第一组运筹学课程设计

合集下载

运筹课程设计案例

运筹课程设计案例

运筹课程设计案例一、课程目标知识目标:1. 让学生掌握运筹学的基本概念,如线性规划、整数规划等,并能够理解其在实际问题中的应用。

2. 使学生了解运筹学中的常用方法与工具,如图表法、单纯形法等,并能运用这些方法解决简单的实际问题。

3. 引导学生理解优化问题的本质,培养他们运用数学语言描述现实问题的能力。

技能目标:1. 培养学生运用运筹学方法分析问题和解决问题的能力,特别是针对实际案例,能够设计出有效的优化方案。

2. 提高学生的数据处理和计算能力,使其能够熟练运用运筹学软件工具解决复杂的优化问题。

3. 培养学生的团队协作和沟通能力,通过小组讨论和报告,共享解决问题的思路和方法。

情感态度价值观目标:1. 培养学生对运筹学学科的兴趣,激发他们探索优化问题的热情,形成积极向上的学习态度。

2. 培养学生具有批判性思维和创新精神,面对复杂问题能够勇于挑战,寻求最佳解决方案。

3. 引导学生认识到运筹学在国家和企业发展中的重要作用,增强社会责任感和使命感。

本课程针对的学生特点是具有一定数学基础和逻辑思维能力的初中生。

在教学过程中,教师应注重理论联系实际,激发学生的兴趣和好奇心,注重培养学生的动手操作能力和实际应用能力。

通过本课程的学习,期望学生能够掌握基本的运筹学知识和方法,提高解决实际问题的能力,同时培养他们的团队合作精神和批判性思维。

二、教学内容1. 运筹学基本概念:介绍运筹学的定义、发展历程及其在现实生活中的应用,重点讲解线性规划和整数规划的基本原理。

教材章节:第一章 运筹学概述,第三节 线性规划2. 运筹学方法与工具:详细讲解图表法、单纯形法等常用优化方法,并通过实例分析展示这些方法在实际问题中的应用。

教材章节:第二章 线性规划的图解法与单纯形法,第四节 整数规划简介3. 运筹学案例分析:选择具有代表性的实际案例,如生产计划、物流配送等,让学生运用所学方法解决实际问题。

教材章节:第三章 运筹学应用案例分析4. 运筹学软件工具介绍:介绍运筹学软件(如Lingo、CPLEX等)的基本功能和使用方法,帮助学生提高优化问题的求解效率。

运筹学课程设计(1)

运筹学课程设计(1)

工程建设问题设计题目:工程建设与财政平衡问题课程名称:运筹学指导老师:石磊院系:数学与统计学院班级:11级数学与应用数学2班姓名:王小宁(110801060)梁莎(110801071)牛利明(110801130)任冰珂(110801131) 日期:2014年6月9日工程建设与财政平衡问题摘要目标规划是由线性规划发展演变而来,但比线性规划更加灵活,可以解决线性规划中的两大问题:一是不能处理多目标的优化问题;二是其约束条件过于刚性化,不允许约束资源有丝毫超差,即局限性较大的问题。

总之,目标规划是一较之线性规划更接近于实际决策过程的决策工具。

建立目标规划的数学模型时,需要确定目标值、优先等级、权系数等,它都具有一定的主观性和模糊性,可以用专家评定法给以量化。

本文从市政府三年间为了完成五项基本工程项目的实际“工程建设与财政平衡问题”建立目标规划模型∑∑∑∑∑∑∑∑=++=-=-=-=-=-=-=+++++++315513153143133123117154]23[3]d d 2[21min k kt i t t t t t t t t t t k k d P d P d d d P P s P ,按多目标的优先级逐级展开,利用目标规划的层次算法,将多目标转化为线性规划,并使用Lindo 软件求解该模型。

给出该政府的具体的详细投资计划、资金分配方案。

关键词:目标规划、线性规划、优先级、权系数、层次算法一、问题的提出某市政府为改善其基础设施,在近3年内要着手如下5项工程的建设,按重要性排序的工程建设项目名称及造价如表1所示。

3年内该三项总收入分别估计为e1,e2和e3。

除此之外就靠向银行贷款和发行债券,3年中可贷款的上限为U11、U12和U13,,年利率为g;可发行债券的上限为U21、U22和U23,年利率为f。

银行还贷款期限为1年(假定贷款在年初付出),债券则由下年起每年按一定比例(r)归还部分债主的本金。

运筹学课程设计

运筹学课程设计

课程设计报告课程设计名称运筹学课程设计2014年6月20日课程设计任务书运筹学课程设计报告组别:第一组设计时间:2014年6月9日至2014年6月20日1.设计进度计划本课程设计时间分为两周:1.1第一周(2014年6月9日----2014年6月13日)建模阶段。

此阶段各小组根据给出的题目完成模型的建立。

主要环节包括:(1)6月9日上午:发指导书;按组布置设计题目;说明进度安排。

(2)6月9日下午至6月11日:各小组审题,查阅资料,进行建模前的必要准备(包括求解程序的编写与查找)。

(3)6月12日至6月13日:各个小组进行建模,并根据题目及设计要求拟定设计提纲,指导教师审阅;同时阅读,理解求解程序,为上机求解做好准备。

1.2第二周(2014年6月16日---6月20日)上机求解,结果分析及答辩。

主要环节包括:(1)6月16日至6月17日:上机调试程序(2)6月18日:完成计算机求解与结果分析。

(3)6月19日:撰写设计报告。

(4)6月20日:设计答辩及成绩评定。

2.设计题目已知某公司有四个主要车间:排字、制版、印刷和装订。

公司把它接受的任务分成三类:A、B和C。

每种任务在四个主要车间里所需的时间不同,每单位产品生产需要时间如表6。

假设完成单位工作所用的时间固定不变,每单位A类任务提供的收益200元,每单位B类任务提供的收益是400元,每单位C类任务提供的收益是150元。

公司给每一车间规定了下期的固定时间能力:排字50小时;制版100小时;印刷200小时;装订180小时。

除规定时间外,公司能够利用加班加点手段在排字车间里得到附加的30小时。

加班加点奖金(即除规定时间以外的增加费用)是每小时4元。

公司希望给他的设备找到最优工作组合,所以管理部门假定能销售所有的产品。

因而为了满足长期生产的需要,管理部门决定在每个时期对每类工作至少要安排10个单位。

(1)试确定所寻求的印刷工作的最好组合,使公司的收益最大?(2)假如印刷公司有一个承接新业务的机会,这项新业务需要0小时排字,3小时制版,1小时印刷和2小时装订,要有多大的收益才对公司有吸引力?(3)假定规定排字能力和加班排字能力两者都减少3小时,最优解有何变化?(4)A类任务收益在何范围内变化时最优方案不变?(5)排字车间的生产能力在何范围内变化最优基不变?(6)有无利用的生产能力,试进行决策分析。

运筹学课程设计

运筹学课程设计

《运筹学课程设计》——指导书一、目的充分发挥WinQSB软件的强大功能和先进的计算机工具,改变传统的教学手段和教学方法,将软件的应用引入到运筹学的建模和计算中,实现理论和应用相结合。

使学生能使用WinQSB软件来建立运筹学模型,求解模型,以及进行结果的简单分析。

二、设计题目教师给定八个案例题目,见附录。

由学生自选一个题目,进行运筹学建模,利用WinQSB软件进行求解,并对软件运行结果进行相关分析。

三、设计要求时间:1周。

要求:4~6人一组,自己选择课题,在小组内进行分工,进行运筹学建模、软件计算、以及相关结果的分析,并编写课程设计报告等任务。

成果形式:课程结束,要求每组学生上交一份课程设计报告打印稿(A4)。

四、纪律要求充分认识课程设计对培养自己的重要性,认真做好设计前各项准备工作。

独立按时完成规定的工作任务,不得弄虚作假,不准抄袭他人内容,否则成绩以不及格计。

课程设计期间,无故缺席按旷课处理;缺席时间达三分之一以上者,其成绩按不及格处理。

五、时间安排共1周。

具体分两个阶段:第一阶段:第1~3天,熟悉WinQSB软件,能够用WinQSB软件求解常见的运筹学问题。

练习以下实验:1. 运用WinQSB软件求解线性规划,建立新问题,输入模型,求解模型,结果的简单分析。

2.运用winQSB软件写对偶规划,灵敏度分析和参数分析。

3.运用WinQSB软件求解运输问题和指派问题。

4. 运用WinQSB软件求解网络模型。

5. 运用WinQSB软件绘制计划网络图,求关键路线,计算时间参数,进行网络优化6.用WinQSB软件求解动态规划中的最短路问题、背包问题及生产与储存问题第二阶段:第4~6天,从教师给定的8个案例题目中自选一题,进行运筹学建模、软件计算、以及相关结果的分析。

第7天:写系统设计报告。

六、考核方法1、考核类别:考查2、考核形式:课程设计报告。

3、成绩评定:五分制(优、良、中、及格、不及格)附录【案例1】某厂排气管车间生产计划的优化分析1.问题的提出排气管作为发动机的重要部件之一,极大地影响发动机的性能。

运筹学课程设计.

运筹学课程设计.

《运筹学》课程设计网络的数据传输最大流问题的模型探讨院(系)名称 xxxxxx专业班级xxxxx学号xxxxxx学生姓名 xxxxxx指导教师 xxxxxx2014年05 月26日课程设计任务书2013—2014学年第二学期专业班级:xxxxx 学号:xxxxx 姓名:xxxxx课程设计名称:运筹学设计题目:网络的数据传输最大流问题的模型探讨完成期限:自2014 年05 月19 日至2014年05 月26 日 1 周设计依据、要求及主要内容:一、设计目的一个网络中流量的最大值对企业尤为重要,而一个具体量化的解决方案的制定是一个很棘手的问题.本论文结合建模知识,建立实际最大流问题的合理正确的模型,利用线性规划和最大流的知识,对上述问题建立适当的数学模型,并借助LINGO软件求解.对上述问题给出一个量化可行的解决方案,从而使网络中的流量达到最大化,从而更好的合理的解决实际问题,将所学理论知识更好的服务于实践.二、设计要求结合实际问题的例子,以线性规划理论和最大流理论为基础,建立最大流问题的模型,利用LINGO软件求解,探讨网络中最大流的问题.给出一个最优化的解决方案,使网络中的流量达到最大.三、参考文献[1] 刁在筠,刘桂真,宿洁,马建华.运筹学[M].北京:高等教育出版社,2007.[2] 韩中庚,郭晓丽,杜剑平,宋留勇.实用运筹学[M].北京:清华大学出版社,2011.[3] 谢金星.数学模型与LINGO软件[M].北京:清华大学出版社,2005. 计划答辩时间:2014年05月26日指导教师(签字):教研室主任(签字):批准日期:年月日网络的数据传输最大流问题的探讨摘要网络最大流问题是网络的另一个基本问题.许多系统包含了流量问题.例如交通系统有车流量,金融系统有现金流,控制系统有信息流等.许多流问题主要是确定这类系统网络所能承受的最大流量以及如何达到这个最大流量.同样地,网络的数据传输最大流问题也采用了这样的原理,利用了线性规划模型求解了最大流问题.运用LINGO软件编程得到了求解结果为,计算机网络中,从节点1到节点9的最大传输带宽为14.2Mb/s.关键词:最大流,LINGO软件,模型目录1 问题重述 (1)2 探讨过程 (1)2.1 参考知识背景 (1)2.1.1 数学模型背景 (1)2.1.2 最大流问题背景 (2)2.1.3 LINGO软件背景 (2)2.2 建模过程 (3)2.2.1 模型假设 (3)2.2.2 符号说明 (3)2.2.3 问题分析 (3)2.2.4 建立最大流问题的模型 (4)2.2.5 模型求解 (5)3实际应用 (10)总结 (11)参考文献 (12)1问题重述分组交换技术在计算机网络发挥着重要的作用,从源节点到目的节点传送文件不再需要固定的一条“虚路径”,而是将文件分割为几个分组,再通过不同的路径传送到目的节点,目的节点再根据分组信息进行重组,还原文件,分组交换技术具有文件传输时不需要始终占用一条线路,不怕单条线路掉线,多路传输提高传输速率等优点.现在考察如图所示的网络,假设图中连接两个节点间的数字表示两交换机间的可用带宽,建立数学模型,计算从节点1到节点9的最大传输带宽是多少?图1 计算机网络带宽示意图(单位:Mb/s)2探讨过程本次设计在综合了解一定的数学模型、运筹学中的最大流、LINGO软件中一些知识的基础上,以图论理论为基础,对实际例子进行一定的分析后,建立合理的最大流问题模型.然后,利用LINGO软件求得结果.给出节点1到节点9的最大传输带宽是多少.2.1 参考知识背景2.1.1数学模型背景一提到数学,人们首先想到的是它的抽象和难懂,以及它的严密的推理和证明,也正是由于数学的高度抽象性,才决定了它也具有广泛的应用性.要运用数学方法解决实际问题,不论这个问题是来自工程、经济、金融还是社会、生命科学领域,都必须设法在数学与实际问题之间架设一座桥梁,首先要将这个实际问题化为一个相应的数学问题,其次对这个数学问题进行分析与计算,最后将所求的解答回归为现实,就是数学模型,而架设桥梁的过程,就称为数学建模,即为所考察的实际问题建立数学模型.当然,建立数学模型的过程一次成功的可能性不是很大.只有最后经过实践检验为有效的数学模型,才能算是成功的数学模型.2.1.2 最大流问题背景图论[1]是运筹学的一个重要分支,随着计算机的逐渐普及,它越来越急速的渗透到工农业生产、商业活动、军事行动和科学研究的各个方面.它是以图为研究对象的,这里所说的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应的两个事物之间具有的这种特定关系.图论其广阔的应用领域涵盖了人类学、计算机科学、化学、环境保护、流体动力学、心理学、社会学、交通管理、电信网络等领域.特别是在20世纪50年代以后,随着科学技术的发展和计算机的出现与广泛的应用,促使了运筹学的发展,图论的理论也得到了进一步的发展.特别是庞大的复杂工程系统和管理问题都可以转化为图的问题,从而可以解决很多工程设计和管理决策中的最优化问题.诸如像完成工程任务的时间最少、距离最短、费用最少、收益最大、成本最低等实际问题.因此,图论在数学、工程技术及经济等各个领域都受到了越来越广泛的重视.其中,最大流问题是是图论中最常见的问题.2.1.3 LINGO软件背景Lingo [3]是用来求解线性和非线性优化问题的简易工具.LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果.LINGO全称是Linear INteractive and General Optimizer的缩写---交互式的线性和通用优化求解器.它是一套设计用来帮助您快速,方便和有效的构建和求解线性,非线性,和整数最优化模型的功能全面的工具.包括功能强大的建模语言,建立和编辑问题的全功能环境,读取和写入Excel和数据库的功能,和一系列完全内置的求解程序.Lindo/Lingo软件作为著名的专业优化软件,其功能比较强、计算效果比较好,与那些包含部分优化功能的非专业软件相比,通常具有明显的优势.此外,Lindo/Lingo软件使用起来非常简便,很容易学会,在优化软件(尤其是运行于个人电脑上的优化软件)市场占有很大份额,在国外运筹学类的教科书中也被广泛用做教学软件.2.2建模过程2.2.1 模型假设(1)假设网络传输过程中没有流量损失.(2)假设网络传输没有中断.(3)假设网络信号良好.2.2.2 符号说明F:分组传输方式矩阵的表示f:从节点i到节点j的实际传输带宽ijC:容量矩阵()V f:网络传输带宽值p c f:边集,,2.2.3 问题分析网络的数据传输问题是关于图论中的最大流问题,如图1就是一个网络,各边上的数值代表该边的容量,其中标号为1的点为源,标号为9的点为汇,其他节点为中间顶点.实际中,可以把“网络”看成是水管组成的网络,“容量”看成是水管的单位时间的最大通过量,而“流”则是水管网络中流动的水,“源”是水管网络的水的注入口,“汇”是水管网络水的流出口.对于所有中间顶点,流入的总量应该等于流出的总量,一个网络的流量值定义为从源流出的总流量,不难得到网络的总流量也等于流入汇的总流量,综上所述,我们可以得到网络中的最大流的值.2.2.4 建立最大流问题的模型将此问题视为一个网络的最大流问题,寻找网络的最大流问题,事实上可以化为求解一个特殊的线性规划问题,即求一组函数{}{(,)}ij i j f f v v =在满足0(,)(,)f u v c u v ≤≤和(),;(,)(,)0,,,(),.s s t u V w V t V f v v f v u f w v v V v v v V f v v ∈∈=⎧⎪-==≠⎨⎪-=⎩∑∑的条件下,使()V f 有最大值的问题,即max V ,,=0,,,,..(),.0(,)j j ff i s ij ji i i s t UV w V i t ij ij i j V v v f f v V v v v s t V f v v f c v v V ∈∈⎧=⎧⎪⎪-∈≠⎨⎪⎨⎪-=⎩⎪⎪≤≤∈⎩∑∑将分组的传输方式用以下矩阵来刻画:111219212229919299f f f f f f F f f f ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,其中ij f 表示从节点i 到节点j 的实际传输带宽,记容量矩阵为:0 2.50 5.6 6.10000007.100 3.60000000000 3.400000 4.907.4000 2.40007.2 5.70000 3.80000 5.3 4.500000 3.800 6.7000000007.4000000000C ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,由此可以建立线性规划模型如下:max V (1)=(9)..0(1,9)0.ffij ki f j V k V V i f f V i s t i F C ∈∈⎧=⎧⎪⎪--=⎪⎨⎨⎪≠⎩⎪⎪≤≤⎩∑∑2.2.5 模型求解该模型的求解,采用LINGO软件,其相应的程序如下:MODEL:sets:nodes/1,2,3,4,5,6,7,8,9/; !节点集arcs(nodes,nodes):p,c,f; !边集endsetsdata:!邻接矩阵p=0,1,0,1,1,0,0,0,0, 1,0,1,0,1,1,0,0,0, 0,1,0,0,0,1,0,1,0,1,0,0,0,1,0,1,0,0,1,1,0,1,0,1,1,0,0, 0,1,1,0,1,0,1,1,1, 0,0,0,1,1,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,0,0,0,1,1,1,0;!容量矩阵C=0,2.5,0,5.6,6.1,0,0,0,0, 0,0,7.1,0,0,3.6,0,0,0, 0,0,0,0,0,0,0,3.4,0, 0,0,0,0,4.9,0,7.4,0,0, 0,2.4,0,0,0,7.2,5.7,0,0,0,0,3.8,0,0,0,0,5.3,4.5,0,0,0,0,0,3.8,0,0,6.7, 0,0,0,0,0,0,0,0,7.4, 0,0,0,0,0,0,0,0,0;enddatamax=flow;@for(nodes(i)|i#ne#1#and#i#ne#@size(nodes): !去除源和汇@sum(nodes(j):p(i,j)*f(i,j)) !中间节点约束=@sum(nodes(j):p(j,i)*f(j,i)));@sum(nodes(i):p(1,i)*f(1,i))=flow; !源汇节点约束@for(arcs:@bnd(0,f,c)); !容量约束END运行该程序,得到运行结果如下:Global optimal solution found.Objective value: 14.20000Infeasibilities: 0.000000Total solver iterations: 11Variable Value Reduced CostFLOW 14.20000 0.000000P( 1, 1) 0.000000 0.000000P( 1, 2) 1.000000 0.000000P( 1, 3) 0.000000 0.000000P( 1, 4) 1.000000 0.000000P( 1, 5) 1.000000 0.000000P( 1, 6) 0.000000 0.000000P( 1, 7) 0.000000 0.000000 P( 1, 8) 0.000000 0.000000 P( 1, 9) 0.000000 0.000000 P( 2, 1) 1.000000 0.000000 P( 2, 2) 0.000000 0.000000 P( 2, 3) 1.000000 0.000000 P( 2, 4) 0.000000 0.000000 P( 2, 5) 1.000000 0.000000 P( 2, 6) 1.000000 0.000000 P( 2, 7) 0.000000 0.000000 P( 2, 8) 0.000000 0.000000 P( 2, 9) 0.000000 0.000000 P( 3, 1) 0.000000 0.000000 P( 3, 2) 1.000000 0.000000 P( 3, 3) 0.000000 0.000000 P( 3, 4) 0.000000 0.000000 P( 3, 5) 0.000000 0.000000 P( 3, 6) 1.000000 0.000000 P( 3, 7) 0.000000 0.000000 P( 3, 8) 1.000000 0.000000 P( 3, 9) 0.000000 0.000000 P( 4, 1) 1.000000 0.000000 P( 4, 2) 0.000000 0.000000 P( 4, 3) 0.000000 0.000000 P( 4, 4) 0.000000 0.000000 P( 4, 5) 1.000000 0.000000 P( 4, 6) 0.000000 0.000000 P( 4, 7) 1.000000 0.000000 P( 4, 8) 0.000000 0.000000 P( 4, 9) 0.000000 0.000000 P( 5, 1) 1.000000 0.000000 P( 5, 2) 1.000000 0.000000 P( 5, 3) 0.000000 0.000000 P( 5, 4) 1.000000 0.000000 P( 5, 5) 0.000000 0.000000 P( 5, 6) 1.000000 0.000000 P( 5, 7) 1.000000 0.000000 P( 5, 8) 0.000000 0.000000 P( 5, 9) 0.000000 0.000000 P( 6, 1) 0.000000 0.000000 P( 6, 2) 1.000000 0.000000 P( 6, 3) 1.000000 0.000000 P( 6, 4) 0.000000 0.000000 P( 6, 5) 1.000000 0.000000P( 6, 6) 0.000000 0.000000 P( 6, 7) 1.000000 0.000000 P( 6, 8) 1.000000 0.000000 P( 6, 9) 1.000000 0.000000 P( 7, 1) 0.000000 0.000000 P( 7, 2) 0.000000 0.000000 P( 7, 3) 0.000000 0.000000 P( 7, 4) 1.000000 0.000000 P( 7, 5) 1.000000 0.000000 P( 7, 6) 1.000000 0.000000 P( 7, 7) 0.000000 0.000000 P( 7, 8) 0.000000 0.000000 P( 7, 9) 1.000000 0.000000 P( 8, 1) 0.000000 0.000000 P( 8, 2) 0.000000 0.000000 P( 8, 3) 1.000000 0.000000 P( 8, 4) 0.000000 0.000000 P( 8, 5) 0.000000 0.000000 P( 8, 6) 1.000000 0.000000 P( 8, 7) 0.000000 0.000000 P( 8, 8) 0.000000 0.000000 P( 8, 9) 1.000000 0.000000 P( 9, 1) 0.000000 0.000000 P( 9, 2) 0.000000 0.000000 P( 9, 3) 0.000000 0.000000 P( 9, 4) 0.000000 0.000000 P( 9, 5) 0.000000 0.000000 P( 9, 6) 1.000000 0.000000 P( 9, 7) 1.000000 0.000000 P( 9, 8) 1.000000 0.000000 P( 9, 9) 0.000000 0.000000 C( 1, 1) 0.000000 0.000000 C( 1, 2) 2.500000 0.000000 C( 1, 3) 0.000000 0.000000 C( 1, 4) 5.600000 0.000000 C( 1, 5) 6.100000 0.000000 C( 1, 6) 0.000000 0.000000 C( 1, 7) 0.000000 0.000000 C( 1, 8) 0.000000 0.000000 C( 1, 9) 0.000000 0.000000 C( 2, 1) 0.000000 0.000000 C( 2, 2) 0.000000 0.000000 C( 2, 3) 7.100000 0.000000C( 2, 5) 0.000000 0.000000 C( 2, 6) 3.600000 0.000000 C( 2, 7) 0.000000 0.000000 C( 2, 8) 0.000000 0.000000 C( 2, 9) 0.000000 0.000000 C( 3, 1) 0.000000 0.000000 C( 3, 2) 0.000000 0.000000 C( 3, 3) 0.000000 0.000000 C( 3, 4) 0.000000 0.000000 C( 3, 5) 0.000000 0.000000 C( 3, 6) 0.000000 0.000000 C( 3, 7) 0.000000 0.000000 C( 3, 8) 3.400000 0.000000 C( 3, 9) 0.000000 0.000000 C( 4, 1) 0.000000 0.000000 C( 4, 2) 0.000000 0.000000 C( 4, 3) 0.000000 0.000000 C( 4, 4) 0.000000 0.000000 C( 4, 5) 4.900000 0.000000 C( 4, 6) 0.000000 0.000000 C( 4, 7) 7.400000 0.000000 C( 4, 8) 0.000000 0.000000 C( 4, 9) 0.000000 0.000000 C( 5, 1) 0.000000 0.000000 C( 5, 2) 2.400000 0.000000 C( 5, 3) 0.000000 0.000000 C( 5, 4) 0.000000 0.000000 C( 5, 5) 0.000000 0.000000 C( 5, 6) 7.200000 0.000000 C( 5, 7) 5.700000 0.000000 C( 5, 8) 0.000000 0.000000 C( 5, 9) 0.000000 0.000000 C( 6, 1) 0.000000 0.000000 C( 6, 2) 0.000000 0.000000 C( 6, 3) 3.800000 0.000000 C( 6, 4) 0.000000 0.000000 C( 6, 5) 0.000000 0.000000 C( 6, 6) 0.000000 0.000000 C( 6, 7) 0.000000 0.000000 C( 6, 8) 5.300000 0.000000 C( 6, 9) 4.500000 0.000000 C( 7, 1) 0.000000 0.000000 C( 7, 2) 0.000000 0.000000C( 7, 4) 0.000000 0.000000 C( 7, 5) 0.000000 0.000000 C( 7, 6) 3.800000 0.000000 C( 7, 7) 0.000000 0.000000 C( 7, 8) 0.000000 0.000000 C( 7, 9) 6.700000 0.000000 C( 8, 1) 0.000000 0.000000 C( 8, 2) 0.000000 0.000000 C( 8, 3) 0.000000 0.000000 C( 8, 4) 0.000000 0.000000 C( 8, 5) 0.000000 0.000000 C( 8, 6) 0.000000 0.000000 C( 8, 7) 0.000000 0.000000 C( 8, 8) 0.000000 0.000000 C( 8, 9) 7.400000 0.000000 C( 9, 1) 0.000000 0.000000 C( 9, 2) 0.000000 0.000000 C( 9, 3) 0.000000 0.000000 C( 9, 4) 0.000000 0.000000 C( 9, 5) 0.000000 0.000000 C( 9, 6) 0.000000 0.000000 C( 9, 7) 0.000000 0.000000 C( 9, 8) 0.000000 0.000000 C( 9, 9) 0.000000 0.000000 F( 1, 2) 2.500000 -1.000000 F( 1, 4) 5.600000 -1.000000 F( 1, 5) 6.100000 -1.000000 F( 2, 6) 3.600000 0.000000 F( 4, 5) 4.600000 0.000000 F( 4, 6) 0.000000 0.000000 F( 4, 7) 1.000000 0.000000 F( 5, 2) 1.100000 0.000000 F( 5, 6) 3.900000 0.000000 F( 5, 7) 5.700000 0.000000 F( 6, 8) 5.300000 0.000000 F( 6, 9) 2.200000 0.000000F( 7, 9) 6.700000 0.000000 F( 8, 9) 5.300000 0.000000Row Slack or Surplus Dual Price 1 14.20000 1.0000003 0.000000 0.0000004 0.000000 0.0000005 0.000000 0.0000006 0.000000 0.0000007 0.000000 0.0000008 0.000000 0.0000009 0.000000 -1.000000由以上运行结果可知:F(1,2)=2.5, F(1,4)=5.6, F(1,5)=6.1, F(2,6)=2.5, F(4,5)=4.6, F(4,7)=1.0, F(5,6)=5.0, F(5,7)=5.7, F(6,8)=3.0, F(6,9)=4.5, F(7,9)=6.7,F(8,9)=3.0,其他的F(i,j)=0,最优值为14.2.结果显示,此时可得到最大流为14.2Mb/s,实际流量分布如下图所示:图2计算机网络流量示意图3实际应用根据实际情况可知,最大流问题是涉及怎样使得配送网络中物流量最大的问题,将实际问题按照最大流问题的一般假设和原理用网络描述并建立数学模型,用计算机程序进行求解,研究如何应用最大流问题应对企业物流配送,求解一个在资源稀缺的条件下最大限度的进行物流合理配送,做到反映及时,措施果断.根据具体数值和条件,建立新最大流问题的模型.模型确定后,同样可以运用LINGO软件进行求解,此时的模型更符合实际情况,也能更好更合理的服务于企业.总结运筹学涉及到许多领域的知识,可以解决许多实际问题.这门课对于我们来说非常重要,我们不仅能够学到理论知识,还可将它应用到实际中去,为我们解决很多问题.如本次课程设计就是用运筹学知识,通过对实际问题建立合理的数学模型,然后求解,给出了一个量化的生产计划,进而更好的服务于社会.一个合理有效的生产计划对企业尤为重要,而一个具体量化的生产计划的制定是一个很棘手的问题.本论文结合建模知识,建立实际生产问题的合理正确的模型,利用线性规划知识,对上述问题建立适当的数学模型,并借助LINGO软件求解.对上述问题给出一个量化可行的生产计划,从而使生产利润达到最大化,或消耗量最少,从而更好的合理的解决实际问题,将所学理论知识更好的服务于实践.在此过程中,我也走了不少弯路.刚开始一直找不到合适的软件去求解,看到周围的同学们都早早的做好后.更加急躁,曾试图放弃这个课题,再找一个简单的容易完成的课题.由于自己的急躁心理和急于求成的想法,导致最终仍一无所获.最后,静下心来发现自己处理事情的方式存在很大的问题.总将课程设计当做一项任务去完成,而没有将自己所学的知识与社会实践相结合,试图解决世纪问题的尝试与热情.有一次,一个上午辛辛苦苦一个框架后,不料电脑中毒数据全部丢失.但此时我已经可以心平气和的静下心从头再来.于是很快又建立了新的框架,然后认真的将此课题作为一种尝试,全身心的投入去完成.通过这次课程设计,我也发现了自身的很多不足之处,在以后的学习中,我会不断的完善自我,不断进取,能使自己更加熟练掌握数学这门学科,更加巧妙的用所学到的知识解决实际问题,使其最终服务于实践,造福社会.参考文献[1] 刁在筠,刘桂真,宿洁,马建华.运筹学[M].北京:高等教育出版社,2007.[2] 韩中庚,郭晓丽,杜剑平,宋留勇.实用运筹学[M].北京:清华大学出版社,2011.[3] 谢金星.数学模型与LINGO软件[M].北京:清华大学出版社,2005.。

运筹学基础教程教学设计

运筹学基础教程教学设计

运筹学基础教程教学设计一、教学目标本教学设计旨在通过系统地讲解运筹学基础,使学生掌握常用的运筹学方法和技巧,进而能够运用所学知识解决实际问题。

二、教学内容2.1 运筹学基础知识•运筹学的概念与作用•运筹学基本模型和方法•运筹学模型的求解技巧2.2 线性规划•线性规划的概念和基本形式•线性规划的图形解法和单纯形法求解•线性规划实例2.3 整数规划•整数规划的概念和基本形式•整数规划的求解方法•整数规划实例2.4 动态规划•动态规划的概念和基本原理•动态规划的应用实例本教学设计采用课堂讲授、案例分析和课堂互动等多种教学方法,旨在使学生在愉悦的氛围中学习和掌握运筹学基础知识。

3.1 课堂讲授教师结合运筹学基础知识,通过教材、PPT等多种形式,进行课堂讲授。

3.2 案例分析教师通过经典案例,引导学生理解和掌握运筹学的基本思想和方法,提高学生的解决问题的能力。

3.3 课堂互动教师引导学生进行讨论、思考,提高学生的思维能力和解决问题的能力。

四、教学评价4.1 启发式评价通过课堂互动、知识问答等方式,考察学生的学习成果和对知识的掌握情况。

4.2 个人作业评价对学生进行个人作业评价,通过作业的批改、点评等方式,提高学生的自我学习能力。

4.3 综合评价针对学生的综合实际能力,制定考试试卷,考察学生的实际应用能力。

五、教学时长本教学设计总时长为36个学时,分别为课堂讲授、案例分析和课堂互动等多个环节。

为了辅助学生学习,本教学设计将配备以下教学资源:•教材:《运筹学基础》•PPT:运筹学基础知识介绍、案例分析等PPT•视频:相关案例的讲解视频•作业:练习题、课后习题等七、教学反思本教学设计强调理论与实践相结合,引导学生掌握运筹学基础知识和解决实际问题的能力。

同时,本教学设计也需要在教学过程中针对学生的实际情况进行一定的调整和修改。

运筹学简明教程教学设计

运筹学简明教程教学设计

运筹学简明教程教学设计
一、背景介绍
1.1 课程简介
运筹学是一门介于数学、计算机科学和工程学之间的学科,它主要研究在实际
应用中的多种决策问题,如制造和服务系统的设计、资源分配、金融风险控制等等。

本教程旨在为初学者介绍运筹学的基本概念、方法和应用。

1.2 课程目标
•了解运筹学的基本概念和研究方法
•掌握运筹学中的一些经典应用,如线性规划、整数规划、图论等
•能够运用所学知识解决实际问题
二、课程内容和教学方法
2.1 课程内容
本教程主要包括以下几个部分: - 运筹学概述,包括基本概念和研究方法 -
线性规划及其应用,包括线性规划的基本理论、单纯形法、对偶理论、灵敏度分析等,并讲解线性规划在实际问题中的应用。

- 整数规划及其应用,包括整数规划
的基本理论、分支定界法、割平面法等,并讲解整数规划在实际问题中的应用。

- 图论及其应用,包括图的基本概念、最小生成树、最短路、最大流等,并讲解图论在实际问题中的应用。

2.2 教学方法
本教程采用传统讲授与案例分析相结合的教学方法。

在讲授过程中,将注重讲
解概念和方法的基本原理,同时借助一些典型案例进行分析和应用。

三、教材与参考资料
3.1 教材
本教程不准备采用特定的教材。

教师将会根据教学进度给学生提供相应的参考资料,包括教学笔记、教师自编的讲义、相关论文和书籍等。

3.2 参考资料
以下是本教程的一些参考资料: -。

《运筹学》课程设计教学大纲

《运筹学》课程设计教学大纲

《运筹学》课程教学大纲《运筹学》课程设计教学大纲课程编号:093210924课程学分:4学分总学时数:68学时开课单位:理学院包括两个教学大纲:《运筹学》课程教学大纲、《运筹学》课程设计教学大纲运筹学Operational Research教学大纲一、课程类别信息与计算科学、数学与应用数学专业必修课二、教学对象信息与计算科学、数学与应用数学专业大二学生三、教学目的在系统讲授运筹学基本理论的基础上,重在培养学生利用运筹学理论解决实际问题的创新实践能力,使学生掌握运筹学的思想方法以及它的模型结构和求解算法,培养学生对实际问题的建模能力和借助计算机软件迅速求解的能力。

四、课程教学基本要求及基本内容(一)运筹学基本理论第一章绪论教学要求:1.了解运筹学的发展历史;2.明确课程的学习要求。

主要内容:1.运筹学的发展历史2.课程的学习要求第二章线性规划模型教学要求:1.具有初步的建立实际问题线性规划模型的能力;2.准确、熟练的应用单纯形法计算四个以下决策变量的线性规划问题;3.熟练的应用数学软件计算线性规划问题;4.理解、掌握线性规划对偶问题的经济含义及对偶单纯形法;5.了解线性规划的灵敏度分析及其应用。

主要内容:1.线性规划问题的数学模型及标准形式2.线性规划模型的图解法3.线性规划模型的单纯形法4.线性规划的对偶理论5.灵敏度分析6.线性规划模型的典型实例第三章运输问题模型教学要求:1.理解掌握运输问题的本质,并能正确地建立实际运输问题的数学模型;2.熟练掌握求解运输问题的表上作业法;3.准确、熟练地将产销不平衡问题转化为产销平衡问题;4.熟练地应用数学软件解决运输问题。

主要内容:1.问题的概述2.运输问题模型3.表上作业法4.产销不平衡的运输问题5.运输问题模型典型实例第四章整数规划模型教学要求:1.理解掌握整数规划问题的本质,并能正确地建立实际整数规划问题的数学模型;2.能够借助数学软件应用分支定界法熟练求解整数规划问题;3.理解、掌握分配问题的本质,并能够熟练、正确地应用匈牙利法求解分配问题;4.熟练地应用逻辑变量建立数学模型,并利用隐枚举法求解0-1规划问题;5.熟练应用数学软件求解整数规划问题。

运筹学课程设计

运筹学课程设计

运筹学 课程设计一、课程目标知识目标:1. 理解运筹学的基本概念,掌握线性规划、整数规划等基本模型;2. 学会运用图与网络分析解决问题,掌握关键路径法、最小生成树等算法;3. 了解库存管理、排队论等运筹学在实际生活中的应用。

技能目标:1. 能够运用运筹学方法解决实际问题,提高问题分析和解决能力;2. 培养逻辑思维和数学建模能力,提高数学素养;3. 提高团队协作和沟通能力,学会在小组讨论中分享观点、倾听他人意见。

情感态度价值观目标:1. 培养学生对运筹学的兴趣,激发学习热情;2. 培养学生的创新意识和实践能力,使其敢于面对挑战,勇于解决问题;3. 增强学生的社会责任感,认识到运筹学在国家和企业发展中的重要作用。

课程性质分析:本课程为高中年级的选修课程,旨在帮助学生掌握运筹学的基本知识和方法,提高解决实际问题的能力。

学生特点分析:高中年级的学生具有一定的数学基础和逻辑思维能力,对新鲜事物充满好奇,但可能对理论性较强的知识缺乏兴趣。

教学要求:1. 注重理论与实践相结合,提高课程的实用性;2. 采用案例教学,激发学生学习兴趣;3. 强化小组讨论和团队合作,培养学生的沟通能力和协作精神。

二、教学内容1. 运筹学基本概念:介绍运筹学的定义、发展历程、应用领域,使学生了解运筹学的基本框架。

教材章节:第一章 运筹学导论2. 线性规划:讲解线性规划的基本理论、数学模型以及求解方法,如单纯形法、对偶问题等。

教材章节:第二章 线性规划3. 整数规划:介绍整数规划的概念、分类以及求解方法,如分支定界法、割平面法等。

教材章节:第三章 整数规划4. 图与网络分析:讲解图的基本概念、最小生成树、最短路径、关键路径等算法。

教材章节:第四章 图与网络分析5. 库存管理:分析库存管理的基本原理,介绍库存控制、订货策略等。

教材章节:第五章 库存管理6. 排队论:介绍排队论的基本概念、排队系统性能指标,分析排队策略。

教材章节:第六章 排队论7. 运筹学应用案例:分析实际生活中的运筹学应用,如交通运输、生产调度等,提高学生运用运筹学方法解决实际问题的能力。

运筹学 教案

运筹学 教案

《运筹学》课程教案2019-2020( 1 )学期授课教师: xxx授课专业:物流管理授课班级: xxxxx周学时: 3授课周数: 16xxxxxxxxxxx系第 一 章 教案教学目的和要求 教学目的:让学生对运筹学的基本概念有一个大致的了解 教学要求:要求学生能够课前预习教材内容 教学重 点难点教学重点:线性规划的图解法 教学难点:线性规划的标准形式教学内容第一章 线性规划的基本概念1.1线性规划问题及其数学模型1.1.1问题的提出1.1.2线性规划的一般数学模型 1.2线性规划的图解法1.2.1图解法的基本步骤适用于求解两个变量的线性规划问题 例4 利用例1说明图解法的主要步骤。

例1的数学模型为s.t.线性规划图解法的基本步骤:(1)建立以x 1,x 2为坐标轴的直角坐标系,画出线性规划 问题的可行域。

(2)求目标函数 Z=C 1x 1+C 2x 2 的梯度▽Z =(c 1,c 2)。

(3)任取等值线 C 1x 1+C 2x 2=Z 0, 沿梯度▽Z 正方向平移, (若是极小化问题,则沿负梯度方向-▽Z 平移), 求等直线将离未离可行域时与可行域的交点。

121212112maxZ 5x 2x 30x 2 0x 160 5x x 15 x 4x 0, x 0=++≤⎧⎪+≤⎪⎨≤⎪⎪≥≥⎩第 二 章 教案教学目的和要求 使学生对于单纯形法有一定的了解,并且能够解决简单的关于单纯形法的问题。

教学重 点难点教学重点:单纯形法的一般原理 教学难点:表格单纯形法教学内容第二章 单纯形法2.1单纯形法的一般原理Dantzig 的单纯形法把寻优的目标集中在所有基本可行解(即可行域顶点)中。

其基本思路是从一个初始的基本可行解出发,寻找一条达到最优基本可行解的最佳途径。

单纯形法的一般步骤如下:(1)寻找一个初始的基本可行解。

(2)检查现行的基本可行解是否最优,如果为最优, 则停止迭代,已找到最优解,否则转一步。

运筹学教程课程设计

运筹学教程课程设计

运筹学教程课程设计一、课程介绍本课程旨在为学者提供一个全面的运筹学教程,涉及到一系列常用的数学工具、模型以及优化算法,使得学者能够理解并掌握运筹学的基本概念,同时能够熟练运用这些知识来解决实际问题。

二、教学目标本课程旨在使学者:•了解运筹学的基本概念和方法•掌握运筹学常用模型和优化算法•能够独立分析和解决运筹学问题•能够将所学知识运用到实际问题中三、教学内容1. 运筹学基本概念•运筹学的定义和发展历程•关键性质:最优解、可行解、解的存在性•优化问题的分类:线性规划、非线性规划、整数规划、动态规划等2. 数学工具•矩阵运算,特别是线性代数中的矩阵理论•线性代数的代数性质:线性性、齐次性与不加性、加性传递性等•微积分,特别是各种优化问题中的附加约束条件3. 运筹学常用模型•线性规划:最大化、最小化、约束、单纯性算法的应用、对偶理论,以及其他算法比如内点法、扰动法等•非线性规划:最大化、最小化、约束、梯度法或牛顿法等•整数规划:割平面法、分枝定界法等•动态规划:最长路问题、背包问题等4. 运筹学算法•线性规划的基本算法及应用•算法性质分析与对比•整数规划策略的开发与应用四、教学方式本课程将采用如下教学方式:1.讲授:讲述每个章节的内容并提供相关实例和算法展示。

2.实例分析:提供实际应用中的示例和案例分析来帮助学者了解和掌握内容。

3.算法分析:深入剖析常用算法的性质和特点,及其对应的数学模型和实现方式。

4.练习与反馈:为学者提供一系列的练习和考试,以及方便的反馈途径。

五、评估方式本课程将采用如下评估方式:1.平时成绩:包括出勤、作业完成情况、小组讨论、参与度等。

2.期末考试:包括对整个课程所学知识的应用和理解考试。

3.课程项目:独立或小组完成一个运筹学相关项目,需要完整展现整个项目的研究过程和方案设计。

六、参考资料以下是本课程所需要的参考资料:•《线性规划及其应用》•《运筹学方法及其应用》•《运筹学原理》•《运筹学与管理科学》七、结语通过本课程的学习,学者们将具备解决运筹学问题的能力和技能,能够在职业生涯中灵活应用,同时也为他们继续深入研究运筹学打下了基础。

《运筹学》教案

《运筹学》教案

《运筹学》教案(本教案适用于20课时的班级)第一章线性规划与单纯形法1、教学计划第 1 次课 2 学时2、教案1.1线性规划问题及其数学模型线性规划模型的建立就是将现实问题用数学的语言表达出来。

例1:某工厂要安排生产Ⅰ、Ⅱ两种产品,每单位产品生产所需的设备、材料消耗及其利润如下表所示。

问应如何安排生产计划使工厂获利最多?解:设生产产品Ⅰ、Ⅱ的数量分别为1x 和2x 。

首先,我们的目标是要获得最大利润,即2132max x x z +=其次,该生产计划受到一系列现实条件的约束,设备台时约束:生产所用的设备台时不得超过所拥有的设备台时,即8221≤+x x原材料约束:生产所用的两种原材料A 、B 不得超过所用有的原材料总数,即1641≤x 1242≤x非负约束:生产的产品数必然为非负的,即0,21≥x x由此可得该问题的数学规划模型:⎪⎪⎩⎪⎪⎨⎧≥≤≤≤++=0,1241648232max 21212121x x x x x x x x z总结:线性规划的一般建模步骤如下: (1)确定决策变量确定决策变量就是将问题中的未知量用变量来表示,如例1中的1x 和2x 。

确定决策变量是建立数学规划模型的关键所在。

(2)确定目标函数确定目标函数就是将问题所追求的目标用决策变量的函数表示出来。

(3)确定约束条件将现实的约束用数学公式表示出来。

线性规划数学模型的特点(1)有一个追求的目标,该目标可表示为一组变量的线性函数,根据问题的不同,追求的目标可以是最大化,也可以是最小化。

(2)问题中的约束条件表示现实的限制,可以用线性等式或不等式表示。

(3)问题用一组决策变量表示一种方案,一般说来,问题有多种不同的备选方案,线性规划模型正式要在这众多的方案中找到最优的决策方案(使目标函数最大或最小),从选择方案的角度看,这是规划问题,从目标函数最大或最小的角度看,这是最优化问题。

1.2 线性规划问题的标准形式根据问题的性质,线性规划有多种形式,目标函数有要求最大化的,也有要求最小化的;约束条件可以是“≤”或“≥”的不等式,也可以是“=”;虽然决策变量一般是非负的,但也可是无约束的,即,可以在),(∞+-∞取值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一组运筹学课程
设计
运筹学
课程设计书
学院西昌学院
专业水利水电工程
班级级水利水电工程2班
题目生产调运问题的数学模型
教师尹绍军
学生沙马尼色刘杰
杨正朝潘顺
衡武旋毛庭鑫
6月15日
摘要
在建筑公司里,领导者如何合理的分配和调运有限的建筑资源,使得建筑公司能够在有限的的人力,财力及资源的条件下创造更多的财富利润,这是每个建筑公司老总所关心的问题。

同时决策者如何调配各个车间生产的资料合理的运用到建筑工地上去,使得生产调运费用最小,且效率最高。

若某建筑公司有5个施工项目准备开工,该公司有两个金属构件生产车间,有两个仓库,内存3种规格钢材,1种规格塑钢门窗(成套使用)。

公司决策者如何调运分配各车间的产品生产计划、由构件车间向各项目和由仓库向各项目、各车间的物资调运计划,使总成本为最小,获取的利润最大化
关键词生产调运,资源合理分配,利润最大化,调运费用最低
1.前言
一个成功的企业最关心的往往是自己实质的利益问题,以最小的成本换最大的利润是她们最关心也一直致力于研究的事情,建筑公司决策者如何合理的分配和调运生产资料进行快速的建设是最重要的一环。

那么,如何分配和调运资源呢?从哪个仓库或生产车间运往
哪个项目?从哪里运原材料到目的地所需费用最少?这些问题都是要考虑和解决的,我们学习了运筹学的相关知识后学到了一些简单的模型来解决这些问题,我们能够把它转化为生产资料调配运输问题模型来解决,此模型能够解决我们所需要的问题。

我小组在介绍生产资料调配问题的基本理论和方法的基础上,列举如下的实例进行学习和求解。

2.真实例题的展现
2.1.问题背景
某建筑公司有5个施工项目准备开工,该公司有两个金属构件生产车间,有两个仓库,内存3种规格钢材,1种规格塑钢门窗(成套使用)。

仓库的钢材品种及拥有量见表12,构件车间生产的单位构件材料消耗、工时消耗和生产成本见表13--15,各项目构件和钢材需求量见表16,由构件车间向各项目和由仓库向各项目运送物资的单位运费见表17。

试建立并求解模型,编制各车间的产品生产计划、由构件车间向各项目和由仓库向各项目、各车间的物资调运计划,使总成本为最小。

表12 仓库的钢材品种、塑钢拥有量
表13 单位构件材料消耗量单位:吨/件
表14 车间构件生产工时消耗表
表15 车间生产成本表单位:元/件
表16 各项目钢梁、钢架、钢材、塑钢门窗需求量表
表17 单位物资运价表单位:元/吨.公里元/套.公里元/件.公里。

相关文档
最新文档