2013年重庆市中考数学试卷A卷
2013成都中考数学试题及答案
成都市二O 一三年高中阶段教育学校统一招生考试(含成都市初三毕业会考)数 学注意事项:1. 全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。
2. 在作答前,考生务必将自己的姓名,准考证号涂写在试卷和答题卡规定的地方。
考试结束,监考人员将试卷和答题卡一并收回。
3. 选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚。
4. 请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答题均无效。
5. 保持答题卡清洁,不得折叠、污染、破损等。
A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上)1.2的相反数是( )(A)2 (B)-2 (C)21 (D)21-2.如图所示的几何体的俯视图可能是( )3.要使分式15-x 有意义,则x 的取值范围是( )(A )x ≠1 (B )x>1 (C )x<1 (D )x ≠-14.如图,在△ABC 中,∠B=∠C,AB=5,则AC 的长为( )(A )2 (B )3(C )4 (D )55.下列运算正确的是( )(A )31×(-3)=1 (B )5-8=-3(C )32-=6 (D )0)2013(-=06.参加成都市今年初三毕业会考的学生约有13万人,将13万用科学计数法表示应为( )(A )1.3×510 (B )13×410 (C )0.13×510 (D )0.13×6107.如图,将矩形ABCD 沿对角线BD 折叠,使点C 和点'C 重合,若AB=2,则'C D 的长为( )(A )1 (B )2 (C )3(D )48.在平面直角坐标系中,下列函数的图像经过原点的是( )(A )y=-x +3 (B )y=x5(C )y=x 2 (D )y=722-+-x x9.一元二次方程x 2+x-2=0的根的情况是( )(A )有两个不相等的实数根 (B )有两个相等的实数根(C )只有一个实数根 (D )没有实数根10.如图,点A ,B ,C 在⊙O 上,∠A=50°,则∠BOC 的度数为( )(A )40° (B )50° (C )80°(D )100°二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.不等式312>-x 的解集为_______________.12.今年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾,某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是__________元.13.如图,∠B=30°,若AB ∥CD ,CB 平分∠ACD,则∠ACD=__________度.14.如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC 的长为__________米.三.解答题(本大题共6个小题,共54分)15.(本小题满分12分,每题6分)(1)计算1260sin 2|3|)2(2-+-+- (2)解方程组⎩⎨⎧=-=+521y x y x16.(本小题满分6分)化简112)(22-+-÷-a a a a a17.(本小题满分8分)如图, 在边长为1的小正方形组成的方格纸上,将△ABC 绕着点A 顺时针旋转90°(1)画出旋转之后的△''C AB(2)求线段AC 旋转过程中扫过的扇形的面积18.(本小题满分8分)“中国梦”关乎每个人的幸福生活, 为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品. 现将参赛的50件作品的成绩(单位:分)进行统计如下:等级 成绩(用s 表示) 频数频率 A 90≤s ≤100 x0.08B 80≤s <9035 y C s <8011 0.22 合 计501请根据上表提供的信息,解答下列问题:(1)表中的x 的值为_______,y 的值为________(2)将本次参赛作品获得A 等级的学生一次用1A ,2A ,3A ,…表示,现该校决定从本次参赛作品中获得A 等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生1A 和2A 的概率.19.(本小题满分10分)如图,一次函数11y x =+的图像与反比例函数2ky x=(k 为常数,且0≠k )的图像都经过点)2,(m A(1)求点A 的坐标及反比例函数的表达式;(2)结合图像直接比较:当0>x 时,1y 和2y 的大小. 20.(本小题满分10分) 如图,点B 在线段AC 上,点D ,E 在AC 同侧,90A C ∠=∠=,BD BE ⊥,AD BC =.(1)求证:CE AD AC +=;(2)若3AD =,5CE =,点P 为线段AB 上的动点,连接DP ,作DP PQ ⊥,交直线BE 与点Q ;i )当点P 与A ,B 两点不重合时,求DPPQ的值;ii )当点P 从A 点运动到AC 的中点时,求线段DQ 的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21. 已知点(3,5)在直线y ax b =+(,a b 为常数,且0a ≠)上,则5ab -的值为_____.22. 若正整数n 使得在计算(1)(2)n n n ++++的过程中,各数位均不产生进位现象,则称n 为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为_______.23. 若关于t 的不等式组0214t a t -≥⎧⎨+≤⎩,恰有三个整数解,则关于x 的一次函数14y x a =-的图像与反比例函数32a y x+=的图像的公共点的个数为_________.24. 在平面直角坐标系xOy 中,直线y kx =(k 为常数)与抛物线2123y x =-交于A ,B 两点,且A 点在y 轴左侧,P 点的坐标为(0,4)-,连接,PA PB .有以下说法:○12PO PA PB =⋅;○2当0k >时,()()PA AO PB BO +-的值随k 的增大而增大;○3当33k =-时,2BP BO BA =⋅;○4PAB ∆面积的最小值为46.其中正确的是_______.(写出所有正确说法的序号)25. 如图,A B C ,,,为⊙O 上相邻的三个n 等分点,AB BC =,点E 在弧BC 上,EF 为⊙O 的直径,将⊙O 沿EF 折叠,使点A 与'A 重合,连接'EB ,EC ,'EA .设'EB b =,EC c =,'EA p =.先探究,,b c p 三者的数量关系:发现当3n =时, p b c =+.请继续探究,,b c p 三者的数量关系:当4n =时,p =_______;当12n =时,p =_______.(参考数据:62sin15cos 754-==,62cos15sin 754+==)二、解答题(本小题共三个小题,共30分.答案写在答题卡上)26.(本小题满分8分)某物体从P 点运动到Q 点所用时间为7秒,其运动速度v (米每秒)关于时间t (秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB 的面积.由物理学知识还可知:该物体前n (37n <≤)秒运动的路程在数值上等于矩形AODB 的面积与梯形BDNM 的面积之和.根据以上信息,完成下列问题:(1)当37n <≤时,用含t 的式子表示v ;(2)分别求该物体在03t ≤≤和37n <≤时,运动的路程s (米)关于时间t (秒)的函数关系式;并求该物体从P 点运动到Q 总路程的710时所用的时间.27.(本小题满分10分)如图,⊙O 的半径25r =,四边形ABCD 内接圆⊙O ,AC BD ⊥于点H ,P 为CA 延长线上的一点,且PDA ABD ∠=∠.(1)试判断PD 与⊙O 的位置关系,并说明理由:(2)若3tan 4ADB ∠=,4333PA AH -=,求BD 的长;(3)在(2)的条件下,求四边形ABCD 的面积.28.(本小题满分12分)在平面直角坐标系中,已知抛物线212y x bx c =-++(,b c 为常数)的顶点为P ,等腰直角三角形ABC 的定点A 的坐标为(0,1)-,C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若该抛物线过 A ,B 两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P 在直线AC 上滑动,且与AC 交于另一点Q .i )若点M 在直线AC 下方,且为平移前(1)中的抛物线上的点,当以M P Q、、三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M 的坐标;ii )取BC 的中点N ,连接,NP BQ .试探究PQNP BQ+是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.成都市二O 一三年高中阶段教育学校统一招生考试数学答案A 卷1~5:BCADB 6~10: ABCAD11、 x >2 12、10 13、60° 14、10015.(1)4; (2)⎩⎨⎧-==12y x 16. a17.(1)略 (2)π18.(1)4, 0.7 (2)树状图(或列表)略,P=61122=19.(1)A(1,2) ,xy 2=(2)当0<x<1时,21y y <;当x=1时,21y y =;当x>1时,21y y >;20.(1)证△ABD ≌△CEB →AB=CE ; (2)如图,过Q 作QH ⊥BC 于点H ,则△AD P ∽△HPQ ,△BHQ ∽△BCE ,∴QH AP PH AD =, ECQHBC BH =;设AP=x ,QH=y ,则有53yBH =∴BH=53y ,PH=53y+5x - ∴yxx y=-+5533,即0)53)(5(=--x y x又∵P 不与A 、B 重合,∴ ,5≠x 即05≠-x ,∴053=-x y 即xy 53=∴53==y x PQ DP(3)3342B 卷21.31-22.11723.3 24.③④25.c b ±2,c b 21322-+或c b --22626. (1)42-=t v ;(2)S=⎩⎨⎧≤<-≤≤)73(42)30(22t t t t t , 6秒27.(1)如图,连接DO 并延长交圆于点E ,连接AE ∵DE 是直径,∴∠DAE=90°,∴∠E +∠ADE=90°∵∠PDA =∠ADB =∠E∴∠PDA +∠ADE=90°即PD ⊥DO∴PD 与圆O 相切于点D(2) ∵tan ∠ADB=43∴可设AH=3k,则DH=4k∵PA AH =∴PA=k )334(-∴PH=k34∴∠P=30°,∠PDH=60°∴∠BDE=30° 连接BE ,则∠DBE=90°,DE=2r=50∴BD=D E ·cos30°=325(3)由(2)知,BH=325-4k ,∴HC=34(325-4k)又∵PCPA PD ⨯=2∴)]4325(3434[)334()8(2k k k k -+⨯-=解得k=334-∴AC=7324)4325(343+=-+k k∴S=23175900)7324(3252121+=+⨯⨯=•AC BD28.(1)12212-+-=x x y(2)M 的坐标是(1-5,-5-2)、(1+5,5-2)、(4,-1)、(2,-3)、(-2,-7)(3)PQNP BQ+的最大值是510。
2013重庆巴蜀中学中考数学一模试卷答案详解
2013年重庆市巴蜀中学中考数学一模试卷一、选择题(共10小题,每小题4分,满分40分)+2.(4分)计算的结果是()3.(4分)不等式组的解集是()周长为()B C D度为15km/h ,水流速度为5km/h .轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t (h ),航行的路程为s (km ), B .E 点,H 为BC 中点,连接AH 交BD 于G 点,交EC 的延长线于F 点,下列5个结论:①EH=AB ;②∠ABG=∠HEC ;③△ABG ≌△HEC ;④S △GAD =S 四边形GHCE ;⑤CF=BD .正确的有( )个.二、填空题(共6小题,每小题5分,满分30分) 11.(5分)(2010•广州)“激情盛会,和谐亚洲”第16届亚运会将于2010年11月在广州举行,广州亚运城的建筑面积约是358 000平方米,将358 000用科学记数法表示为 ________ 12.(5分)重庆市4月28日出现了61年来的同期最高温,之后连续五天的日最高气温分别为34、35、29、27、30(单位:℃),则这组数据的中位数是 ___________ 13.(5分)如图,在△ABC 中,DE ∥BC ,△ADE 与△ABC 的面积之比为9:16,则DE :BC= _____ .14.(5分)(2010•成都)若一个圆锥的侧面积是18π,侧面展开图是半圆,则该圆锥的底面圆半径是______.15.(5分)(2010•重庆)在一个不透明的盒子里装有5个分别写有数字﹣2,﹣1,0,1,2的小球,它们除数字不同外其余全部相同.现从盒子里随机取出一个小球,将该小球上的数字作为点P的横坐标,将该数的平方作为点P的纵坐标,则点P落在抛物线y=﹣x2+2x+5与x轴所围成的区域内(不含边界)的概率是.16.(5分)某果蔬饮料由果汁、疏菜汁和纯净水按一定质量比配制而成,纯净水、果汁、蔬菜汁的价格比为1:2:2,因市场原因,果汁、蔬菜汁的价格涨了15%,而纯净水的价格降了20%,但并没有影响该饮料的成本(只考虑购买费用),那么该种饮料中果汁与蔬菜汁的质量和与纯净水的质量之比为_______.三、解答题(共10小题,满分80分)17.(6分)计算:.18.(6分)解方程:3x(x﹣1)=2x﹣2.19.(6分)(2008•衡阳)如图,点C、E、B、F在同一直线上,AC∥DF,AC=DF,BC=EF.求证:AB=DE.20.(6分)某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵黄桷树.如图,要求黄桷树的位置点P到边AB、BC的距离相等,并且点P到点A、D 的距离也相等.请用尺规作图作出栽种黄桷树的位置点P(不写作法,保留作图痕迹).21.(10分)先化简,再求值:,其中x满足x2+7x=0.22.如图,一次函数y=﹣x﹣1与反比例函数交于第二象限点A.一次函数y=﹣x﹣1与坐标轴分别交于B、C两点,连接AO,若.(1)求反比例函数的解析式;(2)求△AOC的面积.23.(10分)我市为了解九年级学生身体素质测试情况,随机抽取了本市九年级部分学生的身体素质测试成绩为样本,按A(优秀)、B(良好)、C(合格)、D(不合格)四个等级进(2)扇形统计图中“A”部分所对应的圆心角的度数是_____;(3)若我市九年级共有50000名学生参加了身体素质测试,试估计测试成绩合格以上(含合格)的人数为______人;(4)若甲校体育教师中有3名男教师和2名女教师,乙校体育教师中有2名男教师和2名女教师,从甲乙两所学校的体育教师中各抽取1名体育教师去测试学生的身体素质,用树状图或列表法求刚好抽到的体育教师是1男1女的概率.24.(12分)已知梯形ABCD中,AD∥BC,AB=BC=DC,点E、F分别在AD、AB上,且.(1)求证:BF=EF﹣ED;(2)连接AC,若∠B=80°,∠DEC=70°,求∠ACF的度数.25.(12分)我市“上品”房地产开发公司于2010年5月份完工一商品房小区,6月初开始销售,其中6月的销售单价为0.7万元/m2,7月的销售单价为0.72万元/m2,且每月销售价格y1(单位:万元/m2)与月份x(6≤x≤11,x为整数)之间满足一次函数关系:每月的销售面积为y2(单位:m2),其中y2=﹣2000x+26000(6≤x≤11,x为整数).(1)求y1与月份x的函数关系式;(2)6~11月中,哪一个月的销售额最高?最高销售额为多少万元?(3)2010年11月时,因会受到即将实行的“国八条”和房产税政策的影响,该公司销售部预计12月份的销售面积会在11月销售面积基础上减少20a%,于是决定将12月份的销售价格在11月的基础上增加a%,该计划顺利完成.为了尽快收回资金,2011年1月公司进行降价促销,该月销售额为(1500+600a)万元.这样12月、1月的销售额共为4618.4万元,请根据以上条件求出a的值为多少?26.(12分)如图(1),将Rt△AOB放置在平面直角坐标系xOy中,∠A=90°,∠AOB=60°,OB=,斜边OB在x轴的正半轴上,点A在第一象限,∠AOB的平分线OC交AB于C.动点P从点B出发沿折线BC﹣CO以每秒1个单位长度的速度向终点O运动,运动时间为t 秒,同时动点Q从点C出发沿折线CO﹣Oy以相同的速度运动,当点P到达点O时P、Q 同时停止运动.(1)OC、BC的长;(2)设△CPQ的面积为S,求S与t的函数关系式;(3)当P在OC上、Q在y轴上运动时,如图(2),设PQ与OA交于点M,当t为何值时,△OPM为等腰三角形?求出所有满足条件的t值.2013年重庆市巴蜀中学中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)2.(4分)计算的结果是()=﹣3.(4分)不等式组的解集是()4.(4分)如图,在平行四边形ABCD中,AC平分∠DAB,AB=2,则平行四边形ABCD的周长为()6.(4分)在Rt△ABC中,∠C=90°,AC=6cm,则以A为圆心6cm为半径的圆与直线BC的7.(4分)(2007•温州)如图所示几何体的主视图是()B8.(4分)按如下规律摆放三角形,则图(5)的三角形个数为()9.(4分)(2010•河北)一艘轮船在同一航线上往返于甲、乙两地.已知轮船在静水中的速度为15km/h,水流速度为5km/h.轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t(h),航行的路程为s(km),...10.(4分)如图,矩形ABCD中,BC=2AB,对角线相交于O,过C点作CE⊥BD交BD于E点,H为BC中点,连接AH交BD于G点,交EC的延长线于F点,下列5个结论:①EH=AB;②∠ABG=∠HEC;③△ABG≌△HEC;④S△GAD=S四边形GHCE;⑤CF=BD.正确的有()个.∴二、填空题(共6小题,每小题5分,满分30分)11.(5分)(2010•广州)“激情盛会,和谐亚洲”第16届亚运会将于2010年11月在广州举行,广州亚运城的建筑面积约是358 000平方米,将358 000用科学记数法表示为3.58×105.12.(5分)重庆市4月28日出现了61年来的同期最高温,之后连续五天的日最高气温分别为34、35、29、27、30(单位:℃),则这组数据的中位数是30.13.(5分)如图,在△ABC中,DE∥BC,△ADE与△ABC的面积之比为9:16,则DE:BC= 3:4.∴,14.(5分)(2010•成都)若一个圆锥的侧面积是18π,侧面展开图是半圆,则该圆锥的底面圆半径是3.15.(5分)(2010•重庆)在一个不透明的盒子里装有5个分别写有数字﹣2,﹣1,0,1,2的小球,它们除数字不同外其余全部相同.现从盒子里随机取出一个小球,将该小球上的数字作为点P的横坐标,将该数的平方作为点P的纵坐标,则点P落在抛物线y=﹣x2+2x+5与x轴所围成的区域内(不含边界)的概率是.轴所围成的区域内(不含边界)的概率是16.(5分)某果蔬饮料由果汁、疏菜汁和纯净水按一定质量比配制而成,纯净水、果汁、蔬菜汁的价格比为1:2:2,因市场原因,果汁、蔬菜汁的价格涨了15%,而纯净水的价格降了20%,但并没有影响该饮料的成本(只考虑购买费用),那么该种饮料中果汁与蔬菜汁的质量和与纯净水的质量之比为2:3.三、解答题(共10小题,满分80分)17.(6分)计算:.﹣﹣故答案为:18.(6分)解方程:3x(x﹣1)=2x﹣2.=19.(6分)(2008•衡阳)如图,点C、E、B、F在同一直线上,AC∥DF,AC=DF,BC=EF.求证:AB=DE.中20.(6分)某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵黄桷树.如图,要求黄桷树的位置点P到边AB、BC的距离相等,并且点P到点A、D 的距离也相等.请用尺规作图作出栽种黄桷树的位置点P(不写作法,保留作图痕迹).为圆心,以大于为圆心,以大于21.(10分)先化简,再求值:,其中x满足x2+7x=0.=÷=×==22.如图,一次函数y=﹣x﹣1与反比例函数交于第二象限点A.一次函数y=﹣x﹣1与坐标轴分别交于B、C两点,连接AO,若.(1)求反比例函数的解析式;(2)求△AOC的面积.,a=b=,代入反比例函数解析式中,有=;,﹣)轴的距离为OB+OB;23.(10分)我市为了解九年级学生身体素质测试情况,随机抽取了本市九年级部分学生的身体素质测试成绩为样本,按A(优秀)、B(良好)、C(合格)、D(不合格)四个等级进(2)扇形统计图中“A”部分所对应的圆心角的度数是72°;(3)若我市九年级共有50000名学生参加了身体素质测试,试估计测试成绩合格以上(含合格)的人数为44000人;(4)若甲校体育教师中有3名男教师和2名女教师,乙校体育教师中有2名男教师和2名女教师,从甲乙两所学校的体育教师中各抽取1名体育教师去测试学生的身体素质,用树状图或列表法求刚好抽到的体育教师是1男1女的概率.24.(12分)已知梯形ABCD中,AD∥BC,AB=BC=DC,点E、F分别在AD、AB上,且.(1)求证:BF=EF﹣ED;(2)连接AC,若∠B=80°,∠DEC=70°,求∠ACF的度数.25.(12分)我市“上品”房地产开发公司于2010年5月份完工一商品房小区,6月初开始销售,其中6月的销售单价为0.7万元/m2,7月的销售单价为0.72万元/m2,且每月销售价格y1(单位:万元/m2)与月份x(6≤x≤11,x为整数)之间满足一次函数关系:每月的销售面积为y2(单位:m2),其中y2=﹣2000x+26000(6≤x≤11,x为整数).(1)求y1与月份x的函数关系式;(2)6~11月中,哪一个月的销售额最高?最高销售额为多少万元?(3)2010年11月时,因会受到即将实行的“国八条”和房产税政策的影响,该公司销售部预计12月份的销售面积会在11月销售面积基础上减少20a%,于是决定将12月份的销售价格在11月的基础上增加a%,该计划顺利完成.为了尽快收回资金,2011年1月公司进行降价促销,该月销售额为(1500+600a)万元.这样12月、1月的销售额共为4618.4万元,请根据以上条件求出a的值为多少?.﹣﹣,解得:26.(12分)如图(1),将Rt△AOB放置在平面直角坐标系xOy中,∠A=90°,∠AOB=60°,OB=,斜边OB在x轴的正半轴上,点A在第一象限,∠AOB的平分线OC交AB于C.动点P从点B出发沿折线BC﹣CO以每秒1个单位长度的速度向终点O运动,运动时间为t 秒,同时动点Q从点C出发沿折线CO﹣Oy以相同的速度运动,当点P到达点O时P、Q 同时停止运动.(1)OC、BC的长;(2)设△CPQ的面积为S,求S与t的函数关系式;(3)当P在OC上、Q在y轴上运动时,如图(2),设PQ与OA交于点M,当t为何值时,△OPM为等腰三角形?求出所有满足条件的t值.∴时,,时,;∴∴,解得综上,当。
(完整版)2018年重庆市中考数学试卷(a卷)
2018年重庆市中考数学试卷(A卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面。
都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.(4.00分)2的相反数是( )A.﹣2B.﹣C.D.22.(4.00分)下列图形中一定是轴对称图形的是( )A.直角三角形B.四边形C.平行四边形D.矩形3.(4.00分)为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是( )A.企业男员工B.企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工4.(4.00分)把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个角形第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )A.12B.14C.16D.185.(4.00分)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为( )A.3cm B.4cm C.4.5cm D.5cm6.(4.00分)下列命题正确的是( )A.平行四边形的对角线互相垂直平分B.矩形的对角线互相垂直平分C.菱形的对角线互相平分且相等D.正方形的对角线互相垂直平分7.(4.00分)估计(2﹣)•的值应在( )A.1和2之间B.2和3之间C.3和4之间D.4和5之间8.(4.00分)按如图所示的运算程序,能使输出的结果为12的是( )A.x=3,y=3B.x=﹣4,y=﹣2C.x=2,y=4D.x=4,y=29.(4.00分)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O 相切于点D,过点B作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为( )A.4B.10.(4.00分)如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E点处测得旗杆顶端的仰角∠AED=58°,升旗台底部到教学楼底部的距离DE=7米,升旗台坡面CD的坡度i=1:0.75,坡长CD=2米,若旗杆底部到坡面CD的水平距离BC=1米,则旗杆AB的高度约为( )(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.6)A.12.6米B.13.1米C.14.7米D.16.3米11.(4.00分)如图,在平面直角坐标系中,菱形ABCD的顶点A,B在反比例函数y=(k>0,x>0)的图象上,横坐标分别为1,4,对角线BD∥x轴.若菱形ABCD 的面积为,则k的值为( )A.B.C.4D.512.(4.00分)若数a使关于x 的不等式组有且只有四个整数解,且使关于y 的方程=2的解为非负数,则符合条件的所有整数a的和为( )A.﹣3B.﹣2C.1D.2n 二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的的横线上。
重庆市2013年中考数学试卷(解析版)
∴反比例函数解析式为 y= ,
将 A(2,m)代入 y= 中,得 m=5,∴A(2,5),
∴三角形的相似比是 3:1,
∴△ABC 与△DEF 的面积之比为 9:1.
故答案为:9:1.
-5-
13.(2013 重庆)重庆农村医疗保险已经全面实施.某县七个村中享受了住院医疗费用报
销的人数分别为:20,24,27,28,31,34,38,则这组数据的中位数是
.
考点:中位数。
解答:解:把这一组数据从小到大依次排列为 20,24,27,28,31,34,38,
科学记数法表示为
.
考点:科学记数法—表示较大的数。
解答:解:380 000=3.8×105.
故答案为:3.8×105.
12.(2013 重庆)已知△ABC∽△DEF,△ABC 的周长为 3,△DEF 的周长为 1,则 ABC
与△DEF 的面积之比为
.
考点:相似三角形的性质。
解答:解:∵△ABC∽△DEF,△ABC 的周长为 3,△DEF 的周长为 1,
-7-
即:∠EAD=∠BAC,
在△EAD 和△BAC 中 ∴BC=ED.
19.(2013 重庆)解方程: 2 1 . x 1 x 2
考点:解分式方程。 解答:解:方程两边都乘以(x-1)(x-2)得, 2(x-2)=x-1, 2x-4=x-1, x=3, 经检验,x=3 是原方程的解, 所以,原分式方程的解是 x=3. 20.(2013 重庆)如图,在 Rt△ABC 中,∠BAC=90°,点 D 在 BC 边上,且△ABD 是等 边三角形.若 AB=2,求△ABC 的周长.(结果保留根号)
10.(2013 重庆)已知二次函数 y ax 2 bx c(a 0) 的图象如图所示对称轴为 x 1 .下列结论中,正确的是( ) 2
2018年重庆市中考数学试卷(a卷)(答案+解析)
2018年重庆市中考数学试卷(a 卷)(答案+解析)2018年重庆市中考数学试卷(A 卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面。
都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.(4分)2的相反数是( )A .﹣2B .﹣12C .12D .22.(4分)下列图形中一定是轴对称图形的是( )A .B .C .D .直角三角形四边形平行四边形矩形3.(4分)为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是( ) A .企业男员工B .企业年满50岁及以上的员工C .用企业人员名册,随机抽取三分之一的员工D .企业新进员工4.(4分)把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )A .12B .14C .16D .185.(4分)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm ,6cm 和9cm ,另一个三角形的最短边长为2.5cm ,则它的最长边为( ) A .3cmB .4cmC .4.5cmD .5cm6.(4分)下列命题正确的是( ) A .平行四边形的对角线互相垂直平分 B .矩形的对角线互相垂直平分 C .菱形的对角线互相平分且相等D .正方形的对角线互相垂直平分7.(4分)估计(2√30﹣√24)•√16的值应在( ) A .1和2之间B .2和3之间C .3和4之间D .4和5之间8.(4分)按如图所示的运算程序,能使输出的结果为12的是( )A .x =3,y =3B .x =﹣4,y =﹣2C .x =2,y =4D .x =4,y =29.(4分)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4 B.2√3C.3 D.2.510.(4分)如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E点处测得旗杆顶端的仰角∠AED=58°,升旗台底部到教学楼底部的距离DE=7米,升旗台坡面CD的坡度i=1:0.75,坡长CD=2米,若旗杆底部到坡面CD的水平距离BC=1米,则旗杆AB的高度约为()(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.6)A.12.6米B.13.1米C.14.7米D.16.3米11.(4分)如图,在平面直角坐标系中,菱形ABCD的顶点A,B在反比例函数y=kx(k>0,x>0)的图象上,横坐标分别为1,4,对角线BD∥x轴.若菱形ABCD的面积为452,则k的值为()A.54B.154C.4 D.512.(4分)若数a使关于x的不等式组{x−12<1+x35x−2≥x+a有且只有四个整数解,且使关于y的方程y+ay−1+2a1−y=2的解为非负数,则符合条件的所有整数a的和为()A.﹣3 B.﹣2 C.1 D.2二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的的横线上。
2016年重庆市中考数学试卷及解析(A卷)
A. B. C. D.
【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.
【解答】解:A、不是轴对称图形,不符合题意;
B、不是轴对称图形,不符合题意;
C、不是轴对称图形,不符合题意;
11.某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为36°,然后沿在同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)()
重庆市2016年中考数学试卷(A卷)(word版含解析)
一、选择题(本题共12个小题,每小题4分,共48分)
1.在实数﹣2,2,0,﹣1中,最小的数是()
A.﹣2B.2C.0D.﹣1
【分析】找出实数中最小的数即可.
【解答】解:在实数﹣பைடு நூலகம்,2,0,﹣1中,最小的数是﹣2,
故选A
【点评】此题考查了实数大小比较,熟练掌握两个负数比较大小的方法是解本题的关键.
D、是轴对称图形,对称轴有两条,符合题意.
故选:D.
【点评】此题主要考查了轴对称图形,确定轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.
3.计算a3a2正确的是()
A.aB.a5C.a6D.a9
【分析】根据同底数幂相乘,底数不变,指数相加计算后直接选取答案.
【解答】解:a3a2=a3+2=a5.
【解答】解:通过观察,得到小圆圈的个数分别是:
历年重庆市初三数学中考真题试题
2021年重庆市中考数学试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)下列各数中,比﹣1小的数是()A.2 B.1 C.0 D.﹣22.(4分)如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.3.(4分)如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A.2 B.3 C.4 D.54.(4分)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,BC与⊙O交于点D,连结OD.若∠C=50°,则∠AOD的度数为()A.40°B.50°C.80°D.100°5.(4分)下列命题正确的是()A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形6.(4分)估计(2+6)×的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.(4分)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则可建立方程组为()A.B.C.D.8.(4分)按如图所示的运算程序,能使输出y值为1的是()A.m=1,n=1 B.m=1,n=0 C.m=1,n=2 D.m=2,n=1 9.(4分)如图,在平面直角坐标系中,矩形ABCD的顶点A,D分别在x轴、y轴上,对角线BD∥x轴,反比例函数y=(k>0,x>0)的图象经过矩形对角线的交点E.若点A (2,0),D(0,4),则k的值为()A.16 B.20 C.32 D.4010.(4分)为践行“绿水青山就是某某银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i=1:2.4的山坡AB上发现有一棵古树CD.测得古树底端C到山脚点A的距离AC=26米,在距山脚点A水平距离6米的点E处,测得古树顶端D的仰角∠AED=48°(古树CD与山坡AB的剖面、点E在同一平面上,古树CD与直线AE垂直),则古树CD的高度约为()(参考数据:sin48°≈0.73,cos48°≈0.67,tan48°≈1.11)A.17.0米B.21.9米C.23.3米D.33.3米11.(4分)若关于x的一元一次不等式组的解集是x≤a,且关于y的分式方程﹣=1有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.612.(4分)如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC沿BD翻折,得到△BDC',DC′与AB交于点E,连结AC',若AD=AC′=2,BD=3,则点D到BC′的距离为()A.B.C.D.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算:(π﹣3)0+()﹣1=.14.(4分)今年五一节期间,重庆市旅游持续火爆,全市共接待境内外游客超过25600000人次,请把数25600000用科学记数法表示为.15.(4分)一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为.16.(4分)如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)17.(4分)某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的首基落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己首基落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把首基给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示(乙给甲首基的时间忽略不计).则乙回到公司时,甲距公司的路程是米.18.(4分)在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收入.经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(10分)计算:(1)(x+y)2﹣y(2x+y)(2)(a+)÷20.(10分)如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC 于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.21.(10分)每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心秩首.今年某校为确保学生安全,开展了“远离溺水•珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82八年级10名学生的竞赛成绩在C组中的数据是:94,90,94七、八年级抽取的学生竞赛成绩统计表年级七年级八年级平均数92 92中位数93 b众数c100方差52 50.4根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共730人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x ≥90)的学生人数是多少?22.(10分)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数﹣“纯数”.定义;对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2021和2021是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.23.(10分)在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质一一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|=.结合上面经历的学习过程,现在来解决下面的问题在函数y=|kx﹣3|+b中,当x=2时,y=﹣4;当x=0时,y=﹣1.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法面出这个函数的图象井写出这个函数的一条性质;(3)已知函y=x﹣3的图象如图所示,结合你所画的函数图象,直接写出不等式|kx﹣3|+b≤x﹣3的解集.24.(10分)某文明小区50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司月底按每平方米2元收取当月物管费,该小区全部住宅都人住且每户均按时全额缴纳物管费.(1)该小区每月可收取物管费90000元,问该小区共有多少套80平方米的住宅?(2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次括动.为提离大家的积扱性,6月份准备把活动一升级为活动二:“拉圾分类抵扣物管费”,同时终止活动一.经调査与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,6月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加2a%,每户物管费将会减少a%;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加6a%,每户物管费将会减少a%.这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少a%,求a的值.25.(10分)如图,在平行四边形ABCD中,点E在边BC上,连结AE,EM⊥AE,垂足为E,交CD于点M,AF⊥BC,垂足为F,BH⊥AE,垂足为H,交AF于点N,点P是AD上一点,连接CP.(1)若DP=2AP=4,CP=,CD=5,求△ACD的面积.(2)若AE=BN,AN=CE,求证:AD=CM+2CE.四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程成或推理步骤,画出必要的图形(包括辅助线),请将解作过程书写在答题卡中对应的位置上.26.(8分)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴交于点A,B(点A在点B的左侧),交y轴于点C,点D为抛物线的顶点,对称轴与x轴交于点E.(1)连结BD,点M是线段BD上一动点(点M不与端点B,D重合),过点M作MN⊥BD,交抛物线于点N(点N在对称轴的右侧),过点N作NH⊥x轴,垂足为H,交BD于点F,点P是线段OC上一动点,当MN取得最大值时,求HF+FP+PC的最小值;(2)在(1)中,当MN取得最大值,HF+FP+PC取得最小值时,把点P向上平移个单位得到点Q,连结AQ,把△AOQ绕点O顺时针旋转一定的角度α(0°<α<360°),得到△A′OQ′,其中边A′Q′交坐标轴于点G.在旋转过程中,是否存在一点G,使得∠Q'=∠Q'OG?若存在,请直接写出所有满足条件的点Q′的坐标;若不存在,请说明理由.2021年重庆市中考数学试卷(A卷)参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)下列各数中,比﹣1小的数是()A.2 B.1 C.0 D.﹣2【分析】根据两个负数比较大小,绝对值大的负数反而小,可得答案.【解答】解:∵﹣2<﹣1<0<2,∴比﹣1小的数是﹣2,故选:D.【点评】本题考查了有理数的大小比较,注意:正数都大于0,负数都小于0,两个负数比较大小,其绝对值大的反而小.2.(4分)如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有2个正方形,第二层左边有一个正方形,如图所示:.故选:A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(4分)如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A.2 B.3 C.4 D.5【分析】直接利用相似三角形的性质得出对应边之间的关系进而得出答案.【解答】解:∵△ABO∽△CDO,∴=,∵BO=6,DO=3,CD=2,∴=,解得:AB=4.故选:C.【点评】此题主要考查了相似三角形的性质,正确得出对应边之间关系是解题关键.4.(4分)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,BC与⊙O交于点D,连结OD.若∠C=50°,则∠AOD的度数为()A.40°B.50°C.80°D.100°【分析】由切线的性质得出∠BAC=90°,求出∠ABC=40°,由等腰三角形的性质得出∠ODB=∠ABC=40°,再由三角形的外角性质即可得出结果.【解答】解:∵AC是⊙O的切线,∴AB⊥AC,∴∠BAC=90°,∵∠C=50°,∴∠ABC=40°,∵OD=OB,∴∠ODB=∠ABC=40°,∴∠AOD=∠ODB+∠ABC=80°;故选:C.【点评】本题考查了切线的性质,等腰三角形的性质、直角三角形两锐角互余、三角形的外角性质,熟练运用切线的性质是本题的关键.5.(4分)下列命题正确的是()A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形【分析】根据矩形的判定方法判断即可.【解答】解:A、有一个角是直角的平行四边形是矩形,是真命题;B、四条边相等的四边形是菱形,是假命题;C、有一组邻边相等的平行四边形是菱形,是假命题;D、对角线相等的平行四边形是矩形,是假命题;故选:A.【点评】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,本题熟练掌握矩形的判定方法是解题的关键.6.(4分)估计(2+6)×的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【分析】先根据二次根式的乘法进行计算,再进行估算.【解答】解:(2+6)×,=2+6,=2+,=2+,∵4<5,∴6<2+<7,故选:C.【点评】本题考查了二次根式的乘法和无理数的估算,熟练掌握二次根式的计算法则是关键.7.(4分)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则可建立方程组为()A.B.C.D.【分析】设甲的钱数为x,人数为y,根据“若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也能为50”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设甲的钱数为x,乙的钱数为y,依题意,得:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.(4分)按如图所示的运算程序,能使输出y值为1的是()A.m=1,n=1 B.m=1,n=0 C.m=1,n=2 D.m=2,n=1 【分析】根据题意一一计算即可判断.【解答】解:当m=1,n=1时,y=2m+1=2+1=3,当m=1,n=0时,y=2n﹣1=﹣1,当m=1,n=2时,y=2m+1=3,当m=2,n=1时,y=2n﹣1=1,故选:D.【点评】本题考查代数式求值,有理数的混合运算等知识,解题的关键是理解题意,属于中考常考题型.9.(4分)如图,在平面直角坐标系中,矩形ABCD的顶点A,D分别在x轴、y轴上,对角线BD∥x轴,反比例函数y=(k>0,x>0)的图象经过矩形对角线的交点E.若点A (2,0),D(0,4),则k的值为()A.16 B.20 C.32 D.40【分析】根据平行于x轴的直线上任意两点纵坐标相同,可设B(x,4).利用矩形的性质得出E为BD中点,∠DAB=90°.根据线段中点坐标公式得出E(x,4).由勾股定理得出AD2+AB2=BD2,列出方程22+42+(x﹣2)2+42=x2,求出x,得到E点坐标,代入y=,利用待定系数法求出k.【解答】解:∵BD∥x轴,D(0,4),∴B、D两点纵坐标相同,都为4,∴可设B(x,4).∵矩形ABCD的对角线的交点为E,∴E为BD中点,∠DAB=90°.∴E(x,4).∵∠DAB=90°,∴AD2+AB2=BD2,∵A(2,0),D(0,4),B(x,4),∴22+42+(x﹣2)2+42=x2,解得x=10,∴E(5,4).∵反比例函数y=(k>0,x>0)的图象经过点E,∴k=5×4=20.故选:B.【点评】本题考查了矩形的性质,勾股定理,反比例函数图象上点的坐标特征,线段中点坐标公式等知识,求出E点坐标是解题的关键.10.(4分)为践行“绿水青山就是某某银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i=1:2.4的山坡AB上发现有一棵古树CD.测得古树底端C到山脚点A的距离AC=26米,在距山脚点A水平距离6米的点E处,测得古树顶端D的仰角∠AED=48°(古树CD与山坡AB的剖面、点E在同一平面上,古树CD与直线AE垂直),则古树CD的高度约为()(参考数据:sin48°≈0.73,cos48°≈0.67,tan48°≈1.11)A.17.0米B.21.9米C.23.3米D.33.3米【分析】如图,根据已知条件得到=1:2.4=,设CF=5k,AF=12k,根据勾股定理得到AC==13k=26,求得AF=10,CF=24,得到EF=6+24=30,根据三角函数的定义即可得到结论.【解答】解:如图,∵=1:2.4=,∴设CF=5k,AF=12k,∴AC==13k=26,∴k=2,∴AF=10,CF=24,∵AE=6,∴EF=6+24=30,∵∠DEF=48°,∴tan48°===1.11,∴DF=33.3,∴CD=33.3﹣10=23.3,答:古树CD的高度约为23.3米,故选:C.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.11.(4分)若关于x的一元一次不等式组的解集是x≤a,且关于y的分式方程﹣=1有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.6【分析】先解关于x的一元一次不等式组,再根据其解集是x≤a,得a小于5;再解分式方程,根据其有非负整数解,同时考虑增根的情况,得出a的值,再求和即可.【解答】解:由不等式组得:∵解集是x≤a,∴a<5;由关于y的分式方程﹣=1得2y﹣a+y﹣4=y﹣1∴y=,∵有非负整数解,∴≥0,∴a≥﹣3,且a=﹣3,a=﹣1(舍,此时分式方程为增根),a=1,a=3它们的和为1.故选:B.【点评】本题综合考查了含参一元一次不等式,含参分式方程得问题,需要考虑的因素较多,属于易错题.12.(4分)如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC沿BD翻折,得到△BDC',DC′与AB交于点E,连结AC',若AD=AC′=2,BD=3,则点D到BC′的距离为()A.B.C.D.【分析】连接CC',交BD于点M,过点D作DH⊥BC'于点H,由翻折知,△BDC≌△BDC',BD垂直平分CC',证△ADC'为等边三角形,利用解直角三角形求出DM=1,C'M=DM=,BM=2,在Rt△BMC'中,利用勾股定理求出BC'的长,在△BDC'中利用面积法求出DH的长.【解答】解:如图,连接CC',交BD于点M,过点D作DH⊥BC'于点H,∵AD=AC′=2,D是AC边上的中点,∴DC=AD=2,由翻折知,△BDC≌△BDC',BD垂直平分CC',∴DC=DC'=2,BC=BC',CM=C'M,∴AD=AC′=DC'=2,∴△ADC'为等边三角形,∴∠ADC'=∠AC'D=∠C'AC=60°,∵DC=DC',∴∠DCC'=∠DC'C=×60°=30°,在Rt△C'DM中,∠DC'C=30°,DC'=2,∴DM=1,C'M=DM=,∴BM=BD﹣DM=3﹣1=2,在Rt△BMC'中,BC'===,∵S△BDC'=BC'•DH=BD•CM,∴DH=3×,∴DH=,故选:B.【点评】本题考查了轴对称的性质,解直角三角形,勾股定理等,解题关键是会通过面积法求线段的长度.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算:(π﹣3)0+()﹣1= 3 .【分析】根据零指数幂和负整数指数幂计算可得.【解答】解:原式=1+2=3,故答案为:3.【点评】本题主要考查零指数幂和负整数指数幂,解题的关键是掌握a﹣p=(a≠0,p为正整数)及a0=1(a≠0).14.(4分)今年五一节期间,重庆市旅游持续火爆,全市共接待境内外游客超过25600000人次,请把数25600000用科学记数法表示为 2.56×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值是易错点,由于25600000有8位,所以可以确定n=8﹣1=7.【解答】解:25600000=2.56×107.故答案为:2.56×107.【点评】此题考查科学记数法表示较大的数的方法,准确确定n值是关键.15.(4分)一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为.【分析】先画树状图展示所有30种等可能的结果数,再找出两次都摸到红球的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有30种等可能的结果数,其中两次都摸到红球的结果数为6,所以两次都摸到红球的概率为=.故答案为:.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.16.(4分)如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为2﹣π.(结果保留π)【分析】根据菱形的性质得到AC⊥BD,∠ABO=∠ABC=30°,∠BAD=∠BCD=120°,根据直角三角形的性质求出AC、BD,根据扇形面积公式、菱形面积公式计算即可.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,∠ABO=∠ABC=30°,∠BAD=∠BCD=120°,∴AO=AB=1,由勾股定理得,OB==,∴AC=2,BD=2,∴阴影部分的面积=×2×2﹣×2=2﹣π,故答案为:2﹣π.【点评】本题考查的是扇形面积计算、菱形的性质,掌握扇形面积公式是解题的关键.17.(4分)某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的首基落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己首基落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把首基给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示(乙给甲首基的时间忽略不计).则乙回到公司时,甲距公司的路程是6000 米.【分析】根据函数图象和题意可以分别求得甲乙的速度和乙从与甲相遇到返回公司用的时间,从而可以求得当乙回到公司时,甲距公司的路程.【解答】解:由题意可得,甲的速度为:4000÷(12﹣2﹣2)=500米/分,乙的速度为:=1000米/分,乙从与甲相遇到返回公司用的时间为4分钟,则乙回到公司时,甲距公司的路程是:500×(12﹣2)﹣500×2+500×4=6000(米),故答案为:6000.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.18.(4分)在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收入.经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是3:20 .【分析】设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积x、贝母已种植面积x,黄连已种植面积依题意列出方程组,用y的代数式分别表示x、y,然后进行计算即可.【解答】解:设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积x、贝母已种植面积x,黄连已种植面积依题意可得,由①得x=③,将③代入②,z=y,∴贝母的面积与该村种植这三种中药材的总面积之比=,故答案为3:20.【点评】本题考查了三元一次方程组,正确找出等量关系并列出方程是解题的关键.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(10分)计算:(1)(x+y)2﹣y(2x+y)(2)(a+)÷【分析】(1)根据完全平方公式、单项式乘多项式可以解答本题;(2)根据分式的加法和除法可以解答本题.【解答】解:(1)(x+y)2﹣y(2x+y)=x2+2xy+y2﹣2xy﹣y2=x2;(2)(a+)÷====.【点评】本题考查分式的混合运算、完全平方公式、单项式乘多项式,解答本题的关键是明确它们各自的计算方法.20.(10分)如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC 于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.【分析】(1)利用等腰三角形的三线合一的性质证明∠ADB=90°,再利用等腰三角形的性质求出∠ABC即可解决问题.(2)只要证明∠FBE=∠FEB即可解决问题.【解答】(1)解:∵AB=AC,∴∠C=∠ABC,∵∠C=36°,∴∠ABC=36°,∵BD=CD,AB=AC,∴AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣36°=54°.(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC,∵EF∥BC,∴∠FEB=∠CBE,∴∠FBE=∠FEB,∴FB=FE.【点评】本题考查等腰三角形的性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(10分)每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心秩首.今年某校为确保学生安全,开展了“远离溺水•珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82八年级10名学生的竞赛成绩在C组中的数据是:94,90,94七、八年级抽取的学生竞赛成绩统计表年级七年级八年级平均数92 92中位数93 b众数c100方差52 50.4根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共730人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x ≥90)的学生人数是多少?【分析】(1)根据中位数和众数的定义即可得到结论;(2)根据八年级的中位数和众数均高于七年级于是得到八年级学生掌握防溺水安全知识较好;(3)利用样本估计总体思想求解可得.【解答】解:(1)a=(1﹣20%﹣10%﹣)×100=40,∵八年级10名学生的竞赛成绩的中位数是第5和第6个数据的平方数,∴b==94;∵在七年级10名学生的竞赛成绩中99出现的次数最多,∴c=99;(2)八年级学生掌握防溺水安全知识较好,理由:虽然七、八年级的平均分均为92分,但八年级的中位数和众数均高于七年级.(3)参加此次竞赛活动成绩优秀(x≥90)的学生人数=720×=468人,答:参加此次竞赛活动成绩优秀(x≥90)的学生人数是468人.【点评】本题考查读扇形统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(10分)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数﹣“纯数”.定义;对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2021和2021是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.【分析】(1)根据题目中的新定义可以解答本题,注意各数位都不产生进位的自然数才是“纯数”;(2)根据题意可以推出不大于100的“纯数”的个数,本题得以解决.【解答】解:(1)2021不是“纯数”,2021是“纯数”,理由:当n=2021时,n+1=2021,n+2=2021,∵个位是9+0+1=10,需要进位,∴2021不是“纯数”;当n=2021时,n+1=2021,n+2=2022,∵个位是0+1+2=3,不需要进位,十位是2+2+2=6,不需要进位,百位为0+0+0=0,不。
重庆市数学中考23题-应用题(1)
2015年数学中考预测-23题 应用题一、工程问题: 1.(13A 23.)随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站从去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元。
在保证工程质量的前提下,为了缩短工期,拟安排甲乙两队分工合作完成这项工程。
在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲乙两队的施工时间按月取整数).2.(13B 23、)4.20雅安地震后,某商家为支援灾区人民,计划捐赠帐篷16800顶,该商家备有2辆大货车、8辆小车运送,计划大货车比小货车每辆每次多运帐篷200顶,大、小货车每天均运送一次,两天恰好运完.(1)求大、小货车原计划每辆每次各运送帐篷多少顶?(2)因地震导致路基受损,实际运送过程中,每辆大货车每次比原计划少运m 200顶,每辆小货车每次比原计划少运300顶.为了尽快将帐篷运送到灾区,大货车每天比原计划多跑m 21次,小货车每天比原计划多跑m 次,一天刚好运送了帐篷14400顶,求m 的值. 3.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?4.“端午节”是我国的传统佳节,历来有吃“粽子”的习俗。
重庆市中考数学试卷(a卷)答案及解析
2018年重庆市中考数学试卷(A 卷)答案及解析一、选择题 (本大题12个小题,每小题4分,共48分。
)1.的相反数是2 A .2-B .12-C .12D .2【答案】A【解析】根据一个数的相反数就是在这个数的前面添加上“-”即可求解【点评】本题考查了相反数的定义,属于中考中的简单题2.下列图形中一定是轴对称图形的是A.40°【答案】D【解析】A40°的直角三角形不是对称图形;B 两个角是直角的四边形不一定是轴对称图形;C 平行四边形是中心对称图形不是轴对称图形;D 矩形是轴对称图形,有两条对称轴【点评】此题主要考查基本几何图形中的轴对称图形和中心对称图形,难度系数不大,考生主要注意看清楚题目要求。
3.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是A.企业男员工B.企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工【答案】C【解析】A 调查对象只涉及到男性员工;B 调查对象只涉及到即将退休的员工;D 调查对象只涉及到新进员工【点评】此题主要考查考生对抽样调查中科学选取样本的理解,属于中考当中的简单题。
4.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为A.12B .14C .16D .18【答案】C【解析】∵第1个图案中的三角形个数为:2+2=2×2=4;第2个图案中的三角形个数为:2+2+2=2×3=6;第3个图案中的三角形个数为:2+2+2+2=2×4=8;……∴第7个图案中的三角形个数为:2+2+2+2+2+2+2+2=2×8=16;【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果。
比较简单。
5.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为,和,5cm 6cm 9cm 另一个三角形的最短边长为,则它的最长边为2.5cm A. 3cm B. 4cm C. 4.5cm D. 5cm【答案】C【解析】利用相似三角形三边对应成比例解出即可。
2023年重庆市中考数学真题(A卷)(答案解析)
重庆市2023年初中学业水平暨高中招生考试数学试题(A 卷)一、选择题:(本大题10个小题,每小题4分,共40分)1.【答案】A【解析】解:8的相反数是8-,故选A .2.【答案】D【解析】从正面看第一层是2个小正方形,第二层右边1个小正方形,故选:D .3.【答案】C【解析】解:A 选项,将1x =代入反比例函数4y x =-得到14y =-≠,故A 项不符合题意;B 选项,项将1x =-代入反比例函数4y x =-得到44y =≠-,故B 项不符合题意;C 选项,项将=−2代入反比例函数4y x =-得到22y ==,故C 项符合题意;D 选项,项将2x =代入反比例函数4y x=-得到22y =-≠,故D 项不符合题意;故选C .4.【答案】B【解析】解:∵两个相似三角形周长的比为1:4,∴相似三角形的对应边比为1:4,故选B .5.【答案】A【解析】解:∵AB CD ∥,155∠=︒,∴18055125CAB Ð=°-°=°,∵AD AC ⊥,∴90CAD ∠=︒,∴21259035CAB CAD Ð=Ð-Ð=°-°=°,故选:A .6.【答案】B+=4=+∵2 2.5<<,∴45<<,∴849<+,故选:B .7.【答案】B【解析】解:第①个图案用了459+=根木棍,第②个图案用了45214+⨯=根木棍,第③个图案用了45319+⨯=根木棍,第④个图案用了45424+⨯=根木棍,……,第⑧个图案用的木棍根数是45844+⨯=根,故选:B .8.【答案】C【解析】解:连接OB ,∵AC 是O 的切线,B 为切点,∴OB AC ⊥,∵30A ∠=︒,AB =∴在Rt OAB 中,3tan 23OB AB A =⋅∠==,∵3BC =,∴在Rt OBC 中,OC ==,故选C .9.【答案】A【解析】将ADF 绕点A 逆时针旋转90︒至ABH,∵四边形ABCD 是正方形,∴AB AD =,90B D BAD C ∠=∠=∠=∠=︒,由旋转性质可知:DAF BAH ∠=∠,90D ABH ∠=∠=︒,AF AH =,∴180AHB ABC ∠+∠=︒,∴点H B C ,,三点共线,∵BAE α∠=,45EAF ∠=︒,90BAD HAF ∠=∠=︒,∴45DAF BAH α∠=∠=︒-,45EAF EAH ∠=∠=︒,∵90AHB BAH ∠+∠=︒,∴45AHB α∠=︒+,在AEF 和AEH 中AF AH FAE HAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴()AFE AHE SAS ≌,∴45AHE AFE α∠=∠=︒+,∴45AHE AFD AFE α∠=∠=∠=︒+,∴902DFE AFD AFE α∠=∠+∠=︒+,∵90DFE FEC C FEC ∠=∠+∠=∠+︒,∴2FEC α∠=,故选:A .10.【答案】C【解析】解:x y z m n x y z m n ----=----,故说法①正确.若使其运算结果与原多项式之和为0,必须出现x -,显然无论怎么添加绝对值,都无法使x 的符号为负,故说法②正确.当添加一个绝对值时,共有4种情况,分别是x y z m n x y z m n ----=----;x y z m n x y z m n ----=-+--;||x y z m n x y z m n ----=--+-;x y z m n x y z m n ----=---+.当添加两个绝对值时,共有3种情况,分别是x y z m n x y z m n ----=--+-;x y z m n x y z m n ----=---+;x y z m n x y z m n ----=-+-+.共有7种情况;有两对运算结果相同,故共有5种不同运算结果,故说法③不符合题意.故选:C .二、填空题:(本大题8个小题,每小题4分,共32分)11.【答案】1.5【解析】1023-+=11=1.52+.故答案为1.5.12.【答案】36°【解析】正五边形内角和:(5﹣2)×180°=3×180°=540°∴5401085B ︒︒∠==,∴180B 1801083622BAC ︒︒︒︒-∠-∠===.故答案为36°.13.【答案】19【解析】解:根据题意列表如下:红球白球蓝球红球(红球,红球)(白球,红球)(蓝球,红球)白球(红球,白球)(白球,白球)(蓝球,白球)蓝球(红球,蓝球)(白球,蓝球)(蓝球,蓝球)由表知,共有9种等可能结果,其中两次都摸到红球的有1种结果,所以两次摸到球的颜色相同的概率为19,故答案为:19.14.【答案】()2150111815x +=【解析】解:设七、八两个月提供就业岗位数量的月平均增长率为x ,根据题意得,()2150111815x +=,故答案为:()2150111815x +=.15.【答案】3【解析】解:∵90BAC ∠=︒,∴90EAB EAC ∠+∠=︒,∵BE AD ⊥,CF AD ⊥,∴90AEB AFC ∠=∠=︒,∴90ACF EAC ∠+∠=︒,∴ACF BAE ∠=∠,在AFC △和BEA △中:AEB CFA ACF BAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS AFC BEA ≌△△,∴4,1AF BE AE CF ====,∴413EF AF AE =-=-=,故答案为:3.16.【答案】25124π-【解析】解:连接BD ,∵四边形ABCD 是矩形,∴BD 是O 的直径,∵4,3AB AD ==,∴5BD ==,∴O 的半径为52,∴O 的面积为254π,矩形的面积为3412⨯=,∴阴影部分的面积为25124π-;故答案为25124π-;17.【答案】4【解析】解:+34222x x a ⎧≤⎪⎨⎪-≥⎩①②解不等式①得:5x ≤,解不等式②得:1+2a x ≥,∴不等式的解集为1+52a x ≤≤,∵不等式组至少有2个整数解,∴1+42a ≤,解得:6a ≤;∵关于y 的分式方程14222a y y-+=--有非负整数解,∴()1422a y ---=解得:12a y -=,即102a -≥且122a -≠,解得:1a ≥且5a ≠∴a 的取值范围是16a ≤≤,且5a ≠∴a 可以取:1,3,∴134+=,故答案为:4.18.【答案】①.4312②.8165【解析】解:∵a312是递减数,∴1033112a +-=,∴4a =,∴这个数为4312;故答案为:4312∵一个“递减数”的前三个数字组成的三位数abc 与后三个数字组成的三位数bcd 的和能被9整除,∴101010a b b c c d +--=+,∵1001010010abc bcd a b c b c d +=+++++,∴110010110100110001abc bcd a b c b b a b a b c +=++++++--=,∵()11010199112a b a b a b +=+++,能被9整除,∴112a b +能被9整除,∵各数位上的数字互不相等且均不为0,∴12345678,,,,,,,87654321a a a a a a a ab b b b b b b b ========⎧⎧⎧⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨⎨⎨⎨========⎩⎩⎩⎩⎩⎩⎩⎩,∵最大的递减数,∴8,1a b ==,∴1089110c c d ⨯-⨯-=+,即:1171c d +=,∴c 最大取6,此时5d =,∴这个最大的递减数为8165.故答案为:8165.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)19.【答案】(1)21a -(2)11x +【解析】(1)解:原式2221a a a =-+-21a =-;(2)原式()222.11x x x x x x ⎛⎫+-=÷ ⎪++⎝⎭()22211x x x x =÷++()22211x x x x +=⋅+11x =+.20.【答案】作图:见解析;FAO ∠;AO CO =;FOA ∠;被平行四边形一组对边所截,截得的线段被对角线中点平分【解析】解:如图,即为所求;证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠=FAO ∠.∵EF 垂直平分AC ,∴AO CO =.又EOC ∠=FOA ∠.∴()COE AOF ASA ≅ .∴OE OF =.故答案为:FAO ∠;AO CO =;FOA ∠;由此得到命题:过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分,故答案为:被平行四边形一组对边所截,截得的线段被对角线中点平分.21.【答案】(1)72,70.5,10;(2)B 款智能玩具飞机运行性能更好;因为B 款智能玩具飞机运行时间的方差比A 款智能玩具飞机运行时间的方差小,运行时间比较稳定;(3)两款智能玩具飞机运行性能在中等及以上的大约共有192架.【解析】(1)解:由题意可知10架A 款智能玩具飞机充满电后运行最长时间中,只有72出现了三次,且次数最多,则该组数据的众数为72,即72a =;由B 款智能玩具飞机运行时间的扇形图可知,合格的百分比为40%,则B 款智能玩具飞机运行时间合格的架次为:1040%4⨯=(架)则B 款智能玩具飞机运行时间优等的架次为:10451--=(架)则B 款智能玩具飞机的运行时间第五、第六个数据分别为:70,71,故B 款智能玩具飞机运行时间的中位数为:707170.52+=B 款智能玩具飞机运行时间优等的百分比为:1100%10%10⨯=即10m =故答案为:72,70.5,10;(2)B 款智能玩具飞机运行性能更好;因为B 款智能玩具飞机运行时间的方差比A 款智能玩具飞机运行时间的方差小,运行时间比较稳定;(3)200架A 款智能玩具飞机运行性能在中等及以上的架次为:620012010⨯=(架)200架A 款智能玩具飞机运行性能在中等及以上的架次为:61207210⨯=(架)则两款智能玩具飞机运行性能在中等及以上的共有:12072192+=架,答:两款智能玩具飞机运行性能在中等及以上的大约共有192架.22.【答案】(1)购买杂酱面80份,购买牛肉面90份(2)购买牛肉面60份【解析】(1)解:设购买杂酱面x 份,则购买牛肉面()170x -份,由题意知,()152********x x +⨯-=,解得,80x =,∴17090x -=,∴购买杂酱面80份,购买牛肉面90份;(2)解:设购买牛肉面a 份,则购买杂酱面1.5a 份,由题意知,1260120061.5a a+=,解得60a =,经检验,60a =是分式方程的解,∴购买牛肉面60份.23.【答案】(1)当04t <≤时,y t =;当46t <≤时,122y t =-;(2)图象见解析,当04t <≤时,y 随x 的增大而增大(3)t 的值为3或4.5【解析】(1)解:当04t <≤时,连接EF ,由题意得AE AF =,60A ∠=︒,∴AEF △是等边三角形,∴y t =;当46t <≤时,122y t =-;(2)函数图象如图:当04t <≤时,y 随t 的增大而增大;(3)当04t <≤时,3y =即3t =;当46t <≤时,3y =即1223t -=,解得 4.5t =,故t 的值为3或4.5.24.【答案】(1)AD 的长度约为14千米(2)小明应该选择路线①,理由见解析【解析】(1)解:过点D 作DF AB ⊥于点F ,由题意可得:四边形BCDF 是矩形,∴10DF BC ==千米,∵点D 在点A 的北偏东45︒方向,∴45DAF DAN Ð=Ð=°,∴14sin 45DF AD ==°千米,答:AD 的长度约为14千米;(2)由题意可得:10BC =,14CD =,∴路线①的路程为:14102438AD DC BC ++=+=+(千米),∵10DF BC ==,45DAF DAN Ð=Ð=°,90DFA ∠=︒,∴DAF △为等腰直角三角形,∴10AF DF ==,∴101424AB AF BF AF DC =+=+=+=,由题意可得60EBS Ð=°,∴60E ∠=︒,∴tan 60AB AE ==°,sin 60AB BE ==°,所以路线②的路程为:42AE BE +=千米,∴路线①的路程<路线②的路程,故小明应该选择路线①.25.【答案】(1)213222y x x =-++(2)PDE △周长的最大值65105+,此时点()2,3P (3)以点A ,P ,M ,N 为顶点的四边形是菱形时59,22N ⎛⎫- ⎪⎝⎭或137,22⎛ ⎝⎭或137,22⎛⎫- ⎪ ⎪⎝⎭【解析】(1)把()1,3、()1,0A -代入22y ax bx =++得,3202a b a b =++⎧⎨=-+⎩,解得1232a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的表达式为213222y x x =-++;(2)延长PE 交x 轴于F,∵过点P 作PD BC ⊥于点D ,过点P 作y 轴的平行线交直线BC 于点E ,∴DEP BCO ∠=∠,90PDE COB ∠=∠=︒,∴DPE OBC ,∴DPE PEOBC BC =周长周长 ,∴PEDPE OBC BC =⋅周长周长 ,∴当PE 最大时PDE △周长的最大∵抛物线的表达式为213222y x x =-++,∴()4,0B ,∴直线BC 解析式为122y x =-+,BC ==设213,222P m m m ⎛⎫-++ ⎪⎝⎭,则1,22E m m ⎛⎫-+ ⎪⎝⎭∴()222131112222222222PE m m m m m m ⎛⎫=-++--+=-+=--+ ⎪⎝⎭,∴当2m =时2PE =最大,此时()2,3P ∵BOC周长为6OC OB BC ++=+,∴PDE △(651065++=,此时()2,3P ,即PDE △周长的最大值65105+,此时点()2,3P ;(3)∵将该抛物线沿射线CB方向平移个单位长度,可以看成是向右平移2个单位长度再向下平移一个单位长度,∴平移后的解析式为()()221317222142222y x x x =--+-+-=-+-,此抛物线对称轴为直线72x =,∴设7,2M n ⎛⎫ ⎪⎝⎭,(),N s t ∵()2,3P ,()1,0A -∴218PA =,()()22227923324PM n n ⎛⎫=-+-=+- ⎪⎝⎭,()22227811024AM n n ⎛⎫=++-=+ ⎪⎝⎭,当PA 为对角线时,此时以点A ,P ,M ,N 为顶点的四边形是菱形∴PA 与MN 互相平分,且PM AM=∴()22981344n n +-=+,解得32n =-∵PA 中点坐标为2130,22-+⎛⎫ ⎪⎝⎭,MN 中点坐标为72,22s n t ⎛⎫+ ⎪+ ⎪ ⎪⎝⎭,∴7123s n t ⎧+=⎪⎨⎪+=⎩,解得5292s t ⎧=-⎪⎪⎨⎪=⎪⎩,此时59,22N ⎛⎫- ⎪⎝⎭;当PA 为边长且AM 和PN 是对角线时,此时以点A ,P ,M ,N 为顶点的四边形是菱形∴AM 与PN 互相平分,且PMPA =∴()293184n +-=,解得3732n =±∵PN 中点坐标为23,22s t ++⎛⎫ ⎪⎝⎭,AM 中点坐标为7102,22n ⎛⎫- ⎪+ ⎪ ⎪⎝⎭,∴721230s t n ⎧+=-⎪⎨⎪+=+⎩,解得122s t ⎧=⎪⎪⎨⎪=±⎪⎩,此时137,22N ⎛⎫ ⎪ ⎪⎝⎭或137,22N ⎛- ⎝⎭;同理,当PA 为边长且AN 和PM 是对角线时,此时以点A ,P ,M ,N 为顶点的四边形是菱形∴AN 和PM 互相平分,且AM PA =281184n +=,此方程无解;综上所述,以点A ,P ,M ,N 为顶点的四边形是菱形时59,22N ⎛⎫- ⎪⎝⎭或137,22⎛⎫ ⎪ ⎪⎝⎭或137,22⎛- ⎝⎭;26.【答案】(1)(2)见解析(3)435【解析】(1)解:在Rt ABC 中,90ACB ∠=︒,=60B ∠︒,∴sin 32AC AB B ===,∵BD =,∴AD AB BD =-=(2)证明:如图所示,延长FB 使得FH FG =,连接EH ,∵F 是DE 的中点则DF FE =,FH FG =,GFD HFE ∠=∠,∴()SAS GFD HFE ≌,∴H G ∠=∠,∴EH GC ∥,∴60HEC ECD ∠=∠=︒∵DEC 是等边三角形,∴60DEC EDC ∠=∠=︒,∵60DEC DBC ==︒∠∠,∴,,,B C D E 四点共圆,∴EDB BCE ∠=∠,BEC BDC ∠=∠,∴6060BEH BEC BDC EDB ∠=︒-∠=︒-∠=∠,∵G BCE BDE H ∠=∠=∠=∠,∴H BEH ∠=∠,∴EB BH =,∴FH FG BF BH BF EB ==+=+;(3)解:如图所示,在CD 取得最小值的条件下,即CD AB ⊥,设4AB a =,则2BC a =,AC =,∴24AC BC a CD AB a⨯⨯===,12BD BC a ==,∵将BEM 沿BM 所在直线翻折至ABC 所在平面内得到BNM .∴BE BN=∴点N 在以B 为圆心,a 为半径的圆上运动,取AB 的中点S ,连接SP ,则SP 是ABN 的中位线,∴P 在半径为12a 的S 上运动,当CP 取最大值时,即,,P S C 三点共线时,此时如图,过点P 作PTAC ⊥于点T ,过点N 作NR AC ⊥于点R ,∵S 是AB 的中点,60ABC ∠=︒∴SC SB BC ==,∴BCS △是等边三角形,则60PCB ∠=︒,∴30PCA ACB BCP ∠=∠-∠=︒,∵2BC a =,4AB a =,∴2CS BC a ==,12PS a =∴52PC a =,15sin 24PT PC PCT PC a =⨯∠==,TC ==∵AC =,∴AT =,如图所示,连接PQ ,交NR 于点U ,则四边形PURT是矩形,∴PU AR ∥,P 是AN 的中点,∴1NU NP UR PA==即PD 是ANR 的中位线,同理可得PT 是ANR 的中位线,∴54NU UR PT a ===,12PU AR AT ===∵BCS △是等边三角形,将BCP 沿BC 所在直线翻折至ABC 所在平面内得到BCQ ,∴2120QCP BCP ∠=∠=︒∴PQ ===则UQ PQ PU =-=-=在Rt NUQ中,432NQ a =∴43432552a NQ CP a ==.。
2023年重庆市中考数学真题(A卷)(原卷版和解析版)
重庆市2023年初中学业水平暨高中招生考试数学试题(A 卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回参考公式:抛物线()20y ax bx c a =++≠)的顶点坐标为2424,b ac b a a ⎛⎫ ⎪⎝-⎭-,对称轴为2bx a =-一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.8的相反数是()A.8- B.8C.18D.18-2.四个大小相同的正方体搭成的几何体如图所示,从正面得到的视图是()A.B.C.D.3.反比例函数4y x=-的图象一定经过的点是()A.()14, B.()14--, C.()22-,D.()22,4.若两个相似三角形周长的比为1:4,则这两个三角形对应边的比是()A.1:2B.1:4C.1:8D.1:165.如图,,⊥∥AB CD AD AC ,若155∠=︒,则2∠的度数为()A.35︒B.45︒C.50︒D.55︒6.估计2810+的值应在()A.7和8之间B.8和9之间C.9和10之间D.10和11之间7.用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是()A.39B.44C.49D.548.如图,AC 是O 的切线,B 为切点,连接OA OC ,.若30A ∠=︒,23AB =3BC =,则OC 的长度是()A.3B.23C.13 D.69.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,连接AE ,AF ,EF ,45EAF ∠=︒.若BAE α∠=,则FEC ∠一定等于()A.2αB.902α︒-C.45α︒-D.90α︒-10.在多项式x y z m n ----(其中x y z m n >>>>)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x y z m n x y z m n ----=--+-,x y z m n x y z m n ----=---+,…….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0B.1C.2D.3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.计算1023-+=_____.12.如图,在正五边形ABCDE 中,连接AC ,则∠BAC 的度数为_____.13.一个口袋中有1个红色球,有1个白色球,有1个蓝色球,这些球除颜色外都相同.从中随机摸出一个球,记下颜色后放回,摇匀后再从中随机摸出一个球,则两次都摸到红球的概率是___________.14.某新建工业园区今年六月份提供就业岗位1501个,并按计划逐月增长,预计八月份将提供岗位1815个.设七、八两个月提供就业岗位数量的月平均增长率为x ,根据题意,可列方程为___________.15.如图,在Rt ABC △中,90BAC ∠= ,AB AC =,点D 为BC 上一点,连接AD .过点B 作BE AD ⊥于点E ,过点C 作CF AD ⊥交AD 的延长线于点F .若4BE =,1CF =,则EF 的长度为___________.16.如图,O 是矩形ABCD 的外接圆,若4,3AB AD ==,则图中阴影部分的面积为___________.(结果保留π)17.若关于x 的一元一次不等式组+34222x x a ⎧≤⎪⎨⎪-≥⎩,至少有2个整数解,且关于y 的分式方程14222a y y -+=--有非负整数解,则所有满足条件的整数a 的值之和是___________.18.如果一个四位自然数abcd 的各数位上的数字互不相等且均不为0,满足ab bc cd -=,那么称这个四位数为“递减数”.例如:四位数4129,∵411229-=,∴4129是“递减数”;又如:四位数5324,∵53322124-=≠,∴5324不是“递减数”.若一个“递减数”为a312,则这个数为___________;若一个“递减数”的前三个数字组成的三位数abc 与后三个数字组成的三位数bcd 的和能被9整除,则满足条件的数的最大值是___________.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.计算:(1)()()()211a a a a -++-;(2)22.211x x x x x x ⎛⎫÷- ⎪+++⎝⎭20.学习了平行四边形后,小虹进行了拓展性研究.她发现,如果作平行四边形一条对角线的垂直平分线,那么这个平行四边形的一组对边截垂直平分线所得的线段被垂足平分.她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,作AC 的垂直平分线交DC 于点E ,交AB 于点F ,垂足为点O .(只保留作图痕迹)已知:如图,四边形ABCD 是平行四边形,AC 是对角线,EF 垂直平分AC ,垂足为点O .求证:OE OF =.证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠=①.∵EF 垂直平分AC ,∴②.又EOC ∠=___________③.∴()COE AOF ASA ∆≅∆.∴OE OF =.小虹再进一步研究发现,过平行四边形对角线AC 中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:过平行四边形对角线中点的直线④.21.为了解A 、B 两款品质相近的智能玩具飞机在一次充满电后运行的最长时间,有关人员分别随机调查了A 、B 两款智能玩具飞机各10架,记录下它们运行的最长时间(分钟),并对数据进行整理、描述和分析(运行最长时间用x 表示,共分为三组:合格6070x ≤<,中等7080x ≤<,优等80x ≥),下面给出了部分信息:A 款智能玩具飞机10架一次充满电后运行最长时间是:60,64,67,69,71,71,72,72,72,82B 款智能玩具飞机10架一次充满电后运行最长时间属于中等的数据是:70,71,72,72,73两款智能玩具飞机运行最长时间统计表,B 款智能玩具飞机运行最长时间扇形统计图类别AB平均数7070中位数71b众数a67方差30.426.6根据以上信息,解答下列问题:(1)上述图表中=a ___________,b =___________,m =___________;(2)根据以上数据,你认为哪款智能玩具飞机运行性能更好?请说明理由(写出一条理由即可);(3)若某玩具仓库有A 款智能玩具飞机200架、B 款智能玩具飞机120架,估计两款智能玩具飞机运行性能在中等及以上的共有多少架?22.某公司不定期为员工购买某预制食品厂生产的杂酱面、牛肉面两种食品.(1)该公司花费3000元一次性购买了杂酱面、牛肉面共170份,此时杂酱面、牛肉面的价格分别为15元、20元,求购买两种食品各多少份?(2)由于公司员工人数和食品价格有所调整,现该公司分别花费1260元、1200元一次性购买杂酱面、牛肉面两种食品,已知购买杂酱面的份数比牛肉面的份数多50%,每份杂酱面比每份牛肉面的价格少6元,求购买牛肉面多少份?23.如图,ABC 是边长为4的等边三角形,动点E ,F 分别以每秒1个单位长度的速度同时从点A 出发,点E 沿折线A B C →→方向运动,点F 沿折线A C B →→方向运动,当两者相遇时停止运动.设运动时间为t 秒,点E ,F 的距离为y .(1)请直接写出y 关于t 的函数表达式并注明自变量t 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,写出点E ,F 相距3个单位长度时t 的值.24.为了满足市民的需求,我市在一条小河AB 两侧开辟了两条长跑锻炼线路,如图;①A D C B ---;②A E B --.经勘测,点B 在点A 的正东方,点C 在点B 的正北方10千米处,点D 在点C 的正西方14千米处,点D 在点A 的北偏东45︒方向,点E 在点A 的正南方,点E 在点B 的南偏西60︒方向.(参考数据:2 1.41,3 1.73)≈≈(1)求AD 的长度.(结果精确到1千米)(2)由于时间原因,小明决定选择一条较短线路进行锻炼,请计算说明他应该选择线路①还是线路②?25.如图,在平面直角坐标系中,抛物线22y ax bx =++过点()1,3,且交x 轴于点()1,0A -,B 两点,交y 轴于点C .(1)求抛物线的表达式;(2)点P 是直线BC 上方抛物线上的一动点,过点P 作PD BC ⊥于点D ,过点P 作y 轴的平行线交直线BC 于点E ,求PDE △周长的最大值及此时点P 的坐标;(3)在(2)中PDE △周长取得最大值的条件下,将该抛物线沿射线CB 方向平移5个单位长度,点M 为平移后的抛物线的对称轴上一点.在平面内确定一点N ,使得以点A ,P ,M ,N 为顶点的四边形是菱形,写出所有符合条件的点N 的坐标,并写出求解点N 的坐标的其中一种情况的过程.26.在Rt ABC 中,90ACB ∠=︒,=60B ∠︒,点D 为线段AB 上一动点,连接CD .(1)如图1,若9AC =,BD =,求线段AD 的长.(2)如图2,以CD 为边在CD 上方作等边CDE ,点F 是DE 的中点,连接BF 并延长,交CD 的延长线于点G .若G BCE ∠=∠,求证:GF BF BE =+.(3)在CD 取得最小值的条件下,以CD 为边在CD 右侧作等边CDE .点M 为CD 所在直线上一点,将BEM 沿BM 所在直线翻折至ABC 所在平面内得到BNM .连接AN ,点P 为AN 的中点,连接CP ,当CP 取最大值时,连接BP ,将BCP 沿BC 所在直线翻折至ABC 所在平面内得到BCQ ,请直接写出此时NQCP的值.重庆市2023年初中学业水平暨高中招生考试数学试题(A 卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回参考公式:抛物线()20y ax bx c a =++≠)的顶点坐标为2424,b ac b a a ⎛⎫ ⎪⎝-⎭-,对称轴为2bx a =-一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.8的相反数是()A.8- B.8C.18D.18-【答案】A 【解析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:8的相反数是8-,故选A .【点睛】本题考查了相反数的定义,掌握相反数的定义是解题的关键.2.四个大小相同的正方体搭成的几何体如图所示,从正面得到的视图是()A.B.C.D.【答案】D【解析】【分析】根据从正面看得到的图形是主视图,可得答案.【详解】从正面看第一层是2个小正方形,第二层右边1个小正方形,故选:D .【点睛】考查了简单组合体的三视图,从正面看得到的图形是主视图.3.反比例函数4y x=-的图象一定经过的点是()A.()14, B.()14--, C.()22-,D.()22,【答案】C 【解析】【分析】根据题意将各项的坐标代入反比例函数4y x=-即可解答.【详解】解:A 、将1x =代入反比例函数4y x=-得到14y =-≠,故A 项不符合题意;B 、项将1x =-代入反比例函数4y x =-得到44y =≠-,故B 项不符合题意;C 、项将=−2代入反比例函数4y x =-得到22y ==,故C 项符合题意;D 、项将2x =代入反比例函数4y x=-得到22y =-≠,故D 项不符合题意;故选C .【点睛】本题考查了反比例函数图象上点的坐标特征,只要点在函数图象上则其坐标一定满足函数解析式,掌握反比例函数图象上点的坐标特征是解题的关键.4.若两个相似三角形周长的比为1:4,则这两个三角形对应边的比是()A.1:2B.1:4C.1:8D.1:16【答案】B 【解析】【分析】根据相似三角形的周长比等于相似三角形的对应边比即可解答.【详解】解:∵两个相似三角形周长的比为1:4,∴相似三角形的对应边比为1:4,故选B .【点睛】本题考查了相似三角形的周长比等于相似三角形的对应边比,掌握相似三角形的性质是解题的关键.5.如图,,⊥∥AB CD AD AC ,若155∠=︒,则2∠的度数为()A.35︒B.45︒C.50︒D.55︒【答案】A【解析】【分析】根据两直线平行,同旁内角互补可得CAB ∠的度数,根据垂直的定义可得90CAD ∠=︒,然后根据2CAB CAD Ð=Ð-Ð即可得出答案.【详解】解:∵AB CD ∥,155∠=︒,∴18055125CAB Ð=°-°=°,∵AD AC ⊥,∴90CAD ∠=︒,∴21259035CAB CAD Ð=Ð-Ð=°-°=°,故选:A .【点睛】本题考查了平行线的性质以及垂线的定义,熟知两直线平行同旁内角互补是解本题的关键.6.估计2810+的值应在()A.7和8之间B.8和9之间C .9和10之间 D.10和11之间【答案】B【解析】【分析】先计算二次根式的混合运算,再估算结果的大小即可判断.28101620=45=+∵25 2.5<<,∴455<<,∴8459<+<,故选:B .【点睛】此题考查了二次根式的混合运算,无理数的估算,正确掌握二次根式的混合运算法则是解题的关键.7.用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是()A.39B.44C.49D.54【答案】B【解析】【分析】根据各图形中木棍的根数发现计算的规律,由此即可得到答案.【详解】解:第①个图案用了459+=根木棍,第②个图案用了45214+⨯=根木棍,第③个图案用了45319+⨯=根木棍,第④个图案用了45424+⨯=根木棍,……,第⑧个图案用的木棍根数是45844+⨯=根,故选:B .【点睛】此题考查了图形类规律的探究,正确理解图形中木棍根数的变化规律由此得到计算的规律是解题的关键.8.如图,AC 是O 的切线,B 为切点,连接OA OC ,.若30A ∠=︒,AB =3BC =,则OC 的长度是()A.3B.C.D.6【答案】C【解析】【分析】根据切线的性质及正切的定义得到2OB =,再根据勾股定理得到OC =【详解】解:连接OB ,∵AC 是O 的切线,B 为切点,∴OB AC ⊥,∵30A ∠=︒,AB =,∴在Rt OAB 中,3tan 23OB AB A =⋅∠==,∵3BC =,∴在Rt OBC 中,OC ==,故选C .【点睛】本题考查了切线的性质,锐角三角函数,勾股定理,掌握切线的性质是解题的关键.9.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,连接AE ,AF ,EF ,45EAF ∠=︒.若BAE α∠=,则FEC ∠一定等于()A.2αB.902α︒-C.45α︒-D.90α︒-【答案】A【解析】【分析】利用三角形逆时针旋转90︒后,再证明三角形全等,最后根据性质和三角形内角和定理即可求解.【详解】将ADF 绕点A 逆时针旋转90︒至ABH ,∵四边形ABCD 是正方形,∴AB AD =,90B D BAD C ∠=∠=∠=∠=︒,由旋转性质可知:DAF BAH ∠=∠,90D ABH ∠=∠=︒,AF AH =,∴180AHB ABC ∠+∠=︒,∴点H B C ,,三点共线,∵BAE α∠=,45EAF ∠=︒,90BAD HAF ∠=∠=︒,∴45DAF BAH α∠=∠=︒-,45EAF EAH ∠=∠=︒,∵90AHB BAH ∠+∠=︒,∴45AHB α∠=︒+,在AEF 和AEH 中AF AH FAE HAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴()AFE AHE SAS ≌,∴45AHE AFE α∠=∠=︒+,∴45AHE AFD AFE α∠=∠=∠=︒+,∴902DFE AFD AFE α∠=∠+∠=︒+,∵90DFE FEC C FEC ∠=∠+∠=∠+︒,∴2FEC α∠=,故选:A .【点睛】此题考查了正方形的性质,全等三角形的判定和性质,旋转的性质,解题的关键是能正确作出旋转,再证明三角形全等,熟练利用性质求出角度.10.在多项式x y z m n ----(其中x y z m n >>>>)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x y z m n x y z m n ----=--+-,x y z m n x y z m n ----=---+,…….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0B.1C.2D.3【答案】C【解析】【分析】根据“绝对操作”的定义及绝对值的性质对每一项判断即可解答.【详解】解:∵x y z m n >>>>,∴x y z m n x y z m n ----=----,∴存在“绝对操作”,使其运算结果与原多项式相等,故①正确;根据绝对操作的定义可知:在多项式x y z m n ----(其中x y z m n >>>>)中,经过绝对操作后,z n m 、、的符号都有可能改变,但是x y 、的符合不会改变,∴不存在“绝对操作”,使其运算结果与原多项式之和为0,故②正确;∵在多项式x y z m n ----(其中x y z m n >>>>)中,经过“绝对操作”可能产生的结果如下:∴x y z m n x y z m n ----=----,x y z m n x y z m n ----=-+--,x y z m n x y z m n x y z m n ----=----=--+-,x y z m n x y z m n x y z m n ----=----=---+,x y z m n x y z m n ----=-+-+,共有5种不同运算结果,故③错误;故选C .【点睛】本题考查了新定义“绝对操作”,绝对值的性质,整式的加减运算,掌握绝对值的性质是解题的关键.二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.计算1023-+=_____.【答案】1.5【解析】【分析】先根据负整数指数幂及零指数幂化简,再根据有理数的加法计算.【详解】1023-+=11=1.52+.故答案为1.5.【点睛】本题考查了负整数指数幂及零指数幂的意义,任何不等于0的数的负整数次幂,等于这个数的正整数次幂的倒数,非零数的零次幂等于1.12.如图,在正五边形ABCDE 中,连接AC ,则∠BAC 的度数为_____.【答案】36°【解析】【分析】首先利用多边形的内角和公式求得正五边形的内角和,再求得每个内角的度数,利用等腰三角形的性质可得∠BAC 的度数.【详解】正五边形内角和:(5﹣2)×180°=3×180°=540°∴5401085B ︒︒∠==,∴180B 1801083622BAC ︒︒︒︒-∠-∠===.故答案为36°.【点睛】本题主要考查了正多边形的内角和,熟记多边形的内角和公式:(n-2)×180°是解答此题的关键.13.一个口袋中有1个红色球,有1个白色球,有1个蓝色球,这些球除颜色外都相同.从中随机摸出一个球,记下颜色后放回,摇匀后再从中随机摸出一个球,则两次都摸到红球的概率是___________.【答案】19【解析】【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【详解】解:根据题意列表如下:红球白球蓝球红球(红球,红球)(白球,红球)(蓝球,红球)白球(红球,白球)(白球,白球)(蓝球,白球)蓝球(红球,蓝球)(白球,蓝球)(蓝球,蓝球)由表知,共有9种等可能结果,其中两次都摸到红球的有1种结果,所以两次摸到球的颜色相同的概率为19,故答案为:19.【点睛】本题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.14.某新建工业园区今年六月份提供就业岗位1501个,并按计划逐月增长,预计八月份将提供岗位1815个.设七、八两个月提供就业岗位数量的月平均增长率为x ,根据题意,可列方程为___________.【答案】()2150111815x +=【解析】【分析】设七、八两个月提供就业岗位数量的月平均增长率为x ,根据题意列出一元二次方程,即可求解.【详解】解:设七、八两个月提供就业岗位数量的月平均增长率为x ,根据题意得,()2150111815x +=,故答案为:()2150111815x +=.【点睛】本题考查了一元二次方程的应用,增长率问题,根据题意列出方程是解题的关键.15.如图,在Rt ABC △中,90BAC ∠= ,AB AC =,点D 为BC 上一点,连接AD .过点B 作BE AD ⊥于点E ,过点C 作CF AD ⊥交AD 的延长线于点F .若4BE =,1CF =,则EF 的长度为___________.【答案】3【解析】【分析】证明AFC BEA ≌△△,得到,BE AF CF AE ==,即可得解.【详解】解:∵90BAC ∠=︒,∴90EAB EAC ∠+∠=︒,∵BE AD ⊥,CF AD ⊥,∴90AEB AFC ∠=∠=︒,∴90ACF EAC ∠+∠=︒,∴ACF BAE ∠=∠,在AFC △和BEA △中:AEB CFA ACF BAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS AFC BEA ≌△△,∴4,1AF BE AE CF ====,∴413EF AF AE =-=-=,故答案为:3.【点睛】本题考查全等三角形的判定和性质.利用同角的余角相等和等腰三角形的两腰相等证明三角形全等是解题的关键.16.如图,O 是矩形ABCD 的外接圆,若4,3AB AD ==,则图中阴影部分的面积为___________.(结果保留π)【答案】25124π-【解析】【分析】根据直径所对的圆周角是直角及勾股定理得到5BD =,再根据圆的面积及矩形的性质即可解答.【详解】解:连接BD ,∵四边形ABCD 是矩形,∴BD 是O 的直径,∵4,3AB AD ==,∴5BD ==,∴O 的半径为52,∴O 的面积为254π,矩形的面积为3412⨯=,∴阴影部分的面积为25124π-;故答案为25124π-;【点睛】本题考查了矩形的性质,圆的面积,矩形的面积,勾股定理,掌握矩形的性质是解题的关键.17.若关于x 的一元一次不等式组+34222x x a ⎧≤⎪⎨⎪-≥⎩,至少有2个整数解,且关于y 的分式方程14222a y y -+=--有非负整数解,则所有满足条件的整数a 的值之和是___________.【答案】4【解析】【分析】先解不等式组,确定a 的取值范围6a ≤,再把分式方程去分母转化为整式方程,解得12a y -=,由分式方程有正整数解,确定出a 的值,相加即可得到答案.【详解】解:+34222x x a ⎧≤⎪⎨⎪-≥⎩①②解不等式①得:5x ≤,解不等式②得:1+2a x ≥,∴不等式的解集为1+52a x ≤≤,∵不等式组至少有2个整数解,∴1+42a ≤,解得:6a ≤;∵关于y 的分式方程14222a y y -+=--有非负整数解,∴()1422a y ---=解得:12a y -=,即102a -≥且122a -≠,解得:1a ≥且5a ≠∴a 的取值范围是16a ≤≤,且5a ≠∴a 可以取:1,3,∴134+=,故答案为:4.【点睛】本题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解题关键.18.如果一个四位自然数abcd 的各数位上的数字互不相等且均不为0,满足ab bc cd -=,那么称这个四位数为“递减数”.例如:四位数4129,∵411229-=,∴4129是“递减数”;又如:四位数5324,∵53322124-=≠,∴5324不是“递减数”.若一个“递减数”为a312,则这个数为___________;若一个“递减数”的前三个数字组成的三位数abc 与后三个数字组成的三位数bcd 的和能被9整除,则满足条件的数的最大值是___________.【答案】①.4312②.8165【解析】【分析】根据递减数的定义进行求解即可.【详解】解:∵a312是递减数,∴1033112a +-=,∴4a =,∴这个数为4312;故答案为:4312∵一个“递减数”的前三个数字组成的三位数abc 与后三个数字组成的三位数bcd 的和能被9整除,∴101010a b b c c d +--=+,∵1001010010abc bcd a b c b c d +=+++++,∴110010110100110001abc bcd a b c b b a b a b c +=++++++--=,∵()11010199112a b a b a b +=+++,能被9整除,∴112a b +能被9整除,∵各数位上的数字互不相等且均不为0,∴12345678,,,,,,,87654321a a a a a a a a b b b b b b b b ========⎧⎧⎧⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨⎨⎨⎨========⎩⎩⎩⎩⎩⎩⎩⎩,∵最大的递减数,∴8,1a b ==,∴1089110c c d ⨯-⨯-=+,即:1171c d +=,∴c 最大取6,此时5d =,∴这个最大的递减数为8165.故答案为:8165.【点睛】本题考查一元一次方程和二元一次方程的应用.理解并掌握递减数的定义,是解题的关键.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.计算:(1)()()()211a a a a -++-;(2)22.211x x x x x x ⎛⎫÷- ⎪+++⎝⎭【答案】(1)21a -(2)11x +【解析】【分析】(1)先计算单项式乘多项式,平方差公式,再合并同类项即可;(2)先通分计算括号内,再利用分式的除法法则进行计算.【小问1详解】解:原式2221a a a =-+-21a =-;【小问2详解】原式()222.11x x x x x x ⎛⎫+-=÷ ⎪++⎝⎭()22211x x x x =÷++()22211x x x x +=⋅+11x =+.【点睛】本题考查整式的混合运算,分式的混合运算.熟练掌握相关运算法则,正确的计算,是解题的关键.20.学习了平行四边形后,小虹进行了拓展性研究.她发现,如果作平行四边形一条对角线的垂直平分线,那么这个平行四边形的一组对边截垂直平分线所得的线段被垂足平分.她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,作AC 的垂直平分线交DC 于点E ,交AB 于点F ,垂足为点O .(只保留作图痕迹)已知:如图,四边形ABCD 是平行四边形,AC 是对角线,EF 垂直平分AC ,垂足为点O .求证:OE OF =.证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠=①.∵EF 垂直平分AC ,∴②.又EOC ∠=___________③.∴()COE AOF ASA ∆≅∆.∴OE OF =.小虹再进一步研究发现,过平行四边形对角线AC 中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:过平行四边形对角线中点的直线④.【答案】作图:见解析;FAO ∠;AO CO =;FOA ∠;被平行四边形一组对边所截,截得的线段被对角线中点平分【解析】【分析】根据线段垂直平分线的画法作图,再推理证明即可并得到结论.【详解】解:如图,即为所求;证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠=FAO ∠.∵EF 垂直平分AC ,∴AO CO =.又EOC ∠=FOA ∠.∴()COE AOF ASA ≅ .∴OE OF =.故答案为:FAO ∠;AO CO =;FOA ∠;由此得到命题:过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分,故答案为:被平行四边形一组对边所截,截得的线段被对角线中点平分.【点睛】此题考查了平行四边形的性质,作线段的垂直平分线,全等三角形的判定和性质,熟练掌握平行四边形的性质及线段垂直平分线的作图方法是解题的关键.21.为了解A 、B 两款品质相近的智能玩具飞机在一次充满电后运行的最长时间,有关人员分别随机调查了A 、B 两款智能玩具飞机各10架,记录下它们运行的最长时间(分钟),并对数据进行整理、描述和分析(运行最长时间用x 表示,共分为三组:合格6070x ≤<,中等7080x ≤<,优等80x ≥),下面给出了部分信息:A 款智能玩具飞机10架一次充满电后运行最长时间是:60,64,67,69,71,71,72,72,72,82B 款智能玩具飞机10架一次充满电后运行最长时间属于中等的数据是:70,71,72,72,73两款智能玩具飞机运行最长时间统计表,B 款智能玩具飞机运行最长时间扇形统计图类别A B平均数7070中位数71b众数a67方差30.426.6根据以上信息,解答下列问题:a___________,b=___________,m=___________;(1)上述图表中=(2)根据以上数据,你认为哪款智能玩具飞机运行性能更好?请说明理由(写出一条理由即可);(3)若某玩具仓库有A款智能玩具飞机200架、B款智能玩具飞机120架,估计两款智能玩具飞机运行性能在中等及以上的共有多少架?【答案】(1)72,70.5,10;(2)B款智能玩具飞机运行性能更好;因为B款智能玩具飞机运行时间的方差比A款智能玩具飞机运行时间的方差小,运行时间比较稳定;(3)两款智能玩具飞机运行性能在中等及以上的大约共有192架.【解析】【分析】(1)由A款数据可得A款的众数,即可求出a,由B款扇形数据可求得合格数及优秀数,从而求得中位数及优秀等次的百分比;(2)根据方差越小越稳定即可判断;(3)用样本数据估计总体,分别求出两款飞机中等及以上的架次相加即可.【小问1详解】解:由题意可知10架A款智能玩具飞机充满电后运行最长时间中,只有72出现了三次,且次数最多,则该a=;组数据的众数为72,即72由B款智能玩具飞机运行时间的扇形图可知,合格的百分比为40%,⨯=(架)则B款智能玩具飞机运行时间合格的架次为:1040%4则B 款智能玩具飞机运行时间优等的架次为:10451--=(架)则B 款智能玩具飞机的运行时间第五、第六个数据分别为:70,71,故B 款智能玩具飞机运行时间的中位数为:707170.52+=B 款智能玩具飞机运行时间优等的百分比为:1100%10%10⨯=即10m =故答案为:72,70.5,10;【小问2详解】B 款智能玩具飞机运行性能更好;因为B 款智能玩具飞机运行时间的方差比A 款智能玩具飞机运行时间的方差小,运行时间比较稳定;【小问3详解】200架A 款智能玩具飞机运行性能在中等及以上的架次为:620012010⨯=(架)200架A 款智能玩具飞机运行性能在中等及以上的架次为:61207210⨯=(架)则两款智能玩具飞机运行性能在中等及以上的共有:12072192+=架,答:两款智能玩具飞机运行性能在中等及以上的大约共有192架.【点睛】本题考查了扇形统计图,中位数、众数、百分比,用方差做决策,用样本估计总体;解题的关键是熟练掌握相关知识综合求解.22.某公司不定期为员工购买某预制食品厂生产的杂酱面、牛肉面两种食品.(1)该公司花费3000元一次性购买了杂酱面、牛肉面共170份,此时杂酱面、牛肉面的价格分别为15元、20元,求购买两种食品各多少份?(2)由于公司员工人数和食品价格有所调整,现该公司分别花费1260元、1200元一次性购买杂酱面、牛肉面两种食品,已知购买杂酱面的份数比牛肉面的份数多50%,每份杂酱面比每份牛肉面的价格少6元,求购买牛肉面多少份?【答案】(1)购买杂酱面80份,购买牛肉面90份(2)购买牛肉面90份【解析】【分析】(1)设购买杂酱面x 份,则购买牛肉面()170x -份,由题意知,()152********x x +⨯-=,解。
2013年重庆市中考数学诊断模拟试卷
-22(8题图)2013年重庆市中考数学诊断模拟试卷一、选择题:(每小题4分,共48分)23A B C D4、二元一次方程组的解是()A6.下列调查中,适合用普查的是()①要了解某厂生产的一批灯泡的使用寿命;②要了解某个球队的队员的身高;7、计算28-的结果是()A、6B、6C、2D、28.如图,A、C、B是⊙O上三点,若∠AOC=40°,则∠ABC的度数是()A.10° B 20° C 40° D 80°9、某班九名同学在篮球场进行定点投篮测试,每人投篮五次,投中的次数统计如下:4,3,2,4,4,1,5,0,3,则这组数据的中位数、众数分别为()A.3 4 B.4. 3 C.3. 3 D.4. 422又从乙地逆流而上航行返回到甲地(轮船在静水中的航行速度始终保持不变).设轮船从甲地出发后所用时间为t (h),轮船离甲地的距离为s(km),则s与t的函数图象大致是()17题图(15题图)(12题图)13、将抛物线y=﹣(x ﹣1)2﹣2向左平移1个单位,再向上平移1个单位,则平移后抛物线的表达式 14、若单项式3x 2y n与-2x my 3是同类项,则m+n=15.在平面内,⊙O 的半径为5cm ,点P 到圆心O 的距离为3cm ,则点P 与⊙O 的位置关系是 如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0), (2, 0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2013个点的横坐标为17.把一个转盘平均分成三等份,依次标上数字2、6、8.用力转动转盘两次,将第一次转动停止后指针指向的数字记作x ,第二次转动停止后指针指向的数字的一半记作y 以长度为x 、y 、4的三条线段为边长能构成三角形的概率为_____________.18某商人经营甲、乙两种商品,每件甲种商品的利润率为40%,每件乙种商品的利润率为60%,当售出的乙种商品的件数比甲种商品的件数多50%时,这个商人得到的总利润率是50%;当售出的乙种商品的件数比甲种商品的件数少50%时,这个商人得到的总利润率为_____ ____.(利润率=利润÷成本) 三、解答题: 19.计算:2sin45_20.如图,两条国道OA 、OB 在我市交汇于O ,在∠AOB 的内部C 、D 处各有一个工厂。
2013年重庆市中考数学试题(A卷)及参考答案(word解析版)
2013年重庆市中考数学试题(A卷)及参考答案一、选择题:(本大题共12个小题,每小题4分,共48分)1.在3,0,6,﹣2这四个数中,最大的数是()A.0 B.6 C.﹣2 D.32.计算(2x3y)2的结果是()A.4x6y2B.8x6y2C.4x5y2D.8x5y23.已知∠A=65°,则∠A的补角等于()A.125°B.105°C.115°D.95°4.分式方程212x x-=-的根是()A.x=1 B.x=﹣1 C.x=2 D.x=﹣25.如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,那么∠ACD的度数为()A.40°B.35°C.50°D.45°6.计算6tan45°﹣2cos60°的结果是()A.B.4 C.D.57.某特警部队为了选拔“神枪手”,举行了1000米射击比赛,最后由甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99.68环,甲的方差是0.28,乙的方差是0.21,则下列说法中,正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人成绩的稳定性相同D.无法确定谁的成绩更稳定8.如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为()A.18πcm B.16πcm C.20πcm D.24πcm9.如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为()A.5cm B.6cm C.7cm D.8cm10.下列图形都是由同样大小的矩形按一定的规律组成,其中第(1)个图形的面积为2cm2,第(2)个图形的面积为8cm2,第(3)个图形的面积为18cm2,…,则第(10)个图形的面积为()A.196cm2B.200cm2C.216cm2D.256cm211.万州某运输公司的一艘轮船在长江上航行,往返于万州、朝天门两地.假设轮船在静水中的速度不变,长江的水流速度不变,该轮船从万州出发,逆水航行到朝天门,停留一段时间(卸货、装货、加燃料等),又顺水航行返回万州.若该轮船从万州出发后所用的时间为x(小时),轮船距万州的距离为y(千米),则下列各图形中,能够反映y与x之间函数关系的大致图象是()A.B.C.D.12.一次函数y=ax+b(a≠0)、二次函数y=ax2+bx和反比例函数kyx(k≠0)在同一直角坐标系中的图象如图所示,A点的坐标为(﹣2,0),则下列结论中,正确的是()A.b=2a+k B.a=b+k C.a>b>0 D.a>k>0二、填空题:(本大题共6个小题,每小题4分,共24分)13.实数6的相反数是.14.不等式2x﹣3≥x的解集是.15.某老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如表:则这10名学生周末利用网络进行学习的平均时间是小时.16.如图,在边长为4的正方形ABCD中,以AB为直径的半圆与对角线AC交于点E,则图中阴影部分的面积为.(结果保留π)17.从3,0,﹣1,﹣2,﹣3这五个数中,随机抽取一个数,作为函数y=(5﹣m 2)x 和关于x 的方程(m+1)x 2+mx+1=0中m 的值,恰好使所得函数的图象经过第一、三象限,且方程有实数根的概率为 .18.如图,菱形OABC 的顶点O 是坐标原点,顶点A 在x 轴的正半轴上,顶点B 、C 均在第一象限,OA=2,∠AOC=60°.点D 在边AB 上,将四边形OABC 沿直线0D 翻折,使点B 和点C 分别落在这个坐标平面的点B′和C′处,且∠C′DB′=60°.若某反比例函数的图象经过点B′,则这个反比例函数的解析式为 .三、解答题:(本大题共2个小题,每小题7分,共14分)19.(7分)计算:)()202013131|2|3-⎛⎫---+- ⎪⎝⎭. 20.(7分)作图题:(不要求写作法)如图,△ABC 在平面直角坐标系中,其中,点A 、B 、C 的坐标分别为A (﹣2,1),B (﹣4,5),C (﹣5,2).(1)作△ABC 关于直线l :x=﹣1对称的△A 1B 1C 1,其中,点A 、B 、C 的对应点分别为A 1、B 1、C 1;(2)写出点A 1、B 1、C 1的坐标.四、解答题:(本大题共4个小题,每小题10分,共40分)21.(10分)先化简,再求值:22226951222a ab b b a b a aba b a ⎛⎫-+÷--- ⎪--⎝⎭,其中a ,b 满足82a b a b +=⎧⎨-=⎩.22.(10分)减负提质“1+5”行动计划是我市教育改革的一项重要举措.某中学“阅读与演讲社团”为了了解本校学生的每周课外阅读时间,采用随机抽样的方式进行了问卷调查,调查结果分为“2小时以内”、“2小时~3小时”、“3小时~4小时”和“4小时以上”四个等级,分别用A、B、C、D表示,根据调查结果绘制了如图所示的统计图,由图中所给出的信息解答下列问题:(1)求出x的值,并将不完整的条形统计图补充完整;(2)在此次调查活动中,初三(1)班的两个学习小组内各有2人每周课外阅读时间都是4小时以上,现从中任选2人去参加学校的知识抢答赛.用列表或画树状图的方法求选出的2人来自不同小组的概率.23.(10分)随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)24.(10分)如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF 与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=AB的长.五、解答题:(本大题共2个小题,每小题12分共24分)25.(12分)如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.26.(12分)已知:如图①,在平行四边形ABCD中,AB=12,BC=6,AD⊥BD.以AD为斜边在平行四边形ABCD的内部作Rt△AED,∠EAD=30°,∠AED=90°.(1)求△AED的周长;(2)若△AED以每秒2个单位长度的速度沿DC向右平行移动,得到△A0E0D0,当A0D0与BC重合时停止移动,设运动时间为t秒,△A0E0D0与△BDC重叠的面积为S,请直接写出S与t之间的函数关系式,并写出t的取值范围;(3)如图②,在(2)中,当△AED停止移动后得到△BEC,将△BEC绕点C按顺时针方向旋转α(0°<α<180°),在旋转过程中,B的对应点为B1,E的对应点为E1,设直线B1E1与直线BE交于点P、与直线CB交于点Q.是否存在这样的α,使△BPQ为等腰三角形?若存在,求出α的度数;若不存在,请说明理由.参考答案与解析一、选择题:(本大题共12个小题,每小题4分,共48分)1.在3,0,6,﹣2这四个数中,最大的数是()A.0 B.6 C.﹣2 D.3【知识考点】有理数大小比较.【思路分析】根据有理数的大小比较法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,即可得出答案.【解答过程】解:3,0,6,﹣2这四个数中,最大的数是6.故选B.【总结归纳】本题考查了有理数的大小比较,属于基础题,掌握有理数的大小比较法则是关键.2.计算(2x3y)2的结果是()。
2017年重庆市中考数学试卷(A卷)及答案解析(含答题卡)
2017年重庆市中考数学试卷(A卷)一、选择题(每小题4分,共48分)1.(4分)在实数﹣3,2,0,﹣4中,最大的数是()A.﹣3 B.2 C.0 D.﹣42.(4分)下列图形中是轴对称图形的是()A.B.C.D.3.(4分)计算x6÷x2正确的结果是()A.3 B.x3C.x4D.x84.(4分)下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查5.(4分)估计+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间6.(4分)若x=﹣,y=4,则代数式3x+y﹣3的值为()A.﹣6 B.0 C.2 D.67.(4分)要使分式有意义,x应满足的条件是()A.x>3 B.x=3 C.x<3 D.x≠38.(4分)若△ABC~△DEF,相似比为3:2,则对应高的比为()A.3:2 B.3:5 C.9:4 D.4:99.(4分)如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,若点E 是AD的中点,以点B为圆心,BE为半径画弧,交BC于点F,则图中阴影部分的面积是()A.B.C.D.10.(4分)下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为()A.73 B.81 C.91 D.10911.(4分)如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为()(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).A.5.1米B.6.3米C.7.1米D.9.2米12.(4分)若数a使关于x的分式方程+=4的解为正数,且使关于y的不等式组的解集为y<﹣2,则符合条件的所有整数a的和为()A.10 B.12 C.14 D.16二、填空题(每小题4分,共24分)13.(4分)“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为.14.(4分)计算:|﹣3|+(﹣1)2=.15.(4分)如图,BC是⊙O的直径,点A在圆上,连接AO,AC,∠AOB=64°,则∠ACB=.16.(4分)某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是小时.17.(4分)A、B两地之间的路程为2380米,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A、B之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行.甲到达A地时停止行走,乙到达A地时也停止行走,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A地时,甲与A地相距的路程是米.18.(4分)如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN的周长是.三、解答题(每小题8分,共16分)19.(8分)如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED交AB 于点F,求∠AFE的度数.20.(8分)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)扇形统计图中九年级参赛作文篇数对应的圆心角是度,并补全条形统计图;(2)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.21.(10分)计算:(1)x(x﹣2y)﹣(x+y)2(2)(+a﹣2)÷.22.(10分)如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与反比例函数y=(k≠0)的图象交于第一、三象限内的A、B两点,与y轴交于点C,过点B作BM⊥x轴,垂足为M,BM=OM,OB=2,点A的纵坐标为4.(1)求该反比例函数和一次函数的解析式;(2)连接MC,求四边形MBOC的面积.23.(10分)某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.24.(10分)在△ABC中,∠ABM=45°,AM⊥BM,垂足为M,点C是BM延长线上一点,连接AC.(1)如图1,若AB=3,BC=5,求AC的长;(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF=∠CEF.25.(10分)对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F (n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=,当F(s)+F(t)=18时,求k的最大值.26.(12分)如图,在平面直角坐标系中,抛物线y=x2﹣x﹣与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.(1)求直线AE的解析式;(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;(3)点G是线段CE的中点,将抛物线y=x2﹣x﹣沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.2017年重庆市中考数学试卷(A卷)参考答案与试题解析一、选择题(每小题4分,共48分)1.(4分)(2017•重庆)在实数﹣3,2,0,﹣4中,最大的数是()A.﹣3 B.2 C.0 D.﹣4【分析】根据正数大于0,0大于负数,正数大于负数,比较即可.【解答】解:∵﹣4<﹣3<0<2,∴四个实数中,最大的实数是2.故选:B.【点评】本题考查了实数大小比较,关键要熟记:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.2.(4分)(2017•重庆)下列图形中是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意.故选:C.【点评】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(4分)(2017•重庆)计算x6÷x2正确的结果是()A.3 B.x3C.x4D.x8【分析】直接利用同底数幂的除法运算法则计算得出答案.【解答】解:x6÷x2=x4.故选:C.【点评】此题主要考查了同底数幂的除法运算,正确掌握运算法则是解题关键.4.(4分)(2017•重庆)下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.(4分)(2017•重庆)估计+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【分析】首先得出的取值范围,进而得出答案.【解答】解:∵3<<4,∴4<+1<5.故选:B.【点评】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.6.(4分)(2017•重庆)若x=﹣,y=4,则代数式3x+y﹣3的值为()A.﹣6 B.0 C.2 D.6【分析】直接将x,y的值代入求出答案.【解答】解:∵x=﹣,y=4,∴代数式3x+y﹣3=3×(﹣)+4﹣3=0.故选:B.【点评】此题主要考查了代数式求值,正确计算是解题关键.7.(4分)(2017•重庆)要使分式有意义,x应满足的条件是()A.x>3 B.x=3 C.x<3 D.x≠3【分析】根据分式有意义的条件:分母≠0,列式解出即可.【解答】解:当x﹣3≠0时,分式有意义,即当x≠3时,分式有意义,故选D.【点评】本题考查的知识点为:分式有意义,分母不为0.8.(4分)(2017•重庆)若△ABC~△DEF,相似比为3:2,则对应高的比为()A.3:2 B.3:5 C.9:4 D.4:9【分析】直接利用相似三角形对应高的比等于相似比进而得出答案.【解答】解:∵△ABC~△DEF,相似比为3:2,∴对应高的比为:3:2.故选:A.【点评】此题主要考查了相似三角形的性质,正确记忆相关性质是解题关键.9.(4分)(2017•重庆)如图,矩形ABCD 的边AB=1,BE 平分∠ABC ,交AD 于点E ,若点E 是AD 的中点,以点B 为圆心,BE 为半径画弧,交BC 于点F ,则图中阴影部分的面积是( )A .B .C .D .【分析】利用矩形的性质以及结合角平分线的性质分别求出AE ,BE 的长以及∠EBF 的度数,进而利用图中阴影部分的面积=S 矩形ABCD ﹣S △ABE ﹣S 扇形EBF ,求出答案.【解答】解:∵矩形ABCD 的边AB=1,BE 平分∠ABC ,∴∠ABE=∠EBF=45°,AD ∥BC ,∴∠AEB=∠CBE=45°,∴AB=AE=1,BE=,∵点E 是AD 的中点,∴AE=ED=1,∴图中阴影部分的面积=S 矩形ABCD ﹣S △ABE ﹣S 扇形EBF=1×2﹣×1×1﹣=﹣. 故选:B .【点评】此题主要考查了扇形面积求法以及矩形的性质等知识,正确得出BE 的长以及∠EBC 的度数是解题关键.10.(4分)(2017•重庆)下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为()A.73 B.81 C.91 D.109【分析】根据题意得出得出第n个图形中菱形的个数为n2+n+1;由此代入求得第⑨个图形中菱形的个数.【解答】解:第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n个图形中菱形的个数为:n2+n+1;第⑨个图形中菱形的个数92+9+1=91.故选:C.【点评】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.11.(4分)(2017•重庆)如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为()(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).A.5.1米B.6.3米C.7.1米D.9.2米【分析】延长DE交AB延长线于点P,作CQ⊥AP,可得CE=PQ=2、CQ=PE,由i===可设CQ=4x、BQ=3x,根据BQ2+CQ2=BC2求得x的值,即可知DP=11,由AP==结合AB=AP﹣BQ﹣PQ可得答案.【解答】解:如图,延长DE交AB延长线于点P,作CQ⊥AP于点Q,∵CE∥AP,∴DP⊥AP,∴四边形CEPQ为矩形,∴CE=PQ=2,CQ=PE,∵i===,∴设CQ=4x、BQ=3x,由BQ2+CQ2=BC2可得(4x)2+(3x)2=102,解得:x=2或x=﹣2(舍),则CQ=PE=8,BQ=6,∴DP=DE+PE=11,在Rt△ADP中,∵AP==≈13.1,∴AB=AP﹣BQ﹣PQ=13.1﹣6﹣2=5.1,故选:A.【点评】此题考查了俯角与坡度的知识.注意构造所给坡度和所给锐角所在的直角三角形是解决问题的难点,利用坡度和三角函数求值得到相应线段的长度是解决问题的关键.12.(4分)(2017•重庆)若数a使关于x的分式方程+=4的解为正数,且使关于y的不等式组的解集为y<﹣2,则符合条件的所有整数a 的和为()A.10 B.12 C.14 D.16【分析】根据分式方程的解为正数即可得出a<6且a≠2,根据不等式组的解集为y<﹣2,即可得出a≥﹣2,找出﹣2≤a<6且a≠2中所有的整数,将其相加即可得出结论.【解答】解:分式方程+=4的解为x=且x≠1,∵关于x的分式方程+=4的解为正数,∴>0且≠1,∴a<6且a≠2.,解不等式①得:y<﹣2;解不等式②得:y≤a.∵关于y的不等式组的解集为y<﹣2,∴a≥﹣2.∴﹣2≤a<6且a≠2.∵a为整数,∴a=﹣2、﹣1、0、1、3、4、5,(﹣2)+(﹣1)+0+1+3+4+5=10.故选A.【点评】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组的解集为y<﹣2,找出﹣2≤a<6且a≠2是解题的关键.二、填空题(每小题4分,共24分)13.(4分)(2017•重庆)“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为 1.1×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于11000有5位,所以可以确定n=5﹣1=4.【解答】解:11000=1.1×104.故答案为:1.1×104.【点评】此题考查科学记数法表示较大的数的方法,准确确定n值是关键.14.(4分)(2017•重庆)计算:|﹣3|+(﹣1)2=4.【分析】利用有理数的乘方法则,以及绝对值的代数意义化简即可得到结果.【解答】解:|﹣3|+(﹣1)2=4,故答案为:4.【点评】此题考查了有理数的混合运算以及绝对值,熟练掌握运算法则是解本题的关键.15.(4分)(2017•重庆)如图,BC是⊙O的直径,点A在圆上,连接AO,AC,∠AOB=64°,则∠ACB=32°.【分析】根据AO=OC,可得:∠ACB=∠OAC,然后根据∠AOB=64°,求出∠ACB 的度数是多少即可.【解答】解:∵AO=OC,∴∠ACB=∠OAC,∵∠AOB=64°,∴∠ACB+∠OAC=64°,∴∠ACB=64°÷2=32°.故答案为:32°.【点评】此题主要考查了圆周角定理的应用,以及圆的特征和应用,要熟练掌握.16.(4分)(2017•重庆)某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是11小时.【分析】根据统计图中的数据可以得到一共多少人,然后根据中位数的定义即可求得这组数据的中位数.【解答】解:由统计图可知,一共有:6+9+10+8+7=40(人),∴该班这些学生一周锻炼时间的中位数是第20个和21个学生对应的数据的平均数,∴该班这些学生一周锻炼时间的中位数是11,故答案为:11.【点评】本题考查折线统计图、中位数,解答本题的关键是明确中位数的定义,利用数形结合的思想解答.17.(4分)(2017•重庆)A、B两地之间的路程为2380米,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A、B 之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行.甲到达A地时停止行走,乙到达A地时也停止行走,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A地时,甲与A地相距的路程是180米.【分析】根据题意和函数图象中的数据可以求得甲乙的速度和各段用的时间,从而可以求得乙到达A地时,甲与A地相距的路程.【解答】解:由题意可得,甲的速度为:(2380﹣2080)÷5=60米/分,乙的速度为:(2080﹣910)÷(14﹣5)﹣60=70米/分,则乙从B到A地用的时间为:2380÷70=34分钟,他们相遇的时间为:2080÷(60+70)=16分钟,∴甲从开始到停止用的时间为:(16+5)×2=42分钟,∴乙到达A地时,甲与A地相距的路程是:60×(42﹣34﹣5)=60×3=180米,故答案为:180.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.18.(4分)(2017•重庆)如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG 沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN的周长是.【分析】解法一:如图1,作辅助线,构建全等三角形,根据全等三角形对应边相等证明FQ=BQ=PE=1,△DEF是等腰直角三角形,利用勾理计算DE=EF=,PD==3,如图2,由平行相似证明△DGC∽△FGA,列比例式可得FG 和CG的长,从而得EG的长,根据△GHF是等腰直角三角形,得GH和FH的长,利用DE∥GM证明△DEN∽△MNH,则,得EN=,从而计算出△EMN 各边的长,相加可得周长.解法二,将解法一中用相似得出的FG和CG的长,利用面积法计算得出,其它解法相同.解法三:作辅助线构建正方形和全等三角形,设EP=x,则DQ=4﹣x=FP=x﹣2,求x的值得到PF=1,AE的长;由△DGC和△FGA相似,求AG和GE的长;证△GHF 和△FKM全等,所以GH=FK=4/3,HF=MK=2/3,ML=AK=10/3,DL=AD﹣MK=10/3,即DL=LM,所以DM在正方形对角线DB上,设NI=y,列比例式可得NI的长,分别求MN和EN的长,相加可得结论.【解答】解:解法一:如图1,过E作PQ⊥DC,交DC于P,交AB于Q,连接BE,∵DC∥AB,∴PQ⊥AB,∵四边形ABCD是正方形,∴∠ACD=45°,∴△PEC是等腰直角三角形,∴PE=PC,设PC=x,则PE=x,PD=4﹣x,EQ=4﹣x,∴PD=EQ,∵∠DPE=∠EQF=90°,∠PED=∠EFQ,∴△DPE≌△EQF,∴DE=EF,易证明△DEC≌△BEC,∴DE=BE,∴EF=BE,∵EQ⊥FB,∴FQ=BQ=BF,∵AB=4,F是AB的中点,∴BF=2,∴FQ=BQ=PE=1,∴CE=,Rt△DAF中,DF==2,∵DE=EF,DE⊥EF,∴△DEF是等腰直角三角形,∴DE=EF==,∴PD==3,如图2,∵DC∥AB,∴△DGC∽△FGA,∴==2,∴CG=2AG,DG=2FG,∴FG=×=,∵AC==4,∴CG=×=,∴EG=﹣=,连接GM、GN,交EF于H,∵∠GFE=45°,∴△GHF是等腰直角三角形,∴GH=FH==,∴EH=EF﹣FH=﹣=,由折叠得:GM⊥EF,MH=GH=,∴∠EHM=∠DEF=90°,∴DE∥HM,∴△DEN∽△MNH,∴,∴==3,∴EN=3NH,∵EN+NH═EH=,∴EN=,∴NH=EH﹣EN=﹣=,Rt△GNH中,GN===,由折叠得:MN=GN,EM=EG,∴△EMN的周长=EN+MN+EM=++=;解法二:如图3,过G作GK⊥AD于K,作GR⊥AB于R,∵AC平分∠DAB,∴GK=GR,∴====2,∵==2,∴,同理,==3,其它解法同解法一,可得:∴△EMN的周长=EN+MN+EM=++=;解法三:如图4,过E作EP⊥AP,EQ⊥AD,∵AC是对角线,∴EP=EQ,易证△DQE和△FPE全等,∴DE=EF,DQ=FP,且AP=EP,设EP=x,则DQ=4﹣x=FP=x﹣2,解得x=3,所以PF=1,∴AE==3,∵DC∥AB,∴△DGC∽△FGA,∴同解法一得:CG=×=,∴EG=﹣=,AG=AC=,过G作GH⊥AB,过M作MK⊥AB,过M作ML⊥AD,则易证△GHF≌△FKM全等,∴GH=FK=,HF=MK=,∵ML=AK=AF+FK=2+=,DL=AD﹣MK=4﹣=,即DL=LM,∴∠LDM=45°∴DM在正方形对角线DB上,过N作NI⊥AB,则NI=IB,设NI=y,∵NI∥EP∴∴,解得y=1.5,所以FI=2﹣y=0.5,∴I为FP的中点,∴N是EF的中点,∴EN=0.5EF=,∵△BIN是等腰直角三角形,且BI=NI=1.5,∴BN=,BK=AB﹣AK=4﹣=,BM=,MN=BN﹣BM=﹣=,∴△EMN的周长=EN+MN+EM=++=;故答案为:.【点评】本题考查了正方形的性质、翻折变换的性质、三角形全等、相似的性质和判定、勾股定理,三角函数,计算比较复杂,作辅助线,构建全等三角形,计算出PE的长是关键.三、解答题(每小题8分,共16分)19.(8分)(2017•重庆)如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED交AB于点F,求∠AFE的度数.【分析】由平角求出∠AED的度数,由角平分线得出∠DEF的度数,再由平行线的性质即可求出∠AFE的度数.【解答】解:∵∠AEC=42°,∴∠AED=180°﹣∠AEC=138°,∵EF平分∠AED,∴∠DEF=∠AED=69°,又∵AB∥CD,∴∠AFE=∠DEF=69°.【点评】本题考查的是平行线的性质以及角平分线的定义.熟练掌握平行线的性质,求出∠DEF的度数是解决问题的关键.20.(8分)(2017•重庆)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)扇形统计图中九年级参赛作文篇数对应的圆心角是126度,并补全条形统计图;(2)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.【分析】(1)求出总的作文篇数,即可得出九年级参赛作文篇数对应的圆心角的度数;求出八年级的作文篇数,补全条形统计图即可:(2)假设4篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文.用画树状图法,即可得出答案.【解答】解:(1)20÷20%=100,九年级参赛作文篇数对应的圆心角=360°×=126°;故答案为:126;100﹣20﹣35=45,补全条形统计图如图所示:(2)假设4篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文.画树状图法:共有12种可能的结果,七年级特等奖作文被选登在校刊上的结果有6种,∴P(七年级特等奖作文被选登在校刊上)==.【点评】此题考查了扇形统计图和条形统计图、列表法与树状图法的应用;从统计图中、扇形图中获取信息、画出树状图是解决问题的关键.21.(10分)(2017•重庆)计算:(1)x(x﹣2y)﹣(x+y)2(2)(+a﹣2)÷.【分析】(1)先去括号,再合并同类项;(2)先将括号里的进行通分,再将除法化为乘法,分解因式后进行约分.【解答】解:(1)x(x﹣2y)﹣(x+y)2,=x2﹣2xy﹣x2﹣2xy﹣y2,=﹣4xy﹣y2;(2)(+a﹣2)÷.=[+],=,=.【点评】此题考查了分式和整式的混合运算,熟练掌握运算法则是解本题的关键.22.(10分)(2017•重庆)如图,在平面直角坐标系中,一次函数y=mx+n(m ≠0)的图象与反比例函数y=(k≠0)的图象交于第一、三象限内的A、B两点,与y轴交于点C,过点B作BM⊥x轴,垂足为M,BM=OM,OB=2,点A的纵坐标为4.(1)求该反比例函数和一次函数的解析式;(2)连接MC,求四边形MBOC的面积.【分析】(1)根据题意可以求得点B的坐标,从而可以求得反比例函数的解析式,进而求得点A的坐标,从而可以求得一次函数的解析式;(2)根据(1)中的函数解析式可以求得点C,点M、点B、点O的坐标,从而可以求得四边形MBOC的面积.【解答】解:(1)由题意可得,BM=OM,OB=2,∴BM=OM=2,∴点B的坐标为(﹣2,﹣2),设反比例函数的解析式为y=,则﹣2=,得k=4,∴反比例函数的解析式为y=,∵点A的纵坐标是4,∴4=,得x=1,∴点A的坐标为(1,4),∵一次函数y=mx+n(m≠0)的图象过点A(1,4)、点B(﹣2,﹣2),∴,得,即一次函数的解析式为y=2x+2;(2)∵y=2x+2与y轴交与点C,∴点C的坐标为(0,2),∵点B(﹣2,﹣2),点M(﹣2,0),点O(0,0),∴OM=2,OC=2,MB=2,∴四边形MBOC的面积是:==4.【点评】本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和反比例函数的性质解答.23.(10分)(2017•重庆)某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.【分析】(1)利用枇杷的产量不超过樱桃产量的7倍,表示出两种水果的质量,进而得出不等式求出答案;(2)根据果农今年运往市场销售的这部分樱桃和枇杷的销售总金额比他去年樱桃和枇杷的市场销售总金额相同得出等式,进而得出答案.【解答】解:(1)设该果农今年收获樱桃x千克,根据题意得:400﹣x≤7x,解得:x≥50,答:该果农今年收获樱桃至少50千克;(2)由题意可得:100(1﹣m%)×30+200×(1+2m%)×20(1﹣m%)=100×30+200×20,令m%=y,原方程可化为:3000(1﹣y)+4000(1+2y)(1﹣y)=7000,整理可得:8y2﹣y=0解得:y1=0,y2=0.125∴m1=0(舍去),m2=12.5∴m2=12.5,答:m的值为12.5.【点评】此题主要考查了一元一次不等式的应用以及一元二次方程的应用,正确表示出水果的销售总金额是解题关键.24.(10分)(2017•重庆)在△ABC中,∠ABM=45°,AM⊥BM,垂足为M,点C是BM延长线上一点,连接AC.(1)如图1,若AB=3,BC=5,求AC的长;(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF=∠CEF.【分析】(1)先由AM=BM=ABcos45°=3可得CM=2,再由勾股定理可得AC的长;(2)延长EF到点G,使得FG=EF,证△BMD≌△AMC得AC=BD,再证△BFG≌△CFE可得BG=CE,∠G=∠E,从而得BD=BG=CE,即可得∠BDG=∠G=∠E.【解答】解:(1)∵∠ABM=45°,AM⊥BM,∴AM=BM=ABcos45°=3×=3,则CM=BC﹣BM=5﹣3=2,∴AC===;(2)延长EF到点G,使得FG=EF,连接BG.由DM=MC,∠BMD=∠AMC,BM=AM,∴△BMD≌△AMC(SAS),∴AC=BD,又CE=AC,因此BD=CE,由BF=FC,∠BFG=∠EFC,FG=FE,∴△BFG≌△CFE,故BG=CE,∠G=∠E,所以BD=CE=BG,因此∠BDG=∠G=∠E.【点评】本题主要考查全等三角形的判定与性质及勾股定理、等腰直角三角形的性质等知识点,熟练掌握全等三角形的判定与性质是解题的关键.25.(10分)(2017•重庆)对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=,当F(s)+F(t)=18时,求k的最大值.【分析】(1)根据F(n)的定义式,分别将n=243和n=617代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18,即可得出关于x、y的二元一次方程,解之即可得出x、y的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k=中,找出最大值即可.【解答】解:(1)F(243)=(423+342+234)÷111=9;F(617)=(167+716+671)÷111=14.(2)∵s,t都是“相异数”,s=100x+32,t=150+y,∴F(s)=(302+10x+230+x+100x+23)÷111=x+5,F(t)=(510+y+100y+51+105+10y)÷111=y+6.∵F(t)+F(s)=18,∴x+5+y+6=x+y+11=18,∴x+y=7.∵1≤x≤9,1≤y≤9,且x,y都是正整数,∴或或或或或.∵s是“相异数”,∴x≠2,x≠3.∵t是“相异数”,∴y≠1,y≠5.∴或或,∴或或,∴或或,∴k的最大值为.【点评】本题考查了二元一次方程的应用,解题的关键是:(1)根据F(n)的定义式,求出F(243)、F(617)的值;(2)根据s=100x+32、t=150+y结合F(s)+F(t)=18,找出关于x、y的二元一次方程.。