴下侧,y轴的右边,那么 a 的取值范围是4.已知两点 A3, m ,B n, 4 ,若AB∥y轴,则 n =, m 的取值范围是.5.? ABC 上有一点(),将? ABC先沿 x 轴负方向平移2个单位长度,再沿y轴正方向平移3个单位P 0,2长度,获得的新三角形上与点P 相对应的点的坐标是.6,如下图,象棋盘上,若“将”位于点( 3, -2),“车”位于点( -1, -2),则“马”位于.马车将8 题图7,李明的座位在第5排第 4列,简记为( 5,4),张扬的座位在第3排第 2列,简记为( 3,2),若周伟的座位在李明的后边相距 2 排,同时在他的左侧相距 3 列,则周伟的座位可简记为.8.将 ? ABC 绕坐标原点旋转180 后,各极点坐标变化特点是:.二、选择题9.以下语句:( 1)点( 3,2)与点( 2,3)是同一点;( 2)点( 2,1)在第二象限;( 3)点( 2,0)在第一象限;( 4)点( 0,2)在x轴上,此中正确的选项是()A. ( 1)( 2)B.(2)( 3)C.( 1)( 2)( 3)( 4)D. 没有10.x0,那么点M的可能地点是()假如点 M x, y的坐标知足yA. x轴上的点的全体B. 除掉原点后x轴上的点的全体C. y轴上的点的全体D. 除掉原点后y轴上的点的全体11.已知点 P 的坐标为 2 - a,3a 6 ,且点P到两坐标轴的距离相等,则点P 的坐标是()A. ( 3,3)B.( 3, -3)C. (6, -6)D.( 3,3)或( 6, -6)12.假如点 2x, x 3 在 x 轴上方,y轴右边,且该点到 x 轴和y轴的距离相等,则 x 的值为()A.1B.-1C.3D.-313.将某图形的各极点的横坐标减去2,纵坐标保持不变,可将该图形()A. 横向右平移 2 个单位B. 横向向左平移 2 个单位C.纵向向上平移 2 个单位D. 纵向向下平移 2 个单位14.下边是小明家与小刚家的地点描绘:小明家:出校门向东走150 m,再向北走 200 m;小刚家:出校门向南走100 m,再向西走300 m,最后向北走50 m假如以学校所在地点为原点,分别以正东、正北方向为x 轴,y轴正方向成立平面直角坐标系,并取比率尺 1∶ 10 000. 则以下说法正确的选项是()点( 150,200)是小明家的地点;点(-300,-50)是小刚家的地点;从小明家向西走200 m,到达点( 200, -50);○ 从小刚家向东走100 m抵达点( 50, -300) .4A. B. ○4 C.D. ○415.一条东西向道路与一条南北向道路的交汇处有一座塑像,甲车位于塑像东方 5 km处,乙车位于塑像北方 7 km处,若甲、乙两车以同样的速度向塑像的方向同时出发,当甲车到塑像西方 1 km处乙车在()A. 塑像北方 1 km处B.塑像北方 3 km处C.塑像南方 1 km处D.塑像南方 3 km处16.已知如下图,方格纸中的每个小方格边长为 1 的正方形, AB 两点在小方格的极点上,地点分别用( 2,2)、(4,3)来表示,请在小方格极点上确立一点C,连结 AB 、AC 、BC,使 ?ABC 的面积为 2 个平方单位,则点 C 的地点可能为()A.(4 , 4)B.(4 , 2)C.(2 , 4)D.(3 ,2)17..如下图,若三角形ABC 中经平移后随意一点P x0, y0的对应点为P1 x05, y0 3 ,则点A的对应点 A1的坐标是()A.(4 , 1)B.(9 , -4)C.(-6 , 7)D.(-1 , 2)18..如下图,是郑州市某天的温度随时间变化的图象,经过察看可知以下说法错误的选项是(A. 这日 15 点温度最高B. 这日 3 点时温度最低C.这日最高温度与最低温度的差是15 度D. 这日 21 时温度是30 度y y5A43432CB128–5–4–3–2–1O12345xA–1B22–2–33915–416 题图17 题图18 题图三.解答题(共40 分)619.( 7 分)以点 A 为圆心的圆可表示为⊙ A 。
第五章 平面直角坐标系数学八年级上册-单元测试卷-苏科版(含答案)
第五章平面直角坐标系数学八年级上册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是()A.(﹣4,3)B.(4,﹣3)C.(﹣3,4)D.(3,﹣4)2、在平面直角坐标系中,点M(a,b)位于第一象限,则点N(-a,-b)位于()A.第一象限B.第二象限C.第三象限D.第四象限3、如图,在平面直角坐标系上有个点A(-1,0),点A第1次向上跳动一个单位至点A1(-1,1),紧接着第2次向右跳动2个单位至点A2(1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…,依次规律跳动下去,点A第2017次跳动至点A2017的坐标是()A. B. C. D.4、在平面直角坐标系中,点A(-1,2)在()A.第一象限B.第二象限C.第三象限D.第四象限5、如图所示,若在某棋盘上建立直角坐标系,使“将”位于点(1,﹣2),“象”位于点(3,﹣2),则“炮”位于点()A.(1,3)B.(﹣2,1)C.(﹣1,2)D.(﹣2,2)6、如图是中国象棋棋盘的一部分,若位于点(1,﹣1),则位于点()A.(3,﹣2)B.(2,﹣3)C.(﹣2,3)D.(﹣3,2)7、如图,小手盖住的点的坐标可能是()A.(3,3)B.(﹣4,5)C.(﹣4,﹣6)D.(3,﹣6)8、在平面直角坐标系中,已知点A(3,﹣2),则点A在()A.第一象限B.第二象限C.第三象限D.第四象限9、在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定()A.与x轴相离,与y轴相切B.与x轴,y轴都相离C.与x轴相切,与y轴相离D.与x轴,y轴都相切10、在方格纸上有A.B两点,若以B点为原点建立直角坐标系,则A点坐标为(2,5),若以A点为原点建立直角坐标系,则B点坐标为()A.(-2,-5)B.(-2,5)C.(2,-5)D.(2,5)11、已知△ABC在直角坐标系中的位置如图所示,如果△A′B′C′与△ABC 关于y 轴对称,那么点A的对应点A′的坐标为()A.(-4,2);B.(-4,-2);C.(4,-2);D.(4,2);12、五子棋深受广大小朋友的喜爱,规则如下:在正方形棋盘中,由黑方先行,轮流摆子,在任意方向(横向、竖向或斜向)上先连成五枚棋子者获胜,如图是小明和小亮的部分对弈图,若棋子的坐标为,的坐标为,则点的坐标为()A. B. C. D.13、如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A-B-C-D-A-…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(1,-1)B.(-1,1)C.(-1,-2)D.(1,-2)14、如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1.将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2014次,点B的落点依次为B1, B2, B3,…,则B2014的坐标为()A.(1343,0)B.(1342,0)C.(1343.5,)D.(1342.5,)15、若点 A 在 x 轴下方,y 轴右侧,距 x 轴 3 个单位长度,距 y 轴 2 个单位长度,则点 A 的坐标为()A.(3,2)B.(-3,-2)C.(-2,3)D.(2,-3)二、填空题(共10题,共计30分)16、如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是,嘴唇C点的坐标为、,则此“QQ”笑脸右眼B的坐标________.17、在平面直角坐标系中,第二象限内的点到横轴的距离为2,到纵轴的距离为3,则点的坐标是________.18、在平面直角坐标系中,A(-3,6),M是 x轴上一动点,当AM的值最小时,点M的坐标为________.19、象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图是局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(-2,1),则表示棋子“炮”的点的坐标为________.20、在平面直角坐标系中,对于任意两点A(x1,y1)B (x2,y2),规定运算:⑴A⊕B=(x1+x2,y1+y2);(2)A⊙B=x1x2+y1y2;(3)当x1=x2且y1=y2时,A=B.有下列四个命题:①若有A(1,2),B(2,-1),则A⊕B=(3,1),A⊙B=0;②若有A⊕B=B⊕C,则A=C;③若有A⊙B=B⊙C, 则A=C;④(A⊕B)⊕C=A⊕(B⊕C)对任意点A、B、C均成立。
《第11章平面直角坐标系》单元测试含答案解析
第11章 平面直角坐标系一、选择题(共16小题)1.在平面直角坐标系中,已知点P 的坐标是(﹣1,﹣2),则点P 关于原点对称的点的坐标是( )A .(﹣1,2)B .(1,﹣2)C .(1,2)D .(2,1)2.△ABO 与△A 1B 1O 在平面直角坐标系中的位置如图所示,它们关于点O 成中心对称,其中点A (4,2),则点A 1的坐标是( )A .(4,﹣2)B .(﹣4,﹣2)C .(﹣2,﹣3)D .(﹣2,﹣4)3.在平面直角坐标系中,点P (﹣20,a )与点Q (b ,13)关于原点对称,则a+b 的值为( )A .33B .﹣33C .﹣7D .74.在直角坐标系中,将点(﹣2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是( )A .(4,﹣3)B .(﹣4,3)C .(0,﹣3)D .(0,3)5.在平面直角坐标系中,若点P (m ,m ﹣n )与点Q (﹣2,3)关于原点对称,则点M (m ,n )在( )A .第一象限B .第二象限C .第三象限D .第四象限6.如图,在△ABO 中,AB ⊥OB ,OB=,AB=1.将△ABO 绕O 点旋转90°后得到△A 1B 1O ,则点A 1的坐标为( )A .(﹣1,) B .(﹣1,)或(1,﹣) C .(﹣1,﹣) D .(﹣1,﹣)或(﹣,﹣1)7.在平面直角坐标系中,把点P (﹣5,3)向右平移8个单位得到点P 1,再将点P 1绕原点旋转90°得到点P 2,则点P 2的坐标是( )A .(3,﹣3)B .(﹣3,3)C .(3,3)或(﹣3,﹣3)D .(3,﹣3)或(﹣3,3)8.如图,在平面直角坐标系中,点B 、C 、E 、在y 轴上,Rt △ABC 经过变换得到Rt △ODE .若点C 的坐标为(0,1),AC=2,则这种变换可以是( )A .△ABC 绕点C 顺时针旋转90°,再向下平移3B .△ABC 绕点C 顺时针旋转90°,再向下平移1C .△ABC 绕点C 逆时针旋转90°,再向下平移1D .△ABC 绕点C 逆时针旋转90°,再向下平移39.如图,将斜边长为4的直角三角板放在直角坐标系xOy 中,两条直角边分别与坐标轴重合,P 为斜边的中点.现将此三角板绕点O 顺时针旋转120°后点P 的对应点的坐标是( )A .(,1)B .(1,﹣)C .(2,﹣2)D .(2,﹣2)10.在平面直角坐标系内,点P (﹣2,3)关于原点的对称点Q 的坐标为( )A .(2,﹣3)B .(2,3)C .(3,﹣2)D .(﹣2,﹣3)11.将点A (3,2)沿x 轴向左平移4个单位长度得到点A′,点A′关于y 轴对称的点的坐标是( )A .(﹣3,2)B .(﹣1,2)C .(1,2)D .(1,﹣2)12.将点P (﹣2,3)向右平移3个单位得到点P 1,点P 2与点P 1关于原点对称,则P 2的坐标是( )A .(﹣5,﹣3)B .(1,﹣3)C .(﹣1,﹣3)D .(5,﹣3)13.点A (3,﹣1)关于原点的对称点A′的坐标是( )A .(﹣3,﹣1)B .(3,1)C .(﹣3,1)D .(﹣1,3)14.在直角坐标系中,点B 的坐标为(3,1),则点B 关于原点成中心对称的点的坐标为( )A.(3,﹣1)B.(﹣3,1)C.(﹣1,﹣3) D.(﹣3,﹣1)15.在平面直角坐标系中,点A(﹣2,1)与点B关于原点对称,则点B的坐标为()A.(﹣2,1)B.(2,﹣1)C.(2,1) D.(﹣2,﹣1)16.在平面直角坐标系中,P点关于原点的对称点为P1(﹣3,﹣),P点关于x轴的对称点为P2(a,b),则=()A.﹣2 B.2 C.4 D.﹣4二、填空题(共12小题)17.若点(a,1)与(﹣2,b)关于原点对称,则a b= .18.在平面直角坐标系中,以原点为中心,把点A(4,5)逆时针旋转90°,得到的点A′的坐标为.19.已知A点的坐标为(﹣1,3),将A点绕坐标原点顺时针90°,则点A的对应点的坐标为.20.如图,△ABO中,AB⊥OB,AB=,OB=1,把△ABO绕点O旋转120°后,得到△A1B1O,则点A1的坐标为.21.如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是.22.设点M(1,2)关于原点的对称点为M′,则M′的坐标为.23.已知点M(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是.24.点P(5,﹣3)关于原点的对称点的坐标为.25.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是.26.已知点P(3,2),则点P关于y轴的对称点P1的坐标是,点P关于原点O的对称点P2的坐标是.27.在平面直角坐标系中,点P(5,﹣3)关于原点对称的点的坐标是.28.若将等腰直角三角形AOB按如图所示放置,OB=2,则点A关于原点对称的点的坐标为.三、解答题(共2小题)29.在平面直角坐标系xOy中,已知A(﹣1,5),B(4,2),C(﹣1,0)三点.(1)点A关于原点O的对称点A′的坐标为,点B关于x轴的对称点B′的坐标为,点C 关于y轴的对称点C的坐标为.(2)求(1)中的△A′B′C′的面积.30.如图,在平面直角坐标系中,A(﹣2,2),B(﹣3,﹣2)(1)若点C与点A关于原点O对称,则点C的坐标为;(2)将点A向右平移5个单位得到点D,则点D的坐标为;(3)由点A,B,C,D组成的四边形ABCD内(不包括边界)任取一个横、纵坐标均为整数的点,求所取的点横、纵坐标之和恰好为零的概率.第11章平面直角坐标系参考答案与试题解析一、选择题(共16小题)1.在平面直角坐标系中,已知点P的坐标是(﹣1,﹣2),则点P关于原点对称的点的坐标是()A.(﹣1,2)B.(1,﹣2)C.(1,2) D.(2,1)【考点】关于原点对称的点的坐标.【专题】压轴题.【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),据此即可求得点P关于原点的对称点的坐标.【解答】解:∵点P关于x轴的对称点坐标为(﹣1,﹣2),∴点P关于原点的对称点的坐标是(1,2).故选:C.【点评】此题主要考查了关于原点对称点的坐标性质,这一类题目是需要识记的基础题,要熟悉关于原点对称点的横纵坐标变化规律.2.△ABO与△A1B1O在平面直角坐标系中的位置如图所示,它们关于点O成中心对称,其中点A(4,2),则点A1的坐标是()A.(4,﹣2)B.(﹣4,﹣2) C.(﹣2,﹣3) D.(﹣2,﹣4)【考点】关于原点对称的点的坐标.【专题】几何图形问题.【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【解答】解:∵A和A1关于原点对称,A(4,2),∴点A1的坐标是(﹣4,﹣2),故选:B.【点评】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.3.在平面直角坐标系中,点P(﹣20,a)与点Q(b,13)关于原点对称,则a+b的值为()A.33 B.﹣33 C.﹣7 D.7【考点】关于原点对称的点的坐标.【分析】先根据关于原点对称的点的坐标特点:横坐标与纵坐标都互为相反数,求出a与b的值,再代入计算即可.【解答】解:∵点P(﹣20,a)与点Q(b,13)关于原点对称,∴a=﹣13,b=20,∴a+b=﹣13+20=7.故选:D.【点评】本题主要考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.4.在直角坐标系中,将点(﹣2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是()A.(4,﹣3)B.(﹣4,3)C.(0,﹣3)D.(0,3)【考点】关于原点对称的点的坐标;坐标与图形变化-平移.【分析】根据关于原点的点的横坐标互为相反数,纵坐标互为相反数,可得关于原点的对称点,根据点的坐标向左平移减,可得答案.【解答】解:在直角坐标系中,将点(﹣2,3)关于原点的对称点是(2,﹣3),再向左平移2个单位长度得到的点的坐标是(0,﹣3),故选:C.【点评】本题考查了点的坐标,关于原点的点的横坐标互为相反数,纵坐标互为相反数;点的坐标向左平移减,向右平移加,向上平移加,向下平移减.5.(•贵港)在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】关于原点对称的点的坐标.【分析】根据平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,则m=2且n=﹣3,从而得出点M(m,n)所在的象限.【解答】解:根据平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,∴m=2且m ﹣n=﹣3,∴m=2,n=5∴点M (m ,n )在第一象限,故选A .【点评】本题考查了平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,该题比较简单.6.如图,在△ABO 中,AB ⊥OB ,OB=,AB=1.将△ABO 绕O 点旋转90°后得到△A 1B 1O ,则点A 1的坐标为( )A .(﹣1,) B .(﹣1,)或(1,﹣) C .(﹣1,﹣) D .(﹣1,﹣)或(﹣,﹣1)【考点】坐标与图形变化-旋转.【分析】需要分类讨论:在把△ABO 绕点O 顺时针旋转90°和逆时针旋转90°后得到△A 1B 1O 时点A 1的坐标.【解答】解:∵△ABO 中,AB ⊥OB ,OB=,AB=1,∴∠AOB=30°,当△ABO 绕点O 顺时针旋转90°后得到△A 1B 1O ,则易求A 1(1,﹣); 当△ABO 绕点O 逆时针旋转90°后得到△A 1B 1O ,则易求A 1(﹣1,).故选B .【点评】本题考查了坐标与图形变化﹣旋转.解题时,注意分类讨论,以防错解.7.在平面直角坐标系中,把点P (﹣5,3)向右平移8个单位得到点P 1,再将点P 1绕原点旋转90°得到点P 2,则点P 2的坐标是( )A .(3,﹣3)B .(﹣3,3)C .(3,3)或(﹣3,﹣3)D .(3,﹣3)或(﹣3,3)【考点】坐标与图形变化-旋转;坐标与图形变化-平移.【专题】分类讨论.【分析】首先利用平移的性质得出点P1的坐标,再利用旋转的性质得出符合题意的答案.【解答】解:∵把点P(﹣5,3)向右平移8个单位得到点P1,∴点P1的坐标为:(3,3),如图所示:将点P1绕原点逆时针旋转90°得到点P2,则其坐标为:(﹣3,3),将点P1绕原点顺时针旋转90°得到点P3,则其坐标为:(3,﹣3),故符合题意的点的坐标为:(3,﹣3)或(﹣3,3).故选:D.【点评】此题主要考查了坐标与图形的变化,正确利用图形分类讨论得出是解题关键.8.如图,在平面直角坐标系中,点B、C、E、在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C 的坐标为(0,1),AC=2,则这种变换可以是()A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移3【考点】坐标与图形变化-旋转;坐标与图形变化-平移.【分析】观察图形可以看出,Rt△ABC通过变换得到Rt△ODE,应先旋转然后平移即可.【解答】解:根据图形可以看出,△ABC绕点C顺时针旋转90°,再向下平移3个单位可以得到△ODE.故选:A.【点评】本题考查的是坐标与图形变化旋转和平移的知识,掌握旋转和平移的概念和性质是解题的关键.9.如图,将斜边长为4的直角三角板放在直角坐标系xOy中,两条直角边分别与坐标轴重合,P为斜边的中点.现将此三角板绕点O顺时针旋转120°后点P的对应点的坐标是()A.(,1)B.(1,﹣) C.(2,﹣2)D.(2,﹣2)【考点】坐标与图形变化-旋转.【专题】计算题.【分析】根据题意画出△AOB绕着O点顺时针旋转120°得到的△COD,连接OP,OQ,过Q作QM⊥y 轴,由旋转的性质得到∠POQ=120°,根据AP=BP=OP=2,得到∠AOP度数,进而求出∠MOQ度数为30°,在直角三角形OMQ中求出OM与MQ的长,即可确定出Q的坐标.【解答】解:根据题意画出△AOB绕着O点顺时针旋转120°得到的△COD,连接OP,OQ,过Q作QM ⊥y轴,∴∠POQ=120°,∵AP=OP,∴∠BAO=∠POA=30°,∴∠MOQ=30°,在Rt△OMQ中,OQ=OP=2,∴MQ=1,OM=,则P的对应点Q的坐标为(1,﹣),故选B【点评】此题考查了坐标与图形变化﹣旋转,熟练掌握旋转的性质是解本题的关键.10.在平面直角坐标系内,点P (﹣2,3)关于原点的对称点Q 的坐标为( )A .(2,﹣3)B .(2,3)C .(3,﹣2)D .(﹣2,﹣3)【考点】关于原点对称的点的坐标.【专题】常规题型.【分析】平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(﹣x ,﹣y ).【解答】解:根据中心对称的性质,得点P (﹣2,3)关于原点对称点P′的坐标是(2,﹣3). 故选:A .【点评】关于原点对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆.11.将点A (3,2)沿x 轴向左平移4个单位长度得到点A′,点A′关于y 轴对称的点的坐标是( )A .(﹣3,2)B .(﹣1,2)C .(1,2)D .(1,﹣2)【考点】坐标与图形变化-平移;关于x 轴、y 轴对称的点的坐标.【分析】先利用平移中点的变化规律求出点A′的坐标,再根据关于y 轴对称的点的坐标特征即可求解.【解答】解:∵将点A (3,2)沿x 轴向左平移4个单位长度得到点A′,∴点A′的坐标为(﹣1,2),∴点A′关于y 轴对称的点的坐标是(1,2).故选:C .【点评】本题考查坐标与图形变化﹣平移及对称的性质;用到的知识点为:两点关于y 轴对称,纵坐标不变,横坐标互为相反数;左右平移只改变点的横坐标,右加左减.12.将点P (﹣2,3)向右平移3个单位得到点P 1,点P 2与点P 1关于原点对称,则P 2的坐标是( )A .(﹣5,﹣3)B .(1,﹣3)C .(﹣1,﹣3)D .(5,﹣3)【考点】关于原点对称的点的坐标;坐标与图形变化-平移.【分析】首先利用平移变化规律得出P 1(1,3),进而利用关于原点对称点的坐标性质得出P 2的坐标.【解答】解:∵点P (﹣2,3)向右平移3个单位得到点P 1,∴P 1(1,3),∵点P 2与点P 1关于原点对称,∴P 2的坐标是:(﹣1,﹣3).故选:C .【点评】此题主要考查了关于原点对称点的性质以及点的平移规律,正确把握坐标变化性质是解题关键.13.点A (3,﹣1)关于原点的对称点A′的坐标是( )A .(﹣3,﹣1)B .(3,1)C .(﹣3,1)D .(﹣1,3)【考点】关于原点对称的点的坐标.【分析】直接根据关于原点对称的点的坐标特点即可得出结论.【解答】解:∵两个点关于原点对称时,它们的坐标符号相反,∴点A (3,﹣1)关于原点的对称点A′的坐标是(﹣3,1).故选C .【点评】本题考查的是关于原点对称的点的坐标,熟知关于原点对称的点的坐标特点是解答此题的关键.14.在直角坐标系中,点B 的坐标为(3,1),则点B 关于原点成中心对称的点的坐标为( )A .(3,﹣1)B .(﹣3,1)C .(﹣1,﹣3)D .(﹣3,﹣1)【考点】关于原点对称的点的坐标.【分析】平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(﹣x ,﹣y ).【解答】解:点(3,1)关于原点中心对称的点的坐标是(﹣3,﹣1),故选D.【点评】此题主要考查了关于原点对称的点坐标的关系,是需要识记的基本问题,记忆方法是结合平面直角坐标系的图形记忆.15.在平面直角坐标系中,点A(﹣2,1)与点B关于原点对称,则点B的坐标为()A.(﹣2,1)B.(2,﹣1)C.(2,1) D.(﹣2,﹣1)【考点】关于原点对称的点的坐标.【分析】关于原点的对称点,横纵坐标都变成原来相反数,据此求出点B的坐标.【解答】解:∵点A坐标为(﹣2,1),∴点B的坐标为(2,﹣1).故选B.【点评】本题考查了关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).16.在平面直角坐标系中,P点关于原点的对称点为P1(﹣3,﹣),P点关于x轴的对称点为P2(a,b),则=()A.﹣2 B.2 C.4 D.﹣4【考点】关于原点对称的点的坐标;立方根;关于x轴、y轴对称的点的坐标.【专题】计算题.【分析】利用关于原点对称点的坐标性质得出P点坐标,进而利用关于x轴对称点的坐标性质得出P2坐标,进而得出答案.【解答】解:∵P点关于原点的对称点为P1(﹣3,﹣),∴P(3,),∵P点关于x轴的对称点为P2(a,b),∴P2(3,﹣),∴==﹣2.故选:A.【点评】此题主要考查了关于原点对称点的性质以及关于x轴对称点的性质,得出P点坐标是解题关键.二、填空题(共12小题)17.若点(a,1)与(﹣2,b)关于原点对称,则a b= .【考点】关于原点对称的点的坐标.【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即:求关于原点的对称点,横纵坐标都变成相反数.记忆方法是结合平面直角坐标系的图形记忆.【解答】解:∵点(a,1)与(﹣2,b)关于原点对称,∴b=﹣1,a=2,∴a b=2﹣1=.故答案为:.【点评】此题考查了关于原点对称的点的坐标,这一类题目是需要识记的基础题,记忆时要结合平面直角坐标系.18.在平面直角坐标系中,以原点为中心,把点A(4,5)逆时针旋转90°,得到的点A′的坐标为(﹣5,4).【考点】坐标与图形变化-旋转.【分析】首先根据点A的坐标求出OA的长度,然后根据旋转变换只改变图形的位置,不改变图形的形状与大小,可得OA′=OA,据此求出点A′的坐标即可.【解答】解:如图,过点A作AC⊥y轴于点C,作AB⊥x轴于点B,过A′作A′E⊥y轴于点E,作A′D⊥x轴于点D,,∵点A(4,5),∴AC=4,AB=5,∵点A(4,5)绕原点逆时针旋转90°得到点A′,∴A′E=AB=5,A′D=AC=4,∴点A′的坐标是(﹣5,4).故答案为:(﹣5,4).【点评】此题主要考查了坐标与图形变换﹣旋转,要熟练掌握,解答此题的关键是要明确:旋转变换只改变图形的位置,不改变图形的形状与大小.19.已知A点的坐标为(﹣1,3),将A点绕坐标原点顺时针90°,则点A的对应点的坐标为(3,1).【考点】坐标与图形变化-旋转.【分析】过A作AC⊥y轴于C,过A'作A'D⊥y轴于D,根据旋转求出∠A=∠A'OD,证△AC0≌△ODA',推出A'D=OC=1,OD=CA=3,即可根据题意作出A点绕坐标原点顺时针90°后的点,然后写出坐标.【解答】解:过A作AC⊥y轴于C,过A'作A'D⊥y轴于D,∵∠AOA'=90°,∠ACO=90°,∴∠AOC+∠A'OD=90°,∠A+∠AOC=90°,∴∠A=∠A'OD,在△AC0和△ODA'中,,∴△AC0≌△ODA'(AAS),∴A'D=OC=1,OD=CA=3,∴A'的坐标是(3,1).故答案为:(3,1).【点评】本题主要考查对坐标与图形变换﹣旋转,全等三角形的性质和判定等知识点的理解和掌握,能正确画出图形并求出△AC0≌△ODA'是解此题的关键.20.如图,△ABO中,AB⊥OB,AB=,OB=1,把△ABO绕点O旋转120°后,得到△A1B1O,则点A1的坐标为(﹣2,0)或(1,﹣).【考点】坐标与图形变化-旋转.【专题】压轴题;数形结合.【分析】在Rt△OAB中利用勾股定理计算出OA=2,则利用含30度的直角三角形三边的关系得∠A=30°,所以∠AOB=60°,然后分类讨论:当△ABO绕点O逆时针旋转120°后,点A的对应点A′落在x轴的负半轴上,如图,OA′=OA=2,易得A′的坐标为(﹣2,0);当△ABO绕点O顺时针旋转120°后,点A的对应点A1落在第四象限,如图,则OA1=OA=2,∠AOA1=120°,∠BOA1=30°,利用三角函数可求出A1的纵坐标和横坐标.【解答】解:在Rt△OAB中,∵AB=,OB=1,∴OA==2,∴∠A=30°,∴∠AOB=60°,①当△ABO绕点O逆时针旋转120°后,点A的对应点A1落在x轴的负半轴上,如图,OA1=OA=2,此时A1的坐标为(﹣2,0);②当△ABO 绕点O 顺时针旋转120°后,点A 的对应点A 1′落在第三象限,如图,则OA 1′=OA=2,∠AOA 1′=120°,∵∠AOB=60°,∴∠BOA 1′=60°,∴点A 1′的横坐标为OA 1′•cos60°=2×=1,纵坐标为OA 1′•sin60°=2×=, A 1′的坐标为(1,﹣).综上所述,A 1的坐标为(﹣2,0)或(1,﹣). 故答案为(﹣2,0)或(1,﹣).【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.21.如图,将线段AB 绕点O 顺时针旋转90°得到线段A′B′,那么A (﹣2,5)的对应点A′的坐标是 A′(5,2) .【考点】坐标与图形变化-旋转.【分析】由线段AB 绕点O 顺时针旋转90°得到线段A′B′可以得出△ABO ≌△A′B′O′,∠AOA′=90°,作AC ⊥y 轴于C ,A′C′⊥x 轴于C′,就可以得出△ACO ≌△A′C′O,就可以得出AC=A′C′,CO=C′O,由A 的坐标就可以求出结论.【解答】解:∵线段AB 绕点O 顺时针旋转90°得到线段A′B′,∴△ABO ≌△A′B′O′,∠AOA′=90°,∴AO=A′O.作AC ⊥y 轴于C ,A′C′⊥x 轴于C′,∴∠ACO=∠A′C′O=90°.∵∠COC′=90°,∴∠AOA′﹣∠COA′=∠COC′﹣∠COA′,∴∠AOC=∠A′OC′.在△ACO和△A′C′O中,,∴△ACO≌△A′C′O(AAS),∴AC=A′C′,CO=C′O.∵A(﹣2,5),∴AC=2,CO=5,∴A′C′=2,OC′=5,∴A′(5,2).故答案为:A′(5,2).【点评】本题考查了旋转的性质的运用,全等三角形的判定及性质的运用,等式的性质的运用,点的坐标的运用,解答时证明三角形全等是关键.22.设点M(1,2)关于原点的对称点为M′,则M′的坐标为(﹣1,﹣2).【考点】关于原点对称的点的坐标.【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反可直接得到答案.【解答】解:点M(1,2)关于原点的对称点M′的坐标为(﹣1,﹣2),故答案为:(﹣1,﹣2).【点评】此题主要考查了关于原点对称的点的坐标特点,关键是熟练掌握点的坐标的变化规律.23.已知点M(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是(﹣1,1).【考点】坐标与图形变化-平移.【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:原来点的横坐标是3,纵坐标是﹣2,向左平移4个单位,再向上平移3个单位得到新点的横坐标是3﹣4=﹣1,纵坐标为﹣2+3=1.则点N的坐标是(﹣1,1).故答案填:(﹣1,1).【点评】解题关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.24.点P(5,﹣3)关于原点的对称点的坐标为(﹣5,3).【考点】关于原点对称的点的坐标.【分析】两点关于原点对称,横坐标互为相反数,纵坐标互为相反数.【解答】解:∵5的相反数是﹣5,﹣3的相反数是3,∴点P(5,﹣3)关于原点的对称点的坐标为(﹣5,3),故答案为:(﹣5,3).【点评】主要考查两点关于原点对称的坐标的特点:两点关于原点对称,两点的横坐标互为相反数,纵坐标互为相反数,用到的知识点为:a的相反数为﹣a.25.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是(3,﹣2).【考点】关于原点对称的点的坐标.【专题】数形结合.【分析】根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,即可得出答案.【解答】解:根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,∴点(﹣3,2)关于原点对称的点的坐标是(3,﹣2),故答案为(3,﹣2).【点评】本题主要考查了平面直角坐标系内两点关于原点对称横纵坐标互为相反数,难度较小.26.已知点P(3,2),则点P关于y轴的对称点P的坐标是(﹣3,2),点P关于原点O的1的坐标是(﹣3,﹣2).对称点P2【考点】关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称的点的横坐标互为相反数,纵坐标相同;关于原点对称的点的横坐标与纵坐标都互为相反数解答.的坐标是(﹣3,2),【解答】解:点P(3,2)关于y轴的对称点P1的坐标是(﹣3,﹣2).点P关于原点O的对称点P2故答案为:(﹣3,2);(﹣3,﹣2).【点评】本题考查了关于原点对称点点的坐标,关于y轴对称的点的坐标,熟记对称点的坐标特征是解题的关键.27.在平面直角坐标系中,点P(5,﹣3)关于原点对称的点的坐标是(﹣5,3).【考点】关于原点对称的点的坐标.【分析】根据关于坐标原点对称的点的横坐标与纵坐标都互为相反数解答.【解答】解:点P(5,﹣3)关于原点对称的点的坐标是(﹣5,3).故答案为:(﹣5,3).【点评】本题考查了关于原点对称的点的坐标,熟记关于坐标原点对称的点的横坐标与纵坐标都互为相反数是解题的关键.28.若将等腰直角三角形AOB按如图所示放置,OB=2,则点A关于原点对称的点的坐标为(﹣1,﹣1).【考点】关于原点对称的点的坐标.【分析】过点A作AD⊥OB于点D,根据等腰直角三角形的性质求出OD及AD的长,故可得出A点坐标,再由关于原点对称的点的坐标特点即可得出结论.【解答】解:过点A作AD⊥OB于点D,∵△AOB是等腰直角三角形,OB=2,∴OD=AD=1,∴A(1,1),∴点A关于原点对称的点的坐标为(﹣1,﹣1).故答案为(﹣1,﹣1).【点评】本题考查的是关于原点对称的点的坐标特点,熟知等腰直角三角形的性质是解答此题的关键.三、解答题(共2小题)29.在平面直角坐标系xOy中,已知A(﹣1,5),B(4,2),C(﹣1,0)三点.(1)点A关于原点O的对称点A′的坐标为(1,﹣5),点B关于x轴的对称点B′的坐标为(4,﹣2),点C关于y轴的对称点C的坐标为(1,0).(2)求(1)中的△A′B′C′的面积.【考点】关于原点对称的点的坐标;三角形的面积;关于x轴、y轴对称的点的坐标.【分析】(1)关于原点对称的两点的横、纵坐标都是互为相反数;关于x轴对称的两点的横坐标相同,纵坐标互为相反数;关于y轴对称的两点的横坐标互为相反数,纵坐标相同;(2)根据点A′(1,﹣5),B′(4,﹣2),C′(1,0)在平面直角坐标系中的位置,可以求得A′C′=5,B′D=3,所以由三角形的面积公式进行解答.【解答】解:(1)∵A(﹣1,5),∴点A关于原点O的对称点A′的坐标为(1,﹣5).∵B(4,2),∴点B关于x轴的对称点B′的坐标为(4,﹣2).∵C(﹣1,0),∴点C关于y轴的对称点C′的坐标为(1,0).故答案为:(1,﹣5),(4,﹣2),(1,0).(2)如图,∵A′(1,﹣5),B′(4,﹣2),C′(1,0).∴A′C′=|﹣5﹣0|=5,B′D=|4﹣1|=3,=A′C′•B′D=×5×3=7.5,即(1)中的△A′B′C′的面积是7.5.∴S△A′B′C′【点评】本题考查了关于原点、x轴、y轴对称的点的坐标,三角形的面积.解答(2)题时,充分体现了“数形结合”数学思想的优势.30.如图,在平面直角坐标系中,A(﹣2,2),B(﹣3,﹣2)(1)若点C与点A关于原点O对称,则点C的坐标为(2,﹣2);(2)将点A向右平移5个单位得到点D,则点D的坐标为(3,2);(3)由点A,B,C,D组成的四边形ABCD内(不包括边界)任取一个横、纵坐标均为整数的点,求所取的点横、纵坐标之和恰好为零的概率.【考点】关于原点对称的点的坐标;坐标与图形变化-平移;概率公式.【分析】(1)根据关于原点的对称点,横纵坐标都互为相反数求解即可;(2)把点A的横坐标加5,纵坐标不变即可得到对应点D的坐标;(3)先找出在平行四边形内的所有整数点,再根据概率公式求解即可.【解答】解:(1)∵点C与点A(﹣2,2)关于原点O对称,∴点C的坐标为(2,﹣2);(2)∵将点A向右平移5个单位得到点D,点D的坐标为(3,2);(3)由图可知:A(﹣2,2),B(﹣3,﹣2),C(2,﹣2),D(3,2),∵在平行四边形ABCD内横、纵坐标均为整数的点有15个,其中横、纵坐标和为零的点有3个,即(﹣1,1),(0,0),(1,﹣1),∴P==.【点评】本题考查了关于原点对称的点的坐标,坐标与图形变化﹣平移,概率公式.难度适中,掌握规律是解题的关键.。
人教版数学七年级第七章平面直角坐标系单元测试精选(含答案)2
【答案】A
31.在平面直角坐标系中,点 P(—3,0)在(
)
A.x 轴的正半轴 B.x 轴的负半轴 C.y 轴的正半轴 D.y 轴的负半轴
【来源】人教版数学七年级下册第七章平面直角坐标系单元测试
【答案】B
评卷人 得分
二、填空题
32.若点 A(x,2)在第二象限,则 x 的取值范围是____. 【来源】2016 年初中毕业升学考试(广西百色卷)数学(带解析) 【答案】x<0 33.若点 M(a+5,a-3)在 y 轴上,则点 M 的坐标为________. 【来源】2011-2012 学年黑龙江兰西县北安中学七年级下学期期中考试数学卷 【答案】(0,-8) 34.点 P(3,-4)到 x 轴的距离是_____________. 【来源】安徽省涡阳县石弓中心校 2018-2019 学年度第一学期八年级第一次月考数学试 题(沪科版) 【答案】4 35.点 P(3,-4)到原点的距离是___________。 【来源】甘肃省天水市第一中学 2017-2018 学年八年级上学期期末模拟考试数学试题 【答案】5
D. (1, 2)
【来源】2011 年初中毕业升学考试(湖南怀化卷)数学
【答案】C
21.将平面直角坐标系内某个图形上各点的横坐标都乘以-1,纵坐标不变,所得图形
与原图形的关系是
A.关于 x 轴对称 B.关于 y 轴对称 C.关于原点对称 D.两图形重合
【来源】2012 届四川省沐川县初三二调考试数学卷(带解析)
A.m=0,n 为一切数 B.m=0,n<0
C.m 为一切数,n=0 D.m<0,n=0
【来源】2017-2018 学年浙教版八年级数学上册习题:单元测试
【答案】D
人教版数学七年级第七章平面直角坐标系单元测试精选(含答案)7
人教版七年级第七章平面直角坐标系单元测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.在平面直角坐标系中,点(-2,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【来源】山东省日照市莒县2016-2017学年七年级下学期期末考试数学试题(WORD版)【答案】B2.如图:正方形ABCD中点A和点C的坐标分别为(-2,3)和(3,-2),则点B和点D的坐标分别为().A.(2,,2)和(3,3)B.(-2,-2)和(3,3)C.(-2,-2)和(-3,-3)D.(2,2)和(-3,-3)【来源】2018人教版数学七年级下册第七章平面直角坐标系单元测试题【答案】B3.某同学的座位号为(2,4)那么该同学的位置是()A.第2排第4列B.第4排第2列C.第2列第4排D.不好确定【来源】人教版七年级数学下册第7章平面直角坐标系单元测试题【答案】D4.线段AB两端点坐标分别为A(–1,4),B(–4,1),现将它向左平移4个单位长度,得到线段A1B1,则A1、B1的坐标分别为()A.A1(–5,0),B1(–8,–3)B.A1(3,7),B1(0,5)C.A1(–5,4),B1(-8,1)D.A1(3,4),B1(0,1)【来源】人教版七年级数学下册第7章平面直角坐标系单元测试题【答案】C5.小敏的家在学校正南150m,正东方向200m处,如果以学校位置为原点,以正北、正东为正方向,则小敏家用有序数对表示为()A.(-200,-150)B.(200,150)C.(200,-150)D.(-200,150)【来源】人教版七年级下册第七章平面直角坐标系单元复习卷【答案】C6.若点P(m,n)在第二象限,则点Q(m,-n)在()A.第一象限B.第二象限C.第三象限D.第四象限【来源】人教版七年级下册第七章平面直角坐标系单元复习卷【答案】C7.一个学生方队,B的位置是第8列第7行,记为(8,7),则学生A在第二列第三行的位置可以表示为()A.(2,1)B.(3,3)C.(2,3)D.(3,2)【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】C8.点P(-|a|-1,b2+2)一定在()A.第一象限B.第二象限C.第三象限D.第四象限【来源】人教版七年级下册第七章平面直角坐标系单元复习卷【答案】B9.下列语句中,说法错误的是()A.点(0,0)是坐标原点B.对于坐标平面内的任一点,都有唯一的一对有序实数与它对应C.点A(a,-b)在第二象限,则点B(-a,b)在第四象限D.若点P的坐标为(a,b),且a·b=0,则点P一定在坐标原点【来源】人教版七年级下册第七章平面直角坐标系单元复习卷【答案】D10.点A的坐标是(-2,5),则点A在()A.第一象限B.第二象限C.第三象限D.第四象限【来源】人教版七年级下册第七章平面直角坐标系单元复习卷【答案】B11.如图,在平面直角坐标系中,矩形OABC,OA=3,OC=6,将△ABC沿对角线AC 翻折,使点B落在点B′处,AB′与y轴交于点D,则点D的坐标为()A.(0,-92)B.(0,-94)C.(0,-72)D.(0,-74)【来源】2016届山东省济南市中考三模数学试卷(带解析)【答案】D12.若点A(m,n)在第二象限,那么点B(-m,n+3)在()A.第一象限B.第二象限;C.第三象限D.第四象限【来源】人教版七年级数学下册第七章平面直角坐标系单元测试【答案】A13.我市为了促进全民健身,举办“健步走”活动,朝阳区活动场地位于奥林匹克公园(路线:森林公园-玲珑塔-国家体育场-水立方).如图,体育局的工作人员在奥林匹克公园设计图上设定玲珑塔的坐标为(-1,0),森林公园的坐标为(-2,2),则终点水立方的坐标为()A.(-2,-4)B.(-1,-4)C.(-2,4)D.(-4,-1)【来源】第七章平面直角坐标系单元练习题【答案】A评卷人得分二、填空题14.如图,每个小方格都是边长为1个单位长度的正方形,如果用(0,0)表示A 点的位置,用(3,4)表示B 点的位置,那么用______表示C 点的位置.【来源】2016年北师大新版八年级数学上册同步练习:3.1确定位置【答案】(6,1)15.若第四象限内的点P(x ,y)满足|x|=3,y 2=4,则点P 的坐标是________.【来源】2018年秋北师大版八年级数学上册第三章位置与坐标检测卷【答案】(3,-2)16.第三象限内的点P(x ,y),满足5x =,29y =,则点P 的坐标是_________.【来源】湖北黄石江北中学2016-2017学年七年级(下)期中模拟数学试卷(含答案)【答案】(-5,-3).17.若点P (x ,y )满足xy <0,则点P 在第________象限.【来源】2017年秋北师大版八年级数学上册章末检测卷:第3章?位置与坐标【答案】二或四18.七年级(2)班教室里的座位共有7排8列,其中小明的座位在第3排第7列,简记为(3,7),小华坐在第5排第2列,则小华的座位可记作__________.【来源】人教版七年级数学下册第7章平面直角坐标系单元测试题【答案】(5,2)19.若点P (a,-b )在第二象限,则点Q (-ab,a+b )在第_______象限.【来源】人教版七年级数学下册第7章平面直角坐标系单元测试题【答案】三20.若点P 到x 轴的距离是12,到y 轴的距离是15,那么P 点坐标可以是________(写出一个即可).【来源】人教版七年级数学下册第7章平面直角坐标系单元测试题【答案】(15,12)或(15,-12)或(-15,12)或(-15,-12);21.如下图,小强告诉小华图中A 、B 两点的坐标分别为(-3,5),(3,5), 小华一下就说出了C在同一坐标系下的坐标________.【来源】人教版七年级数学下册第7章平面直角坐标系单元测试题【答案】(-1,7)22.若图中的有序数对(4,1)对应字母D,有一个英文单词的字母依次对应图中的有序数对为(1,1),(2,3),(2,3),(5,2),(5,1),则这个英文单词是________.【来源】人教版七年级下册数学练习:7.1.1有序数对【答案】APPLE23.如图,把“QQ”笑脸放在直角坐标系中,已知右眼A的坐标是(-2,3),嘴唇C点的坐标为(-1、1),则此“QQ”笑脸左眼B的坐标________.【来源】人教版七年级下册第七章平面直角坐标系单元复习卷【答案】(0,3)24.若点P(m,n)在第三象限,则点Q(mn,m+n)在第________象限.【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】四25.平面直角坐标系中,点P(3,-4)到x轴的距离是________.【来源】人教版七年级下册第七章平面直角坐标系单元复习卷【答案】426.通过平移把点A(2,-1)移到点A′(2,2),按同样的平移方式,点B(-3,1)移动到点B′,则点B′的坐标是________.【来源】沪科版数学八年级上学期全册综合测试试卷【答案】(-3,4)27.同学们排成方队做操,李明在第10列第8行,用数对表示为________,小方所在的位置用数对表示为(8,7),她在第________列第________行.【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】(10,8)8728.若图中的有序数对(4,1)对应字母D ,有一个英文单词的字母顺序对应如图中的有序数对分别为(1,2),(5,1),(5,2),(5,2),(1,3),请你把这个英文单词写出来为________.【来源】第七章平面直角坐标系单元练习题【答案】HELLO29.已知点A(x -4,x +2)在y 轴上,则x 的值等于________.【来源】第七章平面直角坐标系单元练习题【答案】4评卷人得分三、解答题30.已知平面直角坐标系中有一点()M 2m 3,m 1-+.(1)点M 到y 轴的距离为1时,M 的坐标?(2)点()N 5,1-且MN//x 轴时,M 的坐标?【来源】山东省济宁市嘉祥县2017-2018学年七年级下学期期中水平测试数学试题【答案】(1)(﹣1,2)或(1,3)(2)(﹣7,﹣1)31.(1)已知图1是将线段AB 向右平移1个单位长度,图2是将线段AB 折一下再向右平移1个单位长度,请在图3中画出一条有两个折点的折线向右平移1个单位长度的图形;(2)若长方形的长为a ,宽为b ,请分别写出三个图形中除去阴影部分后剩下部分的面积;(3)如图4,在宽为10m ,长为40m 的长方形菜地上有一条弯曲的小路,小路宽度为1m ,求这块菜地的面积.【来源】2017-2018学年人教版七年级数学下册同步测试题 5.4平移【答案】(1)图形见解析.(2)三个图形中除去阴影部分后剩下部分的面积均为ab-b.(3)390(m2).32.如图是学校的平面示意图,已知旗杆的位置是(-2,3),实验室的位置是(1,4).(1)根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂、图书馆的位置;(2)已知办公楼的位置是(-2,1),教学楼的位置是(2,2),在图中标出办公楼和教学楼的位置;(3)如果一个单位长度表示30米,请求出宿舍楼到教学楼的实际距离.【来源】人教版七年级下册第七章《平面直角坐标系》全章测试含答案【答案】(1)食堂的位置是(-5,5),图书馆的位置是(2,5);(2)见解析;(3)240米.33.已知点P(2m+4,m-1).试分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大3;(2)点P在过A(2,-3)点,且与x轴平行的直线上.【来源】人教版七年级数学下册第7章平面直角坐标系单元提优测试题【答案】(1)点P(-12,-9)(2)P(0,-3)34.已知A(a-3,a2-4),求a的值及点A的坐标.(1)当点A在x轴上;(2)当点A在y轴上.【来源】2016——2017学年度江西省赣县区第二学期期中考试七年级数学试题【答案】(1)a=±2,点A的坐标为(-1,0)或(-5,0);(2)a=3,点A的坐标为(0,5).35.已知,射线BC∥射线OA,∠C=∠BAO=100°,试回答下列问题:(1)如图①,求证:OC∥AB;(2)若点E、F在线段BC上,且满足∠EOB=∠AOB,并且OF平分∠BOC,①如图②,若∠AOB=30°,则∠EOF的度数等于多少(直接写出答案即可);②若平行移动AB,当∠BOC=6∠EOF时,求∠ABO.【来源】湖南省长沙市青竹湖湘一外国语学校2017-2018学年七年级上期末试卷数学试题【答案】(1)证明见解析;(2)Ⅰ)∠EOF=5°;Ⅱ)∠ABO=48°或60°.36.如图是小明家和学校所在地的简单地图,已知OA=2cm,OB=2.5cm,OP=4cm,点C为OP的中点,回答下列问题:(1)图中距小明家距离相同的是哪些地方?(2)学校、商场和停车场分别在小明家的什么方位?(3)如果学校距离小明家400m,那么商场和停车场分别距离小明家多远?【来源】2017-2018学年八年级数学冀教版下册单元测试题第19章平面直角坐标系【答案】(1)距小明家距离相同的是学校和公园;(2)学校在小明家北偏东45°方向,商场在小明家北偏西30°方向,停车场在小明家南偏东60°方向;(3)停车场距离小明家800m.37.某学校校门在北侧,进校门向南走30米是旗杆,再向南走30米是教学楼,从教学楼向东走60米,再向北走20米是图书馆,从教学楼向南走60米,再向北走10米是实验楼,请你选择适当的比例尺,画出该校的校园平面图.【来源】人教版七年级数学下册第7章平面直角坐标系单元测试题【答案】见解析38.请自己动手,建立平面直角坐标系,在坐标系中描出下列各点的位置:你发现这些点有什么位置关系?你能再找出类似的点吗?(再写出三点即可)A(-4,4),B(-2,2).C(3,-3).D(5,-5).E(-3,3)F(0,0)【来源】人教版七年级数学下册第7章平面直角坐标系单元测试题【答案】这些点在同一直线上,在二四象限的角平分线上,举例见解析.39.已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),求△ABO的面积.【来源】2014-2015学年山西省大同市矿区十二校七年级下学期期末数学试卷(带解析)【答案】4.40.如图,A、B两点的坐标分别为(2,3)、(4,1).(1)求△ABO的面积;(2)把△ABO向下平移3个单位后得到一个新三角形△O′A′B′,求△O′A′B′的3个顶点的坐标.【来源】2017-2018学年北师大版八年级下册第三章图形的平移与旋转 3.1图形的平移同步练习卷含答案=5;(2)A′(2,0),B′(4,-2),O′(0,-3).【答案】(1)S△ABO41.请写出点A,B,C,D的坐标.【来源】人教版七年级下册第七章平面直角坐标系单元复习卷【答案】A(3,2),B(-3,4),C(-4,-3),D(3,-3)42.已知平面直角坐标系中A、B两点,根据条件求符合条件的点B的坐标.(1)已知点A(2,0),AB=4,点B和点A在同一坐标轴上,求点B的坐标;(2)已知点A(0,0),AB=4,点B和点A在同一坐标轴上,求点B的坐标.【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】(1)点B的坐标为(-2,0)或(6,0);(2)点B的坐标为(-4,0)或(4,0)或(0,4)或(0,-4)43.在如图所示的平面直角坐标系中表示下面各点A(0,3),B(1,-3),C(3,-5),D(-3,-5),E(3,5),F(5,6),G(5,0)根据描点回答问题:(1)A点到原点的距离是________.(2)将点C向x轴的负方向平移6个单位,它与点______重合.(3)连接CE,则直线CE与坐标轴是什么关系?(4)在以上七个点中,任意两点所形成的直线中,直接写出互相垂直的直线.【来源】人教版七年级下册第七章平面直角坐标系单元复习卷【答案】(1)3;(2)D;(3)垂直;(4)直线CD与CE垂直,直线CD与FG垂直.44.写出如图格点△ABC各顶点的坐标,求出此三角形的周长.【来源】2017-2018学年山西农大附中八年级(上)期中数学试卷【答案】A(2,2)、B(-2,-1)、C(3,-2),面积9.5平方单位45.如图,在直角三角形ABC中,∠ACB=90°,∠A=33°,将三角形ABC沿AB方向向右平移得到三角形DEF.(1)试求出∠E的度数;(2)若AE=9cm,DB=2cm,求出BE的长度.【来源】2016-2017学年福建省宁德市蕉城中学七年级(下)期末模拟数学试卷(带解析)【答案】(1)57°;(2)3.5cm.46.已知点P 的坐标为()2,a a -,且点P 到两坐标轴的距离相等,求a 的值.【来源】安徽省潜山市2018-2019学年度第一学期八年级数学期末教学质量检测【答案】a =1.47.已知直角坐标平面内两点A(-2,-3)、B(3,-3),将点B 向上平移5个单位到达点C ,求:(1)A 、B 两点间的距离;(2)写出点C 的坐标;(3)四边形OABC 的面积.【来源】第七章平面直角坐标系单元练习题【答案】(1)5;(2)(3,2);(3)15.48.五子棋和象棋、围棋一样,深受广大棋友的喜爱,其规则是:15×15的正方形棋盘中,由黑方先行,轮流弈子,在任一方向上连成五子者为胜.如下图是两个五子棋爱好者甲和乙的对弈图;(甲执黑子先行,乙执白子后走),观察棋盘思考:若A 点的位置记做(8,4),甲必须在哪个位置上落子,才不会让乙马上获胜.【来源】2015年人教版初中数学七年级7.2.1练习卷(带解析)【答案】见解析49.已知:点P(2m +4,m -1).试分别根据下列条件,求出P 点的坐标.(1)点P 在y 轴上;(2)点P 在x 轴上;【来源】第七章平面直角坐标系单元练习题【答案】(1)P 点的坐标为(0,-3);(2)P 点的坐标为(6,0).50.在平面直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来.(1,1),(3,1),(1,3),(1,1);(-1,3),(-1,5),(-3,3),(-1,3);(-5,1),(-3,-1),(-3,1),(-5,1);(-1,-1),(1,-1),(-1,-3),(-1,-1).(1)观察所得的图形,你觉得它像什么?(2)求出这四个图形的面积和.【来源】第七章平面直角坐标系单元练习题【答案】画图见解析;(1)风车;(2)8.。
人教版数学七年级下册第7章《平面直角坐标系 》单元质量测试卷(含答案)
人教版数学七年级下册第7章《平面直角坐标系》单元质量测试卷一.选择题(共10小题,满分30分)1.在平面直角坐标系中,点P(﹣2020,2019)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.如图,在中国象棋棋盘中,如果将“卒”的位置记作(3,1),那么“相”的位置可记作()A.(2,8)B.(2,4)C.(8,2)D.(4,2)3.点P在第二象限内,那么点P的坐标可能是()A.(4,3)B.(﹣3,﹣4)C.(﹣3,4)D.(3,﹣4)4.如图的坐标平面上有原点O与A、B、C、D四点.若有一直线L通过点(﹣3,4)且与y轴平行,则L也会通过的点为()A.点A B.点B C.点C D.点D5.在平面直角坐标系中,下列各点位于x轴上的是()A.(1,﹣2)B.(3,0)C.(﹣1,3)D.(0,﹣4)6.已知a是整数,点A(2a﹣1,a﹣2)在第四象限,则a的值是()A.﹣1B.0C.1D.27.平行于x轴的直线上的任意两点的坐标之间的关系是()A.横坐标相等B.纵坐标相等C.横坐标的绝对值相等D.纵坐标的绝对值相等8.在平面直角坐标系中,若点M(﹣2,3)与点N(﹣2,y)之间的距离是5,那么y的值是()A.﹣2B.8C.2或8D.﹣2或89.点(﹣2,﹣3)向左平移3个单位后所得点的坐标为()A.(﹣2,0)B.(﹣2,﹣6)C.(﹣5,﹣3)D.(1,﹣3)10.如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7……,都是斜边在x 轴上,斜边长分别为2,4,6,……的等腰直角三角形,若A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2020的坐标为()A.(1010,0)B.(1012,0)C.(2,1012)D.(2,1010)二.填空题(共6小题,满分18分)11.点A(3,﹣4)在第象限.12.点M(3,﹣1)到x轴距离是.13.在平面直角坐标系中,O为坐标原点,已知点A的坐标是(﹣2,0),点B在y轴上,若OA=2OB,则点B的坐标是.14.将点A(2,5)先向上平移3个单位,再向左平移2个单位,得到点B,则点B的坐标为.15.已知直角坐标平面内两点A(﹣3,1)和B(3,﹣1),则A、B两点间的距离等于.16.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,请你观察图中正方形A1B1C1D1,A2B2C2D2,A3B3C3D3,……每个正方形四条边上的整点的个数.按此规律推算出正方形A2019B2019C2019D2019四条边上的整点共有.三.解答题(共8小题,满分52分)17.指出下列各点的横坐标和纵坐标,并指出各点所在的象限.A(2,3)、B(﹣2,3)、C(﹣2,﹣3)、D(2,﹣3)18.在平面直角坐标系中,已知点M(m﹣1,2m+3)(1)若点M在y轴上,求m的值.(2)若点M在第一、三象限的角平分线上,求m的值.19.如图是天安门广场周围的主要景点分布示意图.在此图中建立平面直角坐标系,表示故宫的点坐标为(0,﹣1),表示美术馆的点的坐标为(2,2),并写出其余各景点的坐标.20.已知点P(2m﹣6,m+2),(1)若点P在y轴上,P点坐标为;(2)若点P和Q都在过点A(2,3)且与x轴平行的直线上,且PQ=3,求Q点坐标.21.(1)在平面直角坐标系中描出下列各点.A(1,2),B(﹣3,3),C(1,3)D(﹣1,3),E(1,﹣4),F(3,3)(小方格的边长为1).由描出的点你发现了什么规律?答:.(2)应用:已知P(m,﹣2),Q(3,m﹣1)且PQ∥x轴,求线段PQ的长.22.在平面直角坐标系中,有A(﹣2,a+2),B(a﹣3,4)C(b﹣4,b)三点.(1)当AB∥x轴时,求A、B两点间的距离;(2)当CD⊥x轴于点D,且CD=3时,求点C的坐标.23.如图,在直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求△ABC的面积;(2)若把△ABC向下平移2个单位,再向右平移5个单位得到△A′B′C′,并写出C′的坐标.24.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.(1)填写下列各点的坐标:A4(,)A8(,)、A12(,);(2)写出点A4n的坐标(n是正整数);(3)指出蚂蚁从点A101到点A102的移动方向.参考答案一.选择题(共10小题)1.【解答】解:点P(﹣2020,2019)所在的象限是第二象限.故选:B.2.【解答】解:∵将“卒”的位置记作(3,1),∴“相”的位置可记作(8,2).故选:C.3.【解答】解:A、(4,3)在第一象限,故此选项不合题意;B、(﹣3,﹣4)在第三象限,故此选项不合题意;C、(﹣3,4)在第二象限,故此选项符合题意;D、(3,﹣4)在第四象限,故此选项不合题意;故选:C.4.【解答】解:如图所示:有一直线L通过点(﹣3,4)且与y轴平行,故L也会通过A 点.故选:A.5.【解答】解:∵在x轴上的点的纵坐标是0,∴在x轴上的点为:(3,0).故选:B.6.【解答】解:点A(2a﹣1,a﹣2)在第四象限,则,解得:<a<2,a是整数,则符合条件的为C,故选:C.7.【解答】解:平行于x轴的直线上的任意两点的坐标之间的关系是纵坐标相等.故选:B.8.【解答】解:∵点M(﹣2,3)与点N(﹣2,y)之间的距离是5,∴|y﹣3|=5,解得:y=8或y=﹣2.故选:D.9.【解答】解:点(﹣2,﹣3)向左平移3个单位后所得点的坐标为(﹣2﹣3,﹣3),即(﹣5,﹣3),故选:C.10.【解答】解:观察点的坐标变化发现:当脚码为偶数时的点的坐标,得到规律:当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数,当脚码是4、8、12.…时,横坐标是2,纵坐标为脚码的一半,因为2020能被4整除,所以横坐标为2,纵坐标为1010,故选:D.二.填空题(共6小题)11.【解答】解:∵点(3,﹣4)横坐标为正,纵坐标为负,∴应在第四象限.故答案为:四.12.【解答】解:M(3,﹣1)到x轴距离是1.故答案为:113.【解答】解:∵点A的坐标是(﹣2,0),∴OA=2,又∵OA=2OB,∴OB=1,∵点B在y轴上,∴点B的坐标为(0,1)或(0,﹣1),故答案为:(0,1)或(0,﹣1).14.【解答】解:将点A(2,5)先向上平移3个单位,再向左平移2个单位,得到点B的坐标为(2﹣2,5+3),即:(0,8).故答案为:(0,8).15.【解答】解:∵直角坐标平面内两点A(3,﹣1)和B(﹣1,2),∴A、B两点间的距离等于=2,故答案为2.16.【解答】解:∵A1B1C1D1每条边上的整点共有:2×1+1=3个,A2B2C2D2每条边上的整点共有;2×2+1=5个,正方形A3B3C3D3每条边上的整点的个数有:2×3=1=7个,…∵A1B1C1D1四条边上的整点共有8个,即4+4×1=8,A2B2C2D2四条边上的整点共有16个,即4+4×3=16,正方形A3B3C3D3四条边上的整点的个数有4+4×5=24,…∴第n个正方形上的整点个数是:4+4(2n﹣1)=8n,∴正方形A2019B2019C2019D2019四条边上的整点的个数=2019×8=16152,故答案为:16152.三.解答题(共8小题)17.【解答】解:A(2,3)横坐标是2,纵坐标是3,在第一象限;B(﹣2,3)横坐标是﹣2,纵坐标是3,在第二象限;C(﹣2,﹣3)横坐标是﹣2,纵坐标是﹣3,在第三象限;D(2,﹣3)横坐标是2,纵坐标是﹣3,在第四象限.18.【解答】解:(1)由题意得:m﹣1=0,解得:m=1;(2)由题意得:m﹣1=2m+3,解得:m=﹣4.19.【解答】解:如图所示:景山(0,1.5),王府井(3,﹣1),天安门(0,﹣2),中国国家博物馆(1,﹣3),前门(0,﹣5.5),人民大会堂(﹣1,﹣3),电报大楼(﹣4,﹣2).20.【解答】解:(1)∵点P在y轴上,∴2m﹣6=0,解得m=3,∴P点的坐标为(0,5);故答案为(0,5);(2)∵点P和点Q都在过A(2,3)点且与x轴平行的直线上,∴点P和点Q的纵坐标都为3,∴P(﹣4,3)而PQ=3,∴Q点的横坐标为﹣1或﹣7,∴Q点的坐标为(﹣1,3)或(﹣7,3).21.【解答】解:(1)如图所示,发现的规律:纵坐标相同的点在平行于x轴的直线上,横坐标相同的点在平行于y轴的直线上.(2)∵PQ∥x轴,∴m﹣1=﹣2,∴m=﹣1,∴P(﹣1,﹣2),Q(3,﹣2)∴PQ=|﹣1﹣3|=4.答:线段PQ的长为4.22.【解答】解:(1)∵AB∥x轴,∴A点和B的纵坐标相等,即a+2=4,解得a=2,∴A(﹣2,4),B(﹣1,4),∴A、B两点间的距离为﹣1﹣(﹣2)=1;(2)∵当CD⊥x轴于点D,CD=3,∴|b|=3,解得b=3或b=﹣3,∴当b=3时,b﹣4=﹣1;当b=﹣3时,b﹣4=﹣7,∴C点坐标为(﹣1,3)或(﹣7,﹣3).23.【解答】解:(1)△ABC的面积是:×3×5=7.5;(2)作图如下:∴点C′的坐标为:(1,1).24.【解答】解:(1)由图可知,A4,A8,A12都在x轴上,∵蚂蚁每次移动1个单位,∴OA4=2,OA8=4,OA12=6,∴A4(2,0),A8(4,0),A12(6,0);故答案为:2,0;4,0;6,0;(2)根据(1)OA4n=4n÷2=2n,∴点A4n的坐标(2n,0);(3)∵101÷4=25...1,102÷4=25 (2)∴A101与A102的移动方向与从点A1到A2的方向一致,为从左向右.。
精选七年级下册数学第七章平面直角坐标系单元测试(含答案解析)(2)
人教版七年级数学下册第七章平面直角坐标系期中复习检测试题一、选择题(每题3分,共30分)1.在平面直角坐标系中,点P(-3,2)在( B )A.第一象限 B.第二象限 C.第三象限 D.第四象限2.经过两点A(2,3)、B(﹣4,3)作直线AB,则直线AB( B )A.经过原点 B.平行于x轴C.平行于y轴D.无法确定3.若y轴上的点P到x轴的距离为3,则点P的坐标是( D )A.(3,0)B.(0,3)C.(3,0)或(-3,0)D.(0,3)或(0,-3)4.已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为( C )A.(7,1) B.B(1,7)C.(1,1) D.(2,1)5.如图,在5×4的方格纸中,每个小正方形边长为1,点O,A,B在方格纸的交点(格点)上,在第四象限内的格点上找点C,使三角形ABC的面积为3,则这样的点C共有( B )A.2个B.3个C.4个D.5个6.象棋在中国有三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.图7-2-1是一局象棋残局,已知棋子“马”和“车”所在位置用坐标表示分别为(4,3),(-2,1),则棋子“炮”所在位置用坐标表示为( D )A.(-3,3) B.(3,2) C.(0,3) D.(1,3)7.如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在网格的格点上.若线段AB上有一个点P(a,b),则点P在线段A′B′上的对应点P′的坐标为( A )A.(a-2,b+3) B.(a-2,b-3) C.(a+2,b+3) D.(a+2,b-3)8.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示9,则表示58的有序数对是(A)A.(11,3)B.(3,11)C.(11,9)D.(9,11)9.如图,点A,B的坐标分别为(2,0),(0,1).若将线段AB平移至A1B1的位置,则a+b 的值为( A )A.2 B.3 C.4 D.510.在平面直角坐标系xOy中,对于点,我们把点叫做点伴随点.已知点的伴随点为,点的伴随点为,点的伴随点为,…,这样依次得到点,,,…,,….若点的坐标为(2,4),点的坐标为( D )A. (-3,3)B.(-2,-2)C.(3,-1)D.(2,4)二、填空题(每空3分,共18分)11.若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是(﹣3,4)。
【单元测试】第5章 平面直角坐标系(综合能力拔高卷)(解析版)
【高效培优】2022—2023学年八年级数学上册必考重难点突破必刷卷(苏科版)【单元测试】第5章平面直角坐标系(综合能力拔高卷)(考试时间:100分钟试卷满分:120分)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10个小题,每小题3分,共30分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.数对(1,3)表示第1组,第3行,那么小明坐第4组,第5行,用()可以表示他的位置.A.(4,5)B.(5,4)C.(4,4)D.(5,5)【答案】A【分析】根据题意可知数对中的第一个数表示“组数”,第二个数表示“行数”,据此即可作答.【详解】∵数对(1,3)表示第1组,第3行,∴小明坐第4组,第5行,用数对表示为(4,5),故选:A.【点睛】此题主要考查了用数对表示位置的方法,理解题意是解答本题的基础.2.下列数据能确定物体具体位置的是()A.朝阳大道右侧B.好运花园2号楼C.东经103°,北纬30°D.南偏西55°【答案】C【分析】在平面中,要用两个数据才能表示一个点的位置.【详解】解:朝阳大道右侧、好运花园2号楼、南偏西55°都不能确定物体的具体位置,东经103°,北纬30°能确定物体的具体位置,故选:C.【点睛】此题主要考查了坐标确定位置,要明确,一个有序数对才能确定一个点的位置.3.已知点B的坐标为(3,﹣4),而直线AB平行于x轴,那么A点坐标有可能为()A.(3,﹣2)B.(﹣3,﹣4)C.(﹣3,2)D.(2,4)【答案】B【分析】根据平行于x 轴的直线上的点的纵坐标相同,判断选择即可【详解】因为点B 的坐标为(3,﹣4),而直线AB 平行于x 轴,所以A 点坐标的纵坐标一定是-4,故选B .【点睛】本题考查了平行于x 轴的直线上的点的纵坐标相同,熟练掌握这一条性质是解题的关键.4.定义:平面内的直线1l 与2l 相交于点O ,对于该平面内任意一点M ,点M 到直线1l 、2l 的距离分别为a 、b ,则称有序非负实数对(),a b 是点M 的“距离坐标”,根据上述定义,“距离坐标”为()2,1的点的个数有( ).A .1个B .2个C .3个D .4个【答案】D 【分析】首先根据题意,可得距离坐标为(2,1)的点是到l 1的距离为2,到l 2的距离为1的点;然后根据到l 1的距离为2的点是两条平行直线,到l 2的距离为1的点也是两条平行直线,可得所求的点是以上两组直线的交点,一共有4个,据此解答即可.【详解】解:如图1,,到l 1的距离为2的点是两条平行于l 1的直线l 3、l 4,到l 2的距离为1的点是两条平行于l 2直线l 5、l 6,∵两组直线的交点一共有4个:A 、B 、C 、D ,∴距离坐标为(2,1)的点的个数有4个.故选D .【点睛】此题主要考查了点的坐标,以及对“距离坐标”的含义的理解和掌握,解答此题的关键是要明确:到l 1的距离为2的点是两条平行直线,到l 2的距离为1的点也是两条平行直线.5.已知点(3,27)A m --在x 轴上,点(2,4)B n +在y 轴上,则点(,)C n m 位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B 【分析】根据x 轴上的点的纵坐标为0;y 轴上的点的横坐标为0,分别求出m 、n 的值,再判断点C 所在象限即可.【详解】解:(3,27)A m --Q 在x 轴上,点(2,4)B n +在y 轴上,270m \-=,20n +=,解得 3.5m =,2n =-,\点(,)C n m 在第二象限,故选:B .【点睛】本题考查点的坐标的相关知识,解题的关键是熟知x 轴和y 轴上的点的坐标特点.6.已知一次函数y kx b =+中y 随x 的增大而减小,且0kb <,则在直角坐标系内它的大致图象是( )A .B .C .D .【答案】A 【分析】根据一次函数的图象及性质由y 随x 的增大而减小即可判断k 的符号,再由0kb <即可判断b 的符号,即可得出答案.【详解】解: Q 一次函数y kx b =+中y 随x 的增大而减小,\0k <,又Q 0kb <,0b \>,\一次函数y kx b =+的图象经过一、二、四象限,故选A .【点睛】本题考查了一次函数的图象及性质,解题关键在于熟练掌握一次函数四种图象的情况.7.如图,在平面直角坐标系中,点A 、B 的坐标分别为()2,0,()0,1,将线段AB 平移至A B ¢¢,那么a b +的值为( )A.2B.3C.4D.5【答案】A【分析】根据点的坐标的变化分析出AB的平移方法,再利用平移中点的变化规律算出a、b的值.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】解:根据题意:A、B两点的坐标分别为A(2,0),B(0,1),A′(3,b),B′(a,2),即线段AB向上平移1个单位,向右平移1个单位得到线段A′B′;则:a=0+1=1,b=0+1=1,∴a+b=2.故选A.【点睛】此题主要考查图形的平移及平移特征.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.8.如图是雷达在一次探测中发现的三个目标,其中目标A,B的位置分别表示为(120°,5),(240°,4),按照此方法可以将目标C的位置表示为( )A.(30°,1)B.(210°,6)C.(30°,6)D.(60°,2)【答案】C【分析】根据点A、B的位置表示方法可知,横坐标为度数,纵坐标为圈数,由此即可得到目标C的位置.【详解】解:∵A,B的位置分别表示为(120°,5),(240°,4),∴目标C的位置表示为(30°,6),故选:C.【点睛】此题考查了有序数对,正确理解有序数对的表示方法及图形中点的位置是解题的关键.9.如图,在平面直角坐标系中,已知点A(0,4),B(2,0),在平面内有一点C(不与点B重合),使得△AOC与△AOB全等,这样的点C有()A.1个B.2个C.3个D.4个【答案】C【分析】画出图形即可得到答案.【详解】如图所示,满足条件的点有三个,分别为C1(-2,0),C2(-2,4),C3(2,4)故选:C【点睛】本题考查了坐标与图形、三角形全等的判定,全等三角形的判定及图形坐标特征是解题的关键.10.如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是()A .(2,0)B .(-1,-1)C .(-1,1)D .(1,-1)二、填空题(本大题共8个小题,每题3分,共24分)11.课间操时,小华,小军,小刚的位置如图.若小华的位置用()0,0表示,小军的位置用()2,1表示,则小刚的位置用坐标表示为______.4,3【答案】()【分析】根据小军和小刚的坐标建立平面直角坐标系,据此可得答案.【详解】解:由小军和小华的坐标可建立如图所示平面直角坐标系:小刚的位置用坐标表示为(4,3).故答案为:(4,3).【点睛】本题考查了坐标确定位置:平面内的点与有序实数对一一对应,记住直角坐标系中特殊位置点的坐标特征.12.如图,点A在射线OX上,OA等于2cm,如果OA绕点O按逆时针方向旋转30°到OA′,那么点A′的位置可以用(2,30°)表示.若OB=3cm,且OA′⊥OB,则点B的位置可表示为_____.【答案】(3,120°)【分析】根据题意得出坐标中第一个数为线段长度,第二个数是逆时针旋转的角度,进而得出B点位置即可.【详解】解:∵OA 等于2cm ,如果OA 绕点O 按逆时针方向旋转30°到OA ′,那么点A ′的位置可以用(2,30°)表示,∵OA ′⊥OB ,∴∠BOA =90°+30°=120°,∴∵OB =3cm ,∴点B 的位置可表示为:(3,120°).故答案为:(3,120°).【点睛】此题主要考查了用有序数对表示位置,解决本题的关键是理解所给例子的含义.13.如图,点 A 在射线 OX 上,OA =2.若将 OA 绕点 O 按逆时针方向旋转 30°到 OB ,那么点 B 的位置可以用(2,30°)表示.若将 OB 延长到 C ,使 OC =3,再将 OC 按逆时针方向继续旋转 55°到 OD ,那么点 D 的位置可以用(_________,_________)表示.【答案】 5 85°【分析】根据题意画出图形,进而得出点D 的位置.【详解】解:如图所示:由题意可得:OD =OC =5,∠AOD =85°,故点D 的位置可以用:(5,85°)表示.故答案为:5,85°.【点睛】此题主要考查了有序实数对确定位置,正确作出图形是解题关键.14.如图,建立适当的直角坐标系后,正方形网格上B 的坐标是()0,1,C 点的坐标是()1,1-,那么点A 的坐标是__________.【答案】()1,2-【分析】先建立平面直角坐标系,然后得出点A 的坐标即可.【详解】解:∵B 的坐标是()0,1,C 点的坐标是()1,1-,∴建立如下的平面直角坐标系:∴点A 的坐标为:()1,2-.故答案为:()1,2-.【点睛】本题主要考查了建立平面直角坐标系确定点的坐标,解题的关键是根据点B 、点C 的坐标确定平面直角坐标系.15.如图,在平面直角坐标系中,OAB V 的顶点坐标分别是(60),(05)A B -,,,OA B AOB ¢¢V V ≌,若点A ¢在x 轴上,则点B ¢的坐标是_____.【答案】6,5-()【分析】根据点、A B 的坐标求出=6=5OA OB ,,根据全等三角形的性质得出6OA OA ¢==,==5A B OB ¢¢,再求出点B ¢的坐标即可.【详解】解:∵(60),(05)A B -,,,∴=6=5=90°OA OB AOB Ð,,,∵OA B AOB ¢¢V V ≌,∴==6==5=90°OA OA A B OB B A O Т¢¢¢¢,,,∵点B ¢在第四象限,∴点B ¢的坐标是6,5-(),故答案为:6,5-().【点睛】本题考查了坐标与图形的性质,全等三角形的性质,能熟记全等三角形的对应边相等是解此题的关键.16.如图,在△ABC 中,AB = AC = 10,AD = 8,AD 、BE 分别是△ABC 边BC 、AC 上的高,P 是AD 上的动点,则PE+PC 的最小值是 _________.【答案】9.6【分析】由等腰三角形的三线合一可得出AD 垂直平分BC ,则BP =CP ,要求BE +CE 的最小值,将此题转化为“将军饮马”类型问题即可求解,根据题意可知,点C 关于AD 的对称点为点C ,当点P 在AD 与BE 的交点位置时BE +CE 最小,在△ABC 中,利用面积法可求出BE 的长度,此题得解.【详解】解:∵AB =AC ,AD 是△ABC 的高,∴AD 是BC 的垂直平分线,∴BP =CP ,∠ADB =90°,∵BE 是AC 边上的高,∴当B 、P 、E 三点共线时,PE+PC 的值最小,即BE 的长,∵AB =AC =10,AD =8,∴BD =6,0,3出发,沿所示方向运动,每当碰到长方形OABC的边时反弹,反弹后的路径与长17.如图,动点P从()3,0,则第2022次碰到长方形边上的点的坐方形的边的夹角为45°,第1次碰到长方形边上的点的坐标为()标为_____.【答案】()【分析】根据图形得出图形变化规律:每碰撞6次回到始点,从而可以得出2022次碰到长方形边上的点的坐标.【详解】根据题意,如下图示:根据图形观察可知,每碰撞6次回到始点,根据图形可知:依次经过的点的坐标为:()0,3、()3,0、()7,4、()8,3、()5,0、()1,4.∵2022÷6=337,∴第2022次碰到长方形边上的点的坐标为()0,3,故答案为:()0,3.【点睛】本题考查点的坐标的规律问题,关键是根据题意画出符合要求的图形,找出其中的规律.18.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“®”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)¼根据这个规律,第2019个点的坐标为___.【答案】(45,6)【分析】根据图形推导出:当n 为奇数时,第n 个正方形每条边上有(n +1)个点,连同前边所有正方形共有(n +1)2个点,且终点为(1,n );当n 为偶数时,第n 个正方形每条边上有(n +1)个点,连同前边所以正方形共有(n +1)2个点,且终点为(n +1,0). 然后根据2019=452-6,可推导出452是第几个正方形连同前边所有正方形共有的点,最后再倒推6个点的坐标即为所求.【详解】解:由图可知:第一个正方形每条边上有2个点,共有4=22个点,且终点为(1,1);第二个正方形每条边上有3个点,连同第一个正方形共有9=32个点,且终点为(3,0);第三个正方形每条边上有4个点,连同前两个正方形共有16=42个点,且终点为(1,3);第四个正方形每条边上有5个点,连同前两个正方形共有25=52个点,且终点为(5,0);故当n 为奇数时,第n 个正方形每条边上有(n +1)个点,连同前边所有正方形共有(n +1)2个点,且终点为(1,n );当n 为偶数时,第n 个正方形每条边上有(n +1)个点,连同前边所以正方形共有(n +1)2个点,且终点为(n +1,0).而2019=452-6n+1=45解得:n =44由规律可知,第44个正方形每条边上有45个点,且终点坐标为(45,0),由图可知,再倒着推6个点的坐标为:(45,6).故答案为: (45,6).【点睛】此题考查的是图形的探索规律题,根据图形探索规律并归纳公式是解决此题的关键.三、解答题(本大题共8小题,共66分;第19-22每小题6分,第23-24每小题8分,第25小题12分,第26小题14分)19.如图是中国象棋棋盘的一部分,棋盘中“马”所在的位置用(2,3)表示.(1)图中“象”的位置可表示为____________;(2)根据象棋的走子规则,“马”只能从“日”字的一角走到与它相对的另一角;“象”只能从“田”字的一角走到与它相对的另一角.请按此规则分别写出“马”和“象”下一步可以到达的位置.【答案】(5,3)【详解】整体分析:(1)根据“马”所在的位置确定原点,再确定“象”的位置;(2)根据象棋的走子规则,确定“马”和“象”下一步可以到达的位置.解:(1)(5,3)(2)“马”下一步可到达的位置有(1,1),(3,1),(4,2),(1,5),(3,5),(4,4);“象”下一步可到达的位置有(3,1),(7,1),(3,5),(7,5).20.如图,一只甲虫在55´的方格(每小格边长为1)上沿着网格线运动,它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:(1,4)A B ®++,从B 到A记为:(1,4)B A ®--,其中第一个数表示左右方向,第二个数表示上下方向,那么图中:(1)A C ®(________,________),B C ®(________,________),C D ®(________,________);(2)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出P 的位置.【答案】(1)+3,+4;+2,0;+1,-2;(2)见解析【分析】(1)根据规定及实例可知A→C 记为(+3,+4),B→C 记为(+2,0),C→D 记为(+1,-2);(2)按题目所示平移规律分别向右向上平移2个格点,再向右平移2个格点,向下平移1个格点;向左平移2个格点,向上平移3个格点;向左平移1个向下平移两个格点即可得到点P 的坐标,在图中标出即可.【详解】(1)∵规定:向上向右走为正,向下向左走为负,∴A→C 记为(+3,+4);B→C 记为(+2,0);C→D 记为(+1,-2);故答案为:+3,+4;+2,0;+1,-2;(2)P 点位置如图所示..【点睛】本题主要考查了用有序实数对表示路线.读懂题目信息,正确理解行走路线的记录方法是解题的关键.21.研学旅行继承和发扬了我国的传统游学,成为素质教育的新内容和新方式,是当下很多学生暑假都要参加的活动.2021年7月,某校举行了去远方的研学活动,主办方告诉学员们A 、B 两点的位置及坐标分别为(﹣3,1).(﹣2.﹣3),同时只告诉学员们活动中心C 的坐标为(3,2)(单位:km ).(1)请在图中建立直角坐标系并确定点C的位置;(2)若学员们打算从点B处直接赶往C处,请用方向角和距离描述点C相对于点B的位置..(2)以点B为坐标原点,建立新的平面直角坐标系如下,此时点22.如图,在直角坐标系中,A(-1,5),B(-1,0),C(-4,3).(1)求△ABC的面积;(2)若把△ABC向下平移2个单位,再向右平移5个单位得到△A'B′C′,请画出平移后对应的△A′B′C′,并写出C′的坐标.作图如下所示;【点睛】此题主要考查了平移变换以及三角形面积求法,正确平移图象的各顶点坐标是解题关键.23.如图,在平面直角坐标系xOy 中,A (1,2),B (3,1),C (﹣2,﹣1).(1)在图中作出△ABC 关于x 轴的对称图形△A 1B 1C 1(2)写出点A 1,B 1,C 1的坐标(直接写答案)A 1________ ;B 1________;C 1________(3)求△ABC 的面积.【答案】(1)见解析(2)(1,-2),(3,-1),(-2,1)(3)4.5【分析】(1)分别确定,,A B C 关于x 轴的对称点111,,,A B C 再顺次连接111,,A B C 即可;(2)根据点111,,A B C 在坐标系内的位置,直接写出其坐标即可;(3)利用长方形的面积减去周围三个三角形的面积即可.【详解】(1)解:∵A (1,2),B (3,1),C (﹣2,﹣1).分别确定A 、B 、C 关于 x 轴的对称点A (1,24.如图,在平面直角坐标系中,已知(0,)A a ,(,0)B b ,(,)C b c 三点,其中a 、b 、c 满足关系式2(3)0b -=,2(4)0c -…(1)求a 、b 、c 的值;(2)如果在第二象限内有一点1(,)2P m -,请用含m 的式子表示四边形ABOP 的面积;D的面积相等?若存在,求出点P的坐(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与ABC标;若不存在,请说明理由.25.如图为某校区分布图的一部分,方格纸中每个小方格是边长为1个单位的正方形,若教学楼的坐标为A(1,2),图书馆的坐标为(-2,-1).解答以下问题:(1)在图中找到坐标系中的原点O ,并建立直角坐标系;(2)若体育馆的坐标为C(1,-3),食堂坐标为D (2,0),请在图中标出体育馆和食堂的位置;(3)顺次连接教学楼、图书馆、体育馆、食堂得到四边形ABCD ,求四边形ABCD 的面积.(2)体育馆(1,3)C -,食堂(2,0)D (3)四边形ABCD 的面积45=´-20 4.53 1.51=----,2010=-,10=.【点睛】本题考查了坐标确定位置,平面直角坐标系的定义,网格结构中不规则四边形的面积的求解,熟记概念并熟练运用网格结构是解题的关键.26.例.如图①,平面直角坐标系xOy 中有点()2,3B 和(5,4)C ,求OBC V 的面积.解:过点B 作BD x ^轴于D ,过点C 作CE x ^轴于E .依题意,可得OBC OBD OCEBDEC S S S S =+-梯形△△△111()()222BD CE OE OD OD BD OE CE =+-+×-××111(34)(52)2354 3.5222=´+´-+´´-´´=.∴OBC V 的面积为3.5.(1)如图②,若()11,B x y 、()22,C x y 均为第一象限的点,O 、B 、C 三点不在同一条直线上.仿照例题的解法,求OBC V 的面积(用含1x 、2x 、1y 、2y 的代数式表示);(2)如图③,若三个点的坐标分别为(2,5)A ,(7,7)B ,(9,1)C ,求四边形OABC 的面积.。
人教版七年级第七章平面直角坐标系单元测试精选(含答案)4
人教版七年级第七章平面直角坐标系单元测试精选(含答案) 学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,点P是平面坐标系中一点,则点P到原点的距离是()A.3 B C D【来源】湖北省荆门市沙洋县2017-2018学年八年级下学期期中考试数学试题【答案】A2.已知点A(a,b)在第四象限,那么点B(b,a)在()A.第一象限B.第二象限C.第三象限D.第四象限【来源】福建省闽侯大湖中学人教版七年级数学下册:7平面直角坐标系测试题【答案】B3.中国象棋是中华民族的文化瑰宝,它源远流长,趣味浓厚.如图,在平面直角坐标系中,“炮”所在位置的坐标为(−3,1),“相”所在位置的坐标为(2,−1),那么,“帅”所在位置的坐标为()A.(0,1)B.(4,0)C.(−1,0)D.(0,−1)【来源】练出好成绩北师大版八年级上第三章章末复习回顾提升【答案】D4.如图,若在象棋盘上建立直角坐标系xOy,使“帥”位于点(-1,-2),“馬”位于点(2,-2),则“炮”位于点()A.(-2,-1)B.(0,0)C.(1,-2)D.(-1,1)【来源】人教版七年级下册第七章平面直角坐标系单元复习卷【答案】B5.如图所示,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m),则点E的坐标是()A.(2,-3) B.(2,3) C.(3,2) D.(3,-2)【来源】2017年北京市东城区中考数学二模试卷【答案】C6.如图是丁丁画的一张脸的示意图,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成( )A.(1,0) B.(-1,0) C.(-1,1) D.(1,-1)【来源】黑龙江省佳木斯市桦南县实验中学2018-2019年七年级数学下册期末复习检测试题【答案】A7.点P(4,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【来源】2015年初中毕业升学考试(浙江金华卷)数学(带解析)【答案】A8.点P(1,﹣5)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【来源】人教版七年级下册数学第7章平面直角坐标系单元测试【答案】D9.点M(3,-1)经过平移得到点N,点N的坐标为(2,1),那么平移的方式可以是() A.先向左平移1个单位长度,再向下平移2个单位长度B.先向右平移1个单位长度,再向下平移2个单位长度C.先向左平移1个单位长度,再向上平移2个单位长度D.先向右平移1个单位长度,再向上平移2个单位长度【来源】人教版初中数学七年级下册第七章《平面直角坐标系》单元检测题【答案】C10.在直角坐标系中,点P(-2,3)向右平移3个单位长度后的坐标为()A.(3,6)B.(1,3)C.(1,6)D.(3,3)【来源】2011-2012学年辽宁鞍山26中学第二学期4月月考数学试卷【答案】B11.在下列所给出坐标的点中,在第二象限的是A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)【来源】2013年初中毕业升学考试(广西柳州卷)数学(带解析)【答案】B12.在平面直角坐标系中,点P(-2,-3)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【来源】2014-2015学年贵州省黔南州七年级下学期期末数学试卷(带解析)【答案】C13.把点A(-2,1)向上平移2个单位,再向右平移3个单位后得到B,点B的坐标是(). A.(-5,3) B.(1,3) C.(1,-3) D.(-5,-1)【来源】2011年初中毕业升学考试(江西南昌卷)数学【答案】B14.一个长方形在平面直角坐标系中的三个顶点的坐标分别为(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标为( )A.(2,2) B.(3,2) C.(3,3) D.(2,3)【来源】人教版七年级数学下册七章平面直角坐标系单元测试【答案】B15.平面直角坐标系中,点(1,﹣2)在()A.第一象限B.第二象限C.第三象限D.第四象限【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】D16.平面直角坐标系中,图形上的点A向右平移2个单位后得坐标为(-2,3),则该图形上所以点A.横坐标不变B.纵坐标不变C.横、纵坐标都不变D.横、纵坐标都变【来源】2011-2012学年河南平顶山市弘扬中学七年级下期中考试数学试题(带解析)【答案】B17.在平面直角坐标系中,将点P(-2,3)沿x轴方向向右平移3个单位得到点Q,则点Q的坐标是()A.(-2,6) B.(-2,0) C.(-5,3) D.(1,3)【来源】2010年高级中等学校招生考试数学卷(广东珠海)【答案】D18.点A(﹣3,﹣2)向上平移2个单位,再向右平移2个单位到点B,则点B的坐标为()A.(1,0)B.(1,﹣4)C.(﹣1,0)D.(﹣5,﹣1)【来源】沪教版七年级数学上册第11章图形的运动单元测试【答案】C19.在平面直角坐标系中,已知线段AB的两个端点分别是A(4,-1),B(1,1)将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为()A.(-5,4)B.(4,3)C.(-1,-2)D.(-2,-1)【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】A20.如图所示,在图形B到图形A的变化过程中,下列描述正确的是()A.向上平移2个单位,向左平移4个单位B.向上平移1个单位,向左平移4个单位C.向上平移2个单位,向左平移5个单位D.向上平移1个单位,向左平移5个单位【来源】内蒙古乌兰浩特市卫东中学2018-2019学年七年级下学期期中数学试题【答案】B21.若点P(a,b)在第四象限,则点Q(﹣a,b﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限【来源】2019年辽宁省抚顺一中学北师大版七年级(下)期末数学试卷【答案】C22.点P(-3,4)到y轴的距离是()A.-3 B.4 C.3 D.5【来源】2012-2013学年安徽马鞍山博望中学八年级上学期期中数学试题(带解析)【答案】C23.将A(1,1)先向左平移2个单位,再向下平移2个单位得点B,则点B的坐标是()A.(-1,-1)B.(3,3)C.(0,0)D.(-1,3)【来源】2011-2012学年河南平顶山市弘扬中学七年级下期中考试数学试题(带解析)【答案】A24.在平面直角坐标系中,将点P(-2,3)沿x轴方向向右平移3个单位得到点Q,则点Q的坐标是()A.(-2,6)B.(-2,0)C.(1,3)D.(-5,3)【来源】新人教版数学七年级下册第七章平面直角坐标系7.2.2《用坐标表示平移》同步练习【答案】C25.在平面直角坐标系中,将点(2,3)向上平移1个单位,再向左平移2个单位,所得到的点的坐标是( )A .(-2,3)B .(-1,2)C .(0,4)D .(4,4)【来源】山东省蒙阴县2016-2017学年七年级下学期期末考试数学试题【答案】C二、填空题26.已知点A (0,1),B (0 ,2),点C 在x 轴上,且2ABC S ∆=,则点C 的坐标________.【来源】2016-2017学年河南省周口市西华县七年级下学期期中考试数学试卷(带解析)【答案】(4,0)或(﹣4,0)27.点P 到x 轴的距离为2,到y 轴的距离为3,且在第四象限,则P 点坐标是________.【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】(3,-2)28.已知点P (2a ﹣6,a+1),若点P 在坐标轴上,则点P 的坐标为________.【来源】人教版七年级数学下册七章平面直角坐标系单元测试【答案】(﹣8,0)或(0,4)29.如图,在平面直角坐标系中,平行四边形ABCD 的顶点A ,B ,D 的坐标分别是(0,0),(5,0),(2,3),则顶点C 的坐标是_________.【来源】2016-2017学年内蒙古鄂尔多斯市鄂托克旗八年级(下)期末数学试卷【答案】(7,3)30.如果点M (a-1,a+1)在x 轴上,则a 的值为___________.【来源】湖南省常德外国语学校2017-2018学年八年级下学期期中考试数学试题【答案】-131.在平面直角坐标系中,线段AB=5,AB ∥x 轴,若A 点坐标为(-1,3),则B 点坐标为______.【来源】广东省汕头市潮阳实验学校2018-2019学年七年级下学期期中考试数学试题【答案】(4,3)或(−6,3).32.点(﹣3,﹣5)关于y轴对称的点的坐标是________.【来源】2014-2015学年广东省汕头市龙湖区八年级上学期期末数学试卷(带解析)【答案】(3,﹣5).33.在平面直角坐标系中,点A的坐标为(-1,3),线段AB∥x轴,且AB=4,则点B 的坐标为_______.【来源】人教版七年级数学下册第7章平面直角坐标系单元提优测试题【答案】(-5,3)或(3,3)34.若点M(a-2,2a+3)是y轴上的点,则a的值是________.【来源】湘教版八年级数学下册第3章图形与坐标单元测试题【答案】235.如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(-1,1),第四次向右跳动5个单位至点A4(3,2),…,依此规律跳动下去,点A第100次跳动至点A100的坐标是________.【来源】2015年人教版初中数学七年级7本章检测练习卷(带解析)【答案】(51,50)36.点M(a+b,ab)在第二象限,那么点N(a,b)在第_______象限.【来源】2014年青岛版初中数学七年级下册第十四章14.2练习卷(带解析)【答案】三37.如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图.若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,-1),表示桃园路的点的坐标为(-1,0),则表示太原火车站的点(正好在网格点上)的坐标是.【来源】2016年初中毕业升学考试(山西卷)数学(带解析)【答案】(3,0)38.将点A(1,1)先向左平移2个单位长度,再向下平移3个单位长度得到点B,则点B的坐标是______.【来源】人教版数学七年级下册第七章平面直角坐标系单元提优训练【答案】(-1,-2)39.A、B两点的坐标分别为(1,0)、(0,2),若将线段AB平移至A1B1,点A1B1的坐标分别为(2,a)、(b,3),则a+b=____________.【来源】甘肃省东乡族自治县第二中学2017-2018学年七年级下学期期中数学试题【答案】240.如图所示,△OAB的顶点B的坐标为(4,0),把△OAB沿x轴向右平移得到△CDE,如果CB=1,那么OE的长为________.【来源】2015年人教版初中数学七年级下册第七章练习卷(带解析)【答案】741.已知点P在第二象限,且横坐标与纵坐标的和为1,试写出一个符合条件的点P _______【来源】山东省滨州市博兴县2016-2017学年七年级下学期期末考试数学试题【答案】(-1,2);答案不唯一42.如图所示为沱江两个风景区的位置,若麻拐岩风景区的坐标为(﹣4,2),则阳华岩风景区的坐标为________.【来源】沪教版七年级下册数学第15章平面直角坐标系单元检测卷【答案】(0,﹣3)43.在平面直角坐标系中,任意两点A (a ,b ),B (m ,n ),规定运算:A ☆B=[(1﹣m )√a , √bn 3].若A (4,﹣1),且A ☆B=(6,﹣2),则点B 的坐标是________. 【来源】沪教版七年级下册数学第15章平面直角坐标系单元检测卷【答案】(﹣2,8)44.如图是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是()2,1--,黑棋③的坐标是()1,2-,则白棋②的坐标是:______.【来源】江苏省灌云县2018-2019学年八年级上学期期末考试数学试题【答案】()1,3--三、解答题45.如图,平行四边形ABCD 中,AB =4,BC =2.若把它放在平面直角坐标系中,使AB 在x 轴上,点C 在y 轴上,如果点A 的坐标为(-3,0),求点B ,C ,D 的坐标.【来源】北师大版八年级数学上册第三章 位置与坐标 单元测试【答案】点B,C,D的坐标分别为(1,0),(0和(-4.46.如图,在平面直角坐标系中,点D的坐标是(﹣3,1),点A的坐标是(4,3).(1)点B和点C的坐标分别是______、______.(2)将△ABC平移后使点C与点D重合,点A、B与点E、F重合,画出△DEF.并直接写出E、F的坐标.(3)若AB上的点M坐标为(x,y),则平移后的对应点M′的坐标为______.【来源】广东省广州市四校2016-2017学年七年级下学期期中联考数学试题【答案】(1)(3,1),(1,2);(2)画图见解析;点E坐标为(0,2),点F坐标为(﹣1,0);(3)(x﹣4,y﹣1).47.已知:ABC平移后得出△A1B1C1,点A(﹣1,3)平移后得A1(﹣4,2),又已知B1(﹣2,3),C1(1,﹣1),求B、C坐标,画图并说明经过了怎样的平移.【来源】沪教版七年级上册数学第11章图形的运动单元检测卷【答案】点B坐标为:(1,4),点C坐标为(4,0),由点A平移前的坐标为(﹣1,3),平移后的坐标为(﹣4,2),可得平移的规律是:向左平移3个单位,向下平移1个单位48.某市有A,B,C,D四个大型超市,分别位于一条东西走向的平安大路两侧,如图所示,请建立适当的直角坐标系,并写出四个超市相应的坐标.【来源】人教版初中数学七年级下册第七章《平面直角坐标系》单元检测题【答案】见解析49.如图,正方形网格的每个小正方形边长为1,四边形ABCD的顶点都在格点上.(1)以点A为坐标原点建立平面直角坐标系,写出四边形ABCD各顶点的坐标;(2)计算四边形ABCD的面积.【来源】广东省台山市2016-2017学年七年级第二学期期末测试数学试题【答案】(1)作图见解析;A(0,0),B(4,0),C(3,6),D(-2,4);(2)24. 50.如图所示,在象棋盘上建立平面直角坐标系,使使“马”位于点(2,2),“炮”位于点(﹣1,2),写出“兵”所在位置的坐标.【来源】沪教版七年级下册数学第15章平面直角坐标系单元检测卷【答案】“兵”所在位置的坐标(﹣2,3).试卷第11页,总11页。
平面直角坐标系[1]
平面直角坐标系单元测试题一.选择题1、平行于x 轴的直线上的任意两点的坐标之间的关系是( )A 、横坐标相等B 、纵坐标相等C 、横坐标的绝对值相等D 、纵坐标的绝对值相等2、已知点A(-3,a)是点B(3,-4)关于原点的对称点,那么a 的值的是( )A 、-4B 、4C 、4或-4D 、不能确定3、已知点P 1(-4,3)和P 2(-4,-3),则P 1和P 2( )A 、关于原点对称B 、关于y 轴对称C 、关于x 轴对称D 、不存在对称关系4、已知点P 到x 轴距离为3,到y 轴的距离为2,则P 点坐标一定为A 、(3,2)B 、(2,3)C 、(-3,-2)D 、以上答案都不对5、已知P(0,a)在y 轴的负半轴上,则Q(21,1a a ---+)在( )A 、y 轴的左边,x 轴的上方B 、y 轴的右边,x 轴的上方C 、y 轴的左边,x 轴的下方D 、y 轴的右边,x 轴的下方7 点E (a,b )到x 轴的距离是4,到y 轴距离是3,则有( )A .a=3, b=4B .a =±3,b=±4C .a=4, b=3D .a=±4,b=±38、点P (m +3, m +1)在直角坐标系得x 轴上,则点P 坐标为 ( )A .(0,-2)B .( 2,0)C .( 4,0)D .(0,-4)9 若4,5==b a ,且点M (a ,b )在第三象限,则点M 的坐标是( )A 、(5,4)B 、(-5,C 、(-5,-4)D 、(5,-4)10 已知点A ()2,2-,如果点A 关于x 轴的对称点是B ,点B 关于原点的对称点是C ,那么C 点的坐标是( )A 、()2,2B 、()2,2-C 、()1,1--D 、()2,2--11. 已知三角形的三个顶点坐标分别是(-1,4)、(1,1)、(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是( )A 、(-2,2),(3,4),(1,7) B 、(-2,2),(4,3),(1,7)C 、(2,2),(3,4),(1,7)D 、(2,-2),(3,3),(1,7)14、在平面直角坐标系中,点(-1,m 2+1)一定在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限15、点P (m+3,m+1)在x 轴上,则点p 坐标为( )A (0,-4)B (4,0)C (0,-2)D (2,0)16、过A (4,-2)和B (-2,-2)两点的直线一定( )A 、垂直于x 轴B 、与y 轴相交但不平行于x 轴C 、平行于x 轴D 、与x 轴、y 轴平行17、若点P (x,y )的坐标满足xy=0(x ≠y),则点P 在 ( )A .原点上B .x 轴上C .y 轴上D .x 轴上或y 轴上18、点P 位于x 轴下方,y 轴左侧,距离x 轴4个单位长度,距离y 轴2个单位长度,那么点P 的坐标是 ( )A .(4,2)B .(-2,-4)C .(-4,-2)D .(2,4)21、将某图形的横坐标都减去2,纵坐标不变,则该图形 ( )A .向右平移2个单位B .向左平移2 个单位C .向上平移2 个单位D .向下平移2 个单位22、如果点P 在第二象限内,点P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为( )A.(-4,3)B.(-4,-3)C.(-3,4)D.(-3,-4)23、点M (2,-3)关于y 轴的对称点N 的坐标是( )A.(-2,-3)B.(-2, 3)C.(2, 3)D.(-3,2)24、已知点P (3,-2)与点Q 关于x 轴对称,则Q 点的坐标为( )A .(-3,2) B.(-3,-2) C.(3,2) D.(3,-2)25、已知△ABC 在平面直角坐标系中的位置如图所示,将△ABC 先向下平移5个单位,再向左平移2个单位,则平移后C 点的坐标是( )A .(5,-2)B .(1,-2)C .(2,-1)D .(2,-2) 26、如图,在平面直角坐标系中,以O (0,0),A (1,1),B (3,0构造平行四边形,下列各点中不能..作为平行四边形顶点坐标的是(A .(-3,1) B .(4,1)C .(-2,1)D .(2,-1)27、在平面直角坐标系中,点()1,12+-m 一定在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限28、如果点A (a.b )在第三象限,则点B (-a+1,3b -5)关于原点的对称点是( ) A 第一象限 B 第二象限 C 第三象限 D 第四象限30、若4,5==b a ,且点M (a ,b )在第二象限,则点M 的坐标是( )A 、(5,4)B 、(-5,4)C 、(-5,-4)D 、(5,-4)31、△DEF (三角形)是由△ABC 平移得到的,点A (-1,-4)的对应点为D (1,-1),则点B (1,1)的对应点E 、点C (-1,4)的对应点F 的坐标分别为( )A 、(2,2),(3,4)B 、(3,4),(1,7)C 、(-2,2),(1,7)D 、(3,4),(2,-2)31、过A (4,-2)和B (-2,-2)两点的直线一定( )A .垂直于x 轴B .与Y 轴相交但不平于x 轴B . 平行于x 轴 D .与x 轴、y 轴平行32、已知点A ()b a 2,3在x 轴上方,y 轴的左边,则点A 到x 轴、y 轴的距离分别为( )A 、b a 2,3- B 、b a 2,3- C 、a b 3,2- D 、a b 3,2-33、如图 所示的象棋盘上,若○帅位于点(1,-2)上,○相位于点(3,-2)上, 则○炮位于点( )A (-1,1) B (-1,2) C (-2,1) D (-2,2)34 长方形在平面直角坐标系中三个顶点的坐标为(– 1,– 1)(– 1、2)、(3,– 1),则第四个顶点的坐标为( )A .(2,2)B .(3,2)C .(3,3)D .(2,3)35、若x 轴上的点P 到y 轴的距离为3,则点P 的坐标为( )A .(3,0)B .(3,0)或(–3,0)C .(0,3)D .(0,3)或(0,–3)36、在直角坐标系内顺次连结下列各点,不能得到正方形的是( )A 、(-2,2) (2,2) (2,-2) (-2,-2) (-2,2);B 、(0,0) (2,0) (2,2) (0,2) (0,0);C 、(0,0) (0,2) (2,-2) (-2,0) (0,0);D 、(-1,-1) (-1,1) (1,1) (1,-1) (-1,-1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级《平面直角坐标系》单元测试题姓名 ________ 班别 ________ 成绩 _______一、细心选一选(3/×10=30/)1、课间操时,小华、小军、小刚的位置如图,小华对小刚说:“如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()”A、(5,4)B、(4,5)C、(3,4)D、(4,3)m +1)一定在( )2、在平面直角坐标系中,点(-1,2A、第一象限B、第二象限C、第三象限D、第四象限3、如果点A(a,b)在第三象限,则点B(-a+1,3b-5)关于原点的对称点是( )A、第一象限B、第二象限C、第三象限D、第四象限4、过A(4,-2)和B(-2,-2)两点的直线一定()A、垂直于x轴B、与y轴相交但不平于x轴C、平行于x轴D、与x轴、y轴平行炮位于点()5、如图所示的象棋盘上,若○帅位于点(1,-2)上,○相位于点(3,-2)上,则○A、(-1,1)B、(-1,2)C、(-2,1)D、(-2,2)6、已知三角形的三个顶点坐标分别是(-1,4)、(1,1)、(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A、(-2,2),(3,4),(1,7)B、(-2,2),(4,3),(1,7)C、(2,2),(3,4),(1,7)D、(2,-2),(3,3),(1,7)7、在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比()A、向右平移了3个单位B、向左平移了3个单位C、向上平移了3个单位D、向下平移了3个单位8、三角形A’B’C’是由三角形ABC平移得到的,点A(-1,-4)的对应点为A’(1,-1),则点B(1,1)的对应点B’、点C(-1,4)的对应点C’的坐标分别为()A、(2,2)(3,4)B、(3,4)(1,7)C、(-2,2)(1,7)D、(3,4)(2,-2)9、一个长方形在平面直角坐标系中三个顶点的坐标为(– 1,– 1)、(– 1,2)、(3,– 1),则第四个顶点的坐标为()A、(2,2)B、(3,2)C、(3,3)D、(2,3)10、如图,下列说法正确的是()A、A与D的横坐标相同B、 C 与D的横坐标相同C、B与C的纵坐标相同D、 B 与D的纵坐标相同二、精心填一填(3/×10=30/)11、如图2是小刚画的一张脸,他对妹妹说;“如果我用(1,3)表示左眼,用(3,3)表示右眼,那么嘴的位置可以表示成”12、如果用(7,8)表示七年级八班,那么八年级七班可表示成 .13、已知点P在第二象限,且横坐标与纵坐标的和为1,试写出一个符合条件的点P ;点K在第三象限,且横坐标与纵坐标的积为8,写出两个符合条件的点 .14、点P到x轴的距离是2,到y轴的距离是3,且在y轴的左侧,则P点的坐标是 .15、在平面直角坐标系内,把点P(-5,-2)先向左平移2个单位长度,再向上平移4个单位长度后得到的点的坐标是 .16、将点P(-3,y)向下平移3个单位,向左平移2个单位后得到点Q(x,-1),则xy=___________.17、已知AB∥x轴,A点的坐标为(3,2),并且AB=5,则B的坐标为 .18、已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是________________.19、如果p(a+b,ab)在第二象限,那么点Q (a,-b) 在第象限.20、已知线段 MN=4,MN∥y轴,若点M坐标为(-1,2),则N点坐标为 .三、耐心做一做(60/)21、(8/)如图,这是某市部分简图,请建立适当的平面直角坐标系,分别写出各地的坐标.22、(7/)如图,描出A (– 3,– 2)、 B (2,– 2)、C (– 2,1)、D (3,1) 四个点,线段AB 、CD 有什么关系 顺次连接A 、B 、C 、D 四点组成的图形 是什么图形23、(8/)建立两个适当的平面直角坐标系,分别表示边长为8的正方形的顶点的坐标.24、(8/)如图,(1)请写出在直角坐标系中的房子的A 、B 、C 、D 、E 、F 、G 的坐标。
(2)小影想把房子向下平移3个单位长度,你能帮他办到吗请作出相应图案,并写出平移后的7个点的坐标.25、(9/)如图,四边形ABCD各个顶点的坐标分别为(-2,8),(-11,6),(-14,0),(0,0).(1)确定这个四边形的面积,你是怎么做的(2)如果把原来ABCD各个顶点纵坐标保持不变,横、纵坐标都增加2,所得的四边形面积又是多少数学试卷答案要点与评分标准说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2.第一、二大题若无特别说明,每题评分只有满分或零分;3.第三大题中各题右端所注分数,表示考生正确做对这一步应得分数;4.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原则上不超过后继部分应得分数的一半; 5.评分时,给分或扣分均以1分为基本单位.一、选择题:(本大题含Ⅰ,Ⅱ两组,每组各6题,满分24分) 1.D ; 2.C ; 3.A ; 4.B ; 5.C ; 6.B . 二、填空题:(本大题共12题,满分48分) 7.3x <; 8.(2)(2)x x -+; 9.2210y y --=;10.1x =-;11 12.2-; 13.21y x =+; 14.30;15.40;16.1:9;17.23; 18.3或5.三、解答题:(本大题共7题,满分78分)19.解:原式13=+-················· (8分)4=.································ (2分) 20.解:去分母,得65(1)(4)(1)x x x x ++=+-. ····················· (3分)整理,得2890x x --=. ······················· (2分)11x ∴=-,29x =. ························· (4分)经检验,11x =-是增根,29x =是原方程的根. ············· (1分) 所以,原方程的根是9x =.21.(1)(图形正确); ························· (3分) (2)解:由已知OC DE ⊥,垂足为点H ,则90CHE ∠=o.1:0.75i =Q ,43CH EH ∴=. ······················ (1分) 在Rt HEC △中,222EH CH EC +=.设4CH k =,3(0)EH k k =>,又5CE =Q ,得222(3)(4)5k k +=,解得1k =.3EH ∴=,4CH =. ········· (3分)7DH DE EH ∴=+=,7OD OA AD r =+=+,4OH OC CH r =+=+.在Rt ODH △中,222OH DH OD +=,222(4)7(7)r r ∴++=+.解得83r =. ····························· (3分) 22.(1)45; ····························· (3分) (2)220; ······························ (4分) (3)(图正确). ··························· (3分) 23.证明:(1)Q 四边形ABCD 是平行四边形,AO CO ∴=. ······· (2分) 又ACE Q △是等边三角形,EO AC ∴⊥,即DB AC ⊥. ········· (2分)∴平行四边形ABCD 是菱形; ····················· (2分)(2)ACE Q △是等边三角形,60AEC ∴∠=o. ············· (1分)EO AC ⊥Q ,1302AEO AEC ∴∠=∠=o . ··············· (1分)2AED EAD ∠=∠Q ,15EAD ∴∠=o .45ADO EAD AED ∴∠=∠+∠=o .· (1分) Q 四边形ABCD 是菱形,290ADC ADO ∴∠=∠=o . ·········· (2分) ∴四边形ABCD 是正方形. ······················ (1分)24.解:(1)Q 二次函数23y x bx =-++的图像经过点(10)A -,,013b ∴=--+,得2b =, ······················ (2分)所求二次函数的解析式为223y x x =-++. ··············· (1分) 则这个二次函数图像顶点B 的坐标为(14),; ··············· (2分) (2)过点B 作BF x ⊥轴,垂足为点F .在Rt BCF △中,4BF =,3CF =,5BC =,4sin 5BCF ∴∠=.在Rt ACE △中,sin AEACE AC∠=,又5AC =, 可得455AE =.4AE ∴=. ······················ (2分) 过点D 作DH x ⊥轴,垂足为点H .由题意知,点H 在点A 的右侧,易证ADH ACE △∽△.AH DH ADAE CE AC∴==. 其中3CE =,4AE =.设点D 的坐标为()x y ,,则1AH x =+,DH y =, ①若点D 在AE 的延长线上,则5AD =. 得15435x y +==,3x ∴=,3y =,所以点D 的坐标为(33),; ②若点D 在线段AE 上,则3AD =. 得13435x y +==,75x ∴=,95y =,所以点D 的坐标为7955⎛⎫ ⎪⎝⎭,. 综上所述,点D 的坐标为(33),或7955⎛⎫⎪⎝⎭,. ················ (5分) 25.解:(1)取AB 中点H ,联结MH ,M Q 为DE 的中点,MH BE ∴∥,1()2MH BE AD =+. ········ (1分)又AB BE ⊥Q ,MH AB ∴⊥. ···················· (1分)12ABM S AB MH ∴=g △,得12(0)2y x x =+>; ·········· (2分)(1分)(2)由已知得DE = ·················· (1分)Q 以线段AB 为直径的圆与以线段DE 为直径的圆外切,1122MH AB DE ∴=+,即11(4)222x ⎡+=⎣. ······ (2分)解得43x =,即线段BE 的长为43; ··················· (1分)(3)由已知,以A N D ,,为顶点的三角形与BME △相似,又易证得DAM EBM ∠=∠. ····················· (1分) 由此可知,另一对对应角相等有两种情况:①ADN BEM ∠=∠;②ADB BME ∠=∠. ①当ADN BEM ∠=∠时,AD BE Q ∥,ADN DBE ∴∠=∠.DBE BEM ∴∠=∠.DB DE ∴=,易得2BE AD =.得8BE =; ·············· (2分)②当ADB BME ∠=∠时,AD BE Q ∥,ADB DBE ∴∠=∠.DBE BME ∴∠=∠.又BED MEB ∠=∠,BED MEB ∴△∽△.DE BEBE EM ∴=,即2BE EM DE =g ,得2x =解得12x =,210x =-(舍去).即线段BE 的长为2. ··········· (2分) 综上所述,所求线段BE 的长为8或2.。