人教版初一数学试题-下学期期末考试 解析版

合集下载

人教版七年级下学期期末考试数学试卷及答案解析(共六套)

人教版七年级下学期期末考试数学试卷及答案解析(共六套)

人教版七年级下学期期末考试数学试卷(一)一、精心选一选(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内1.(3分)下列各组数中,互为相反数的一组是()A.﹣2与 B.﹣2与 C.﹣2与﹣ D.|﹣2|与2 2.(3分)下列条件中,可能得到平行线的是()A.对顶角的角平分线 B.邻补角的角平分线C.同位角的角平分线 D.同旁内角的角平分线3.(3分)不等式组的解集在数轴上表示为()A. B.C. D.4.(3分)已知是二元一次方程组的解,则m﹣n的值是()A.1 B.2 C.3 D.45.(3分)下列四种调查:①调查某批汽车的抗撞击能力;②调查某城市的空气质量;③调查某风景区全年的游客流量;④调查某班学生的身高情况.其中适合用全面调查方式的是()A.① B.② C.③ D.④6.(3分)如图,a∥b,∠1=100°,∠2=140°,则∠3等于()A.40°B.50°C.60°D.70°7.(3分)以方程组的解为坐标的点(x,y)在第()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)将点P(m+2,2m+4)向右平移1个单位长度得到点M,且点M在y轴上,那么点M的坐标是()A.(﹣2,0)B.(0,﹣2)C.(1,0)D.(0,1)9.(3分)将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有()A.6种B.7种C.8种D.9种10.(3分)若关于x的不等式组恰好只有四个整数解,则a的取值范围是()A.a B. C.﹣2 D.﹣2二.用心填一填(每小题3分,共15分)11.(3分)如图,将△ABC水平向右平移了acm后,得到△A'B'C',已知BC=6cm,B C'=17cm,那么a= cm.12.(3分)已知﹣2x m﹣2y2与3x4y2m+n是同类项,则m﹣3n的平方根是.13.(3分)如图,AB∥CD,OM平分∠BOF,∠2=65°,则∠1= 度.14.(3分)已知(x﹣y+3)2+=0,则x+y= .15.(3分)已知线段AB=8cm,在直线AB上有一点C,且BC=4cm,M是线段AC 的中点,则线段AM的长为.三、解答题16.(8分)解下列方程组::(1)(2).17.(9分)解不等式组,并写出它的所有非负整数解.18.(9分)已知点P(2m+4,m﹣1),请分别根据下列条件,求出点P的坐标.(1)点P在x轴上;(2)点P的纵坐标比横坐标大3;(3)点P在过点A(2,﹣4)且与y轴平行的直线上.19.(9分)甲、乙两名同学在解方程组时,甲解题时看错了m,解得;乙解题时看错了n,解得.请你以上两种结果,求出原方程组的正确解.20.(9分)如图,已知AD∥BC,∠1=∠2,试说明∠A=∠C.21.(9分)一家食品公司将一种新研发的食品免费送给一些人品尝,并让每个人按A(不喜欢)、B(一般)、C(比较喜欢)、D(非常喜欢)四个等级对该食品进行评价,图①和图②是该公司采集数据后,绘制的两幅不完整的统计图.请你根据以上统计图提供的信息,回答下列问题:(1)本次调查的人数为人;(2)图①中,a= ,C等级所占的圆心角的度数为度;(3)请直接在答题卡中补全条形统计图.22.(10分)已知关于x、y的方程组.(1)如果该方程组的解互为相反数,求k的值;(2)若x为正数,y为负数,求k的取值范围.23.(12分)义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的.请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?参考答案与试题解析一、精心选一选(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内1.(3分)下列各组数中,互为相反数的一组是()A.﹣2与B.﹣2与C.﹣2与﹣D.|﹣2|与2【分析】根据相反数的概念、性质及根式的性质化简即可判定选择项.【解答】解:A、=2,﹣2与2互为相反数,故选项正确;B、=﹣2,﹣2与﹣2不互为相反数,故选项错误;C、﹣2与不互为相反数,故选项错误;D、|﹣2|=2,2与2不互为相反数,故选项错误.故选A.【点评】本题考查的是相反数的概念,只有符号不同的两个数叫互为相反数.如果两数互为相反数,它们的和为0.2.(3分)下列条件中,可能得到平行线的是()A.对顶角的角平分线B.邻补角的角平分线C.同位角的角平分线D.同旁内角的角平分线【分析】根据平行线的判定定理对各选项进行逐一判断即可.【解答】解:A、对顶角的角平分线AC、AD共线,故错误;B、∵,,∠PAM+∠MAB=180°,∴∠CAM+∠MAE=90°,∴邻补角的角平分线相互垂直,故错误;C、同位角的角平分线AC、BF互相平行,∵AM∥BN,∴∠PAM=∠PBN;∵AC、BF是∠PAM和∠PBN的角平分线,∴∠1=∠PAM=∠PBN=∠2;∴AC∥BF.故正确.D、同旁内角的角平分线AE、BF互相垂直,∵AM∥BN,∴∠MAB+∠PBN=180°;∵AE、BF是∠MAB和∠PBN的角平分线,∴∠3+∠2=∠MAB+∠PBN=90°;∴AE⊥BF.故错误.故选C.【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.3.(3分)不等式组的解集在数轴上表示为()A. B.C. D.【分析】先将每一个不等式解出来,然后根据求解的口诀即可解答.【解答】解:,解不等式①得:x≥﹣5,解不等式②得:x<2,由大于向右画,小于向左画,有等号画实点,无等号画空心,∴不等式的解集在数轴上表示为:故选C.【点评】此题考查了不等式组的解法及不等式组解集在数轴上的表示,解题的关键是:熟记口诀大于向右画,小于向左画,有等号画实点,无等号画空心.4.(3分)已知是二元一次方程组的解,则m﹣n的值是()A.1 B.2 C.3 D.4【分析】把x与y的值代入方程组计算求出m与n的值,代入原式计算即可得到结果.【解答】解:把代入方程组得:,解得:,则m﹣n=7﹣3=4,故选D【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.5.(3分)下列四种调查:①调查某批汽车的抗撞击能力;②调查某城市的空气质量;③调查某风景区全年的游客流量;④调查某班学生的身高情况.其中适合用全面调查方式的是()A.①B.②C.③D.④【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:①调查某批汽车的抗撞击能力,采用抽样调查,故①错误;②调查某城市的空气质量,由于工作量大,不便于检测,采用抽样调查,故②错误;③调查某风景区全年的游客流量,由于人数多,工作量大,采用抽样调查,故③错误;④调查某班学生的身高情况,应当采用全面调查,故④正确.故选:D.【点评】本题主要考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,难度适中.6.(3分)如图,a∥b,∠1=100°,∠2=140°,则∠3等于()A.40°B.50°C.60°D.70°【分析】先过点A作AB∥a,由a∥b,即可得AB∥a∥b,然后根据两直线平行,同旁内角互补,即可求得∠4与∠5的度数,又由平角的定义,即可求得∠3的度数.【解答】解:如图,过点A作AB∥a,∵a∥b,∴AB∥a∥b,∴∠1+∠4=180°,∠2+∠5=180°,∵∠1=100°,∠2=140°,∴∠4=80°,∠5=40°,∵∠4+∠5+∠3=180°,∴∠3=60°.故选:C.【点评】此题考查了平行线的性质.解题的关键是掌握两直线平行,同旁内角互补定理的应用,注意辅助线的作法.7.(3分)以方程组的解为坐标的点(x,y)在第()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先解方程组得到x和y的值,然后依据各象限内点的坐标特点求解即可.【解答】解:解方程组,得,所以点(,)在第一象限.故选A.【点评】本题考查了二元一次方程组的解的定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.也考查了各象限内点的坐标特点.正确求出方程组的解是解题的关键.8.(3分)将点P(m+2,2m+4)向右平移1个单位长度得到点M,且点M在y 轴上,那么点M的坐标是()A.(﹣2,0)B.(0,﹣2)C.(1,0)D.(0,1)【分析】根据横坐标,右移加,左移减得到点M(m+2+1,2m+4),再根据y轴上的点横坐标为0可得m+3=0,算出m的值,可得点M的坐标.【解答】解:∵将点P(m+2,2m+4)向右平移1个单位长度得到点M,∴M(m+2+1,2m+4),即(m+3,2m+4),∵点M在y轴上,∴m+3=0,解得:m=﹣3,∴点M的坐标为(0,﹣2),故选:B.【点评】此题主要考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.掌握点的坐标的变化规律是解题的关键.同时考查了y轴上的点横坐标为0的特征.9.(3分)将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有()A.6种B.7种C.8种D.9种【分析】设兑换成10元x张,20元的零钱y元,根据题意可得等量关系:10x 张+20y张=100元,根据等量关系列出方程求整数解即可.【解答】解:设兑换成10元x张,20元的零钱y元,由题意得:10x+20y=100,整理得:x+2y=10,方程的整数解为:,,,,,,因此兑换方案有6种,故选:A.【点评】此题主要考查了二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.10.(3分)若关于x的不等式组恰好只有四个整数解,则a的取值范围是()A.a B.C.﹣2D.﹣2【分析】此题可先根据一元一次不等式组解出x的取值,再根据不等式组恰好只有四个整数解,求出实数a的取值范围.【解答】解:由≥x﹣3,得x≤11,由2x+2<3(x+a),得x>2﹣3a,由上可得2﹣3a<x≤11,∵不等式组恰好只有四个整数解,即11,10,9,8;∴7≤2﹣3a<8,解得﹣2<a≤﹣.故选C.【点评】此题考查的是一元一次不等式的解法和一元一次方程的解,根据x的取值范围,得出x的取值范围,然后根据不等式组恰好只有四个整数解即可解出a的取值范围.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.二.用心填一填(每小题3分,共15分)11.(3分)如图,将△ABC水平向右平移了acm后,得到△A'B'C',已知BC=6cm,B C'=17cm,那么a= 11 cm.【分析】根据平移的性质可得BC′=BC+a,然后代入即可求得.【解答】解:∵△ABC沿水平向右平移了acm后,得到△A'B'C',BC=6cm,B C'=17cm,∴a=CC′=17﹣6=11cm,故答案为11.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.12.(3分)已知﹣2x m﹣2y2与3x4y2m+n是同类项,则m﹣3n的平方根是±6 .【分析】根据同类项的概念即可求出m与n的值,从而可求出答案.【解答】解:由题意可知:m﹣2=42=2m+n∴m=6,n=﹣10∴m﹣3n=6+30=36,∴36的平方根为:±6故答案为:±6【点评】本题考查平方根的概念,解题的关键是正确理解平方根与同类项的概念,本题属于基础题型.13.(3分)如图,AB∥CD,OM平分∠BOF,∠2=65°,则∠1= 130 度.【分析】由AB∥CD,根据两直线平行,同位角相等,即可求得∠BOM的度数,又由OM是∠BOF的平分线,即可求得∠BOF的度数,然后根据两直线平行,内错角相等,即可求得∠1的度数.【解答】解:∵AB∥CD,∠2=65°,∴∠BOM=∠2=65°,∵OM是∠BOF的平分线,∴∠BOF=2∠BOM=130°,∵AB∥CD,∴∠1=∠BOF=130°.故答案为:130.【点评】此题考查了平行线的性质与角平分线的定义.解题的关键是注意掌握两直线平行,同位角相等与两直线平行,内错角相等定理的应用.14.(3分)已知(x﹣y+3)2+=0,则x+y= 1 .【分析】利用非负数的性质列出方程组,求出方程组的解得到x与y的值,即可确定出x+y的值.【解答】解:∵(x﹣y+3)2+=0,∴,①+②得:3x=﹣3,即x=﹣1,将x=﹣1代入②得:y=2,则x+y=2﹣1=1.故答案为:1【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.15.(3分)已知线段AB=8cm,在直线AB上有一点C,且BC=4cm,M是线段AC 的中点,则线段AM的长为2cm或6cm .【分析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在线段AB 的延长线上或点C在线段AB上.【解答】解:①当点C在线段AB的延长线上时,此时AC=AB+BC=12cm,∵M是线段AC的中点,则AM=AC=6cm;②当点C在线段AB上时,AC=AB﹣BC=4cm,∵M是线段AC的中点,则AM=AC=2cm.故答案为6cm或2cm.【点评】本题主要考查两点间的距离的知识点,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.三、解答题16.(8分)解下列方程组::(1)(2).【分析】(1)把两个方程的两边分别相加,消去一个未知数y,得到一个一元一次方程.解这个一元一次方程,求得未知数x的值.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数y的值.(2)用5去乘方程①的两边,使某一个未知数y的系数互为相反数.把两个方程的两边分别相加,消去一个未知数y,得到一个一元一次方程.解这个一元一次方程,求得未知数x的值.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数y的值.【解答】解:(1)由①+②,可得3x=9,解得x=3,把x=3代入①,可得3+y=4,解得y=1,∴方程组的解为;(2)由①×5+②,可得13x=26,解得x=2,把x=2代入①,可得4+y=3,解得y=﹣1,∴方程组的解为.【点评】本题主要考查了解二元一次方程组,用加减法解二元一次方程组的一般步骤:①方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数.②把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求得未知数的值.④将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值.⑤把所求得的两个未知数的值写在一起,就得到原方程组的解.17.(9分)解不等式组,并写出它的所有非负整数解.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可确定出所有非负整数解.【解答】解:,由①得:x≥﹣2;由②得:x<,∴不等式组的解集为﹣2≤x<,则不等式组的所有非负整数解为:0,1,2,3.【点评】此题考查了解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.18.(9分)已知点P(2m+4,m﹣1),请分别根据下列条件,求出点P的坐标.(1)点P在x轴上;(2)点P的纵坐标比横坐标大3;(3)点P在过点A(2,﹣4)且与y轴平行的直线上.【分析】(1)根据x轴上点的纵坐标为0列方程求出m的值,再求解即可;(2)根据纵坐标与横坐标的关系列方程求出m的值,再求解即可;(3)根据平行于y轴的直线上的点的横坐标相同列方程求出m的值,再求解即可.【解答】解:(1)∵点P(2m+4,m﹣1)在x轴上,∴m﹣1=0,解得m=1,∴2m+4=2×1+4=6,m﹣1=0,所以,点P的坐标为(6,0);(2)∵点P(2m+4,m﹣1)的纵坐标比横坐标大3,∴m﹣1﹣(2m+4)=3,解得m=﹣8,∴2m+4=2×(﹣8)+4=﹣12,m﹣1=﹣8﹣1=﹣9,∴点P的坐标为(﹣12,﹣9);(3)∵点P(2m+4,m﹣1)在过点A(2,﹣4)且与y轴平行的直线上,∴2m+4=2,解得m=﹣1,∴m﹣1=﹣1﹣1=﹣2,∴点P的坐标为(2,﹣2).【点评】本题考查了点的坐标,熟练掌握坐标轴上点的坐标特征以及平行于坐标轴的直线上的点的坐标特征是解题的关键.19.(9分)甲、乙两名同学在解方程组时,甲解题时看错了m,解得;乙解题时看错了n,解得.请你以上两种结果,求出原方程组的正确解.【分析】把甲的结果代入第二个方程,乙的结果代入第一个方程,联立求出m 与n的值,即可确定出原方程组的解.【解答】解:把代入得:7+2n=13,把代入得:3m﹣7=5,解得:n=3,m=4,∴原方程组为,解得:.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.(9分)如图,已知AD∥BC,∠1=∠2,试说明∠A=∠C.【分析】先根据平行线的性质,得出∠A=∠CBE,再根据∠1=∠2,得到DC∥AE,进而得出∠CBE=∠C,等量代换即可得出结论.【解答】证明:∵AD∥BC,∴∠A=∠CBE,又∵∠1=∠2,∴DC∥AE,∴∠CBE=∠C,∴∠A=∠C.【点评】本题主要考查了平行线的性质以及判定的运用,解题时注意:两直线平行,同位角相等,内错角相等.21.(9分)一家食品公司将一种新研发的食品免费送给一些人品尝,并让每个人按A(不喜欢)、B(一般)、C(比较喜欢)、D(非常喜欢)四个等级对该食品进行评价,图①和图②是该公司采集数据后,绘制的两幅不完整的统计图.请你根据以上统计图提供的信息,回答下列问题:(1)本次调查的人数为200 人;(2)图①中,a= 35 ,C等级所占的圆心角的度数为126 度;(3)请直接在答题卡中补全条形统计图.【分析】(1)用A的人数与所占的百分比列式计算即可得解;(2)先求出C的人数,再求出百分比即可得到a的值,用C所占的百分比乘以360°计算即可得解;(3)根据计算补全统计图即可.【解答】解:(1)20÷10%=200人;(2)C的人数为:200﹣20﹣46﹣64=70,所占的百分比为:×100%=35%,所以,a=35,所占的圆心角的度数为:35%×360°=126°;故答案为:(1)200;(2)35,126.(3)补全统计图如图所示.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(10分)已知关于x、y的方程组.(1)如果该方程组的解互为相反数,求k的值;(2)若x为正数,y为负数,求k的取值范围.【分析】(1)根据x与y互为相反数,得到y=﹣x,代入方程组计算即可求出k 的值;(2)将k看做已知数表示出x与y,根据题意列出不等式组,求出不等式组的解集即可确定出k的范围.【解答】解:,解得:,(1)根据题意得:x+y=0,即+=0,解得:k=﹣4;(2)根据题意得:,解得:k>8.【点评】此题考查了二元一次方程组的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.23.(12分)义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的.请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?【分析】(1)设购买一块A型小黑板需要x元,一块B型为(x﹣20)元,根据,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元可列方程求解.(2)设购买A型小黑板m块,则购买B型小黑板(60﹣m)块,根据需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的,可列不等式组求解.【解答】解:(1)设购买一块A型小黑板需要x元,一块B型为(x﹣20)元,5x+4(x﹣20)=820,x=100,x﹣20=80,购买A型100元,B型80元;(2)设购买A型小黑板m块,则购买B型小黑板(60﹣m)块,,∴20<m≤22,而m为整数,所以m为21或22.当m=21时,60﹣m=39;当m=22时,60﹣m=38.所以有两种购买方案:方案一购买A21块,B 39块、方案二购买A22块,B38块.【点评】本题考查理解题意的能力,关键根据购买黑板块数不同钱数的不同求出购买黑板的钱数,然后要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的,列出不等式组求解.人教版七年级下学期期末考试数学试卷(二)一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)16的算术平方根是()A.4 B.±4 C.8 D.±82.(3分)以下问题,不适合抽样调查的是()A.了解全市中小学生的每天的零花钱B.旅客上高铁列车前的安检C.调查某批次汽车的抗撞击能力D.调查某池塘中草鱼的数量3.(3分)若a<b,那么下列结论中正确的是()A.a﹣3>b﹣3 B.3a>3b C.>D.﹣3a>﹣3b4.(3分)平面直角坐标系中,点A在第四象限,点A到x轴的距离为2,到y 轴的距离为3,则点A的坐标为()A.(2,﹣3)B.(﹣3,2)C.(3,﹣2)D.(﹣2,3)5.(3分)如图,AD∥BC,AC⊥AB,∠C=62°,则∠DAB的度数为()A.28°B.30°C.38°D.48°6.(3分)关于x,y的方程组的解为,则=()A.﹣3 B.3 C.81 D.﹣817.(3分)不等式﹣2x+3≥5的解集在数轴上表示为()A. B.C.D.8.(3分)如图所示,小刚手拿20元钱正在和售货员对话,请你仔细看图,1听果奶、1听可乐的单价分别是()A.3元,3.5元B.3.5元,3元C.4元,4.5元D.4.5元,4元9.(3分)在平面直角坐标系中,将点A先向左平移3个单位,再向下平移2个单位,得到点B(﹣2,1),则点A的坐标为()A.(﹣5,3)B.(﹣5,﹣1)C.(1,3)D.(1,﹣3)(3分)把一张面值10元的人民币兑换成1元或2元的零钱,兑换方案有()10.A.9种B.8种C.7种D.6种二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)不等式2x+7>4x+1的正整数解是.12.(3分)如图,将一张长方形纸条折叠,则∠1= 度.13.(3分)光明学校在七年级的一次数学测试中,随机抽取40名学生的成绩进行分析,其中有10名学生成绩达到90分以上,以此估计该校七年级900名学生中,这次测试成绩达到90分以上的约有个.14.(3分)点A(m﹣1,5﹣2m)在第一象限,则整数m的值为.15.(3分)如图,在平面直角坐标系中,点A(1,1),B(3,1),C(3,3),D (1,3),动点P从点A出发,以每秒1个单位长度的速度沿AB﹣BC﹣CD﹣DA﹣AB﹣…路线运动,当运动到2017秒时,点P的坐标为.三、解答题(本大题共8小题,共75分)16.(8分)计算:|﹣3|+﹣.17.(8分)已知和是关于x,y的二元一次方程:ax+by=1的两个解,求﹣的值.18.(9分)解不等式组:,并把不等式组的解集在数轴上表示出来.19.(9分)请你给如图建立平面直角坐标系,使文化宫的坐标为(﹣3,1),超市的坐标为(2,﹣3).(1)画出坐标轴,并写出火车站、体育场、医院的坐标;(2)直接写出由超市、文化馆、市场围成的三角形的面积.20.(10分)某市教育局为了解七年级学生参加综合实践活动的情况,随机抽取了阳光学校七年级学生一个学期参加综合实践活动的天数.并用得到的数据绘制了下面两幅不完整的统计图.请您根据图中提供的信息,按要求回答下列问题:(1)扇形统计图中a 的值是 ;阳光学校七年级共有 人; (2)在这次抽样调查中,活动时间为5天的学生有 人,并补全条形统计图;(4)如果该市七年级的学生共有23000人,根据以上数据,试估计全市七年级学生“活动时间不少于4天”的学生有多少人?21.(10分)为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费,下表是该市居民阶梯式计费价格表的部分信息:自来水销售价格 污水处理价格 每户每月用水量 单价:元/立方米 单价:元/立方米 17立方米及以下a0.8 超过17立方米但不超过30立方米的部分b 0.8超过30立方米的部分60.8该市居民王老师家2017年3月份用水30立方米,交水费66元;4月份用水25立方米,交水费91元.(1)求a、b的值.(2)若王老师家5月份交水费150元,则他家5月份用水多少吨?(说明:每户产生的污水量等于自来水量,所交水费包含自来水费和污水处理费)22.(10分)甲、乙两厂家生产的课桌和座椅的质量、价格一致,每张课桌300元,每张椅子80元,甲、乙两个厂家推出各自销售的优惠方案,甲:买一张课桌送1张椅子;乙:课桌和椅子全部按原价的9折优惠.现某学校要购买100张课桌和x(x≥100)张椅子.(1)分别用含x的式子表示购买甲、乙两个厂家桌椅所需的金额:购买甲厂家所需金额;购买乙厂家所需金额.(2)该学校到哪家工厂购买更合算?23.(11分)如图,已知CD⊥AB于D,E是射线AC上一动点,EF⊥AB于F,EF 交直线BC于G,若∠AEF=∠CGE.(1)求证:CD平分∠ACB,下面给出了部分证明过程和理由,请你补充完善:证明:∵CD⊥AB,EF⊥AB(已知)∴∠ADC=∠AFE=90°()∴CD∥()∴∠ACD= (两直线平行,同位角相等)∠BCD= ()∵∠AEF=∠CGE(已知)∴∠ACD=∠BCD即CD平分∠ACB()(2)将EF向右平移,使点E在AC的延长线上,(1)中的结论是否还成立?若成立,请画出图形;若不成立,请画出图形,写出正确结论.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分) 16的算术平方根是()A.4 B.±4 C.8 D.±8【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,直接利用此定义即可解决问题.【解答】解:∵4的平方是16,∴16的算术平方根是4.故选A.【点评】此题主要考查了算术平方根的定义,此题要注意平方根、算术平方根的联系和区别.2.(3分)以下问题,不适合抽样调查的是()A.了解全市中小学生的每天的零花钱B.旅客上高铁列车前的安检C.调查某批次汽车的抗撞击能力D.调查某池塘中草鱼的数量【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解全市中小学生的每天的零花钱,人数较多,应采用抽样调查,故此选项错误;B、旅客上高铁列车前的安检,意义重大,不能采用抽样调查,故此选项正确;C、调查某批次汽车的抗撞击能力,具有破坏性,应采用抽样调查,故此选项错误;D、调查某池塘中草鱼的数量众多,应采用抽样调查,故此选项错误;故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.。

新人教版七年级下期末数学试卷含答案解析

新人教版七年级下期末数学试卷含答案解析

新人教版七年级下期末数学试卷含答案解析一、选择题1. 3/5 can be written as ___.A. 0.3B. 0.6C. 1.6D. 1.3解析:选择B。

将分数3/5转换为小数形式,即3除以5,结果为0.6。

2. 7 + (-3) is equal to ___.A. 10B. 4C. -4D. -10解析:选择B。

加法中,正数加上负数相当于减去正数的绝对值,即7 + (-3) = 7 - 3 = 4。

3. Simplify: (8x^2)(-2x).A. -16x^3B. -16x^2C. -16xD. -16解析:选择B。

将表达式展开计算,得到-16x^3。

4. What is the perimeter of a rectangle with length 4cm and width 6cm?A. 10cmB. 16cmC. 20cmD. 24cm解析:选择B。

矩形的周长为2倍长度加2倍宽度,即2 × 4cm + 2 × 6cm = 16cm。

5. Solve for x: 2x + 5 = 15.A. x = 5B. x = 6C. x = 7D. x = 8解析:选择C。

将等式中的5移到右边,得到2x = 15 - 5,即2x = 10。

再将2除到x的前面,得到x = 10 ÷ 2 = 5。

二、填空题1. The HCF of 8 and 12 is ___.解析:填写4。

8和12的最大公约数为4。

2. The number of faces of a cube is ___.解析:填写6。

一个立方体有6个面。

3. If a = 2 and b = 3, then 2a + 3b is equal to ___.解析:填写13。

将对应的数值代入表达式,得到2 × 2 + 3 × 3 = 4 + 9 = 13。

4. The product of 9 and 7 is ___.解析:填写63。

最新人教版数学七年级下学期《期末考试题》含答案解析

最新人教版数学七年级下学期《期末考试题》含答案解析

2020-2021学年第二学期期末测试人教版数学七年级试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题 共 30 分,每小题 3 分.在每小题给出的四个选项中,只有一项是符合 题目要求的)1. 已知a b ,则下列四个不等式中,不正确的是( ) A . 22a b --B . 22a b --C . 22a bD . 22a b ++ 2. 在实数4、3、13、0.3、π、2.1234567891011121314…(自然数依次排列)、38-中,无理数有( ) A . 2个 B . 3个 C . 4个 D . 5个3. 下列命题中,属于真命题的是 ( )A . 两个锐角的和是锐角B . 在同一平面内,如果A ⊥B ,B ⊥C ,则A ⊥C C . 同位角相等D . 在同一平面内,如果A //B ,B //C ,则A //C 4. 点P 是第二象限的点且到x 轴的距离为3、到y 轴的距离为4,则点P 的坐标是( )A . (﹣3,4)B . ( 3,﹣4)C . (﹣4,3)D . ( 4,﹣3) 5. 如图,直线A B ,C D 被直线EF 所截,交点分别为点E,F ,若A B ∥C D ,下列结论正确的是( )A . ∠2=∠3B . ∠2=∠4C . ∠1=∠5D . ∠3+∠A EF=180°6. 下列说法正确是( )A . 周长相等的锐角三角形都全等B . 周长相等的直角三角形都全等C . 周长相等钝角三角形都全等D . 周长相等的等边三角形都全等7. 某居民小区开展节约用电活动,对该小区30户家庭的节电量情况进行了统计,五月份与四月份相比,节电情况如下表:节电量(度)1020 30 40 户数 2 15 10 3则五月份这30户家庭节电量的众数与中位数分别为( )A . 20,20B . 20,25C . 30,25D . 40,208. 点A 在直线m 外,点B 在直线m 上,AB 、两点的距离记作a ,点A 到直线m 的距离记作b ,则a 与b 的大小关系是 ( )A . a b >B . a b ≤C . a b ≥D . a b <9. 不等式组42103x x >⎧⎪⎨-+≥⎪⎩的整数解为( ) A . 0,1,2,3 B . 1,2,3C . 2,3D . 3 10. 要反映某市某一周每天的最高气温的变化趋势,宜采用( )A . 条形统计图B . 扇形统计图C . 折线统计图D . 以上均可二、填空题(本共 18 分,每小题 3 分)11. 分解因式:﹣m 2+4m ﹣4═_____.12. 已知点A (﹣2,﹣1),点B (A ,B ),直线A B ∥y 轴,且A B =3,则点B 的坐标是___13. 小华将直角坐标系中的猫眼的图案向右平移了3个单位长度,平移前猫眼的坐标为(– 4,3)、(– 2,3),则移动后猫眼的坐标为__________.14. 如图,A D 是△A B C 的中线,E 是A D 的中点,如果S △A B D =12,那么S △C D E =__. 15. 在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点是整点.若整点P (m+2,2m ﹣1)在第四象限,则m 的值为_____.16. 已知等腰三角形的两条边长分别是3C m、7C m,那么这个等腰三角形的周长是________C m.三、解答题17. 计算:3827﹣(π﹣1)0﹣(12)﹣1.18. 已知A ﹣2B =﹣1,求代数式(A ﹣1)2﹣4B (A ﹣B )+2A 的值.19. 分解因式:(1)x2﹣16x.(2)(x2﹣x)2﹣12(x2﹣x)+36.20. 解不等式2x﹣11<4(x﹣5)+3,并把它的解集在数轴上表示出来.21. 已知:如图,点D 是△A B C 内一点,A B =A C ,∠1=∠2.求证:A D 平分∠B A C .22. 已知:如图,直线l分别与直线A B ,C D 相交于点P,Q,PM垂直于PQ,∠1+∠2=90°.求证:A B ∥C D .23. 列方程组解应用题.某工厂经审批,可生产纪念北京申办2022年冬奥会成功的帽子和T恤.若两种纪念品共生产6000件,且T 恤比帽子的2倍多300件.问生产帽子和T恤的数量分别是多少?24. 某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题:(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是 ;(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数是 .25. 如图,在直角坐标平面内有两点A (0,2)、B (﹣2,0)、C (2,0). (1)△A B C 的形状是 等腰直角三角形;(2)求△A B C 的面积及A B 的长;(3)在y 轴上找一点P ,如果△PA B 是等腰三角形,请直接写出点P 的坐标.答案与解析一、选择题(本大题 共 30 分,每小题 3 分.在每小题给出的四个选项中,只有一项是符合 题目要求的)1. 已知a b ,则下列四个不等式中,不正确的是( ) A . 22a b -- B . 22a b -- C . 22a b D . 22a b ++【答案】B【解析】【分析】根据不等式的性质即可得出答案.在不等式的左右两边同时加上或减去一个数,不等式成立;在不等式的左右两边同时乘以或除以一个正数,不等式成立;在不等式的左右两边同时乘以或除以一个负数,不等符号需要改变.【详解】根据不等式的性质可知:-2A >-2B ,故选B .【点睛】本题主要考查的是不等式的基本性质,属于基础题型.记住不等式的性质是解决这个问题的关键.2.、13、0.3、π、2.1234567891011121314…(自然数依次排列),无理数有( ) A . 2个B . 3个C . 4个D . 5个 【答案】B【解析】π,2.1234567891011121314…(自然数依次排列),共3个,故选B .3. 下列命题中,属于真命题的是 ( )A . 两个锐角和是锐角B . 在同一平面内,如果A ⊥B ,B ⊥C ,则A ⊥C C . 同位角相等D . 在同一平面内,如果A //B ,B //C ,则A //C 【答案】D【解析】【分析】【详解】试题解析:A . 两个锐角的和是锐角,错误;B . 同一平面内,如果A ⊥B ,B ⊥C ,则A ∥C ,错误; C . 同位角相等,错误;D . 在同一平面内,如果A //B ,B //C ,则A //C ,正确.故选D .4. 点P是第二象限的点且到x轴的距离为3、到y轴的距离为4,则点P的坐标是()A . (﹣3,4)B . ( 3,﹣4)C . (﹣4,3)D . ( 4,﹣3)【答案】C【解析】【分析】【详解】由点且到x轴的距离为3、到y轴的距离为4,得|y|=3,|x|=4.由P是第二象限的点,得x=-4,y=3.即点P的坐标是(-4,3),故选C .5. 如图,直线A B ,C D 被直线EF所截,交点分别为点E,F,若A B ∥C D ,下列结论正确的是()A . ∠2=∠3B . ∠2=∠4C . ∠1=∠5D . ∠3+∠A EF=180°【答案】D【解析】试题解析:∵A B ∥C D ,∴∠3+∠A EF=180°.所以D 选项正确,故选D .6. 下列说法正确的是()A . 周长相等的锐角三角形都全等B . 周长相等直角三角形都全等C . 周长相等的钝角三角形都全等D . 周长相等的等边三角形都全等【答案】D【解析】试题分析:根据全等三角形的判定方法依次分析各选项即可作出判断.A .周长相等的锐角三角形不一定全等,B .周长相等的直角三角形不一定全等,C .周长相等的钝角三角形不一定全等,故错误;D .周长相等的等腰直角三角形都全等,本选项正确.考点:全等三角形的判定点评:全等三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.7. 某居民小区开展节约用电活动,对该小区30户家庭的节电量情况进行了统计,五月份与四月份相比,节电情况如下表:则五月份这30户家庭节电量的众数与中位数分别为( )A . 20,20B . 20,25C . 30,25D . 40,20【答案】A【解析】试题解析:由表格中的数据可得,五月份这30户家庭节电量的众数是:20,中位数是20,故选A .8. 点A 在直线m 外,点B 在直线m 上,AB 、两点的距离记作a ,点A 到直线m 的距离记作b ,则a 与b 的大小关系是 ( )A . a b >B . a b ≤C . a b ≥D . a b <【答案】C【解析】【分析】分两种情况:①A 和B 构成一个直角三角形,且A 是斜边,B 是直角边,所以A >B ;②若B 是垂足时,A =B .【详解】如图,A 是斜边,B 是直角边,∴A >B ,若点A 、点B 所在直线垂直直线m,则A =B ,故选C .【点睛】本题考查了点到直线的距离,明确点到直线的距离是这点到直线的垂线段的长度,属于基础题.9. 不等式组42103xx>⎧⎪⎨-+≥⎪⎩的整数解为()A . 0,1,2,3B . 1,2,3C . 2,3D . 3 【答案】B【解析】试题分析:解不等式4x>2,可得x>12;解不等式103x-+≥,解得x≤3,因此不等式组的解集为12<x≤3,所以整数解为1,2,3.故选B .点睛:此题主要考查了不等式组的解法,根据不等式的解法分别解两个不等式,取其公共部分,然后确定其整数解即可.10. 要反映某市某一周每天的最高气温的变化趋势,宜采用()A . 条形统计图B . 扇形统计图C . 折线统计图D . 以上均可【答案】C【解析】【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.由此即可解答.【详解】根据统计图的特点,要反映某市某一周每天的最高气温的变化趋势,应采用折线统计图.故选C .【点睛】本题考查了折线统计图的特点,熟知折线统计图表示的是事物的变化情况是解决问题的关键.二、填空题(本共18 分,每小题3 分)11. 分解因式:﹣m2+4m﹣4═_____.【答案】﹣(m﹣2)2【解析】试题解析:原式=-(m2-4m+4)=-(m-2)2.12. 已知点A (﹣2,﹣1),点B (A ,B ),直线A B ∥y轴,且A B =3,则点B 的坐标是___【答案】(﹣2,2)或(﹣2,﹣4)【解析】试题解析:∵A (-2,-1),A B ∥y轴,∴点B 的横坐标为-2,∵A B =3,∴点B 的纵坐标为-1+3=2或-1-3=-4,∴B 点的坐标为(-2,2)或(-2,-4).13. 小华将直角坐标系中猫眼的图案向右平移了3个单位长度,平移前猫眼的坐标为(– 4,3)、(– 2,3),则移动后猫眼的坐标为__________.【答案】(-1,3)、(1,3)【解析】【分析】利用坐标系中的移动法则右加左减,上加下减来确定向右平移后的各点的坐标即可【详解】∵向右平移三个单位长度,横坐标分别加3,纵坐标不变∴移动后猫眼的坐标为:(-1,3)、(1,3)【点睛】在坐标系中确定点的位置和平移是本题的考点,熟练掌握平移法则是解题的关键.14. 如图,A D 是△A B C 的中线,E是A D 的中点,如果S△A B D =12,那么S△C D E=__.【答案】6.【解析】试题解析:△A C D 的面积=△A B D 的面积=12,△C D E的面积=12△A C D 的面积=12×12=6.15. 在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点是整点.若整点P(m+2,2m ﹣1)在第四象限,则m的值为_____.【答案】﹣1或0.【解析】试题分析:由点P(m+2,2m﹣1)在第四象限,可得m+2>0,2m-1<0,解得﹣2<m<12,又因点的横、纵坐标均为整数可得m是整数,所以m的值为﹣1或0.考点:点的坐标.16. 已知等腰三角形的两条边长分别是3C m、7C m,那么这个等腰三角形的周长是________C m.【答案】17【解析】【分析】【详解】解∵等腰三角形的两条边长分别是3C m、7C m,∴当此三角形的腰长为3C m时,3+3<7,不能构成三角形,故排除,∴此三角形的腰长为7C m,底边长为3C m,∴此等腰三角形的周长=7+7+3=17C m,故答案为:17.三、解答题17. 3827π﹣1)0﹣(12)﹣1.【答案】3. 【解析】试题分析:原式利用零指数幂、负整数指数幂法则,以及分数指数幂法则计算即可得到结果.试题解析:原式=3827﹣1﹣2=6﹣1﹣2=3.18. 已知A ﹣2B =﹣1,求代数式(A ﹣1)2﹣4B (A ﹣B )+2A 的值.【答案】2.【解析】试题分析:原式利用完全平方公式,单项式乘以多项式法则化简,去括号合并得到最简结果,把已知等式代入计算即可求出值.试题解析:原式=A 2﹣2A +1﹣4A B +4B 2+2A =(A ﹣2B )2+1,当A ﹣2B =﹣1时,原式=2.19. 分解因式:(1)x2﹣16x.(2)(x2﹣x)2﹣12(x2﹣x)+36.【答案】(1)x(x+4)(x﹣4);(2)(x+2)2(x﹣3)2.【解析】试题分析:(1)原式提取x,再利用平方差公式分解即可;(2)原式利用完全平方公式及十字相乘法分解即可.试题解析:(1)原式=x(x2﹣16)=x(x+4)(x﹣4);(2)原式=(x2﹣x﹣6)2=(x+2)2(x﹣3)2.20. 解不等式2x﹣11<4(x﹣5)+3,并把它的解集在数轴上表示出来.【答案】x>3.【解析】试题分析:先去括号,再移项,合并同类项,把x的系数化为1并在数轴上表示出来即可.试题解析:去括号得,2x﹣11<4x﹣20+3,移项得,2x﹣4x<﹣20+3+11,合并同类项得,﹣2x<﹣6,x的系数化为1得,x>3.在数轴上表示为:.21. 已知:如图,点D 是△A B C 内一点,A B =A C ,∠1=∠2.求证:A D 平分∠B A C .【答案】见解析.【解析】【分析】易证△A B D ≌△A C D ,则可得证.【详解】解:证明:∵∠1=∠2,∴B D =C D ,在△A B D 与△A C D 中,A B =A C ,B D =C D ,A D =A D ,∴△A B D ≌△A C D (SSS),∴∠B A D =∠C A D ,即A D 平分∠B A C .【点睛】此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定方法.22. 已知:如图,直线l分别与直线A B ,C D 相交于点P,Q,PM垂直于PQ,∠1+∠2=90°.求证:A B ∥C D .【答案】证明见解析.【解析】【分析】【详解】试题分析:先根据垂直的定义得出∠A PQ+∠2=90°,再由∠1+∠2=90°得出∠A PQ=∠1,进而可得出结论.试题解析:如图,∵PM ⊥PQ (已知),∴∠A PQ+∠2=90°(垂直定义).∵∠1+∠2=90°(已知),∴∠A PQ=∠1(同角的余角相等),∴A B ∥C D (内错角相等,两直线平行).23. 列方程组解应用题.某工厂经审批,可生产纪念北京申办2022年冬奥会成功的帽子和T 恤.若两种纪念品共生产6000件,且T 恤比帽子的2倍多300件.问生产帽子和T 恤的数量分别是多少?【答案】生产帽子1900件,生产T 恤4100件.【解析】试题分析:设生产帽子x 件,生产T 恤y 件,根据“两种纪念品共生产6000件,且T 恤比帽子的2倍多300件”列方程组求解可得.试题解析::设生产帽子x 件,生产T 恤y 件.根据题意,得:6000{2300x y y x ++==, 解得:1900{4100x y == 答:生产帽子1900件,生产T 恤4100件.【点睛】此题主要考查了二元一次方程组的应用,弄清题意,找出合适的等量关系,据此列出方程组是解题关键.24. 某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题:(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是;(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数是.【答案】(1)详见解析;(2)100;(3)360.【解析】【分析】(1)根据扇形统计图可得出女生喜欢武术的占20%,利用条形图中喜欢武术的女生有10人,即可求出女生总人数,即可得出喜欢舞蹈的人数;(2)根据(1)的计算结果再利用条形图即可得出样本容量;(3)用全校学生数×喜欢剪纸的学生在样本中所占百分比即可求出.【详解】(1)∵根据扇形统计图可得出女生喜欢武术的占20%,利用条形图中喜欢武术的女生有10人,∴女生总人数为:10÷20%=50(人),∴女生中喜欢舞蹈的人数为:50−10−16=24(人),如图所示:(2)本次抽样调查的样本容量是:30+6+14+50=100;(3)∵样本中喜欢剪纸的人数为30人,样本容量为100,∴估计全校学生中喜欢剪纸的人数=1200×30100=360人.【点睛】此题考查扇形统计图,条形统计图,用样本估计总体,解题关键在于看懂图中数据25. 如图,在直角坐标平面内有两点A (0,2)、B (﹣2,0)、C (2,0).(1)△A B C 的形状是等腰直角三角形;(2)求△A B C 的面积及A B 的长;(3)在y轴上找一点P,如果△PA B 是等腰三角形,请直接写出点P的坐标.【答案】(1)等腰直角三角形,(2)22(3)P(0,﹣2)或P(0,2﹣22或P(0,2+22或P(0,0).【解析】【分析】(1)根据点的坐标判断出OA =OB =OC ,从而得出结论;(2)根据点的坐标求出求出B C ,OA ,再用三角形面积公式即可;(3)设出点P坐标,根据平面坐标系中,两点间的距离公式表示出B P,A P,再分三种情况计算即可.【详解】∵A (0,2)、B (﹣2,0)、C (2,0).∴OB =OC =OA ,∴△A B C 是等腰三角形,∵A O⊥B C ,∴△A B C 是等腰直角三角形.故答案为等腰直角三角形,(2)∵A (0,2)、B (﹣2,0)、C (2,0).∴B C =4,OA =2,∴S△A B C =12B C ×A O=12×4×2=4,∵A (0,2)、B (﹣2,0), ∴4+4=22(3)设点P(0,m),∵A (0,2)、B (﹣2,0),∴,A P=|m﹣2|,∵△PA B 是等腰三角形,∴①当A B =B P时,∴,∴m=±2,∴P(0,2)(与点A 重合,舍去)或P(0,﹣2),②当A B =A P时,∴﹣2|,∴m=2﹣∴P(0,2﹣P(0,③当A P=B P时,∴|m﹣,∴m=0,∴P(0,0),∴P(0,﹣2)或P(0,2﹣P(0,P(0,0).【点睛】此题是等腰三角形性质,主要考查了等腰三角形的判定,两点间的距离公式,方程的解法,解本题的关键是分类讨论计算即可.。

人教版七年级数学下册期末测试题及答案解析(共六套)

人教版七年级数学下册期末测试题及答案解析(共六套)

B ′C ′D ′O ′A ′ODC BA(第8题图)人教版七年级数学第二学期期末考试试卷(一)(满分120分)一、选择题(每小题3分,计24分,请把各小题答案填到表格内) 题号 1 2 3 4 5 6 7 8 答案1. 如图所示,下列条件中,不能..判断l 1∥l 2的是 A .∠1=∠3 B .∠2=∠3 C.∠4=∠5 D.∠2+∠4=180° 2.为了了解某市5万名初中毕业生的中考数学成绩,从中抽取500名学生的数学成绩进行统计分析,那么样本是 A .某市5万名初中毕业生的中考数学成绩 B .被抽取500名学生 (第1题图)C .被抽取500名学生的数学成绩D .5万名初中毕业生3. 下列计算中,正确的是A .32x x x ÷=B .623a a a ÷=C . 33x x x =⋅D .336x x x += 4.下列各式中,与2(1)a -相等的是A .21a -B .221a a -+C .221a a --D .21a +5.有一个两位数,它的十位数数字与个位数字之和为5,则符合条件的数有 A .4个 B .5个 C .6个 D .无数个 6. 下列语句不正确...的是 A .能够完全重合的两个图形全等 B .两边和一角对应相等的两个三角形全等 C .三角形的外角等于不相邻两个内角的和 D .全等三角形对应边相等7. 下列事件属于不确定事件的是A .太阳从东方升起B .2010年世博会在上海举行C .在标准大气压下,温度低于0摄氏度时冰会融化D .某班级里有2人生日相同8.请仔细观察用直尺和圆规.....作一个角∠A ′O ′B ′等于已知角∠AOB 的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是A .SASB .ASAC .AASD .SSS 二、填空题(每小题3分,计24分)9.生物具有遗传多样性,遗传信息大多储存在DNA 分子上.一个DNA 分子的直径约为0.0000002cm .这个数量用科学记数法可表示为 cm . 10.将方程2x+y=25写成用含x 的代数式表示y 的形式,则y= .11.如图,AB∥CD ,∠1=110°,∠ECD=70°,∠E 的大小是 °.12.三角形的三个内角的比是1:2:3,则其中最大一个内角的度数是 °. 13.掷一枚硬币30次,有12次正面朝上,则正面朝上的频率为 .14.不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其它都相同,从中任意摸出一个球,则摸出 球的可能性最小. 15.下表是自18世纪以来一些统计学家进行抛硬币试验所得的数据:试验者 试验次数n 正面朝上的次数m正面朝上的频率nm布丰 4040 2048 0.5069 德·摩根 4092 2048 0.5005 费勤1000049790.4979那么估计抛硬币正面朝上的概率的估计值是 . 16.如图,已知点C 是∠AOB 平分线上的点,点P 、P′分别在OA 、OB 上,如果要得到OP =OP′,需要添加以下条件中的某一个即可:①PC=P′C;②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出一个正确结果的序号: .三、解答题(计72分)17.(本题共8分)如图,方格纸中的△ABC 的三个顶点分别在小正方形的顶点(格点)上,称为格点三角形.请在方格纸上按下列要求画图. 在图①中画出与△ABC 全等且有一个公共顶点的格点△C B A '''; 在图②中画出与△ABC 全等且有一条公共边的格点△C B A ''''''.OA C P P′B (第16题图)(第16题图)18.计算或化简:(每小题4分,本题共8分)(1)(—3)0+(+0.2)2009×(+5)2010 (2)2(x+4) (x-4)19.分解因式:(每小题4分,本题共8分)(1)x x -3 (2)-2x+x 2+120.解方程组:(每小题5分,本题共10分)(1)⎩⎨⎧=+-=300342150y x y x (2)⎩⎨⎧⨯=+=+300%25%53%5300y x y x21.(本题共8分)已知关于x 、y 的方程组⎩⎨⎧=+=+73ay bx by ax 的解是⎩⎨⎧==12y x ,求a b+的值.22.(本题共9分)如图,AB=EB ,BC=BF ,CBF ABE ∠=∠.EF 和AC 相等吗?为什么?23.(本题9分)小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:项目月功能费基本话费长途话费短信费FECBA(第22题图)金额/元 5 50(1)请将表格补充完整; (2)请将条形统计图补充完整.(3)扇形统计图中,表示短信费的扇形的圆心角是多少度?24.(本题4+8=12分)上海世博会会期为2010年5月1日至2010年10月31日。

最新人教版七年级数学下册期末测试题及答案详解(共五套)

最新人教版七年级数学下册期末测试题及答案详解(共五套)

最新人教版七年级数学下册期末测试题及答案详解(共五套)人教版七年级数学下学期末模拟试题(一)一、选择题:(本大题共10个小题,每小题3分,共30分)1.若m>-1,则下列各式中错误的是()A。

6m>-6.B。

-5m<-5.C。

m+1>0.D。

1-m<22.下列各式中,正确的是()A。

16=±4.B。

±16=4.C。

3-27=-3.D。

(-4)²=163.已知a>b>0,那么下列不等式组中无解的是()A。

{x<a。

x>-a。

x>a。

x>-a}。

B。

{x>-b。

x<-b。

x <-b。

x<b}C。

{x<a。

x>-a。

x>a。

x<-a}。

D。

{x<-b。

x>-b。

x <-b。

x<b}4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为()A。

先右转50°,后右转40°。

B。

先右转50°,后左转40°C。

先右转50°,后左转130°。

D。

先右转50°,后左转50°5.解为{x=1.y=2}的方程组是()A。

{x-y=1.x-y=-1.x-y=3.3x+y=5}。

B。

{x-y=1.x-y=-1.x-y=3.3x+y=-5}C。

{x-y=1.x-y=-1.3x-y=5.3x+y=5}。

D。

{x-y=1.x-y=-1.3x-y=5.3x+y=-5}6.如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是()A。

100°。

B。

110°。

C。

115°。

D。

120°7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是()A。

4.B。

3.C。

2.D。

18.在各个内角都相等的多边形中,一个外角等于一个内角的1/2,则这个多边形的边数是()A。

人教版七年级下学期期末考试数学试卷及答案解析(共七套)

人教版七年级下学期期末考试数学试卷及答案解析(共七套)

人教版七年级下学期期末考试数学试卷(一)一、选择题(共10小题,每小题3分,满分30分)1.如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠52.下列实数中,无理数是()A.﹣ B. C. |﹣2| D.3.下列语句中,假命题是()A.如果直线a,b,c满足a∥b,b∥c,那么a∥cB.三角形的内角和为180°C.内错角相等D.对顶角相等4.若x>y,则下列式子中错误的是()A. x﹣2>y﹣2 B. x+2>y+2 C.﹣2x>﹣2y D.>5.下列调查中,调查方式选择正确的是()A.为了了解全班同学的视力情况,采用全面调查B.为调查乘坐飞机的旅客是否携带了违禁物品,采用抽样调查C.为了解某一种节能灯的使用寿命,采用全面调查D.为了解某鱼塘里鱼的生长情况,采用全面调查6.已知甲、乙、丙、丁共有30本,又知甲、乙、丙、丁的课外书制作的条形统计图的高度之比为2:3:4:1,则乙的课外书的本数为()A. 6本 B. 9本 C. 11本 D. 12本7.线段EF是由线段PQ平移得到的,点P(﹣1,3)的对应点为E(4,7),则点Q(﹣3,1)的对应点F的坐标是()A.(﹣8,﹣3) B.(﹣2,﹣2)C.(2,5) D.(﹣6,﹣1)8.已知是二元一次方程组的解,则m﹣n的值是()A. 1 B. 2 C. 3 D. 49.如图,数轴上点P表示的数可能是()A. B. C. D.10.探照灯、汽车灯等很多灯具都与平行线有关,如图所示是一探照灯碗的剖面,从位于O点的灯泡发出的两束光线OB,OC,经灯碗反射以后平行射出,其中∠ABO=α,∠BOC=β,则∠DCO的度数是.二、填空题(共6小题,每小题3分,满分18分)11.如图,直线a、b相交于点O,若∠1=50°,则∠2=,∠3=,∠4=.12.如图,B、A、E三点在同一线上,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠EAC=.13.在第三象限内的点P到x轴的距离是2,到y轴的距离是5,则点P的坐标是.14.如图所示,△ABC沿直线AB向下平移可以得到△DEF,如果AB=6,BD=4,那么BE= .15.已知≈2.078,≈20.78,则y= .16.已知关于x的不等式组无解,则a的取值范围为.三、解答题(共9小题,满分102分)17.(10分)(1)计算:﹣﹣(2)计算:|﹣|+2.18.(10分)(1)已知(x+2)3=﹣8,求x的值.(2)解不等式组:并把解集在数轴上表示出来.19.如图,直角坐标系中,△ABC的顶点都在网格点上,其中C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,);(2)将△ABC先向右平移3个单位长度,再向下平移2个单位长度,得到△A′B′C′,请在网格中画出△A′B′C′;(3)△ABC的面积= .20.(10分)如图,已知AD∥BC,∠1=∠2,求证:∠3+∠4=180°.21.(12分)李红在学校的研究性学习小组中负责了解七年级200名女生掷实心球的测试成绩.她从中随机调查了若干名女生的测试成绩(单位:米),并将统计结果绘制成了如下的统计图表(内容不完整).测试成绩3≤x<4 4≤x<5 5≤x<7 6≤x<7 7≤x<8 合计频数 3 27 9 m 1 n请你结合图表中所提供的信息,回答下列问题:(1)表中m= ,n= ;(2)请补全频数分布直方图;(3)在扇形统计图中,6≤x<7这一组所占圆心角的度数为度;(4)如果掷实心球的成绩达到6米或6米以上为优秀,请你估计该校七年级女生掷实心球的成绩达到优秀的总人数.22.(12分)若不等式x﹣<2x﹣+1的最小整数解是方程2x﹣ax=4的解,求a的值.23.(12分)某文具店销售每台进价分别为80元、68元的A,B两种型号的计算器,如表是近两周的销售情况:销售时段销售数量销售收入第一周 3台A种型号 5台B种型号 720元第二周 4台A种型号 10台B种型号 1240元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的计算器的销售单价;(2)若文具店准备用不多于2200元的金额再采购这两种型号的计算器共30台,求A种型号的计算器最多能采购多少台?(3)在(2)的条件下,文具店销售完这30台计算器能否实现利润为600元的目标?若能,请给出相应的采购方案;若不能,请说明理由.24.(14分)如果点P(x,y)的坐标满足(1)求点P的坐标.(用含m,n的式子表示x,y)(2)如果点P在第二象限,且符合要求的整数只有两个,求n的范围.(3)如果点P在第二象限,且所有符合要求的整数m之和为9,求n的范围.25.(14分)已知平面直角坐标系内点A(m,n),将点A向上平移4个单位,向左平移1个单位得到点B,再向下平移2个单位,向左平移3个单位得到点C,再将C向上平移3个单位,向右平移7个单位得到点D,且D(2n,2﹣4m),连接直线AC,DC,AB,BD,得到如图所示.(1)求n,m的值;(2)请运用平行线的性质说明:∠1+∠2+∠3+∠4=360°;(3)若有一动点E(a,b),其横、纵坐标a,b分别同时满足三个条件,请你在平面直角坐标系内画出点E(a,b)可能运动的范围,用阴影部分标注,并求出其阴影部分的面积.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠5考点:同位角、内错角、同旁内角.分析:根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角可得答案.解答:解:∠1的同位角是∠5,故选:D.点评:此题主要考查了同位角的概念,关键是掌握同位角的边构成“F“形.2.下列实数中,无理数是()A.﹣ B. C. |﹣2| D.考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:A、是分数,是有理数,选项错误;B、是无理数,选项正确;C、|﹣2|=2是整数,是有理数,选项错误;D、=2是整数,是有理数,选项错误.故选B.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.下列语句中,假命题是()A.如果直线a,b,c满足a∥b,b∥c,那么a∥cB.三角形的内角和为180°C.内错角相等D.对顶角相等考点:命题与定理.分析:分别利用平行线的性质以及三角形内角和定理分析得出即可.解答:解:A、如果直线a,b,c满足a∥b,b∥c,那么a∥c,是真命题,不合题意;B、三角形的内角和为180°,是真命题,不合题意;C、两直线平行,内错角相等,故原命题是假命题,符合题意;D、对顶角相等,是真命题,不合题意;故选:C.点评:此题主要考查了命题与定理,正确把握平行线的性质是解题关键.4.若x>y,则下列式子中错误的是()A. x﹣2>y﹣2 B. x+2>y+2 C.﹣2x>﹣2y D.>考点:不等式的性质.分析: A:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.B:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.C:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可.D:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,据此判断即可.解答:解:∵x>y,∴x﹣2>y﹣2,∴选项A正确;∵x>y,∴x+2>y+2,∴选项B正确;∵x>y,∴﹣2x<﹣2y,∴选项C不正确;∵x>y,∴,∴选项D正确.故选:C.点评:此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.5.下列调查中,调查方式选择正确的是()A.为了了解全班同学的视力情况,采用全面调查B.为调查乘坐飞机的旅客是否携带了违禁物品,采用抽样调查C.为了解某一种节能灯的使用寿命,采用全面调查D.为了解某鱼塘里鱼的生长情况,采用全面调查考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、为了了解全班同学的视力情况,采用全面调查,正确;B、为调查乘坐飞机的旅客是否携带了违禁物品,采用全面调查,故此选项错误;C、为了解某一种节能灯的使用寿命,采用抽样调查,故此选项错误;D、为了解某鱼塘里鱼的生长情况,采用抽样调查,故此选项错误;故选:A.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.已知甲、乙、丙、丁共有30本,又知甲、乙、丙、丁的课外书制作的条形统计图的高度之比为2:3:4:1,则乙的课外书的本数为()A. 6本 B. 9本 C. 11本 D. 12本考点:条形统计图.分析:解决本题需要从统计图获取信息,关键是明确图表中数据的来源及所表示的意义,依据所示的实际意义获取正确的信息.解答:解:∵甲、乙、丙、丁各自拥有的课外书情况制作的条形统计图的高度之比为2:3:4:1∴乙拥有的课外书占总数的30%∴乙的课外书的本数为30×30%=9,故选:B.点评:本题考查的是条形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.7.线段EF是由线段PQ平移得到的,点P(﹣1,3)的对应点为E(4,7),则点Q(﹣3,1)的对应点F的坐标是()A.(﹣8,﹣3) B.(﹣2,﹣2)C.(2,5) D.(﹣6,﹣1)考点:坐标与图形变化-平移.分析:首先根据P点的对应点为E可得点的坐标的变化规律,则点Q的坐标的变化规律与P点的坐标的变化规律相同即可.解答:解:∵点P(﹣1,3)的对应点为E(4,7),∴E点是P点横坐标+5,纵坐标+4得到的,∴点Q(﹣3,1)的对应点F坐标为(﹣3+5,1+4),即(2,5).故选:C.点评:此题主要考查了坐标与图形变化﹣平移,关键是掌握把一个图形平移后,各点的变化规律都相同.8.已知是二元一次方程组的解,则m﹣n的值是()A. 1 B. 2 C. 3 D. 4考点:二元一次方程组的解.专题:计算题.分析:将x与y的值代入方程组求出m与n的值,即可确定出m﹣n的值.解答:解:将x=﹣1,y=2代入方程组得:,解得:m=1,n=﹣3,则m﹣n=1﹣(﹣3)=1+3=4.故选:D点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.9.如图,数轴上点P表示的数可能是()A. B. C. D.考点:估算无理数的大小;实数与数轴.分析:先根据数轴估算出P点所表示的数,再根据选项中的数值进行选择即可.解答:解:A、∵9<10<16,32<<4,故本选项错误;B、∵4<5<9,∴2<<3,故本选项正确;C、∵1<3<4,∴1<<2,故本选项错误;D、∵1<2<4,∴1<<2,故本选项错误.故选B.点评:本题考查的是估算无理数的大小,先根据题意得出各无理数的取值范围是解答此题的关键.10.探照灯、汽车灯等很多灯具都与平行线有关,如图所示是一探照灯碗的剖面,从位于O点的灯泡发出的两束光线OB,OC,经灯碗反射以后平行射出,其中∠ABO=α,∠BOC=β,则∠DCO的度数是β﹣α.考点:平行线的性质.专题:应用题;跨学科.分析:过O作直线EF∥AB,则EF∥CD,再由平行线的性质即可得出结论.解答:解:过O作直线EF∥AB,则EF∥CD,∵AB∥EF,∴∠1=∠ABO=α.∵EF∥CD,∴∠2=∠DCO=β﹣α.故答案为:β﹣α.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.二、填空题(共6小题,每小题3分,满分18分)11.如图,直线a、b相交于点O,若∠1=50°,则∠2=130°,∠3=50°,∠4=130°.考点:对顶角、邻补角.分析:根据对顶角相等可得∠3=50°,根据邻补角互补可得∠2=130°,再根据对顶角相等可得∠4的度数.解答:解:∵∠1=50°,∴∠3=50°,∠2=180°﹣50°=130°,∴∠4=130°.故答案为:130°;50°;130°.点评:此题主要考查了对顶角和邻补角,关键是掌握对顶角相等、邻补角互补.12.如图,B、A、E三点在同一线上,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠EAC=60°.考点:平行线的性质.分析:先根据平行线的性质求出∠EAD的度数,再由角平分线的定义即可得出结论.解答:解:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°.∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=60°.故答案为:60°.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.13.在第三象限内的点P到x轴的距离是2,到y轴的距离是5,则点P的坐标是(﹣5,﹣2).考点:点的坐标.分析:根据点的坐标的几何意义及第三象限点的坐标特点解答即可.解答:解:∵x轴的距离为2,到y轴的距离为5,∴点的纵坐标是±2,横坐标是±5,又∵第三象限内的点横坐标小于0,纵坐标小于0,∴点的横坐标是﹣5,纵坐标是﹣2.故此点的坐标为(﹣5,﹣2).故答案为:(﹣5,﹣2).点评:本题主要考查了点的坐标的几何意义:横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离.14.如图所示,△ABC沿直线AB向下平移可以得到△DEF,如果AB=6,BD=4,那么BE= 2 .考点:平移的性质.专题:计算题.分析:先计算出AD=AB﹣BD=2,然后根据平移的性质求解.解答:解:∵△ABC沿直线AB向下平移得到△DEF,∴AD=BE,∵AB=6,BD=4,∴AD=AB﹣BD=2,∴BE=2.故答案为2.点评:本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.15.已知≈2.078,≈20.78,则y= 8996 .考点:立方根.分析:根据被开方数的小数点每移动三位,其立方根的小数点就移动一位得出即可.解答:解:∵≈2.078,≈20.78,∴y=8996,故答案为:8996.点评:本题考查了立方根的应用,注意:被开方数的小数点每移动三位,其立方根的小数点就相应的移动一位.16.已知关于x的不等式组无解,则a的取值范围为a≥3.考点:解一元一次不等式组.分析:先把a当作已知条件求出各不等式的解集,再根据不等式组无解求出a 的取值范围即可.解答:解:,由①得,x≤3,由②得,x>a,∵不等式组无解,∴a≥3.故答案为:a≥3.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.三、解答题(共9小题,满分102分)17.(10分)(1)计算:﹣﹣(2)计算:|﹣|+2.考点:实数的运算.专题:计算题.分析:(1)原式利用算术平方根及立方根定义计算即可得到结果;(2)原式利用绝对值的代数意义化简,合并即可得到结果.解答:解:(1)原式=10﹣﹣0.5=8;(2)原式=﹣+2=3﹣.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(10分)(1)已知(x+2)3=﹣8,求x的值.(2)解不等式组:并把解集在数轴上表示出来.考点:解一元一次不等式组;立方根;在数轴上表示不等式的解集.专题:计算题.分析:(1)已知等式利用立方根定义开立方求出x的值即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,表示在数轴上即可.解答:解:(1)开立方得:x+2=﹣2,解得:x=﹣4;(2),由①得:x>2;由②得:x≤3;则不等式组的解集为2<x≤3,如图所示:点评:此题考查了解一元一次不等式组,立方根以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.19.如图,直角坐标系中,△ABC的顶点都在网格点上,其中C点坐标为(1,2).(1)写出点A、B的坐标:A( 3 ,﹣2 )、B( 4 , 3 );(2)将△ABC先向右平移3个单位长度,再向下平移2个单位长度,得到△A′B′C′,请在网格中画出△A′B′C′;(3)△ABC的面积= 7 .考点:作图-平移变换.分析:(1)根据平面坐标系直接得出A,B点坐标即可;(2)利用平移的性质得出对应点位置进而得出答案;(3)利用三角形所在矩形面积减去周围三角形面积进而得出答案.解答:解:(1)A(3,﹣2),B(4,3);故答案为:3,﹣2;4,3;(2)如图所示:△A′B′C′即为所求;(3)△ABC的面积为:3×5﹣×1×3﹣×2×4﹣×1×5=7.故答案为:7.点评:此题主要考查了平移变换以及三角形面积求法,得出平移后对应点位置是解题关键.20.(10分)如图,已知AD∥BC,∠1=∠2,求证:∠3+∠4=180°.考点:平行线的判定与性质.专题:证明题.分析:欲证∠3+∠4=180°,需证BE∥DF,而由AD∥BC,易得∠1=∠3,又∠1=∠2,所以∠2=∠3,即可求证.解答:证明:∵AD∥BC,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴BE∥DF,∴∠3+∠4=180°.点评:此题考查平行线的判定和性质:同位角相等,两直线平行;两直线平行,内错角相等;两直线平行,同旁内角互补.要灵活应用.21.(12分)李红在学校的研究性学习小组中负责了解七年级200名女生掷实心球的测试成绩.她从中随机调查了若干名女生的测试成绩(单位:米),并将统计结果绘制成了如下的统计图表(内容不完整).测试成绩3≤x<4 4≤x<5 5≤x<7 6≤x<7 7≤x<8 合计频数 3 27 9 m 1 n请你结合图表中所提供的信息,回答下列问题:(1)表中m= 10 ,n= 50 ;(2)请补全频数分布直方图;(3)在扇形统计图中,6≤x<7这一组所占圆心角的度数为72 度;(4)如果掷实心球的成绩达到6米或6米以上为优秀,请你估计该校七年级女生掷实心球的成绩达到优秀的总人数.考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表;扇形统计图.分析:(1)根据4≤x<5之间的频数和所占的百分比,求出总人数,再用总人数减去其它成绩段的人数,即可得出6≤x<7的频数;(2)根据(1)求出的m的值,从而把频数分布直方图补全;(3)用360度乘以6≤x<7所占的百分比,即可求出6≤x<7这一组所占圆心角的度数;(4)用总人数乘以成绩达到6米或6米以上所占的百分比,求出该校七年级女生掷实心球的成绩达到优秀的总人数.解答:解:(1)根据题意得:n==50;m=50﹣3﹣27﹣9﹣1=10;故答案为:10,50;(2)根据(1)得出的m=10,补图如下:(3)6≤x<7这一组所占圆心角的度数为:360°×=72°;故答案为:72;(4)根据题意得:200×=44(人),答:该校初一年级女生掷实心球的成绩达到优秀的总人数是44人.点评:此题考查了频数(率)分布直方图、扇形统计图以及频数(率)分布表,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(12分)若不等式x﹣<2x﹣+1的最小整数解是方程2x﹣ax=4的解,求a的值.考点:一元一次不等式的整数解;一元一次方程的解.分析:此题可先将不等式化简求出x的取值,然后取x的最小整数解代入方程2x﹣ax=4,化为关于a的一元一次方程,解方程即可得出a的值.解答:解:由不等式x﹣<2x﹣+1得x>0,所以最小整数解为x=1,将x=1代入2x﹣ax=4中,解得a=﹣2.点评:此题考查的是一元一次不等式的解,将x的值解出再代入方程即可得出a的值.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.23.(12分)某文具店销售每台进价分别为80元、68元的A,B两种型号的计算器,如表是近两周的销售情况:销售时段销售数量销售收入第一周 3台A种型号 5台B种型号 720元第二周 4台A种型号 10台B种型号 1240元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的计算器的销售单价;(2)若文具店准备用不多于2200元的金额再采购这两种型号的计算器共30台,求A种型号的计算器最多能采购多少台?(3)在(2)的条件下,文具店销售完这30台计算器能否实现利润为600元的目标?若能,请给出相应的采购方案;若不能,请说明理由.考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)设A种型号计算器的销售单价为x元、B种型号计算器的销售单价为y元,根据3台A型号5台B型号的计算器收入是720元,4台A型号10台B 型号的计算器收入1240元,列方程组求解;(2)设采购A种型号计算器a台,则采购B种型号计算器(30﹣a)台,根据金额不多余2200元,列不等式求解;(3)设利润为600元,列方程求出a的值为30,不符合(2)的条件,可知不能实现目标.解答:解:(1)设A种型号计算器的销售单价为x元、B种型号计算器的销售单价为y元,依题意有,解得.答:A种型号计算器的销售单价为100元、B种型号计算器的销售单价为84元.(2)设采购A种型号计算器a台,则采购B种型号计算器(30﹣a)台.依题意得:68(30﹣a)+80a≤2200,解得:a≤13.答:A种型号的计算器最多能采购13台;(3)依题意有:(100﹣80)a+(84﹣68)(30﹣x)=600,解得:a=30,∵a≤13,∴在(2)的条件下文具店不能实现利润为600元的目标.点评:本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.24.(14分)如果点P(x,y)的坐标满足(1)求点P的坐标.(用含m,n的式子表示x,y)(2)如果点P在第二象限,且符合要求的整数只有两个,求n的范围.(3)如果点P在第二象限,且所有符合要求的整数m之和为9,求n的范围.考点:解一元一次不等式组;二元一次方程组的解;点的坐标.分析:(1)把m、n当作已知条件,求出xy的值即可;(2)先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出关于n的不等式组,求出即可.(3)先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出关于n的不等式组,求出即可.解答:解:(1)∵解方程组得,,∴(m﹣5,m﹣n);(2)∵点P在第二象限,且符合要求的整数只有两个,由,得n<m<5∴2≤n<3(3)∵点P在第二象限,且符合要求的整数之和为9,由,得n<m<5∴m的整数值为2,3,4,∴1≤n<2,点评:本题考查了解二元一次方程组,解一元一次不等式,解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出关于n的不等式组.25.(14分)已知平面直角坐标系内点A(m,n),将点A向上平移4个单位,向左平移1个单位得到点B,再向下平移2个单位,向左平移3个单位得到点C,再将C向上平移3个单位,向右平移7个单位得到点D,且D(2n,2﹣4m),连接直线AC,DC,AB,BD,得到如图所示.(1)求n,m的值;(2)请运用平行线的性质说明:∠1+∠2+∠3+∠4=360°;(3)若有一动点E(a,b),其横、纵坐标a,b分别同时满足三个条件,请你在平面直角坐标系内画出点E(a,b)可能运动的范围,用阴影部分标注,并求出其阴影部分的面积.考点:坐标与图形性质;平行线的性质;三角形的面积;坐标与图形变化-平移.分析:(1)根据横坐标右移加,左移减;纵坐标上移加,下移减可得关于n,m的二元一次方程组,解方程组即可求解;(2)过C点作JF∥AB,交BD于E,过D点作GH∥AB,根据平行线的性质即可求得;(3)根据题意在坐标系中,画出点E可能运动的范围是RT△ABC,根据三角形面积公式即可求得.解答:解:(1)由题意得,解得.故n的值为1,m的值为﹣1;(2)如图1,过C点作JF∥AB,交BD于E,过D点作GH∥AB,∴∠3=∠BEJ,∠BDG=∠BEC,∠GDK=∠ECB,∠CAB=∠ACF,∠BEJ+∠BEC=180°,∠∠ECB+∠1+∠ACF=180°,∴∠3+∠BDG+∠GDK+∠1+∠CAB=360°,∵∠4=∠CAB,∠BDG+∠GDK=∠2,∴∠1+∠2+∠3+∠4=360°;(3)根据题意画出点E可能运动的范围是△ABC,如图2所示:=×2×2=2.S阴影点评:本题考查了坐标和图形的关系,平行线的性质,三角形的面积,根据题意作出图形是解题的关键.人教版七年级下学期期末考试数学试卷(二)一、选择题1、的平方根是()A、±9B、9C、3D、±32、下列实数3.1415,﹣23,,,,﹣,无理数的个数有()A、1个B、2个C、3个D、4个3、下列各组图形,可以经过平移变换由一个图形得到另一个图形的是()A、 B、C、 D、4、若m>n>0,则下列不等式一定成立的是()A、>1B、m﹣n<0C、﹣m<﹣nD、m+n<05、(x﹣3)(2x+1)=2x2+mx+n,则m,n的值分别是()A、5,﹣3B、﹣5,3C、﹣5,﹣3D、5,36、如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于()A、30°B、45°C、60°D、75°7、如图,以下条件能判定GE∥CH的是()A、∠FEB=∠ECDB、∠AEG=∠DCHC、∠GEC=∠HCFD、∠HCE=∠AEG8、分式方程=2的解为()A、x=4B、x=3C、x=0D、无解9、将分式方程1﹣= 去分母,整理后得()A、8x+1=0B、8x﹣3=0C、x2﹣7x+2=0D、x2﹣7x﹣2=010、为改善生态环境,某村拟在荒土上种植960棵树,由于青年团的支持,每日比原计划多种20棵,结果提前4天完场任务,原计划每天种植多少棵?设原计划每天种植x棵,下面方程正确的是()A、﹣=4B、﹣=4C、﹣=4D、﹣=4二、填空题11、一个正方形的面积是20,通过估算,它的边长在整数________与________之间.12、不等式2﹣x<2x+5的解集是________.13、分解因式:9x2﹣4y2=________.14、当x________时,分式有意义.15、观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想13+23+33+…+103=________.三、解答题16、计算(1)|﹣1|﹣+(π﹣3)0+2﹣2(2)(a+2b)(a﹣2b)(a2+4b2)17、解方程(1)3(2x﹣1)2﹣27=0(2)﹣1= .18、解不等式组,并求出不等式组的非负整数解.19、先化简再求值÷(x+3)• ,其中x=3.20、如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD.21、李明到离家2.1千米的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距聚会还有42分钟,于是分立即步行(匀速)回家,在家拿道具用了1分钟,然后骑自行车(匀速)返回学校,已知李明骑自行车的速度是步行速度的3倍,李明骑自行车到学校比他从学校步行到家少用了20分钟.(1)李明步行的速度是多少米/分?(2)李明能否在联欢会开始前赶到学校?22、观察下列各式:= =1﹣,= = ﹣,= = ﹣,= = ﹣,…(1)由此可推导出=________;(2)猜想出能表示上述特点的一般规律,用含字母n的等式表示出来(n是正整数);(3)请用(2)中的规律计算+ +…+ 的结果.答案解析部分一、选择题1、【答案】D【考点】平方根,算术平方根【解析】【解答】解:∵ =9,∴ 的平方根是±3,故选D.【分析】求出=9,求出9的平方根即可.2、【答案】B【考点】无理数【解析】【解答】解:,是无理数,故选:B.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,。

人教版七年级数学下学期期末测试及答案解析

人教版七年级数学下学期期末测试及答案解析
【分析】
根据完全平方式(a±b)2=a2±2ab+b2即可解题.
【详解】∵x2﹣mx+ 是完全平方式,
∴原式=(x )2
∴m=±1.
故选C.
8.如图所示,利用尺规作∠AOB的平分线,做法如下:①在OA、OB上分别截取OD、OE,使OD=OE;②分别以D、E为圆心,大于 DE的长为半径画弧,两弧在∠AOB内交于一点C;③画射线OC,射线OC就是∠AOB的角平分线.在用尺规作角平分线时,用到的三角形全等的判定方法是()
【详解】如图,
根据勾股定理我们可以得出:
a2+b2=c2
a2=25,c2=169,
b2=169﹣25=144,
因此B的面积是144.
故选B.
【点睛】本题主要考查了正方形的面积公式和勾股定理的应用.只要搞清楚直角三角形的斜边和直角边本题就容易多了.
5.大肠杆菌的长度平均约为0.0000014米,把这个数用科学记数表示正确的是()米.
四、填空题
21.已知am=3,an=2,则 =_____.
22.如果在△ABC和△DEF中,AB=DE,BC=EF,∠A=∠D,那么这两个三角形全等,这个事件 _____事件.(填“随机”“不可能”或“必然”)
23.将一矩形纸条按如图所示折叠,若∠1=40°,则∠2=____°.
24.已知an= (n=1,2,3,…),记b1=2(1-a1),b2=2(1-a1)(1-a2),…,bn=2(1-a1)(1-a2)…(1-an),则通过计算推测出表达式bn=________(用含n的代数式表示).
A. SSSB. ASAC. AASD. SAS
【答案】A
【解析】
【分析】
利用基本作图得到 , ,加上公共边线段,则利用“SSS”可证明△EOC≌△DOC,于是有∠EOC=∠DOC.

人教版七年级下学期期末考试数学试卷与答案解析(共五套)

人教版七年级下学期期末考试数学试卷与答案解析(共五套)

人教版七年级下学期期末考试数学试卷(一)一、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的).1.(3分)下列说法中,错误的是()A.4的算术平方根是2 B.的平方根是±3C.8的立方根是±2 D.立方根等于﹣1的实数是﹣12.(3分)点到直线的距离是指()A.从直线外一点到这条直线的垂线B.从直线外一点到这条直线的垂线段C.从直线外一点到这条直线的垂线的长D.从直线外一点到这条直线的垂线段的长3.(3分)实数﹣2,0.3,,,﹣π中,无理数的个数有()A.1个B.2个 C.3个 D.4个4.(3分)如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行 B.内错角相等,两直线平行C.同旁内角互补,两直线平行 D.两直线平行,同位角相等5.(3分)如果a>b,则下列各式中不成立的是()A.a+4>b+4 B.2+3a>2+3b C.a﹣6>b﹣6 D.﹣3a>﹣3b6.(3分)下列调查中,适合用全面调查的是()A.了解某班同学立定跳远的情况B.了解一批炮弹的杀伤半径C.了解某种品牌奶粉中含三聚氰胺的百分比D.了解全国青少年喜欢的电视节目7.(3分)估计的值()A.在3到4之间B.在4到5之间C.在5到6之间 D.在6到7之间8.(3分)若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是()A.(﹣4,3)B.(4,﹣3)C.(﹣3,4)D.(3,﹣4)9.(3分)吉安县澧田中学每年都会举行乒乓球比赛,比赛规定采取积分制:赢一局得3分,负一局扣1分.在7局比赛中,积分超过10分的就可以晋级下一轮比赛,李胜进入了下一轮比赛,问李胜输掉的比赛最多是()A.2局 B.3局C.4局D.5局10.(3分)如图,数轴上表示1、的对应点分别为点A、点B.若点A是BC 的中点,则点C所表示的数为()A.B.1﹣C.D.2﹣二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分).11.(3分)算术平方根等于它本身的数是.12.(3分)计算:= .13.(3分)如果用(7,1)表示七年级一班,那么八年级五班可表示成.14.(3分)不等式﹣x+3>0的最大整数解是.15.(3分)点(p,q)到y轴距离是.16.(3分)如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C= °.17.(3分)如图,已知AB,CD,EF互相平行,且∠ABE=70°,∠ECD=150°,则∠BEC= °.18.(3分)有一种感冒止咳药品的说明书上写着:“青少年每日用量80~120mg,分3~4次服用.”一次服用这种药品剂量的范围为.19.(3分)某种商品的进价为15元,出售时标价是22.5元.由于市场不景气销售情况不好,商店准备降价处理,但要保证利润率不低于10%,那么该店最多降价元出售该商品.20.(3分)把m个练习本分给n个学生,如果每人分3本,那么余80本;如果每人分5本,那么最后一个同学有练习本但不足5本,n的值为.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分). 21.(12分)解方程组(1)(2).22.(8分)解不等式组并把解集在数轴上表示出来.23.(8分)如图,DE⊥AC于点E,BF⊥AC于点F,∠1+∠2=180°,试判断∠AGF 与∠ABC的大小关系,并说明理由.24.(10分)△ABC与△A'B'C'在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A' ; B' ;C' ;(2)说明△A'B'C'由△ABC经过怎样的平移得到?.(3)若点P(a,b)是△ABC内部一点,则平移后△A'B'C'内的对应点P'的坐标为;(4)求△ABC的面积.25.(10分)学生会准备调查全校七年级学生每天(除课间操外)的课外锻炼时间.(1)确定调查方式时,甲同学说:“我到1班去调查全体同学”;乙同学说:“我到体育场上去询问参加锻炼的同学”;丙同学说:“我到全校七年级每个班去随机调查一定数量的同学”.你认为调查方式最为合理的是(填“甲”或“乙”或“丙”);(2)他们采用了最为合理的调查方法收集数据,并绘制出如图1所示的条形统计图和如图2所示的扇形统计图,请根据图1和图2所提供的信息,将图1中的条形统计图补充完整;(注:图2中相邻两虚线形成的圆心角为30°)(3)若该校七年级共有1200名同学,请你估计其中每天(除课间操外)课外锻炼时间不大于20分钟的人数,并根据调查情况向学生会提出一条建议.26.(12分)某校师生积极为汶川地震灾区捐款,在得知灾区急需账篷后,立即到当地的一家账篷厂采购,帐篷有两种规格:可供3人居住的小账篷,价格每顶160元;可供10人居住的大账篷,价格每顶400元.学校花去捐款96000元采购这两种帐篷,正好可供2300人临时居住.(1)求该校采购了多少顶3人小帐篷,多少顶10人大帐篷;(2)学校现计划租用甲、乙两种型号的卡车共20辆将这批帐篷紧急运往灾区,已知甲型卡车每辆可同时装运4顶小帐篷和11顶大账篷,乙型卡车每辆可同时装运12顶小帐篷和7顶大帐篷.如何安排甲、乙两种卡车可一次性将这批帐篷运往灾区有哪几种方案?参考答案与试题解析一、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的).1.(3分)下列说法中,错误的是()A.4的算术平方根是2 B.的平方根是±3C.8的立方根是±2 D.立方根等于﹣1的实数是﹣1【分析】原式利用平方根,立方根的定义判断即可得到结果.【解答】解:A、4的算术平方根为2,正确;B、=9,9的平方根为±3,正确;C、8的立方根为2,错误;D、立方根等于﹣1的实数是﹣1,正确,故选C【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.2.(3分)点到直线的距离是指()A.从直线外一点到这条直线的垂线B.从直线外一点到这条直线的垂线段C.从直线外一点到这条直线的垂线的长D.从直线外一点到这条直线的垂线段的长【分析】根据点到直线的距离的定义解答本题.【解答】解:A、垂线是直线,没有长度,不能表示距离,故A错误;B、垂线段是一个图形,距离是指垂线段的长度,故B错误;C、垂线是直线,没有长度,不能表示距离,故C错误;D、符合点到直线的距离的定义,故D正确.故选:D.【点评】此题主要考查了从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离的定义.3.(3分)实数﹣2,0.3,,,﹣π中,无理数的个数有()A.1个B.2个C.3个D.4个【分析】有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数,据此判断出无理数有哪些即可.【解答】解:因为﹣2是整数,0.3是有限小数,所以﹣2、0.3都是有理数;因为,0.是循环小数,所以是有理数;因为,π=3.14159265…,1.414…,3.14159265…都是无限不循环小数,所以,﹣π都是无理数,所以无理数的个数是2个:,﹣π.故选:B.【点评】此题主要考查了无理数和有理数的特征和区别,要熟练掌握,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.4.(3分)如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行 D.两直线平行,同位角相等【分析】判定两条直线是平行线的方法有:可以由内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补两直线平行等,应结合题意,具体情况,具体分析.【解答】解:图中所示过直线外一点作已知直线的平行线,则利用了同位角相等,两直线平行的判定方法.故选A.【点评】本题主要考查了平行线的判定方法.这是以后做题的基础.要求学生熟练掌握.5.(3分)如果a>b,则下列各式中不成立的是()A.a+4>b+4 B.2+3a>2+3b C.a﹣6>b﹣6 D.﹣3a>﹣3b【分析】根据不等式的基本性质3可知:不等式两边乘(或除以)同一个负数,不等号的方向改变.【解答】解:根据不等式的基本性质3可知:不等式两边乘(或除以)同一个负数,不等号的方向改变;即﹣3a<3b,故D错误;故选D.【点评】主要考查了不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.(3分)下列调查中,适合用全面调查的是()A.了解某班同学立定跳远的情况B.了解一批炮弹的杀伤半径C.了解某种品牌奶粉中含三聚氰胺的百分比D.了解全国青少年喜欢的电视节目【分析】分别根据普查和抽样调查适宜的条件对各选项进行逐一分析解答即可.【解答】解:A、了解某班同学立定跳远的情况难度较小、工作量不大,故适合用全面调查;B、了解一批炮弹的杀伤半径具有一定的破坏性,适合用抽样调查;C、了解某种品牌奶粉中含三聚氰胺的百分比具有一定的破坏性,适合用抽样调查;D、了解全国青少年喜欢的电视节目普查的难度较大,适合用抽样调查.故选A.【点评】本题比较简单,考查的是普查与抽样调查的联系与区别.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析.7.(3分)估计的值()A.在3到4之间B.在4到5之间C.在5到6之间D.在6到7之间【分析】应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围.【解答】解:∵5<<6,∴在5到6之间.故选:C.【点评】此题主要考查了估算无理数的那就,“夹逼法”是估算的一般方法,也是常用方法.8.(3分)若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是()A.(﹣4,3)B.(4,﹣3)C.(﹣3,4)D.(3,﹣4)【分析】首先根据题意得到P点的横坐标为负,纵坐标为正,再根据到x轴的距离与到y轴的距离确定横纵坐标即可.【解答】解:∵点P在第二象限,∴P点的横坐标为负,纵坐标为正,∵到x轴的距离是4,∴纵坐标为:4,∵到y轴的距离是3,∴横坐标为:﹣3,∴P(﹣3,4),故选:C.【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握其特点是解题关键.9.(3分)吉安县澧田中学每年都会举行乒乓球比赛,比赛规定采取积分制:赢一局得3分,负一局扣1分.在7局比赛中,积分超过10分的就可以晋级下一轮比赛,李胜进入了下一轮比赛,问李胜输掉的比赛最多是()A.2局B.3局C.4局D.5局【分析】设李胜输掉的比赛最多是x局,那么赢了(7﹣x)局,而赢一局得3分,负一局扣1分,由此可以用x表示李胜的积分为[3(7﹣x)﹣x],又积分超过10分的就可以晋级,由此可以列出不等式解决问题.【解答】解:设李胜输掉的比赛最多是x局,依题意得3(7﹣x)﹣x>10,∴x<,而x为正整数,∴x≤2.答:李胜输掉的比赛最多是2场.故选A.【点评】此题是一个和实际生活结合比较紧密的题目,比较贴近学生生活.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的不等量关系,列出不等式组,再求解.10.(3分)如图,数轴上表示1、的对应点分别为点A、点B.若点A是BC 的中点,则点C所表示的数为()A.B.1﹣C.D.2﹣【分析】设点C表示的数是x,再根据中点坐标公式即可得出x的值.【解答】解:设点C表示的数是x,∵数轴上表示1、的对应点分别为点A、点B,点A是BC的中点,∴=1,解得x=2﹣.故选D.【点评】本题考查的是实数与数轴,熟知数轴上的点与实数是一一对应关系是解答此题的关键.二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分).11.(3分)算术平方根等于它本身的数是0和1 .【分析】由于一个非负数的正的平方根,即为这个数的算术平方根.所以结果必须为正数,算术平方根等于它本身的数是只能是0和1.由此即可求解.【解答】解:算术平方根等于它本身的数是0和1.【点评】此题主要考查了算术平方根的定义,解题需熟练掌握平方根和算术平方根的概念且区分清楚,才不容易出错.要熟悉特殊数字0,1,﹣1的特殊性质.12.(3分)计算:= .【分析】直接进行同类二次根式的合并,即可得出答案.【解答】解:原式=.故答案为:.【点评】本题考查了实数的运算,掌握合并同类二次根式的法则是解答本题的关键.13.(3分)如果用(7,1)表示七年级一班,那么八年级五班可表示成(8,5).【分析】根据有序数对的第一个数表示年级,第二个数表示班级解答.【解答】解:∵(7,1)表示七年级一班,∴八年级五班可表示成(8,5).故答案为:(8,5).【点评】本题考查了坐标确定位置,理解有序数对的两个数的实际意义是解题的关键.14.(3分)不等式﹣x+3>0的最大整数解是 2 .【分析】首先解不等式,再从不等式的解集中找出适合条件的整数即可.【解答】解:不等式﹣x+3>0的解集是x<3,所以不等式的最大整数解是2.【点评】正确解不等式,求出解集是解诀本题的关键.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.15.(3分)点(p,q)到y轴距离是|p| .【分析】点到y轴的距离等于横坐标的绝对值.【解答】解:点(p,q)到y轴距离=|p|故答案为|P|.【点评】本题考查点的坐标,记住点到坐标轴的距离与坐标的关系是解题的关键.16.(3分)如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C= 120 °.【分析】本题主要利用邻补角互补,平行线性质及角平分线的性质进行做题.【解答】解:∵∠CDE=150°,∴∠CDB=180﹣∠CDE=30°,又∵AB∥CD,∴∠ABD=∠CDB=30°;∵BE平分∠ABC,∴∠ABC=60°,∴∠C=180°﹣60°=120°.故答案为:120.【点评】本题主要考查了平行线的性质,两直线平行,内错角相等,同旁内角互补.17.(3分)如图,已知AB,CD,EF互相平行,且∠ABE=70°,∠ECD=150°,则∠BEC= 40 °.【分析】根据平行线的性质,先求出∠BEF和∠CEF的度数,再求出它们的差即可.【解答】解:∵AB∥EF,∴∠BEF=∠ABE=70°;又∵EF∥CD,∴∠CEF=180°﹣∠ECD=180°﹣150°=30°,∴∠BEC=∠BEF﹣∠CEF=40°;故答案为:40.【点评】本题主要利用两直线平行,同旁内角互补以及两直线平行,内错角相等进行解题.18.(3分)有一种感冒止咳药品的说明书上写着:“青少年每日用量80~120mg,分3~4次服用.”一次服用这种药品剂量的范围为20~30 .【分析】让80÷3,80÷4得到每天服用80mg时3次或4次每次的剂量;让120÷3,120÷4即可得到每天服用120mg时3次或4次每次的剂量,找到最少的剂量和最多的剂量即可.【解答】解:80÷3=26mg;80÷4=20mg;120÷3=40mg;120÷4=30mg;∴一次服用这种药品剂量的范围为20≤x≤30,即为20~30.【点评】本题需注意应找到每天服用80mg时3次或4次每次的剂量;每天服用120mg时3次或4次每次的剂量,然后找到最大值与最小值.19.(3分)某种商品的进价为15元,出售时标价是22.5元.由于市场不景气销售情况不好,商店准备降价处理,但要保证利润率不低于10%,那么该店最多降价 6 元出售该商品.【分析】先设最多降价x元出售该商品,则降价出售获得的利润是22.5﹣x﹣15元,再根据利润率不低于10%,列出不等式即可.【解答】解:设降价x元出售该商品,则22.5﹣x﹣15≥15×10%,解得x≤6.故该店最多降价6元出售该商品.故答案为:6.【点评】本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.20.(3分)把m个练习本分给n个学生,如果每人分3本,那么余80本;如果每人分5本,那么最后一个同学有练习本但不足5本,n的值为41或42 .【分析】不足5本说明最后一个人分的本数应在0和5之间,但不包括5.【解答】解:根据题意得:,解得:40<n<42.5,∵n为整数,∴n的值为41或42.故答案为:41或42.【点评】解决本题的关键是读懂题意,找到符合题意的不等关系式组.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分). 21.(12分)解方程组(1)(2).【分析】根据二元一次方程组的解法即可求出答案【解答】解:(1)①+②得:x=﹣1把x=﹣1代入①得:y=2∴原方程组的解为(2)原方程组化为:②×2+①得:x=2将x=2代入②得y=3所以该方程组的解为:【点评】本题考查二元一次方程组,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.22.(8分)解不等式组并把解集在数轴上表示出来.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,由①得x<3,由②得x<﹣2,在数轴上表示如下:所以,该不等式组的解集为:x<﹣2.【点评】本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.23.(8分)如图,DE⊥AC于点E,BF⊥AC于点F,∠1+∠2=180°,试判断∠AGF与∠ABC的大小关系,并说明理由.【分析】由于DE⊥AC,BF⊥AC得到∠AFB=∠AED=90°,由BF∥DE,根据平行线的性质得∠2+∠3=180°,则∠1=∠3,可判断GF∥BC,所以∠AGF=∠ABC.【解答】解:∠AGF=∠ABC.理由如下:∵DE⊥AC,BF⊥AC,∴∠AFB=∠AED=90°,∴BF∥DE,∴∠2+∠3=180°,又∵∠1+∠2=180°∴∠1=∠3,∴GF∥BC,∴∠AGF=∠ABC.【点评】本题考查了平行线的判定与性质:内错角相等,两直线平行;两直线平行,同位角相等,同旁内角互补.24.(10分)△ABC与△A'B'C'在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A' (﹣3,1); B' (﹣2,﹣2);C' (﹣1,﹣1);(2)说明△A'B'C'由△ABC经过怎样的平移得到?先向左平移4个单位,再向下平移2个单位.(3)若点P(a,b)是△ABC内部一点,则平移后△A'B'C'内的对应点P'的坐标为(a﹣4,b﹣2);(4)求△ABC的面积.【分析】(1)直接利用已知图形得出各点坐标即可;(2)利用对应点位置得出平移规律;(3)利用(2)中平移规律进而得出答案;(4)利用△ABC所在矩形面积减去周围三角形进而得出答案.【解答】解:(1)如图所示:A'(﹣3,1),B′(﹣2,﹣2),C′(﹣1,﹣1);故答案为:(﹣3,1),(﹣2,﹣2),(﹣1,﹣1);(2)△ABC先向左平移4个单位,再向下平移2个单位得到△A'B'C';故答案为:先向左平移4个单位,再向下平移2个单位;(3)若点P(a,b)是△ABC内部一点,则平移后△A'B'C'内的对应点P'的坐标为:(a﹣4,b﹣2).故答案为:(a﹣4,b﹣2);(4)△ABC的面积为:S=6﹣×2×2﹣×1×3﹣×1×1=2.△ABC【点评】此题主要考查了平移变换的性质以及三角形面积求法,正确得出平移规律是解题关键.25.(10分)学生会准备调查全校七年级学生每天(除课间操外)的课外锻炼时间.(1)确定调查方式时,甲同学说:“我到1班去调查全体同学”;乙同学说:“我到体育场上去询问参加锻炼的同学”;丙同学说:“我到全校七年级每个班去随机调查一定数量的同学”.你认为调查方式最为合理的是丙(填“甲”或“乙”或“丙”);(2)他们采用了最为合理的调查方法收集数据,并绘制出如图1所示的条形统计图和如图2所示的扇形统计图,请根据图1和图2所提供的信息,将图1中的条形统计图补充完整;(注:图2中相邻两虚线形成的圆心角为30°)(3)若该校七年级共有1200名同学,请你估计其中每天(除课间操外)课外锻炼时间不大于20分钟的人数,并根据调查情况向学生会提出一条建议.【分析】(1)丙采用抽样调查方式最合理;(2)约40分钟的有5人,在扇形统计图中占,则可求出调查的总人数,故“约10分钟”人数可求解;(3)用总数×不大于20分钟的人数所占百分比即可.【解答】解:(1)丙的调查方式所获取的数据最具有代表性,即丙最合理,故答案为:丙;(2)调查的总人数为5÷=60(人),则“约10分钟”的人数为60﹣(10+9+5)=36(人),补全条形图如下:(3)1200×=1100,∴估计其中每天(除课间操外)课外锻炼时间不大于20分钟的有1100人,建议:该小中学生参加体育锻炼时间普遍较少,应多参加体育锻炼.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.26.(12分)某校师生积极为汶川地震灾区捐款,在得知灾区急需账篷后,立即到当地的一家账篷厂采购,帐篷有两种规格:可供3人居住的小账篷,价格每顶160元;可供10人居住的大账篷,价格每顶400元.学校花去捐款96000元采购这两种帐篷,正好可供2300人临时居住.(1)求该校采购了多少顶3人小帐篷,多少顶10人大帐篷;(2)学校现计划租用甲、乙两种型号的卡车共20辆将这批帐篷紧急运往灾区,已知甲型卡车每辆可同时装运4顶小帐篷和11顶大账篷,乙型卡车每辆可同时装运12顶小帐篷和7顶大帐篷.如何安排甲、乙两种卡车可一次性将这批帐篷运往灾区有哪几种方案?【分析】(1)首先设采购了x顶3人小帐篷,y顶10人大帐篷,列出二元一次方程组.(2)设甲型卡车安排了a辆,则乙型卡车安排了(20﹣a)辆,列出不等式组解答即可.【解答】解:(1)设采购了x顶3人小帐篷,y顶10人大帐篷.由题材意得.解得.答:采购了100顶3人小帐篷,200顶10人大帐篷.(2)设甲型卡车安排了a辆,则乙型卡车安排了(20﹣a)辆,则.解得15≤a≤17.5∵a为整数,∴a=15、16、17则乙型卡车:20﹣a=5、4、3答:有3种方案:①甲型卡车15辆,乙型卡车5辆.②甲型卡车16辆,乙型卡车4辆.③甲型卡车17辆,乙型卡车3辆.【点评】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.人教版七年级下学期期末考试数学试卷(二)一、选择题(本大题共16小题,每小题3分,共48分)1.(3分)4的平方根是()A.±2 B.2 C.﹣2 D.±2.(3分)点P(﹣3,2)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)在﹣1,π,,﹣中,无理数的个数是()A.1个B.2个C.3个D.4个4.(3分)下列四对数值中是方程2x﹣y=1的解的是()A. B. C. D.5.(3分)如图,直线l1∥l2,直线l3与l1,l2分别交于A,B两点,若∠1=65°,则∠2=()A.65°B.75° C.115° D.125°6.(3分)下列调查中,调查方式选择合理的是()A.为了了解某一品牌家具的甲醛含量,选择全面调查B.为了了解某公园的游客流量,选择抽样调查C.为了了解神州飞船的设备零件的质量情况,选择抽样调查D.为了了解一批袋装食品是否有防腐剂,选择全面调查调查7.(3分)如果点P(a﹣4,a)在y轴上,则点P的坐标是()A.(4,0)B.(0,4) C.(﹣4,0)D.(0,﹣4)8.(3分)如图,直线EO⊥CD,垂足为点O,AB平分∠EOD,则∠BOD的度数为()A.120°B.130°C.135°D.140°9.(3分)不等式组的正整数解的个数是()A.1 B.2 C.3 D.410.(3分)如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1 B.2 C.3 D.411.(3分)一个自然数的平方根为a,则它的相邻的下一个自然数的算术平方根是()A. B.a+1 C.a2+1 D.12.(3分)将一直角三角板与两边平行的纸条如图放置.已知∠2﹣∠1=30°,则∠2的度数为()A.30°B.45°C.50°D.60°13.(3分)把长宽分别为7和4的长方形经过割补变为一个正方形,这个正方形的边长在()A.5与6之间B.4与5之间C.3与4之间D.2与3之间14.(3分)统计得到的一组数据有80个,其中最大值为141,最小值为50,取组距为10,可以分成()A.10组B.9组C.8组D.7组15.(3分)在平面直角坐标系中,把点P首先向左平移7个单位,再向上平移5个单位得到点M,作点M关于Y轴的对称点N,已知N的坐标是(5,1),那么P 点坐标是()A.(2,﹣4)B.(6,﹣4)C.(6,﹣1)D.(2,﹣1)16.(3分)某市区现行出租车的收费标准:起步价5元(即行驶距离不超过3千米都需付5元车费),超过3千米后,每增加1千米,加收1.5元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费11元,那么甲地到乙地路程的最大值是()A.5千米B.7千米C.8千米D.9千米二、填空题(本大题共3小题,每小题3分,共9分)17.(3分)在平面直角坐标系中,点P(m,m﹣3)在第四象限内,则m的取值范围是.18.(3分)如图,直线l1∥l2,∠α=∠β,∠1=50°,则∠2= .19.(3分)已知是二元一次方程组的解,则m+3n的立方根为.三、解答题(本大题共7小题,共63分)20.(6分)计算:(+)21.(8分)解下列方程(或不等式)组,并把不等式组的解集表示在数轴上.(1)(2).22.(8分)解放中学为了了解学生对新闻、体育、动画、娱乐四类电视节目的喜爱程度,随机抽取了部分学生进行调查(每人限选1项),现将调查结果绘制成如下两幅不完整的统计图,根据图中所给的信息解答下列问题.(1)喜爱动画的学生人数和所占比例分别是多少?(2)请将条形统计图补充完整;(3)若该校共有学生1000人,依据以上图表估计该校喜欢体育的人数约为多少?23.(10分)对于任意实数m,n定义一种新运算m※n=mn﹣m+3,等式的右边是通常的加减法和乘法运算,例如:3※5=3×5﹣3+3=15.请根据上述定义解决问题:若a<2※x<7,且解集中恰有两个整数解,求a的取值范围.24.(10分)如图,在平面直角坐标系中,四边形ABCD各顶点的坐标分别为A (0,1)、B(5,1)、C(7,3)、D(2,5).(1)填空:四边形ABCD内(边界点除外)一共有个整点(即横坐标和。

人教版七年级数学下册 期末考试数学试题(解析版)

人教版七年级数学下册 期末考试数学试题(解析版)

七年级下数学期末考试试题一、选择题1.4的算术平方根是()A. ﹣2B. ±2C. 2D. 16【答案】C【解析】试题分析:∵22=4,∴4算术平方根为2,故选C.考点:算术平方根.2.在平面直角坐标系中,点(﹣1,2)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】试题分析:根据各象限内点的坐标特征解答即可.解:点(﹣1,2)在第二象限.故选B.考点:点的坐标3.下列调查中,调查方式选择合理的是()A. 为了了解全国中学生的视力情况,选择全面调查B. 为了了解一批袋装食品是否含有防腐剂,选择全面调查C. 为了检测某城市的空气质量,选择抽样调查D. 为了检测乘坐飞机的旅客是否携带违禁物品,选择抽样调查【答案】C【解析】试题分析:根据全面调查与抽样调查的要求可得选项A,为了了解全国中学生的视力情况,人数较多,应选择抽样调查,选项A错误;选项B,为了了解一批袋装食品是否含有防腐剂,食品数量较大,应选择抽样调查,选项B错误;选项C,为了检测某城市的空气质量,选择抽样调查,选项C正确;选项D,为了检测乘坐飞机的旅客是否携带违禁物品,事关重大,应选择全面调查,选项D错误;故答案选C.考点:全面调查与抽样调查.4.如果a>b,那么下列各式一定正确的是()A. a2>b2B.C. ﹣2a<﹣2bD. a﹣1<b﹣1【答案】C【解析】试题解析:A、两边相乘的数不同,错误;B、不等式两边都除以2,不等号的方向不变,错误;C、不等式两边都乘-2,不等号的方向改变,正确;D、不等式两边都减1,不等号的方向不变,错误;故选C.考点:不等式的性质.5.如图,在数轴上标有字母的各点中,与实数对应的点是()A. AB. BC. CD. D【答案】C【解析】【分析】先估算出的取值范围,进而可得出结论.【详解】∵4<5<9,∴2<<3.故选:C.【点睛】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.6. 如图,四边形ABCD中,点E在AB延长线上,则下列条件中不能判断AB∥CD的是()A. ∠3=∠4B. ∠1=∠2C. ∠5=∠CD. ∠1+∠3+∠A=180°【答案】A【解析】试题分析:根据平行线的判定定理,可知:A、∵∠3=∠4,∴AD∥BC,故本选项正确;B、∵∠1=∠2,∴AB∥CD,故本选项错误;C、∵∠5=∠C,∴AB∥CD,故本选项错误;D、∵∠1+∠3+∠A=180°,∴AB∥CD,故本选项错误.故选A.考点:平行线的判定7.已知不等式组,其解集正确的是()A. ﹣1≤x<3B. ﹣1<x≤3C. x>3D. x≤﹣1【答案】C【解析】由x-3>0得x>3,由x+1≥0得x≥-1,所以不等式组的解集是x>3;故选C.点睛:本题主要是求不等式组的解集,取解集的原则是“同大取大,同小取小,大小小大中间找,大大小小无处找”,熟记这些并会应用是解题的关键.8.如图,直线AB、CD相交于点O,OE⊥CD,OD平分∠BOF,若∠EOF=α,则∠EOB=()A. α﹣90oB. 360°﹣2αC. 2α﹣180oD. 180o﹣α【答案】D【解析】【分析】根据垂线、角之间的和与差,即可解答.【详解】∵OE⊥CD于O,∠EOF=α,∴∠DOF=α-90°,∵OD平分∠BOF,∴∠BOD=∠FOD,∵∠AOC=∠BOD,∴∠AOC=∠FOD,∴∠AOC=α-90°,∴∠BOE=180°-∠COE-∠AOC=180°-90°-(α-90°)=180°-α,故D正确;故选:D.【点睛】本题考查了垂线,解决本题的关键是利用角之间的关系解答.9.若满足方程组的x与y互为相反数,则m的值为()A. 1B. ﹣1C. 11D. ﹣11【答案】C【解析】分析:详解方程组,用含m的代数式表示出x和y的值,再把求得的x和y的值代入到x+y=0,得到关于m的一元一次方程,解这个关于m的方程即可求出m的值.详解:,①+②得,5x=3m+2,∴,①×2-②×5得,5y=-4m+9,∴,∵x与y互为相反数,∴,解之得,m=11.故选C.点睛:本题考查了含参二元一次方程组的解法,用含m的代数式表示出x和y的值,列出关于m的一元一次方程是解答本题的关键.10.若不等式组无解,则实数a的取值范围是()A. a≥﹣1B. a<﹣1C. a≤1D. a≤﹣1【答案】A【解析】试题解析:,由①得,x≥-a,由②得,x<1,∵不等式组无解,∴-a≥1,解得:a≤-1.故选D.考点:解一元一次不等式组.二、填空题11.x的与10的差不小于7,用不等式表示为_______.【答案】-10≥7【解析】【分析】根据题意,列出不等式即可,注意和、差、倍、大于、小于等关键描述语.【详解】用不等式表示为:x−10≥7,故答案为:x−10≥7【点睛】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,注意和、差、大于、小于等关键描述语.12.线段CD是由线段AB平移得到的,其中点A(﹣1,4)平移到点C(﹣3,2),点B(5,﹣8)平移到点D,则D点的坐标是________.【答案】(3,﹣10)【解析】【分析】由于线段CD是由线段AB平移得到的,而点A(-1,4)的对应点为C(-3,2),比较它们的坐标发现横坐标减小2,纵坐标减小2,利用此规律即可求出点B(5,-8)的对应点D的坐标.【详解】∵线段CD是由线段AB平移得到的,而点A(-1,4)的对应点为C(-3,2),∴由A平移到C点的横坐标减小2,纵坐标减小2,则点B(5,-8)的对应点D的坐标为(3,-10),故答案为:(3,-10).【点睛】本题主要考查坐标系中点、线段的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.13.不等式﹣3x+10>0的正整数解有_________.【答案】1、2、3【解析】【分析】先根据不等式的基本性质求出不等式的解集,再求出不等式的正整数解即可.【详解】移项,得:-3x>-10,系数化为1,得:x<,则不等式的正整数解为1、2、3,故答案为:1、2、3.【点睛】本题考查了解一元一次不等式,不等式的整数解的应用,能根据不等式的基本性质求出不等式的解集是解此题的关键.14.在扇形统计图中,其中一个扇形所表示的部分占总体的30%,则这个扇形的圆心角是____度.【答案】108【解析】【分析】利用该部分占总体的30%即,圆心角是360度的30%,即可求出答案.【详解】这个扇形的圆心角是30%×360°=108°,故答案为:108.【点睛】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.15.植树节这天有20名同学共种了52棵树苗,其中男生每人种树3棵,女生每人种树2棵.设男生有x人,女生有y人,根据题意,可列方程组___________.【答案】【解析】【分析】设男生有x人,女生有y人,根据男女生人数为20,共种了52棵树苗,列出方程组成方程组即可.【详解】设男生有x人,女生有y人,根据题意可得:,故答案为:【点睛】此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.16.如图,直线AB、CD相交于E,在∠CEB的角平分线上有一点F,FM∥AB.当∠3=m o时,∠F的度数是_______.【答案】90°﹣m【解析】【分析】由对顶角求得∠AEC=m°,由角平分线的定义求得∠2=90°-m,根据平行线的性质即可求得结果.【详解】∵∠3=m°,∴∠AEC=m°,∴∠BEC=180°-m°,∵EN平分∠CEB,∴∠2=90°-m,∵FM∥AB,∴∠F=∠2=90°-m,故答案为:90°-m.【点睛】本题主要考查了对顶角的定义,角平分线的性质,平行线的性质,熟练掌握平行线的性质是解决问题的关键.三、解答题17.(1)计算:|﹣2|+﹣+(﹣1)2018(2)解方程组【答案】(1)-4;(2)【解析】【分析】(1)先计算绝对值、立方根、算术平方根和乘方,再计算加减可得;(2)方程组利用加减消元法求出解即可.【详解】(1)原式=2﹣3﹣4+1=﹣4;(2)方程组整理可得,②×2﹣①,得:y=1,将y=1代入①,得:4x+5=﹣7,解得:x=﹣3,∴方程组的解为.【点睛】此题考查了实数的运算、解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.解不等式组,并将解集在数轴上表示出来.【答案】解集:﹣1≤x<3,数轴表示见解析.【解析】试题分析:先分别求出每一个不等式的解集,然后再确定出不等式组的解集,最后在数轴上表示即可.试题解析:,由①得,x<3,由②得,x≥﹣1,故不等式组的解集为:﹣1≤x<3.在数轴上表示为:.19.如图,A、B、C三点在同一直线上,∠1=∠2,∠3=∠D,试判断BD与CF的位置关系,并说明理由.【答案】BD∥CF【解析】试题分析:首先根据∠1=∠2,可得AD∥BF,进而得到∠D=∠DBF,再由∠3=∠D,可以推出∠3=∠DBF ,进而根据平行线的判定可得DB∥CF.试题解析:BD与CF平行证明:∵∠1=∠2,∴DA∥BF( 内错角相等,两直线平行 )∴∠D=∠DBF(两直线平行,内错角相等)∵∠3=∠D∴∠DBF=∠3(等量代换)∴BD∥CF (内错角相等,两直线平行)20.某路段某时段用雷达测速仪随机监测了200辆汽车的时速,得到如下频数分布表(不完整):注:30﹣40为时速大于或等于30千米而小于40千米,其它类同.数据段频数30~40 10_______ 3650~60 8060~70 _____70~80 20(1)请你把表中的数据填写完整;(2)补全频数分布直方图;(3)如果此路段该时间段经过的车有1000辆.估计约有多少辆车的时速大于或等于60千米.【答案】(1)填表见解析;(2)直方图见解析;(3)370辆.【解析】【分析】(1)根据频数之和等于总数可得60~70的频数,各组组距为10,补全表格即可;(2)根据(1)中频数分布表补全直方图即可;(3)求出样本中时速大于或等于 60千米的百分比,再乘以总数1000即可得.【详解】(1)60~70的频数为200﹣(10+36+80+20)=54,补全表格如下:数据段频数30~40 1040~50 3650~60 8060~70 5470~80 20(2)如图所示:(3)∵200辆车中时速大于或等于60千米的有74辆,占,∴,答:估计约有370辆车的时速大于或等于60千米.【点睛】本题主要考查频数分布表和频数分布直方图及样本估计总体,熟练掌握频数之和等于总数及直方图的高的实际意义是解题的关键.21.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”译文:“几个人一起去购买购物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱,求有多少人,物品的价格是多少”.【答案】有7人,物品的价格是53钱.【解析】【分析】根据题意可以找出题目中的等量关系,列出相应的方程组,解出可以解答本题.【详解】设有x人,物品价格为y钱,由题意可得,,解得:,答:有7人,物品的价格是53钱.【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.22.思考:填空,并探究规律如图1,图2,OA∥EC,OB∥ED,∠AOB=30°,则图1中∠CED=_____°;图2中∠CED=_____°;用一句话概括你发现的规律_________________.应用:已知∠AOB=80°,∠CED=x°,OA∥CE,OB∥ED,则x的值为_________(直接写出答案).【答案】思考:30,150,两直线平行,同位角相等;应用:80或100.【解析】【分析】根据平行线性质定理,两直线平行,同位角相等,解答问题即可.【详解】思考:∵OA∥EC,OB∥ED,∠AOB=30°∴图1中∠CED=30°∴图2中∠CED=150°故答案为:30°;150°;两直线平行,同位角相等;应用:∵∠AOB=80°,OA∥CE,OB∥ED,∴图1中∠CED=80°∴图2中∠CED=100°∴答案为:80°或100°.【点睛】考查了平行线的性质,解题时注意:两直线平行,同位角相等.也考查了平角的定义.23.如图所示,三角形ABC(记作△ABC)在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先将△ABC向上平移3个单位长度,再向右平移2个单位长度,得到A1B1C1.(1)在图中画出△A1B1C1;(2)点A1,B1,C1的坐标分别为、、;(3)若y轴有一点P,使△PBC与△ABC面积相等,求出P点的坐标.【答案】(1)画图见解析;(2)(0,4),(﹣1,1),(3,1);(3)点P的坐标为(0,1)或(0,﹣5).【解析】试题分析:(1)按要求进行平移即可;(2)根据平移的图形,观察即可得点的坐标;(3)两三角形面积相等,则相对于BC边,两三角形高相等,设P(0,y),由三角形的面积公式得|y-(-2)|=3 ,从而可得点P的坐标.试题解析:(1)如图所示:(2)(0,4),(﹣1,1),(3,1);(3)设P(0,y),由三角形的面积公式得:S△PBC=×4×|y-(-2)|=×4×3=6,解得|y-(-2)|=3,∴点P的坐标为(0,1)或(0,﹣5).24.已知:点E、点G分别在直线AB、直线CD上,点F在两直线外,连接EF、FG(1)如图1,AB∥CD,求证:∠AEF+∠FGC=∠EFG;(2)若直线AB与直线CD不平行,连接EG,且EG同时平分∠BEF和∠FGD.①如图2,请探究∠AEF、∠FGC、∠EFG之间的数量关系?并说明理由;②如图3,∠AEF比∠FGC的3倍多10°,∠FGC是∠EFG的,则∠EFG=______°(直接写出答案).【答案】(1)证明见解析;(2)①2∠EFG=∠AEF+∠FGC;②25.【解析】【分析】(1)过F作FQ∥AB,利用平行线的性质,即可得到∠AEF+∠FGC=∠EFQ+∠GFQ=∠EFG;(2)①延长AB,CD,交于点P,依据∠FEP=180°-∠AEF,∠FGP=180°-∠FGC,即可得到∠FEP+∠FGP=360°-(∠AEF+∠FGC),再根据四边形内角和,即可得到四边形EFGP中,∠F+∠P=360°-(∠FEP+∠FGP)=∠AEF+∠FGC,进而得出结论;②根据2∠EFG=∠AEF+∠FGC,∠AEF比∠FGC的3倍多10°,∠FGC是∠EFG的,整理即可得到答案.【详解】(1)如图1,过F作FQ∥AB,∵AB∥CD,∴PQ∥CD,∴∠AEF=∠QFE,∠FGC=∠GFQ,∴∠AEF+∠FGC=∠EFQ+∠GFQ=∠EFG;(2)①如图2,延长AB,CD,交于点P,∵EG同时平分∠BEF和∠FGD,∴∠FEG=∠PEG,∠FGE=∠PGE,∴∠F=∠P,∵∠FEP=180°﹣∠AEF,∠FGP=180°﹣∠FGC,∴∠FEP+∠FGP=360°﹣(∠AEF+∠FGC),∵四边形EFGP中,∠F+∠P=360°﹣(∠FEP+∠FGP)=360°﹣[360°﹣(∠AEF+∠FGC)]=∠AEF+∠FGC,即2∠EFG=∠AEF+∠FGC;②由①可知:2∠EFG=∠AEF+∠FGC=3∠FGC+10°+∠FGC=4∠FGC+10°,又∵∠FGC=∠EFG∴2∠EFG=∠EFG+10°,∴∠EFG=25°.故答案为:25.【点睛】本题主要考查了平行线的性质,解决问题的关键是作平行线构造内错角,利用两直线平行,内错角相等得出结论.25.某手机经销商计划同时购进一批甲、乙两种型号手机,若购进2部甲型号手机和5部乙型号手机,共需资金6000元;若购进3部甲型号手机和2部乙型号手机,共需资金4600元.(1)求甲、乙型号手机每部进价多少元?(2)为了提高利润,该店计划购进甲、乙型号手机销售,预计用不多于1.8万元且不少于1.76万元的资金购进这两种手机共20部,请问有几种进货方案?(3)若甲型号手机的售价为1500元,乙型号手机的售价为1400元,为了促销,公司决定每售出一部乙型号手机,返还顾客现金a元;而甲型号手机售价不变,要使(2)中所有方案获利相同,求a的值.【答案】(1)甲型号手机的每部进价为1000元,乙型号手机的每部进价为800元;(2)进货方案有如下三种,详见解析;(3)100【解析】【分析】(1)先设去年甲型号手机每台售价为x元,乙型号手机的每部进价为y元,根据题意列出方程组,解出x 及y的值;(2)设购进甲型号手机a部,则购进乙型号手机(20﹣a)部,根据题意列出不等式组,求出a的取值范围,即可得出进货方案.(3)设总获利W元,购进甲型号手机m台,列出一次函数关系式,再求利润相同时,a的取值.【详解】(1)设甲型号手机的每部进价为x元,乙型号手机的每部进价为y元,根据题意,得:,解得:,答:甲型号手机的每部进价为1000元,乙型号手机的每部进价为800元;(2)设购进甲型号手机a部,则购进乙型号手机(20﹣a)部,根据题意,得:,解得:8≤a≤10,∵a为整数,∴a=8或9或10,则进货方案有如下三种:方案一:购进甲型号手机8部,购进乙型号手机12部;方案二:购进甲型号手机9部,购进乙型号手机11部;方案三:购进甲型号手机10部,购进乙型号手机10部.(3)设总获利W元,购进甲型号手机m台,则W=(1500﹣1000)m+(1400﹣800﹣a)(20﹣m),W=(a﹣100)m+12000﹣20a.所以当a=100时,(2)中所有的方案获利相同.【点睛】本题考查的知识点是二元一次方程组的应用,解题的关键是熟练的掌握二元一次方程组的应用. 26.如图1,平面直角坐标系中,直线AB与x轴负半轴交于点A(a,0),与y轴正半轴交于点B(0,b),且+|b﹣4|=0.(1)求△AOB 的面积;(2)如图2,若P 为直线AB 上一动点,连接OP ,且2S △AOP ≤S △BOP ≤3S △AOP ,求P 点横坐标x P 的取值范围;(3)如图3,点C 在第三象限的直线AB 上,连接OC ,OE ⊥OC 于O ,连接CE 交y 轴于点D ,连接AD 交OE 的延长线于F ,则∠OAD 、∠ADC 、∠C EF 、∠AOC 之间是否有某种确定的数量关系?试证明你的结论.【答案】(1)12;(2)﹣4.5≤x P ≤﹣4或﹣12≤x P ≤﹣9;(3)∠CEF+∠ADC ﹣∠OAD ﹣∠AOC=90°. 【解析】【分析】(1)利用非负数的性质即可解决问题;(2)过点P 作PH ⊥y 轴于H ,∴PH=|x P |.分三种情形讨论即可①点P 在第一象限时,S △BOP <S △AOP ,结论不成立;②点P 在第二象限时,PH=|x P |=-x P ,S △BOP =-2x P ,S △AOP =12+2x P ,列出不等式即可解决问题.③P 在第三象限时,列出不等式即可;(3)如图,作AM ∥OF 交CD 于M ,DN ∥OF 交OC 于N ,利用平行线的性质,等式的性质即可解决问题.【详解】(1)∵+|b ﹣4|=0, 又∵≥0,|b ﹣4|≥0,∴a=﹣6,b=4,∴A (﹣6,0),B (0,4)∴S △AOB =×6×4=12; (2)如图,过点P 作PH ⊥y 轴于H ,∴PH=|x P |.由图形可知,①点P在第一象限时,S△BOP<S△AOP,结论不成立;②点P在第二象限时,PH=|x P|=﹣x P,S△BOP=﹣2x P,S△AOP=12+2x P∴2(12+2x P)≤﹣2x P≤3(12+2x P),解得﹣4.5≤x P≤﹣4;③P在第三象限时,2(﹣2x P﹣12)≤﹣2x P≤3(﹣2x P﹣12),解得﹣12≤x P≤﹣9.综上,P点横坐标x P的取值范围是﹣4.5≤x P≤﹣4或﹣12≤x P≤﹣9.(3)如图,作AM∥OF交CD于M,DN∥OF交OC于N,∴AM∥OF∥DN,∴∠AMD=∠CEF,∠ADN=∠DAM,∠AMD+∠ADC+∠ADN=180°①,∠FOC+∠AOC+∠OAD+∠DAM=180°,又∵∠FOC=90°,∴∠OAD+∠AOC+∠DAM=90°②,由①得∠ADN=180°﹣∠AMD﹣∠ADC;由②得∠DAM=90°﹣∠OAD﹣∠AOC,又∠ADN=∠DAM,∴180°﹣∠AMD﹣∠ADC=90°﹣∠OAD﹣∠AOC,又∵∠AMD=∠CEF,∴∠CEF+∠ADC﹣∠OAD﹣∠AOC=90°.(或∠CEF+∠ADC=90°+∠OAD+∠AOC类似结论均可)【点睛】本题考查三角形综合题、非负数的性质、不等式组、平行线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造平行线解决问题,属于中考压轴题.。

人教版七年级下学期期末考试数学试卷及答案解析(共五套)

人教版七年级下学期期末考试数学试卷及答案解析(共五套)

人教版七年级下学期期末考试数学试卷(一)一、选择题(共12小题,每小题3分,满分36分)1.4的算术平方根等于()A.±2 B.2 C.﹣2 D.42.下列各式化简后,结果为无理数的是()A. B. C. D.3.不等式﹣2x﹣1≥1的解集是()A.x≥﹣1 B.x≤﹣1 C.x≤0 D.x≤14.如图,直线AB,CD相交于点O,OE⊥AB于O,若∠BOD=40°,则不正确的结论是()A.∠AOC=40°B.∠COE=130° C.∠EOD=40° D.∠BOE=90°5.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2等于()A.30°B.40°C.45°D.60°6.把不等式组的解集表示在数轴上,下列选项正确的是()A. B.C. D.7.下列推理中,错误的是()A.∵AB=CD,CD=EF,∴AB=EF B.∵∠α=∠β,∠β=∠γ,∴∠α=∠γC.∵a∥b,b∥c,∴a∥c D.∵AB⊥EF,EF⊥CD,∴AB⊥CD8.已知是二元一次方程4x+ay=7的一组解,则a的值为()A.﹣5 B.5 C. D.﹣9.要调查下列问题,你认为哪些适合抽样调查()①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①②B.①③C.②③D.①②③10.如图,把“笑脸”放在平面直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B 的坐标是()A.(3,3)B.(﹣3,3) C.(0,3)D.(3,﹣3)11.若实数a,b在数轴上的位置如图所示,则以下说法正确的是()A.a>b B.ab>0 C.a+b>0 D.|a|>|b|12.同学们喜欢足球吗足球一般是用黑白两种颜色的皮块缝制而成,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为()A.16块、16块B.8块、24块 C.20块、12块 D.12块、20块二、填空题(共4小题,每小题3分,满分12分)13.计算|1﹣|﹣= .14.如图,是小明学习三线八角时制作的模具,经测量∠2=100°,要使木条a 与b平行,则∠1的度数必须是.15.已知关于x的不等式组的解集是x>4,则m的取值范围是.16.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次为A1,A2,A3,A4,…表示,则顶点A2018的坐标是.三、解答题(共8小题,满分72分)17.计算:().18.解方程组:.19.解不等式组,并把它的解集用数轴表示出来..20.已知x是的整数部分,y是的小数部分,求x(﹣y)的值.21.如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.22.收集和整理数据.某中学七(1)班学习了统计知识后,数学老师要求每个学生就本班学生的上学方式进行一次全面调查,如图是一同学通过收集数据后绘制的两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(每个学生只选择1种上学方式).(1)求该班乘车上学的人数;(2)将频数分布直方图补充完整;(3)若该校七年级有1200名学生,能否由此估计出该校七年级学生骑自行车上学的人数,为什么?23.解决问题.学校要购买A,B两种型号的足球,按体育器材门市足球销售价格(单价)计算:若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元.(1)求A,B两种型号足球的销售价格各是多少元/个?(2)学校拟向该体育器材门市购买A,B两种型号的足球共20个,且费用不低于1300元,不超过1500元,则有哪几种购球方案?24.如图(1),在平面直角坐标系中,A(a,0),C(b,2),过C作CB⊥x 轴,且满足(a+b)2+=0.(1)求三角形ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.4的算术平方根等于()A.±2 B.2 C.﹣2 D.4【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:∵22=4,∴4算术平方根为2.故选B.【点评】本题考查的是算术平方根的概念,掌握一个非负数的正的平方根,即为这个数的算术平方根是解题的关键.2.下列各式化简后,结果为无理数的是()A.B.C.D.【分析】根据无理数的三种形式求解.【解答】解: =8, =4, =3, =2,无理数为.故选D.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.3.不等式﹣2x﹣1≥1的解集是()A.x≥﹣1 B.x≤﹣1 C.x≤0 D.x≤1【分析】先移项合并同类项,然后系数化为1求解.【解答】解:移项合并同类项得:﹣2x≥2,系数化为1得:x≤﹣1.故选B.【点评】本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.4.如图,直线AB,CD相交于点O,OE⊥AB于O,若∠BOD=40°,则不正确的结论是()A.∠AOC=40° B.∠COE=130°C.∠EOD=40° D.∠BOE=90°【分析】首先由垂线的定义可知∠EOB=90°,然后由余角的定义可求得∠EOD,然后由邻补角的性质可求得∠EOC,由对顶角的性质可求得∠AOC.【解答】解:由对顶角相等可知∠AOC=∠BOD=40°,故A正确,所以与要求不符;∵OE⊥AB,∴∠EOB=90°,故D正确,与要求不符;∵∠EOB=90°,∠BOD=40°,∴∠EOD=50°.故C错误,与要求相符.∴∠EOC=180°﹣∠EOD=180°﹣50°=130°.故B正确,与要求不符.故选:C.【点评】本题主要考查的是垂线的定义、对顶角、邻补角的性质,掌握相关定义是解题的关键.5.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2等于()A.30°B.40°C.45°D.60°【分析】首先过点A作l∥m,由直线l∥m,可得n∥l∥m,由两直线平行,内错角相等,即可求得答案:∠1+∠2=∠3+∠4的度数.【解答】解:如图,过点A作l∥m,则∠1=∠3.又∵m∥n,∴l∥n,∴∠4=∠2,∴∠1+2=∠3+∠4=45°.故选:C.【点评】此题考查了平行线的性质.此题难度不大,注意辅助线的作法,注意掌握“两直线平行,内错角相等”性质定理的应用.6.把不等式组的解集表示在数轴上,下列选项正确的是()A. B.C. D.【分析】本题的关键是先解不等式组,然后再在数轴上表示.【解答】解:由(1)得x>﹣1,由(2)得x≤1,所以﹣1<x≤1.故选B.【点评】本题考查一元一次不等式组的解集及在数轴上的表示方法.7.下列推理中,错误的是()A.∵AB=CD,CD=EF,∴AB=EF B.∵∠α=∠β,∠β=∠γ,∴∠α=∠γC.∵a∥b,b∥c,∴a∥c D.∵AB⊥EF,EF⊥CD,∴AB⊥CD【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、由等量代换,故A选项正确B、由等量代换,故B选项正确;C、如果两条直线都与第三条直线平行,那么这两条直线也平行,属于平行公理的推论,故C选项正确;D、∵AB⊥EF,EF⊥CD,∴AB∥CD,故D选项错误.故选:D.【点评】本题需对等量代换的运用,平行公理的推论等知识点熟练掌握.8.已知是二元一次方程4x+ay=7的一组解,则a的值为()A.﹣5 B.5 C.D.﹣【分析】把x与y的值代入方程计算即可求出a的值.【解答】解:把代入方程得:8﹣3a=7,解得:a=.故选C.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.9.要调查下列问题,你认为哪些适合抽样调查()①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①②B.①③C.②③D.①②③【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:①食品数量较大,不易普查,故适合抽查;②不能进行普查,必须进行抽查;③人数较多,不易普查,故适合抽查.故选D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.如图,把“笑脸”放在平面直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B 的坐标是()A.(3,3)B.(﹣3,3)C.(0,3)D.(3,﹣3)【分析】首先根据左眼坐标可得右眼坐标,再根据平移方法可得平移后右眼B的坐标是(0+3,3).【解答】解:∵左眼A的坐标是(﹣2,3),∴右眼的坐标是(0,3),∴笑脸向右平移3个单位后,右眼B的坐标是(0+3,3),即(3,3),故选:A.【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.11.若实数a,b在数轴上的位置如图所示,则以下说法正确的是()A.a>b B.ab>0 C.a+b>0 D.|a|>|b|【分析】先根据数轴确定a,b的范围,再进行逐一分析各选项,即可解答.【解答】解:由数轴可得:a<0<b,|a|<|b|,A、a<b,故错误;B、ab<0,故错误;C、a+b>0,正确;D、|a|<|b|,故错误;故选:C.【点评】此题主要考查了实数与数轴,解答此题的关键是根据数轴确定a,b的范围.12.同学们喜欢足球吗足球一般是用黑白两种颜色的皮块缝制而成,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为()A.16块、16块B.8块、24块 C.20块、12块D.12块、20块【分析】根据题意可知:本题中的等量关系是“黑白皮块32块”和因为每块白皮有3条边与黑边连在一起,所以黑皮只有3y块,而黑皮共有边数为5x块,依此列方程组求解即可.【解答】解:设黑色皮块和白色皮块的块数依次为x,y.则,解得,即黑色皮块和白色皮块的块数依次为12块、20块.故选D.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.二、填空题(共4小题,每小题3分,满分12分)13.计算|1﹣|﹣= ﹣1 .【分析】原式利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=﹣1﹣=﹣1,故答案为:﹣1【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.如图,是小明学习三线八角时制作的模具,经测量∠2=100°,要使木条a 与b平行,则∠1的度数必须是80°.【分析】先求出∠2的对顶角的度数,再根据同旁内角互补,两直线平行解答.【解答】解:如图,∵∠2=100°,∴∠3=∠2=100°,∴要使b与a平行,则∠1+∠3=180°,∴∠1=180°﹣100°=80°.故答案为:80°.【点评】本题主要考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键,15.已知关于x的不等式组的解集是x>4,则m的取值范围是m≤3 .【分析】先求出不等式的解集,根据已知不等式组的解集即可得出关于m的不等式,求出不等式的解集即可.【解答】解:∵不等式①的解集为x>4,不等式②的解集为x>m+1,,又∵不等式组的解集为x>4,∴m+1≤4,∴m≤3,故答案为:m≤3.【点评】本题考查了解一元一次不等式组,不等式组的解集的应用,能根据不等式的解集和已知不等式组的解集得出关于m的不等式是解此题的关键.16.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次为A1,A2,A3,A4,…表示,则顶点A2018的坐标是(﹣505,505).【分析】根据每一个正方形有4个顶点可知每4个点为一个循环组依次循环,用2018除以4,根据商和余数判断出点A2018所在的正方形以及所在的象限,再利用正方形的性质即可求出顶点A2018的坐标.【解答】解:∵每个正方形都有4个顶点,∴每4个点为一个循环组依次循环,∵2018÷4=504…2,∴点A2018是第505个正方形的第2个顶点,在第二象限,∵从内到外正方形的边长依次为2,4,6,8,…,∴A2(﹣1,1),A6(﹣2,2),A10(﹣3,3),…,A2018(﹣505,505).故答案为(﹣505,505).【点评】本题是对点的坐标变化规律的考查,根据四个点为一个循环组求出点A2018所在的正方形和所在的象限是解题的关键.三、解答题(共8小题,满分72分)17.计算:().【分析】先进行二次根式的除法运算,然后化简后合并即可.【解答】解:原式=×﹣×=﹣=﹣.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.解方程组:.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:方程组整理得:,①×2+②×3得:13x=﹣1,即x=﹣,把x=﹣代入①得:y=﹣,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.解不等式组,并把它的解集用数轴表示出来..【分析】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:∵解不等式①得:x≥﹣2,解不等式②得:x<,∴不等式组的解集为﹣2≤x<,在数轴上表示不等式组的解集为:.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,能根据不等式的解集找出不等式组的解集是解此题的关键.20.已知x是的整数部分,y是的小数部分,求x(﹣y)的值.【分析】由于3<<4,由此可确定的整数部分x,接着确定小数部分y,然后代入所求代数式中计算出结果即可.【解答】解:∵3<<4,∴的整数部分x=3,小数部分y=﹣3,∴﹣y=3,∴x(﹣y)=3×3=9.【点评】此题考查了二次根式的性质,估算无理数的大小;利用二次根式的性质确定x、y的值是解决问题的关键.21.如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.【分析】(1)求出∠ABC+∠A=180°,根据平行线的判定推出即可;(2)根据平行线的性质求出∠3,根据垂直推出BD∥EF,根据平行线的性质即可求出∠2.【解答】(1)证明:∵∠ABC=180°﹣∠A,∴∠ABC+∠A=180°,∴AD∥BC;(2)解:∵AD∥BC,∠1=36°,∴∠3=∠1=36°,∵BD⊥CD,EF⊥CD,∴BD∥EF,∴∠2=∠3=36°.【点评】本题考查了平行线的性质和判定的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.22.收集和整理数据.某中学七(1)班学习了统计知识后,数学老师要求每个学生就本班学生的上学方式进行一次全面调查,如图是一同学通过收集数据后绘制的两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(每个学生只选择1种上学方式).(1)求该班乘车上学的人数;(2)将频数分布直方图补充完整;(3)若该校七年级有1200名学生,能否由此估计出该校七年级学生骑自行车上学的人数,为什么?【分析】(1)先求出该班学生的人数,再乘以乘车上学的百分比求解即可,(2)求出步行的人数,再补全条形统计图,(3)利用全面调查与抽样调查的区别来分析即可.【解答】解:(1)该班学生的人数为:15÷30%=50(人),该班乘车上学的人数为:50×(1﹣50%﹣30%)=10(人),(2)步行的人数为:50×50%=25(人),补全条形统计图,(3)不能由此估计出该校七年级学生骑自行车上学的人数.这是七(1)班数学老师要求每个学生就本班学生的上学方式进行一次全面调查,不是七年级学生上学方式的抽样调查,收集的数据对本校七年级学生的上学方式不具有代表性.【点评】本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.解决问题.学校要购买A,B两种型号的足球,按体育器材门市足球销售价格(单价)计算:若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元.(1)求A,B两种型号足球的销售价格各是多少元/个?(2)学校拟向该体育器材门市购买A,B两种型号的足球共20个,且费用不低于1300元,不超过1500元,则有哪几种购球方案?【分析】(1)设A,B两种型号足球的销售价格各是a元/个,b元/个,由若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元列出方程组解答即可;(2)设购买A型号足球x个,则B型号足球(20﹣x)个,根据费用不低于1300元,不超过1500元,列出不等式组解答即可.【解答】解:(1)设A,B两种型号足球的销售价格各是a元/个,b元/个,由题意得解得答:A,B两种型号足球的销售价格各是50元/个,90元/个.(2)设购买A型号足球x个,则B型号足球(20﹣x)个,由题意得,解得7.5≤x≤12.5∵x是整数,∴x=8、9、10、11、12,有5种购球方案:购买A型号足球8个,B型号足球12个;购买A型号足球9个,B型号足球11个;购买A型号足球10个,B型号足球10个;购买A型号足球11个,B型号足球9个;购买A型号足球12个,B型号足球8个.【点评】此题考查二元一次方程组与一元一次不等式组的实际运用,找出题目蕴含的等量关系与不等关系是解决问题的关键.24.如图(1),在平面直角坐标系中,A(a,0),C(b,2),过C作CB⊥x 轴,且满足(a+b)2+=0.(1)求三角形ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.【分析】(1)根据非负数的性质得到a=﹣b,a﹣b+4=0,解得a=﹣2,b=2,则A(﹣2,0),B(2,0),C(2,2),即可计算出三角形ABC的面积=4;(2)由于CB∥y轴,BD∥AC,则∠CAB=∠ABD,即∠3+∠4+∠5+∠6=90°,过E 作EF∥AC,则BD∥AC∥EF,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED=∠1+∠2=×90°=45°;(3)先根据待定系数法确定直线AC的解析式为y=x+1,则G点坐标为(0,1),然后利用S△PAC =S△APG+S△CPG进行计算.【解答】解:(1)∵(a+b)2≥0,≥0,∴a=﹣b,a﹣b+4=0,∴a=﹣2,b=2,∵CB⊥AB∴A(﹣2,0),B(2,0),C(2,2)∴三角形ABC的面积=×4×2=4;(2)∵CB∥y轴,BD∥AC,∴∠CAB=∠ABD,∴∠3+∠4+∠5+∠6=90°,过E作EF∥AC,∵BD∥AC,∴BD∥AC∥EF,∵AE,DE分别平分∠CAB,∠ODB,∴∠3=∠4=∠1,∠5=∠6=∠2,∴∠AED=∠1+∠2=×90°=45°;(3)存在.理由如下:设P点坐标为(0,t),直线AC的解析式为y=kx+b,把A(﹣2,0)、C(2,2)代入得,解得,∴直线AC的解析式为y=x+1,∴G点坐标为(0,1),∴S△PAC =S△APG+S△CPG=|t﹣1|2+|t﹣1|2=4,解得t=3或﹣1,∴P点坐标为(0,3)或(0,﹣1).【点评】本题考查了平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等.也考查了非负数的性质.人教版七年级下学期期末考试数学试卷(二)一、选择题(本大题共12个小题,每小题3分,共36分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并写在答题纸上)1.4的算术平方根等于( )A.±2B.2 C.﹣2 D.42.下列各式化简后,结果为无理数的是( )A.B.C.D.3.不等式﹣2x﹣1≥1的解集是( )A.x≥﹣1 B.x≤﹣1 C.x≤0D.x≤14.如图,直线AB,CD相交于点O,OE⊥AB于O,若∠BOD=40°,则不正确的结论是( )A.∠AOC=40°B.∠COE=130°C.∠EOD=40°D.∠BOE=90°5.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2等于( )A.30°B.40°C.45°D.60°6.二元一次方程组的解是( )A.B.C.D.7.下列推理中,错误的是( )A.∵AB=CD,CD=EF,∴AB=EF B.∵∠α=∠β,∠β=∠γ,∴∠α=∠γC.∵a∥b,b∥c,∴a∥c D.∵AB⊥EF,EF⊥CD,∴AB⊥CD8.若a>b,且c<0,则下列不等式中正确的是( )A.a÷c<b÷c B.a×c>b×c C.a+c<b+c D.a﹣c<b﹣c 9.要调查下列问题,你认为哪些适合抽样调查( )①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①② B.①③ C.②③ D.①②③10.如图,在5×5方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是( )A.先向下平移3格,再向右平移1格B.先向下平移2格,再向右平移1格C.先向下平移2格,再向右平移2格D.先向下平移3格,再向右平移2格11.若实数a,b在数轴上的位置如图所示,则以下说法正确的是( )A.a>b B.ab>0 C.a+b>0 D.|a|>|b|12.小亮问老师有多少岁了,老师说:“我像你这么大时,你才4岁,你到我这么大时,我就40岁了.”求小亮和老师的岁数各是多少?若设小亮和老师的岁数分别为x岁和y岁,则可列方程组( )A.B.C.D.二、填空题(本大题共4个小题,每小题3分,共12分,把答案直接填在答题纸对应的位置上)13.计算|1﹣|﹣=__________.14.如图,是小明学习三线八角时制作的模具,经测量∠2=100°,要使木条a 与b平行,则∠1的度数必须是__________.15.已知关于x的不等式组的解集是x>4,则m的取值范围是__________.16.观察数表,若用有序整数对(m,n)表示第m行第n列的数,如(4,3)表示实数6,则表示的数是__________.三、解答题(本大题共8个小题,共72分,解答时应写出文字说明、证明过程或演算步骤)17.计算:().18.解方程组:.19.解不等式组,并把它的解集用数轴表示出来..20.推理与证明:我们在小学就已经知道三角形的内角和等于180°,你知道为什么吗?下面是一种证明方法,请你完成下面的问题.(1)作图:在三角形ABC的边BC上任取一点D,过点D作DE平行于AB,交AC 于E点,过点D作DF平行于AC,交AB于F点.(2)利用(1)所作的图形填空:∵DE∥AB,∴∠A=∠DEC,∠B=∠EDC(__________),又∵DF∥AC,∴∠DEC=∠EDF(__________),∠C=∠FDB(__________),∴∠A=∠EDF(等量代换),∴∠A+∠B+∠C=__________=180°.21.如图,某小区有大米产品加工点3个(M1,M2,M3),大豆产品加工点4个(D1,D 2,D3,D4),为了加强食品安全监督,政府要求对食品加工点进行网格化管理,管理员绘制了坐标网格和建立了平面直角坐标系(隐藏),把图中的大米加工点用坐标表示为M1(﹣5,﹣1),M2(4,4),M3(5,﹣4).(1)请你画出管理员所建立的平面直角坐标系;(2)类似地,在所画平面直坐标系内,用坐标表示出大豆产品加工点的位置.22.收集和整理数据.某中学七(1)班学习了统计知识后,数学老师要求每个学生就本班学生的上学方式进行一次全面调查,如图是一同学通过收集数据后绘制的两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(每个学生只选择1种上学方式).(1)求该班乘车上学的人数;(2)将频数分布直方图补充完整;(3)若该校2019-2020学年七年级有1200名学生,能否由此估计出该校2019-2020学年七年级学生骑自行车上学的人数,为什么?23.几何证明.如图,已知AB∥CD,BC交AB于B,BC交CD于C,∠ABE=∠DCF,求证:BE∥CF.24.解决问题.学校要购买A,B两种型号的足球,按体育器材门市足球销售价格(单价)计算:若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元.(1)求A,B两种型号足球的销售价格各是多少元/个?(2)学校拟向该体育器材门市购买A,B两种型号的足球共20个,且费用不低于1300元,不超过1500元,则有哪几种购球方案?参考答案一、选择题(本大题共12个小题,每小题3分,共36分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并写在答题纸上)1.4的算术平方根等于( )A.±2B.2 C.﹣2 D.4考点:算术平方根.分析:如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.解答:解:∵22=4,∴4算术平方根为2.故选B.点评:本题考查的是算术平方根的概念,掌握一个非负数的正的平方根,即为这个数的算术平方根是解题的关键.2.下列各式化简后,结果为无理数的是( )A.B.C.D.考点:无理数.分析:根据无理数的三种形式求解.解答:解:=8,=4,=3,=2,无理数为.故选D.点评:本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.3.不等式﹣2x﹣1≥1的解集是( )A.x≥﹣1 B.x≤﹣1 C.x≤0D.x≤1考点:解一元一次不等式.分析:先移项合并同类项,然后系数化为1求解.解答:解:移项合并同类项得:﹣2x≥2,系数化为1得:x≤﹣1.故选B.点评:本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.4.如图,直线AB,CD相交于点O,OE⊥AB于O,若∠BOD=40°,则不正确的结论是( )A.∠AOC=40°B.∠COE=130°C.∠EOD=40°D.∠BOE=90°考点:垂线;对顶角、邻补角分析:首先由垂线的定义可知∠EOB=90°,然后由余角的定义可求得∠EOD,然后由邻补角的性质可求得∠EOC,由对顶角的性质可求得∠AOC.解答:解:由对顶角相等可知∠AOC=∠BOD=40°,故A正确,所以与要求不符;∵OE⊥AB,∴∠EOB=90°,故D正确,与要求不符;∵∠EOB=90°,∠BOD=40°,∴∠EOD=50°.故C错误,与要求相符.∴∠EOC=180°﹣∠EOD=180°﹣50°=130°.故B正确,与要求不符.故选:C.点评:本题主要考查的是垂线的定义、对顶角、邻补角的性质,掌握相关定义是解题的关键.5.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2等于( )A.30°B.40°C.45°D.60°考点:平行线的性质.分析:首先过点A作l∥m,由直线l∥m,可得n∥l∥m,由两直线平行,内错角相等,即可求得答案:∠1+∠2=∠3+∠4的度数.解答:解:如图,过点A作l∥m,则∠1=∠3.又∵m∥n,∴l∥n,∴∠4=∠2,∴∠1+2=∠3+∠4=45°.故选:C.点评:此题考查了平行线的性质.此题难度不大,注意辅助线的作法,注意掌握“两直线平行,内错角相等”性质定理的应用.6.二元一次方程组的解是( )A.B.C.D.考点:解二元一次方程组.分析:运用加减消元法,两式相加消去y,求出x的值,把x的值代入①求出y 的值,得到方程组的解.解答:解:,①+②得:3x=﹣3,即x=﹣1,把x=﹣1代入①得:y=2,则方程组的解为,故选:B.点评:此题考查了解二元一次方程组,利用了消元的思想,掌握加减消元法的步骤是解题的关键.7.下列推理中,错误的是( )A.∵AB=CD,CD=EF,∴AB=EF B.∵∠α=∠β,∠β=∠γ,∴∠α=∠γC.∵a∥b,b∥c,∴a∥c D.∵AB⊥EF,EF⊥CD,∴AB⊥CD考点:命题与定理.分析:分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解答:解:A、由等量代换,故A选项正确B、由等量代换,故B选项正确C、如果两条直线都与第三条直线平行,那么这两条直线也平行,属于平行公理的推论,故C选项正确;D、∵AB⊥EF,EF⊥CD,∴AB∥CD,故D选项错误.故选:D.点评:本题需对等量代换的运用,平行公理的推论等知识点熟练掌握.。

2023-2024学年全国初一下数学人教版期末考试试卷(含答案解析)

2023-2024学年全国初一下数学人教版期末考试试卷(含答案解析)

20232024学年全国初一下数学人教版期末考试试卷(含答案解析)一、选择题(每题1分,共5分)1. 下列数中,哪个是无理数?A. √9B. √16C. √2D. √12. 下列各式中,哪一个不是二次根式?A. √(x+1)B. √(x^21)C. √(x^3)D. √(x^2+1)3. 若a+b=5,ab=3,则a^2+b^2的值为:A. 16B. 18C. 20D. 224. 下列函数中,哪一个是一次函数?A. y=x^2B. y=2x+1C. y=x^3D. y=1/x5. 在平面直角坐标系中,点P(2, 3)关于原点对称的点是:A. (2, 3)B. (2, 3)C. (2, 3)D. (2, 3)二、判断题(每题1分,共5分)1. 任何有理数都可以表示为分数的形式。

()2. 两个无理数相加一定是无理数。

()3. 平方根和立方根都是二次根式。

()4. 一次函数的图像是一条直线。

()5. 两个点关于原点对称,则它们的坐标互为相反数。

()三、填空题(每题1分,共5分)1. 已知a=3,b=2,则a+b=______。

2. 若√(x1)=3,则x=______。

3. 一次函数y=2x+1的图像经过______象限。

4. 在平面直角坐标系中,点A(1, 2)到原点的距离是______。

5. 两个平行线的距离是______。

四、简答题(每题2分,共10分)1. 请解释无理数的概念。

2. 什么是一次函数?请举例说明。

3. 如何求两个一次函数的交点坐标?4. 简述平面直角坐标系的四个象限的特点。

5. 请说明点P(x, y)关于x轴对称的点的坐标。

五、应用题(每题2分,共10分)1. 小明家距离学校3公里,他每天以相同的速度上学,如果速度提高20%,则上学时间缩短15分钟。

求小明原来的速度。

2. 一辆汽车从A地出发,以60km/h的速度行驶,另一辆汽车从B 地出发,以80km/h的速度行驶。

两车相向而行,2小时后相遇。

人教版七年级下册数学期末考试试卷(附答案)

人教版七年级下册数学期末考试试卷(附答案)

人教版七年级下册数学期末考试试卷(附答案)一、选择题1.4的算术平方根是()A .2-B .2±C .2D .12- 2.下列图中的“笑脸”,是由上面教师寄语中的图像平移得到的是( )A .B .C .D . 3.如果点P (1-2m ,m )的横坐标与纵坐标互为相反数,则点P 一定在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限 4.下列命题是假命题...的是( ). A .同一平面内,两直线不相交就平行 B .对顶角相等C .互为邻补角的两角和为180°D .相等的两个角一定是对顶角 5.如图,直线12//l l ,23216∠+∠=°,则1∠的度数为( )A .216︒B .36︒C .44︒D .18︒ 6.下列说法不正确的是( ) A .125的平方根是±15 B .﹣9是81的平方根C .0.4的算术平方根是0.2D .327-=﹣3 7.如图,直线AB ,CD 被BC 所截,若AB ∥CD ,∠1=50°,∠2=40°,则∠3等于( )A .80°B .70°C .90°D .100° 8.如图,已知A 1(1,0),A 2(1,1),A 3(﹣1,1),A 4(﹣1,﹣1),A 5(2,﹣1)……则点A 2021的坐标为( )A .(505,﹣504)B .(506,﹣505)C .(505,﹣505)D .(﹣506,506)九、填空题9.9的算术平方根是 .十、填空题10.已知点A (2a +3b ,﹣2)和点B (8,3a +1)关于y 轴对称,那么a +b =_____. 十一、填空题11.若点A (9﹣a ,3﹣a )在第二、四象限的角平分线上,则A 点的坐标为_____. 十二、填空题12.如图,//AB CD ,点F 在CD 上,点A 在EF 上,则132∠+∠-∠的度数等于______.十三、填空题13.如图,将一条对边互相平行的长方形纸带进行两次折叠,折痕分别为AB 、CD ,若//CD BE ,且156∠=︒,则2∠=_____.十四、填空题14.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.十五、填空题15.在平面直角坐标系xOy 中,若(4,9)P m m --在y 轴上,则线段OP 长度为________. 十六、填空题16.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位;其行走路线如图所示.则点2021A 的坐标为__________.十七、解答题17.计算:(1)()4129-⨯- (2)()432054⎛⎫-⨯- ⎪⎝⎭十八、解答题18.求下列各式中的x 值.(1)2164x -=(2)3(1)64x -= 十九、解答题19.阅读并完成下列的推理过程.如图,在四边形ABCD 中,E 、F 分别在线段AB 、AD 上,连结ED 、EF ,已知∠AFE =∠CDF ,∠BCD +∠DEF =180°.证明BC ∥DE ;证明:∵∠AFE =∠CDF (已知)∴EF ∥CD ( )∴∠DEF =∠CDE ( )∵∠BCD +∠DEF =180°( )∴ ( )∴BC ∥DE ( )二十、解答题20.如图,在平面直角坐标系中,()1,2--A ,()2,4B --,()4,1C --.ABC 中任意一点()00,P x y 经平移后对应点为()1001,2P x y ++,将ABC 作同样的平移得到111A B C △.(1)请画出111A B C △并写出点1A ,1B ,1C 的坐标;(2)求111A B C △的面积;(3)若点P 在y 轴上,且11A B P △的面积是1,请直接写出点P 的坐标.二十一、解答题21.例如∵479.<<即273<<,∴7的整数部分为2,小数部分为72-,仿照上例回答下列问题;(1)17介于连续的两个整数a 和b 之间,且a <b ,那么a = ,b = ; (2)x 是172+的小数部分,y 是171-的整数部分,求x = ,y = ; (3)求(17)y x -的平方根.二十二、解答题22.如图,用两个面积为2200cm 的小正方形拼成一个大的正方形.(1)则大正方形的边长是___________;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为2360cm ?二十三、解答题23.直线AB ∥CD ,点P 为平面内一点,连接AP ,CP .(1)如图①,点P 在直线AB ,CD 之间,当∠BAP =60°,∠DCP =20°时,求∠APC 的度数;(2)如图②,点P 在直线AB ,CD 之间,∠BAP 与∠DCP 的角平分线相交于K ,写出∠AKC 与∠APC 之间的数量关系,并说明理由;(3)如图③,点P 在直线CD 下方,当∠BAK =23∠BAP ,∠DCK =23∠DCP 时,写出∠AKC 与∠APC 之间的数量关系,并说明理由.二十四、解答题24.已知射线//AB 射线CD ,P 为一动点,AE 平分PAB ∠,CE 平分PCD ∠,且AE 与CE 相交于点E .(注意:此题不允许使用三角形,四边形内角和进行解答)(1)在图1中,当点P 运动到线段AC 上时,180APC ∠=︒.直接写出AEC ∠的度数; (2)当点P 运动到图2的位置时,猜想AEC ∠与APC ∠之间的关系,并加以说明;(3)当点P 运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由:若不成立,请写出AEC ∠与APC ∠之间的关系,并加以证明.二十五、解答题25.如图,在ABC 中,AD 是高,AE 是角平分线,20B ∠=︒,60C ∠=°.(1)求CAD ∠、AEC ∠和EAD ∠的度数.(2)若图形发生了变化,已知的两个角度数改为:当30B ∠=︒,60C ∠=°,则EAD ∠=__________︒.当50B ∠=︒,C 60∠=︒时,则EAD ∠=__________︒.当60B ∠=︒,60C ∠=°时,则EAD ∠=__________︒.当70B ∠=︒,60C ∠=°时,则EAD ∠=__________︒.(3)若B 和C ∠的度数改为用字母α和β来表示,你能找到EAD ∠与α和β之间的关系吗?请直接写出你发现的结论.【参考答案】一、选择题1.C解析:C【分析】根据算术平方根的计算方法求解即可;【详解】 ∵,∴4的算术平方根是2.故答案选C .【点睛】本题主要考查了算术平方根的计算,准确计算是解题的关键.2.D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都不是由平移得到的,D 是由平移得到的.故选:D .【点睛】解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都不是由平移得到的,D 是由平移得到的.故选:D .【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.3.B【分析】互为相反数的两个数的和为0,求出m 的值,再判断出所求点的横纵坐标的符号,进而判断点P 所在的象限.【详解】解:∵点P (1-2m ,m )的横坐标与纵坐标互为相反数∴120m m -+=解得m =1∴1-2m =1-2×1=-1,m =1∴点P 坐标为(-1,1)∴点P 在第二象限故选B .【点睛】本题考查了点的坐标和相反数的定义,解决本题的关键是记住平面直角坐标系中各个象限内点的符号特点:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-). 4.D【分析】根据相交线、对顶角以及邻补角的有关性质对选项逐个判断即可.【详解】解:A :同一平面内,两条不相交的直线平行,选项正确,不符合题意;B :对顶角相等,选项正确,不符合题意;C :互为邻补角的两角和为180°,选项正确,不符合题意;D :相等的两个角不一定是对顶角,选项错误,符合题意;故答案选D .【点睛】此题主要考查了相交线、对顶角以及邻补角的有关性质,熟练掌握相关基本性质是解题的关键.5.B【分析】记∠1顶点为A ,∠2顶点为B ,∠3顶点为C ,过点B 作BD ∥l 1,由平行线的性质可得∠3+∠DBC =180°,∠ABD +(180°-∠1)=180°,由此得到∠3+∠2+(180°-∠1)=360°,再结合已知条件即可求出结果.【详解】如图,过点B 作BD ∥l 1,∵12//l l ,∴BD ∥l 1∥l 2,∴∠3+∠DBC =180°,∠ABD +(180°-∠1)=180°,∴∠3+∠DBC +∠ABD +(180°-∠1)=360°,即∠3+∠2+(180°-∠1)=360°,又∵∠2+∠3=216°,∴216°+(180°-∠1)=360°,∴∠1=36°.故选:B .【点睛】本题考查了平行线的性质,正确作出辅助线,熟练掌握平行线性质是解题的关键. 6.C【分析】根据立方根与平方根的定义即可求出答案.【详解】解:0.4,故C 错误, 故选C .【点睛】考查平方根与立方根,解题的关键是正确理解概念,本题属于基础题型.7.C【分析】根据AB ∥CD 判断出∠1=∠C =50°,根据∠3是△ECD 的外角,判断出∠3=∠C +∠2,从而求出∠3的度数.【详解】解:∵AB ∥CD ,∴∠1=∠C =50°,∵∠3是△ECD 的外角,∴∠3=∠C +∠2,∴∠3=50°+40°=90°.故选:C .【点睛】本题考查了平行线的性质和三角形的外角性质,灵活运用是解题的关键. 8.B【分析】求在平面直角坐标系中的位置,经观察分析所有点,除外,其他所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点在第解析:B【分析】求2021A 在平面直角坐标系中的位置,经观察分析所有点,除1A 外,其他所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点2021A 在第四象限,根据推导可得出结论;【详解】由题可知,第一象限的点:2A ,6A …角标除以4余数为2;第二象限的点:3A ,7A ,…角标除以4余数为3;第三象限的点:4A ,8A ,…角标除以4余数为0;第四象限的点:5A ,9A ,…角标除以4余数为1;由上规律可知:20214=5051÷,∴点2021A 在第四象限,又∵5(2,1)A -,9(3,2)A -,即横坐标为正数,数字为角标除以4的商加1;纵坐标为负数,数字为角标除以4的商, ∴2021(506,505)A -.故选:B .【点睛】本题主要考查了点的坐标规律,准确理解是解题的关键.九、填空题9.【分析】根据一个正数的算术平方根就是其正的平方根即可得出.【详解】∵,∴9算术平方根为3.故答案为3.【点睛】本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.解析:【分析】根据一个正数的算术平方根就是其正的平方根即可得出.【详解】∵239=,∴9算术平方根为3.故答案为3.【点睛】本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.十、填空题10.-3.【分析】关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得a ,b 的值.【详解】解:∵点A (2a+3b ,﹣2)和点B (8,3a+1)关于y 轴对称,∴,解得,∴a+b =解析:-3.【分析】关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得a ,b 的值.【详解】解:∵点A (2a +3b ,﹣2)和点B (8,3a +1)关于y 轴对称,∴238312a b a +=-⎧⎨+=-⎩, 解得12a b =-⎧⎨=-⎩, ∴a +b =﹣3,故答案为:﹣3.【点睛】本题考查的是关于y 轴对称的两个点的坐标关系,掌握以上知识是解题的关键. 十一、填空题11.(3,﹣3).【分析】根据第二、四象限角平分线上点的坐标特征得到9﹣a+3﹣a =0,然后解方程即可.【详解】∵点P 在第二、四象限角平分线上,∴9﹣a+3﹣a =0,∴a =6,∴A 点的坐标解析:(3,﹣3).【分析】根据第二、四象限角平分线上点的坐标特征得到9﹣a+3﹣a =0,然后解方程即可.【详解】∵点P 在第二、四象限角平分线上,∴9﹣a+3﹣a =0,∴a =6,∴A 点的坐标为(3,﹣3).故答案为:(3,﹣3).【点睛】本题考查了坐标与图形性质:解题的关键是利用坐标特征判断线段与坐标轴的位置关系;记住坐标轴和第一、三象限角平分线、第二、四象限角平分线上点的坐标特征.十二、填空题12.180°【分析】根据平行线的性质可得∠1=∠AFD,从而得到∠EFC=180°-∠EFD,∠ECF=180°-∠3,再根据∠2+∠ECF+∠EFC=180°,即可得到答案【详解】解:∵AB∥解析:180°【分析】根据平行线的性质可得∠1=∠AFD,从而得到∠EFC=180°-∠EFD,∠ECF=180°-∠3,再根据∠2+∠ECF+∠EFC=180°,即可得到答案【详解】解:∵AB∥CD,∴∠1=∠AFD,∵∠EFC=180°-∠EFD,∠ECF=180°-∠3,∠2+∠ECF+∠EFC=180°,∴∠2+360°-∠1-∠3=180°,∴∠1+∠3-∠2=180°,故答案为:180°【点睛】本题主要考查了三角形内角和定理,平行线的性质,补角的定义,解题的关键在于能够熟练掌握相关知识进行求解十三、填空题13.68°【分析】利用平行线的性质以及翻折不变性即可得到∠5=∠DCF=∠4=∠3=∠1=56°,进而得出∠2=68°.【详解】解:如图,延长BC到点F,∵纸带对边互相平行,∠1=56°,解析:68°【分析】利用平行线的性质以及翻折不变性即可得到∠5=∠DCF=∠4=∠3=∠1=56°,进而得出∠2=68°.【详解】解:如图,延长BC到点F,∵纸带对边互相平行,∠1=56°,∴∠4=∠3=∠1=56°,由折叠可得,∠DCF=∠5,∵CD∥BE,∴∠DCF=∠4=56°,∴∠5=56°,∴∠2=180°-∠DCF-∠5=180°-56°-56°=68°,故答案为:68°.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握:两直线平行,同位角相等;两直线平行,内错角相等.十四、填空题14.、、、.【详解】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;解析:53、17、5、1.【详解】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;如果四次才输出结果:则x=(5-2)÷3=1;则满足条件的整数值是:53、17、5、1.故答案为53、17、5、1.点睛:此题的关键是要逆向思维.它和一般的程序题正好是相反的.十五、填空题15.5【分析】先根据在轴上,计算出m 的值,根据纵坐标的绝对值即是线段长度可得到答案.【详解】∵在轴上,∴横坐标为0,即,解得:,故,∴线段长度为,故答案为:5.【点睛】本题只要考查解析:5【分析】先根据(4,9)P m m --在y 轴上,计算出m 的值,根据纵坐标的绝对值即是线段OP 长度可得到答案.【详解】∵(4,9)P m m --在y 轴上,∴横坐标为0,即40m -=,解得:4m =,故(0,5)P -,∴线段OP 长度为|5|5-=,故答案为:5.【点睛】本题只要考查了再y 轴的点的特征(横坐标为零),在计算线段的长度时,注意线段长度不为负数.十六、填空题16.(1010,1)【分析】根据图象先计算出A4和A8的坐标,进而得出点A4n 的坐标为(2n ,0),再用2020÷4=505,可得出点A2021的坐标.【详解】解:由图可知A4,A8都在x轴上,解析:(1010,1)【分析】根据图象先计算出A4和A8的坐标,进而得出点A4n的坐标为(2n,0),再用2020÷4=505,可得出点A2021的坐标.【详解】解:由图可知A4,A8都在x轴上,∵蚂蚁每次移动1个单位,∴OA4=2,OA8=4,∴A4(2,0),A8(4,0),∴OA4n=4n÷2=2n,∴点A4n的坐标为(2n,0).∵2020÷4=505,∴点A2020的坐标是(1010,0).∴点A2021的坐标是(1010,1).故答案为:(1010,1).【点睛】本题考查了规律型问题在点的坐标问题中的应用,数形结合并正确得出规律是解题的关键.十七、解答题17.(1)-1;(2)-1【分析】(1)根据乘方及二次根式的化简即可求解;(2)根据乘法的分配率计算即可.【详解】(1)(2)【点睛】本题考查的是实数的运算,掌握运算法则及乘法的分配率是解析:(1)-1;(2)-1【分析】(1)根据乘方及二次根式的化简即可求解;(2)根据乘法的分配率计算即可.【详解】-⨯(1)()412(2)()()()434320=-20--20=-1615=-15454⎛⎫-⨯-⨯⨯+ ⎪⎝⎭【点睛】本题考查的是实数的运算,掌握运算法则及乘法的分配率是关键.十八、解答题18.(1);(2)x=5.【详解】分析:(1)先移项,然后再求平方根即可;(2)先求x-1立方根,再求x 即可.详解:(1),∴;(2),∴x -1=4, ∴x=5.点睛:本题考查了立方解析:(1)52x =±;(2)x =5. 【详解】分析:(1)先移项,然后再求平方根即可;(2)先求x -1立方根,再求x 即可.详解:(1)2254x =,∴52x =±;(2)()1x -∴x -1=4, ∴x =5.点睛:本题考查了立方根和平方根的定义和性质,解题时牢记定义是关键,此题比较简单,易于掌握.十九、解答题19.同位角相等,两直线平行;两直线平行,内错角相等;已知;∠BCD+∠CDE =180°;等量代换;同旁内角互补,两直线平行.【分析】根据平行线的性质与判定填空即可【详解】证明:∵∠AFE =∠CD解析:同位角相等,两直线平行;两直线平行,内错角相等;已知;∠BCD +∠CDE =180°;等量代换;同旁内角互补,两直线平行.【分析】根据平行线的性质与判定填空即可【详解】证明:∵∠AFE =∠CDF (已知)∴EF ∥CD (同位角相等,两直线平行)∴∠DEF =∠CDE ( 两直线平行,内错角相等)∵∠BCD +∠DEF =180°(已知)∴∠BCD +∠CDE =180°( 等量代换)∴BC ∥DE ( 同旁内角互补,两直线平行)故答案为:同位角相等,两直线平行;两直线平行,内错角相等;已知;∠BCD +∠CDE =180°;等量代换;同旁内角互补,两直线平行【点睛】本题考查了平行线的性质与判定,掌握平行线的性质与判定是解题的关键.二十、解答题20.(1)图见解析,,,;(2)3.5;(3)点的坐标为或【分析】(1)依据点P (x0,y0)经平移后对应点为P1(x0+1,y0+2),可得平移的方向和距离,将△ABC 作同样的平移即可得到△A1B解析:(1)图见解析,()10,0A ,()11,2B --,()131C ,-;(2)3.5;(3)点P 的坐标为()02,或()0,2-【分析】(1)依据点P (x 0,y 0)经平移后对应点为P 1(x 0+1,y 0+2),可得平移的方向和距离,将△ABC 作同样的平移即可得到△A 1B 1C 1;(2)利用割补法进行计算,即可得到△A 1B 1C 1的面积;(3)设P (0,y ),依据△A 1B 1P 的面积是1,即可得到y 的值,进而得出点P 的坐标.【详解】解:(1)如图所示,111A B C △即为所求;()10,0A ,()11,2B --,()131C ,-;(2)111A B C △的面积为:()11113313126 1.51 3.5222+⨯-⨯⨯-⨯⨯=--=; (3)设()0,P y ,则1A P y =,∵11A B P △的面积是1, ∴1112y ⨯⨯=, 解得2y =±,∴点P 的坐标为()02,或()0,2-.【点睛】本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形. 二十一、解答题21.(1),;(2);(3)【分析】(1)根据的范围确定出、的值;(2)求出,的范围,即可求出、的值,代入求出即可;(3)将代入中即可求出.【详解】解:(1),,,,故答案是:,;(解析:(1)4a =,5b =;(2)4,3x y =;(3)8±【分析】(1a 、b 的值;(221的范围,即可求出x 、y 的值,代入求出即可;(3)将4,3x y ==代入)y x 中即可求出.【详解】解:(1)1617<45∴<<,4a ∴=,5b =,故答案是:4a =,5b =;(2)4175<,627∴<,314<<,2264-,1的整数部分为:3;故答案是:4,3x y =;(3)174,3x y ==,3)464y x ∴==,)y x ∴的平方根为:8=±.【点睛】本题考查了估算无理数的大小的应用、求平方根,解题的关键是读懂题意及求出45<.二十二、解答题22.(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为,宽为,根据解析:(1)20cm ;(2)不能剪出长宽之比为5:4,且面积为2360cm 的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为4002cm ,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为5xcm ,宽为4xcm ,根据面积列得54360x x ⋅=,求出x =得到520x =>,由此判断不能裁出符合条件的大正方形.【详解】(1)∵用两个面积为2200cm 的小正方形拼成一个大的正方形,∴大正方形的面积为4002cm ,∴20cm =故答案为:20cm ;(2)设长方形纸片的长为5xcm ,宽为4xcm ,54360x x ⋅=,解得:x520x =,答:不能剪出长宽之比为5:4,且面积为2360cm 的大长方形.【点睛】此题考查利用算术平方根解决实际问题,利用平方根解方程,正确理解题意是解题的关键. 二十三、解答题23.(1)80°;(2)∠AKC =∠APC ,理由见解析;(3)∠AKC =∠APC ,理由见解析【分析】(1)先过P 作PE ∥AB ,根据平行线的性质即可得到∠APE =∠BAP ,∠CPE =∠DCP ,再根据∠解析:(1)80°;(2)∠AKC =12∠APC ,理由见解析;(3)∠AKC =23∠APC ,理由见解析【分析】(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠APC=∠APE+∠CPE=∠BAP+∠DCP进行计算即可;(2)过K作KE∥AB,根据KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,进而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根据角平分线的定义,得出∠BAK+∠DCK=12∠BAP+12∠DCP=12(∠BAP+∠DCP)=12∠APC,进而得到∠AKC=12∠APC;(3)过K作KE∥AB,根据KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,进而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根据已知得出∠BAK﹣∠DCK=23∠BAP﹣23∠DCP=23∠APC,进而得到∠BAK﹣∠DCK=23∠APC.【详解】(1)如图1,过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=∠BAP,∠CPE=∠DCP,∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;(2)∠AKC=12∠APC.理由:如图2,过K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠AKE=∠BAK,∠CKE=∠DCK,∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,过P作PF∥AB,同理可得,∠APC=∠BAP+∠DCP,∵∠BAP与∠DCP的角平分线相交于点K,∴∠BAK+∠DCK=12∠BAP+12∠DCP=12(∠BAP+∠DCP)=12∠APC,∴∠AKC=12∠APC;(3)∠AKC=23∠APC理由:如图3,过K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠BAK=∠AKE,∠DCK=∠CKE,∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK,过P作PF∥AB,同理可得,∠APC=∠BAP﹣∠DCP,∵∠BAK=23∠BAP,∠DCK=23∠DCP,∴∠BAK ﹣∠DCK =23∠BAP ﹣23∠DCP =23(∠BAP ﹣∠DCP )=23∠APC , ∴∠AKC =23∠APC .【点睛】本题考查了平行线的性质和角平分线的定义,解题的关键是作出平行线构造内错角相等计算.二十四、解答题24.(1);(2),证明见解析;(3),证明见解析.【分析】(1)过点作,先根据平行线的性质、平行公理推论可得,从而可得,再根据平行线的性质可得,然后根据角平分线的定义可得,最后根据角的和差即可得; 解析:(1)90︒;(2)2APC AEC ∠=∠,证明见解析;(3)2360APC AEC ∠+∠=︒,证明见解析.【分析】(1)过点E 作//EF AB ,先根据平行线的性质、平行公理推论可得,AEF BAE CEF DCE ∠=∠∠=∠,从而可得AEC BAE DCE ∠=∠+∠,再根据平行线的性质可得180PAB PCD ∠+∠=︒,然后根据角平分线的定义可得11,22BAE PAB DCE PCD ∠=∠∠=∠,最后根据角的和差即可得; (2)过点E 作//EF AB ,过点P 作//PQ AB ,先根据(1)可得1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠,再根据(1)同样的方法可得APC PAB PCD ∠=∠+∠,由此即可得出结论;(3)过点E 作//EF AB ,过点P 作//PQ AB ,先根据(1)可得2PAB PCD AEC ∠+∠=∠,再根据平行线的性质、平行公理推论可得180,180APQ PAB CPQ PCD ∠=︒-∠∠=︒-∠,然后根据角的和差、等量代换即可得出结论.【详解】解:(1)如图,过点E 作//EF AB ,AEF BAE ∴∠=∠,//AB CD ,//EF CD ∴,CEF DCE ∴∠=∠,AEC AEF CEF BAE DCE ∴∠=∠+∠=∠+∠,又//AB CD ,且点P 运动到线段AC 上,180PAB PCD ∴∠+∠=︒,AE ∵平分PAB ∠,CE 平分PCD ∠, 11,22BAE PAB DCE PCD ∴∠=∠∠=∠, 111()90222AEC PAB PCD PAB PCD ∴∠=∠+∠=∠+∠=︒; (2)猜想2APC AEC ∠=∠,证明如下:如图,过点E 作//EF AB ,过点P 作//PQ AB ,由(1)已得:1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠, 同理可得:APC PAB PCD ∠=∠+∠,2APC AEC ∴∠=∠;(3)2360APC AEC ∠+∠=︒,证明如下:如图,过点E 作//EF AB ,过点P 作//PQ AB ,由(1)已得:1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠, 即2PAB PCD AEC ∠+∠=∠,//PQ AB ,180APQ PAB ∴∠+∠=︒,即180APQ PAB ∠=︒-∠,//AB CD ,//PQ CD ∴,180CPQ PCD ∴∠+∠=︒,即180CPQ PCD ∠=︒-∠,APC APQ CPQ ∴∠=∠+∠,180180PAB PCD =︒-∠+︒-∠,()360PAB PCD =︒-∠+∠,3602AEC =︒-∠,即2360APC AEC ∠+∠=︒.【点睛】本题考查了平行线的性质、平行公理推论、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.二十五、解答题25.(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,.【分析】(1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数;解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当αβ<时,1()2EAD βα∠=-;当αβ>时,1()2EAD αβ∠=-. 【分析】(1)先利用三角形内角和定理求出BAC ∠的度数,再根据角平分线和高的性质分别得出EAC ∠和DAC ∠的度数,进而可求AEC ∠和EAD ∠的度数;(2)先利用三角形内角和定理求出BAC ∠的度数,再根据角平分线和高的性质分别得出EAC ∠和DAC ∠的度数,则前三问利用EAD EAC DAC ∠=∠-∠即可得出答案,第4问利用EAD DAC EAC ∠=∠-∠即可得出答案;(3)按照(2)的方法,将相应的数换成字母即可得出答案.【详解】(1)∵20B ∠=︒,60C ∠=°,∴180100BAC B C ∠=-∠-∠=︒︒ .∵AE 平分BAC ∠, ∴1502EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ADE ∴∠=∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,20EAD EAC CAD ∴∠=∠-∠=︒ ,9070AEC EAD ∴∠=︒-∠=︒ .(2)当30B ∠=︒,60C ∠=°时,∵30B ∠=︒,60C ∠=°,∴18090BAC B C ∠=︒-∠-∠=︒.∵AE 平分BAC ∠, ∴1452EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ∴∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,15EAD EAC CAD ∴∠=∠-∠=︒ ;当50B ∠=︒,60C ∠=°时,∵50B ∠=︒,60C ∠=°,∴18070BAC B C ∠=-∠-∠=︒︒ .∵AE 平分BAC ∠, ∴1352EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ∴∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,5EAD EAC CAD ∴∠=∠-∠=︒ ;当60B ∠=︒,60C ∠=°时,∵60B ∠=︒,60C ∠=°,∴18060BAC B C ∠=︒-∠-∠=︒.∵AE 平分BAC ∠, ∴1302EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ∴∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,0EAD EAC CAD ∴∠=∠-∠=︒ ;当70B ∠=︒,60C ∠=°时,∵70B ∠=︒,60C ∠=°,∴18050BAC B C ∠=︒-∠-∠=︒.∵AE 平分BAC ∠, ∴1252EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ∴∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,5EAD DAC EAC ∴∠=∠-∠=︒ .(3)当B C ∠<∠ 时,即αβ<时,∵B α∠=,C β∠=,∴180180BAC B C αβ∠=︒-∠-∠=︒-- .∵AE 平分BAC ∠, ∴1111(180)902222EAC BAC αβαβ∠=∠=︒--=--. ∵AD 是高,90ADC ∴∠=︒ ,9090CAD C β∴∠=︒-∠=︒- ,1()2EAD EAC CAD βα∴∠=∠-∠=- ; 当B C ∠>∠ 时,即αβ>时,∵B α∠=,C β∠=,∴180180BAC B C αβ∠=︒-∠-∠=︒-- .∵AE 平分BAC ∠, ∴1111(180)902222EAC BAC αβαβ∠=∠=︒--=--. ∵AD 是高,90ADC ∴∠=︒ ,9090CAD C β∴∠=︒-∠=︒- ,1()2EAD DAC EAC αβ∴∠=∠-∠=- ; 综上所述,当αβ<时,1()2EAD βα∠=-;当αβ>时,1()2EAD αβ∠=-. 【点睛】本题主要考查三角形内角和定理和三角形的角平分线,高,掌握三角形内角和定理和直角三角形两锐角互余是解题的关键.。

人教版初一数学七年级下册期末数学试卷及答案解析

人教版初一数学七年级下册期末数学试卷及答案解析

人教版七年级(下)期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.若关于x的方程3x+2a=﹣1的解是x=﹣1,则a的值是()A.﹣1 B.1 C.﹣2 D.22.下列汽车标志中,是中心对称图形的是()A.B.C.D.3.不等式8﹣2x>0的解集在数轴上表示正确的是()A.B.C.D.4.下列正多边形中,不能够铺满地面的是()A.等边三角形B.正方形C.正六边形D.正八边形5.已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形6.已知一个等腰三角形的一条边长为6,另一条边长为13,则它的周长为()A.25 B.32 C.25或32 D.197.设a、b、c表示三种不同物体的质量,用天平称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是()A.c<b<a B.b<c<a C.c<a<b D.b<a<c8.如图,将周长为8个单位的△ABC沿BC向右平移1个单位,得到△DEF,则四边形ABFD的周长为()A.6个单位B.8个单位C.10个单位D.12个单位二、填空题(共6小题,每小题3分,满分18分)9.若代数式﹣2x+3的值是5,则x的值是.10.解一次方程组的基本思想是消元、转化,最常见的消元方法是.11.如图,将长方形ABCD沿对角线BD折叠,点C落在点C′处,若AB=2,则C′D 的长是.12.如图,△ACB≌△A′CB′,∠A′CB=30°,∠A′CB′=70°,则∠ACA′的度数是.13.如图所示,直角三角形AOB的周长为100,在其内部有6个小直角三角形,则这6个小直角三角形的周长之和为.14.如图,在△ABC中,∠A=45°,直线l与边AB、AC分别交于点M、N,则∠1+∠2的度数是.三、解答题(共8小题,满分78分)15.解方程:﹣=1.16.解不等式组:.17.已知关于x的方程2x+4=m﹣x的解为负数,求m的取值范围.18.如下图,在由相同大小的三个小正方形组成的L形图中,请你按要求分别在下图中添画一个同样大小的小正方形,要求:使图1只是轴对称图形但不是中心对称图形;使图2只是中心对称图形但不是轴对称图形;使图3既是轴对称图形但又是中心对称图形.19.如图,在△ABC中,点D是∠ACB的平分线与∠ABC的平分线的交点,BD 的延长线交AC于点E.(1)∠AEB、∠EDC、∠DCB的大小关系是,理由是.(2)已知∠EDC=60°,求∠A的度数.20.根据图中的信息,求梅花鹿和长颈鹿现在的高度.21.如图,在正方形ABCD中,点E在BC上,点F在AB上,∠FDE=45°,△DEC按顺时针方向旋转x°(0<x<180)后得到△DGA.(1)旋转中心是哪一点?x的值是多少?(2)求∠GDF的度数.(3)若连结GE,请判断△DGE是什么三角形?(直接写出结论即可)22.某校为了绿化校园,计划购进甲、乙两种树苗共17棵,已知甲种树苗每棵80元,乙种树苗每棵60元.(1)若购进甲、乙两种树苗刚好用去1220元,问购进甲乙两种树苗多少棵?(2)若购进甲、乙两种树苗的总费用为W元,当购进甲种树苗a(0<a<17)棵时,用含a的代数式表示W,则W=.(3)若购进乙种树苗的数量少于甲种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.若关于x的方程3x+2a=﹣1的解是x=﹣1,则a的值是()A.﹣1 B.1 C.﹣2 D.2【考点】一元一次方程的解.【分析】由关于x的方程3x+2a=﹣1的解是x=﹣1,即可得3×(﹣1)+2a=﹣1,继而求得答案.【解答】解:∵关于x的方程3x+2a=﹣1的解是x=﹣1,∴3×(﹣1)+2a=﹣1,解得:a=1.故选B.2.下列汽车标志中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选A.3.不等式8﹣2x>0的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】先根据不等式的基本性质求出此不等式的解集,在数轴上表示出来,再找出符合条件的选项即可.【解答】解:移项得,﹣2x>﹣8,系数化为1得,x<4.在数轴上表示为:故选C.4.下列正多边形中,不能够铺满地面的是()A.等边三角形B.正方形C.正六边形D.正八边形【考点】平面镶嵌(密铺).【分析】利用一种正多边形的镶嵌应符合一个内角度数能整除360°分别判断即可.【解答】解:A、等边三角形的每个内角是60°,能整除360°,能密铺;B、正方形的每个内角是90°,能整除360°,能密铺;C、正六边形的每个内角是120°,能整除360°,能密铺;D、正八边形的每个内角是135°,不能整除360°,能密铺.故选D.5.已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【考点】多边形内角与外角.【分析】设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程组,从而求出边数n的值.【解答】解:设这个多边形是n边形,则(n﹣2)•180°=900°,解得:n=7,即这个多边形为七边形.故本题选C.6.已知一个等腰三角形的一条边长为6,另一条边长为13,则它的周长为()A.25 B.32 C.25或32 D.19【考点】等腰三角形的性质;三角形三边关系.【分析】分为两种情况:当等腰三角形的三边长为6,6,13时,当等腰三角形的三边长为6,13,13时,看看是否符合三角形三边关系定理,最后求出即可.【解答】解:分为两种情况:①当等腰三角形的三边长为6,6,13时,∵6+6<13,∴不符合三角形三边关系定理,此时不能组成三角形;②当等腰三角形的三边长为6,13,13时,此时符合三角形三边关系定理,此时能组成三角形,三角形的周长为6+13+13=32;故选B.7.设a、b、c表示三种不同物体的质量,用天平称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是()A.c<b<a B.b<c<a C.c<a<b D.b<a<c【考点】不等式的性质;等式的性质.【分析】观察图形可知:b=2c;a>b.【解答】解:依题意得b=2c;a>b.∴a>b>c.故选A.8.如图,将周长为8个单位的△ABC沿BC向右平移1个单位,得到△DEF,则四边形ABFD的周长为()A.6个单位B.8个单位C.10个单位D.12个单位【考点】平移的性质.【分析】先根据平移的性质得出AD=1,BF=BC+CF=BC+1,DF=AC,再根据四边形ABFD的周长=AD+AB+BF+DF即可得出结论.【解答】解:∵将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故选C.二、填空题(共6小题,每小题3分,满分18分)9.若代数式﹣2x+3的值是5,则x的值是﹣1.【考点】解一元一次方程.【分析】根据题意列出关于x的方程,求出x的值即可.【解答】解:∵代数式﹣2x+3的值是5,∴﹣2x+3=5,解得x=﹣1.故答案为:﹣1.10.解一次方程组的基本思想是消元、转化,最常见的消元方法是代入法与加减法.【考点】解二元一次方程组.【分析】利用解一次方程组的基本思想,方法即可得到结果.【解答】解:解一次方程组的基本思想是消元、转化,最常见的消元方法是代入法与加减法.故答案为:代入法与加减法11.如图,将长方形ABCD沿对角线BD折叠,点C落在点C′处,若AB=2,则C′D 的长是2.【考点】翻折变换(折叠问题).【分析】根据矩形的性质可得AB=CD=2,再根据折叠可得C′D=CD=2.【解答】解:∵四边形ABCD是矩形,∴AB=CD,∵AB=2,∴CD=2,∵长方形ABCD沿对角线BD折叠,点C落在点C′处,∴C′D=CD=2,故答案为:2.12.如图,△ACB≌△A′CB′,∠A′CB=30°,∠A′CB′=70°,则∠ACA′的度数是40°.【考点】全等三角形的性质.【分析】根据全等三角形对应角相等可得∠ACB=∠A′CB′,然后求解即可.【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′=70°,∴∠ACA′=∠ACB﹣∠A′CB=70°﹣30°=40°.故答案为:40°.13.如图所示,直角三角形AOB的周长为100,在其内部有6个小直角三角形,则这6个小直角三角形的周长之和为100.【考点】平移的性质.【分析】根据平移的性质判断出6个小直角三角形的周长之和=Rt△AOB的周长,从而得解.【解答】解:由平移的性质,6个小直角三角形较长的直角边平移后等于AO边,较短的直角边平移后等于BO边,斜边之和等于AB边长,所以,6个小直角三角形的周长之和=Rt△AOB的周长,∵直角三角形AOB的周长为100,∴这6个小直角三角形的周长之和=100.故答案为:100.14.如图,在△ABC中,∠A=45°,直线l与边AB、AC分别交于点M、N,则∠1+∠2的度数是225°.【考点】三角形内角和定理.【分析】先根据三角形内角和定理求出∠B+∠C的度数,再由四边形的内角和等于360°即可得出结论.【解答】解:∵在△ABC中,∠A=45°,∴∠B+∠C=180°﹣45°=135°,∴∠1+∠2=360°﹣135°=225°.故答案为:225°.三、解答题(共8小题,满分78分)15.解方程:﹣=1.【考点】解一元一次方程.【分析】方程两边每一项都要乘各分母的最小公倍数6,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上.【解答】解:去分母得:3(x﹣3)﹣2(2x+1)=6,去括号得:3x﹣9﹣4x﹣2=6,移项得:﹣x=17,系数化为1得:x=﹣17.16.解不等式组:.【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:解不等式①,得x≥﹣1.解不等式②,得x<2.∴原不等式组的解集为﹣1≤x<2.17.已知关于x的方程2x+4=m﹣x的解为负数,求m的取值范围.【考点】解一元一次不等式;一元一次方程的解.【分析】先把m当作已知条件表示出x的值,再根据x的值为负数求出m的取值范围即可.【解答】解:解关于x的方程2x+4=m﹣x,得x=,∵方程的解为负数,∴<0,解得m<4,∴m的取值范围是m<4.18.如下图,在由相同大小的三个小正方形组成的L形图中,请你按要求分别在下图中添画一个同样大小的小正方形,要求:使图1只是轴对称图形但不是中心对称图形;使图2只是中心对称图形但不是轴对称图形;使图3既是轴对称图形但又是中心对称图形.【考点】利用旋转设计图案;利用轴对称设计图案.【分析】(1)在左边两个正方形下侧画一个正方形,则构成的图形是轴对称图形但不是中心对称图形;(2)在右边一个正方形下侧画一个正方形,则构成的图形是中心对称图形但不是轴对称图形;(3)在右边一个正方形上侧画一个正方形,则构成的图形是轴对称图形又是中心对称图形.【解答】解:如图19.如图,在△ABC中,点D是∠ACB的平分线与∠ABC的平分线的交点,BD 的延长线交AC于点E.(1)∠AEB、∠EDC、∠DCB的大小关系是∠AEB>∠EDC>∠DCB,理由是三角形的一个外角大于任何一个和它不相邻的内角.(2)已知∠EDC=60°,求∠A的度数.K#【考点】三角形的外角性质;三角形内角和定理.【分析】(1)根据三角形的一个外角大于任何一个和它不相邻的内角解答;(2)根据三角形的一个外角大于任何一个和它不相邻的内角计算即可.【解答】解:(1)∵∠AEB是△EBC的外角,∴∠AEB>∠EDC,∵∠EDC是△DBC的外角,∴∠EDC>∠DCB,∴∠AEB>∠EDC>∠DCB,故答案为:∠AEB>∠EDC>∠DCB;三角形的一个外角大于任何一个和它不相邻的内角.(2)∵∠EDC是△CDB的一个外角,∴∠EDC=∠DCB+∠DBC.∵∠EDC=60°,∴∠DCB+∠DBC=60°.∵DC平分∠ACB,DB平分∠ABC,∴∠ACB=2∠DCB,∠ABC=2∠DBC,∴∠ACB+∠ABC=2(∠DCB+∠DBC)=2×600=1200.∴∠A=180°﹣(∠ACB+∠ABC)=1800﹣1200=600.20.根据图中的信息,求梅花鹿和长颈鹿现在的高度.【考点】二元一次方程组的应用.【分析】设梅花鹿的高度是xm,长颈鹿的高度是ym,根据长颈鹿的高度比梅花鹿的3倍还多1和梅花鹿的高度加上4正好等于长颈鹿的高度,列出方程组,求解即可.【解答】解:设梅花鹿的高度是xm,长颈鹿的高度是ym,根据题意得:,解得:,答:梅花鹿的高度是1.5m,长颈鹿的高度是5.5m.21.如图,在正方形ABCD中,点E在BC上,点F在AB上,∠FDE=45°,△DEC 按顺时针方向旋转x°(0<x<180)后得到△DGA.(1)旋转中心是哪一点?x的值是多少?(2)求∠GDF的度数.(3)若连结GE,请判断△DGE是什么三角形?(直接写出结论即可)【考点】旋转的性质;等腰直角三角形;正方形的性质.【分析】(1)在旋转过程中,固定不动的点是旋转中心,对应点与旋转中心的连线的夹角即为旋转角;(2)根据旋转的性质以及正方形的性质,得出∠CDE=∠ADG,∠CDE+∠ADF=45°,据此求得∠GDF的度数(3)根据旋转的性质,得出GD=ED,∠EDG=∠CDA=90°,据此判断△DGE的形状.【解答】解:(1)由旋转可得,旋转中心是D点,x的值是∠CDA的度数,即x=90;(2)∵四边形ABCD是正方形,∴∠ADC=90°.∵∠FDE=45°,∴∠CDE+∠ADF=45°.由旋转可知∠CDE=∠ADG,∴∠ADG+∠ADF=45°,即∠GDF=45°;(3)连结GE,由旋转可得,GD=ED,∠EDG=∠CDA=90°,∴△DGE是等腰直角三角形.22.某校为了绿化校园,计划购进甲、乙两种树苗共17棵,已知甲种树苗每棵80元,乙种树苗每棵60元.(1)若购进甲、乙两种树苗刚好用去1220元,问购进甲乙两种树苗多少棵?(2)若购进甲、乙两种树苗的总费用为W元,当购进甲种树苗a(0<a<17)棵时,用含a的代数式表示W,则W=20a+1020.(3)若购进乙种树苗的数量少于甲种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.【考点】一元一次不等式的应用.【分析】(1)假设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,利用购进A、B两种树苗刚好用去1220元,结合单价,得出等式方程求出即可;(2)根据所需费用为W=A种树苗的费用+B种树苗的费用,即可解答;(3)结合(1)的解和购买B种树苗的数量少于A种树苗的数量,可找出方案.【解答】解:(1)设购进甲种树苗x棵,则购进乙种树苗(17﹣x)棵.根据题意,得80x+60(17﹣x)=1220.解得x=10.当x=10时,17﹣x=7.答:购进甲种树苗10棵,购进乙种树苗7棵.(2)购进a种树苗A棵,则购进B种树苗(17﹣a)棵根据题意得:W=80a+60(17﹣a)=20a+1020.故答案是:20a+1020;(3)若购进甲种树苗a棵,则购进乙种树苗(17﹣a)棵,由a>17﹣a,得a>8.5,要使总费用w最小,只需20a+1020 最小,即a应取最小的整数,∵a>8.5,∴其最小的整数值为9.当a=9时,17﹣a=8.∴费用最省的方案是:购进甲种树苗9棵,乙种树苗8棵,该方案所需费用为20×9+1020=1200(元).。

人教版七年级数学下学期期末考试试卷 解析版

人教版七年级数学下学期期末考试试卷 解析版

人教版七年级数学下学期期末考试试卷一、选择题(本大题共10小题,共30分)1.如图,A ,B ,C ,D 中的哪幅图案可以通过图案平移得到 ①()A.B.C.D.【答案】D【解析】解:通过图案平移得到必须与图案完全相同,角度也必须相同,①①观察图形可知D 可以通过图案平移得到.①故选:D .根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.本题考查平移的基本性质是:平移不改变图形的形状和大小;经过平移,对应点所连的线段平行且①②相等,对应线段平行且相等,对应角相等.2.下列命题中,真命题的个数是 ()同位角相等①的平方根是②16±4经过一点有且只有一条直线与这条直线平行③点一定在x 轴上④P (a ,0)A. 1个 B. 2个 C. 3个 D. 4个【答案】A【解析】解:两直线平行,同位角相等,错误;①的平方根是,错误;②16±2经过直线外一点有且只有一条直线与这条直线平行,错误③点一定在x 轴上,正确;④P (a ,0)故选:A .根据同位角,平方根、平行线判定和坐标进行判断即可.本题考查了命题与定理的知识,解题的关键是了解同位角,平方根、平行线判定和坐标,难度不大.3.若,则ab 的算术平方根是 a =3b ‒1‒1‒3b +6()A. 2 B. C. D. 42±2【答案】B【解析】解:,∵a =3b ‒1‒1‒3b +6,∴{3b ‒1≥01‒3b ≥0∴1‒3b =0,∴b =13,∴a =6,∴ab =6×13=22的算术平方根是,2故选:B .先根据二次根式的性质求出b 的值,再求出a 的值,最后根据算术平方根即可解答.本题考查了二次根式的性质、算术平方根,解决本题的关键是根据二次根式的性质求出b 的值.4.如图,已知,,,则度数为 a //b a ⊥c ∠1=40∘∠2()A. 40∘B. 140∘C. 130∘D. 以上结论都不对【答案】C【解析】解:如图,延长c ,交b 于一点,,,∵a //b a ⊥c ,∴∠3=90∘又,∵∠4=∠1=40∘,∴∠2=∠3+∠4=90∘+40∘=130∘故选:C .延长c ,交b 于一点,依据平行线的性质,即可得到的度数,再根据三角形外角∠3性质,即可得到的度数.∠2本题主要考查了平行线的性质以及三角形外角性质,解题时注意:两直线平行,同旁内角互补.5.如果点在第二象限,则点在 P (a +b ,ab )Q (‒a ,b )()A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限【答案】D【解析】解:点在第二象限,∵P (a +b ,ab ),,∴a +b <0ab >0、b 同为负,∴a ,∴‒a >0点在第四象限,∴Q (‒a ,b )故选:D .根据条件可得,,进而判断出a 、b 同为负,再进一步判断可得点所在象限.a +b <0ab >0Q (‒a ,b )此题主要考查了点的坐标,关键是掌握各象限内点的坐标符号.6.足球比赛规定:胜一场得3分,平一场得1分,负一场得0分某足球队共进行了6场比赛,得了12.分,该队获胜的场数可能是 ()A. 1或2 B. 2或3 C. 3或4 D. 4或5【答案】C【解析】解:设该队胜x 场,平y 场,则负场,(6‒x ‒y )根据题意,得:,即:,3x +y =12x =12‒y3、y 均为非负整数,且,∵x x +y ≤6当时,;当时,;∴y =0x =4y =3x =3即该队获胜的场数可能是3场或4场,故选:C .设该队胜x 场,平y 场,则负场,根据:胜场得分平场得分负场得分最终得分,列出(6‒x ‒y )++=二元一次方程,根据x 、y的范围可得x 的可能取值.本题主要考查二元一次方程的实际应用,根据相等关系列出方程是解题的关键,要熟练根据未知数的范围确定方程的解.7.某校在开展“节约每一滴水”的活动中,从八年级的100名同学中任选20名同学汇总了各自家庭一个月的节水情况,将有关数据每人上报节水量都是整数整理如表:()节水量x /t 0.5~x ~1.51.5~x ~2.52.5~x ~3.53.5~x ~4.5人数6482请你估计这100名同学的家庭一个月节约用水的总量大约是 ()A. 180t B. 230t C. 250t D. 300t 【答案】B【解析】解:利用组中值求平均数可得:选出20名同学家的平均一个月节约用水量=,1×6+2×4+3×8+4×220=2.3估计这100名同学的家庭一个月节约用水的总量大约是.∴=2.3×100=230t 故选:B .利用组中值求样本平均数,即可解决问题.本题考查样本平均数、组中值等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.若方程组中的x 是y 的2倍,则a 等于 {x +4=y2x ‒y =2a ()A. B. 8 C. D. ‒9‒7‒6【答案】D【解析】解:由题意可得方程组,{x +4=y①2x ‒y =2a②x =2y③把代入得,③①{y =‒4x =‒8代入得.②a =‒6故选:D .根据三元一次方程组解的概念,列出三元一次方程组,解出x ,y 的值代入含有a 的式子即求出a 的值.本题的实质是考查三元一次方程组的解法需要对三元一次方程组的定义有一个深刻的理解..方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从.而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法解三元一次方程组的关键.是消元解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成元该未知数.的二元一次方程组.9.不等式组的解集为,则a 满足的条件是 {5x ‒3<3x +5x <a x <4()A. B. C. D. a <4a =4a ≤4a ≥4【答案】D【解析】解:解不等式组得,{x <4x <a 不等式组的解集为,∵{5x ‒3<3x +5x <a x <4.∴a ≥4故选:D .先解不等式组,解集为且,再由不等式组的解集为,由“同小取较小”的原x <a x <4{5x ‒3<3x +5x <a x <4则,求得a 取值范围即可.本题考查了不等式组解集的四种情况:同大取较大,同小取较小,小大大小中间找,大大小小①②③④解不了.10.如图,,,设、、,则、AB //CD ∠P =90∘∠A =α∠E =β∠D =γα、满足的关系是 βγ()A. β+γ‒α=90∘B. α+β+γ=90∘C. α+β‒γ=90∘D. α+β+γ=180∘【答案】B【解析】解:过P 点作,PF //AB ,∵AB //CD ,∴AB //CD //PF ,,∴∠EOB =∠EPF ∠FPD =∠PDC ,∵∠EPD =90∘,∴∠EPD =∠EPF +∠FPD =∠EOB +∠PDC =∠A +∠E +∠PDC =α+β+γ=90∘故选:B .过P 点作,利用平行线的性质解答即可.PF //AB 此题考查平行线的性质,关键是作出辅助线利用平行线的性质解答.二、填空题(本大题共7小题,共21分)11.计算:______.‒12+364‒(‒2)×9+(‒2)2=【答案】11【解析】解:‒12+364‒(‒2)×9+(‒2)2.=‒1+4+2×3+2=11故答案为:11.直接利用立方根的性质以及二次根式的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.12.a 、b 分别表示的整数部分和小数部分,则______.5‒5a +b =【答案】5‒5【解析】解:,∵2<5<3,∴‒3<‒5<‒2,∴2<5‒5<3,;∴a =2b =5‒5‒2=3‒5,∴a +b =5‒5故答案为:5‒5先求出范围,再两边都乘以,再两边都加上5,即可求出a 、b .5‒1本题考查了估算无理数的大小和有理数的混合运算的应用,关键是根据学生的计算能力进行解答.13.如图,C 岛在A 岛的北偏东方向,C 岛在B 岛的北偏西方向,则50∘40∘从C 岛看A ,B 两岛的视角等于______度∠ACB .【答案】90【解析】解:岛在A 岛的北偏东方向,∵C 50∘,∴∠DAC =50∘岛在B 岛的北偏西方向,∵C 40∘,∴∠CBE =40∘,∵DA //EB ,∴∠DAB +∠EBA =180∘,∴∠CAB +∠CBA =90∘.∴∠ACB =180∘‒(∠CAB +∠CBA )=90∘故答案为:90.根据方位角的概念和平行线的性质,结合三角形的内角和定理求解.解答此类题需要从运动的角度,结合平行线的性质和三角形的内角和定理求解.14.已知:如图所示的长方形ABCD 沿EF 折叠至、位置,若D 1C 1∠CF C 1,则等于______度=130∘∠AE D 1.【答案】80【解析】解:长方形ABCD 沿EF 折叠至、位置,∵D 1C 1,∴∠CF C 1=∠EFC =130∘四边形ABCD 是矩形,∵,∴AB //CD ,∴∠BEF =50∘,∴∠D 1EF =∠BEF =50∘,∴∠AE D 1=180∘‒100∘=80∘故答案为:80.先根据翻折变换的性质求出的度数,再由平行线的性质求出的度数,进而可得出结论.∠EFC ∠BEF 此题主要考查了矩形的性质、平行线的性质以及图形的折叠性质,解题的关键是掌握图形折叠后哪些角是对应相等的.15.如图,,:::3:4,则等于______度AB //DE //GF ∠BCD ∠D ∠B =2∠BCD .【答案】72【解析】解::::3:4,∵∠BCD ∠D ∠B =2设,,,∴∠BCD =2x ∘∠D =3x ∘∠B =4x ∘,∵AB //DE ,∴∠GCB =(180‒4x )∘,∵DE //GF ,∴∠FCD =(180‒3x )∘,∵∠BCD +∠GCB +∠FCD =180∘,∴180‒4x +2x +180‒3x =180解得,x =36,∴∠BCD =72∘故答案为:72首先设,,,根据两直线平行,同旁内角互补即可表示出、∠BCD =2x ∘∠D =3x ∘∠B =4x ∘∠GCB ∠FCD 的度数,再根据、、的为即可求得x 的值,进而可得的度数.∠GCB ∠BCD ∠FCD 180∘∠BCD 此题主要考查了平行线的性质,关键是掌握两直线平行,同旁内角互补.16.在同一平面内,直线AB 、CD 相交于点O ,,垂足为O ,如果,则的度OE ⊥AB ∠EOD =35∘∠AOC 数为______.【答案】55∘【解析】解:如图:,∵OE ⊥AB ,∴∠BOE =90∘,∵∠EOD =35∘,∴∠BOD =∠BOE ‒∠EOD =90∘‒35∘=55∘对顶角相等,∴∠AOC =∠BOD =55∘()故答案为:55∘先根据垂直的定义求出,然后求出的度数,再根据对顶角相等求出的度数.∠BOE =90∘∠BOD ∠AOC 本题考查了垂线的定义,对顶角相等,要注意领会由垂直得直角这一要点.17.在平面直角坐标系中,,,,,,,,按此规律排A 1(0,1)A 2(1,1)A 3(1,0)A 4(2,0)A 5(2,1)A 6(3,1)…列,则点的坐标是______.A 2018【答案】A 2018(1009,1)【解析】解:观察图形可知:,,,,,A 2(1,1)A 6(3,1)A 10(5,1)A 15(7,1)…为自然数.∴A 4n +2(1+2n ,1)(n ),∵2018=504×4+2,∴n =504,∵1+2×504=1009.∴A 2018(1009,1)故答案为.A 2018(1009,1)据图形可找出点、、、、、的坐标,根据点的坐标的变化可找出变化规律“A 2A 6A 10A 14…A 4n +2(1+2n ,1为自然数”,依此规律即可得出结论.)(n )本题考查了规律型中点的坐标,根据点的变化找出变化规律“为自然数”是解题的关键.A 4n +1(2n ,1)(n )三、计算题(本大题共1小题,共12分)18.某汽车专卖店销售A ,B 两种型号的新能源汽车,上周售出1辆A 型车和3辆B 型车,销售额为96万元;本周已售出2辆A 型车和1辆B 型车,销售额为62万元.求每辆A 型车和B 型车的售价各为多少万元.(1)甲公司拟向该店购买A ,B 两种型号的新能源汽车共6辆,且A 型车不少于2辆,购车费不少于(2)130万元,则有哪几种购车方案?试说明在中哪种方案费用最低?最低费用是多少元?(3)(2)【答案】解:每辆A 型车和B 型车的售价分别是x 万元、y 万元.(1)则,{x +3y =962x +y =62解得:,{x =18y =26答:每辆A 型车的售价为18万元,每辆B 型车的售价为26万元;设购买A 型车a 辆,则购买B 型车辆,则依题意得(2)(6‒a ),18a +26(6‒a )≥130解得,a ≤314.∴2≤a ≤314a 是正整数,或.∴a =2a =3共有两种方案:方案一:购买2辆A 型车和4辆B 型车;方案二:购买3辆A 型车和3辆B 型车;方案一的费用为:万元、方案二的费用为:万元,(3)2×18+4×26=140()3×18+3×26=132()所以方案二的费用最低,最低费用为132万元.【解析】每辆A 型车和B 型车的售价分别是x 万元、y 万元构建方程组即可解决问题;(1).设购买A 型车a 辆,则购买B 型车辆,则依题意得,求出整数解即可;(2)(6‒a )18a +26(6‒a )≥130分别计算出所得方案的费用即可得.(3)本题考查一元一次不等式的应用,二元一次方程组的应用等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.四、解答题(本大题共6小题,共57分)19.计算:(1)|3‒2|+|3‒1|‒(1‒2)已知某数的两个平方根分别为和,求这个数.(2)a +32a ‒9【答案】解:(1)|3‒2|+|3‒1|‒(1‒2);=2‒3+3‒1‒1+2=2某数的两个平方根分别为和,(2)∵a +32a ‒9,∴a +3+2a ‒9=0解得:,a =‒1故,a +3=2则这个数为:4.【解析】直接利用绝对值的性质以及去括号法则化简进而得出答案;(1)直接利用平方根的性质得出a 的值,进而得出答案.(2)此题主要考查了实数运算以及平方根,正确化简各数是解题关键.20.解方程组:(1){x +2y =53x ‒4y =5解不等式组:(2){2x ‒3<x1‒x 3≤x +126【答案】解:,(1){x +2y =5 ①3x ‒4y =5 ②得,解得,①×2+②5x =15x =3把代入得,解得.x =3①3+2y =5y =1故方程组的解为;{x =3y =1,(2){2x ‒3<x①1‒x 3≤x +126②解不等式得,①x <3解不等式得.②x ≥‒2故不等式组的解为.‒2≤x <3【解析】根据加减消元法解方程组即可求解;(1)先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.(2)考查了解一元一次不等式组,一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集方法与步骤:求.①不等式组中每个不等式的解集;利用数轴求公共部分解集的规律:同大取大;同小取小;大小小大中②.间找;大大小小找不到同时考查了解二元一次方程组..21.已知:如图,直线AB 与CD 被EF 所截,,求证:∠1=∠2AB //CD.【答案】证明:对顶角相等,∵∠2=∠3()又已知,∵∠1=∠2(),∴∠1=∠3同位角相等,两直线平行.∴AB //CD ()【解析】根据对顶角相等,等量代换和平行线的判定定理进行证明即可.本题考查的是平行线的判定,掌握平行线的判定定理是解题的关键.22.已知:,:::2:3,求的度数.AB //CD ∠1∠2∠3=1∠BDF【答案】解::::2:3,∵∠1∠2∠3=1设,,,∴∠1=x∘∠2=2x∘∠3=3x∘,∵AB//CD,∴∠2+∠3=180∘,∴2x+3x=180,∴x=36即,,.∠1=36∘∠2=72∘∠3=108∘,∵AB//CD,∴∠1+∠2+∠BDF=180∘.∴∠BDF=180∘‒∠1‒∠2=72∘【解析】设,,,根据平行线的性质得出,推出方程∠1=x∘∠2=2x∘∠3=3x∘∠2+∠3=180∘2x+3,求出x,再由得,据此可得答案.x=180AB//CD∠1+∠2+∠BDF=180∘本题考查了平行线的性质的应用,用了方程思想,注意:两直线平行,同旁内角互补.23.已知:如图,直线EF分别交AB、CD于点E、F,的平分线与∠BEF∠的平分线相交于点P,,试探索AB与CD的位置关系,并说DFE PE⊥PF明理由.【答案】解:,理由:AB//CD,∵PE⊥PF,∴∠P=90∘,∵∠PEF+∠PFE+∠P=180∘,∴∠PEF+∠PFE=90∘又的平分线与的平分线相交于点P,∵∠BEF∠DFE,,∴∠BEF=2∠PEF∠DFE=2∠PFE.∴∠BEF+∠DFE=180∘.∴AB//CD【解析】依据,即可得出,再根据的平分线与的平分线相交于PE⊥PF∠PEF+∠PFE=90∘∠BEF∠DFE点P,即可得到,即可得到.∠BEF+∠DFE=180∘AB//CD本题主要考查综合运用平行线的性质、角平分线的定义、三角形内角和等知识解决问题的能力,解题时注意:同旁内角互补,两直线平行.24.随着移动终端设备的升级换代,手机己经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况选项:和同学亲(A.友聊天:学习:购物:游戏:其他,端午节后某中学在全B.C.D.E.)校范围内随机抽取了若干名学生进行调查,得到如下图表部分信息(未给出:)选项频数百分比A10mB n20%C510%D p40%E510%合计100%根据以上信息解答下列问题:______,______,______;(1)m=n=p=补全条形统计图;(2)若该中学约有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?(3)【答案】;10;2020%【解析】解:因为调查的总人数为人,(1)5÷0.1=50()所以,m=10÷50×100%=20%,n=50×0.2=10.p=50×0.4=20故答案为:、10、20.20%由知总人数为50人,补全图形如下:(2)(1)人.(3)800×(0.1+.4)=400()答:估计全校学生中利用手机购物或玩游戏的共有400人.先根据C选项频数和频率求出总人数,再根据频率频数总数分别求解可得;(1)=÷根据表格中数据即可补全条形图;(2)总人数乘以样本中D、E的频率之和即可得.(3)本题考查的是条形统计图的综合运用读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统..计图能清楚地表示出每个项目的数据.。

人教版七年级下学期期末考试数学试题(含解析)

人教版七年级下学期期末考试数学试题(含解析)
【答案】
14.关于x的不等式组 的解集中每一个值均不在 的范围内,则 的取值范围是____________ .
【答案】 或
15.已知关于 的方程组 ,给出以下结论:① ,是方程组的一个解;②当 时, 的值互为相反数;③当 时,方程组的解也是方程 的解;④ 之间的数量关系是 其中正确的是__________(填序号).
19.已知关于 的方程组 的解满足 ,求 的值.
【答案】
20.如图,直线 和直线 相交于点 , ,垂足为 , 平分 .
(1)若 ,求 的度数;
(2)若 ,求 的度数.
【答案】(1) ;(2) ;
21.家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康.某市药监部门为了解市民家庭处理过期药品 方式,决定对全市家庭做一次简单的随机抽样调查.
A.2018年12月至2020年6月我国在线教育用户规模逐渐上升
B.2018年12月至2020年6月,我国手机在线教育课程用户规模占在线教育用户规模的比例持续上升
C.2018年12月至2020年6月,我国手机在线教育课程用户规模的平均值超过万
D.2020年6月,我国手机在线教育课程用户规模超过在线教育用户规模的
5.如图,将 沿直线 向右平移后到达 的位置,连接 ,若 的面积为10,则 的面积为( )
A.5B.6C.10D.4
【答案】A
6.在平面直角坐标系中,若点 在第三象限,则下列各点在第四象限的是()
A. B. C. D.
【答案】C
7.用三个不等式 , , 中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()
A.0B.1C.2D.3
【答案】D
8.解关于 的方程组 可以用① ②,消去未知数 ,也可以用①+② 消去未知数 ,则 的值分别为()

人教版七年级下学期期末考试数学试题含解析

人教版七年级下学期期末考试数学试题含解析

人教版七年级下学期期末考试数学试题含解析一.选择题(木题共30分,每小题3分)第1~10题均有四个选项,符合题意的选项只有一个.1.(3分)点P(﹣6,6)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)下列各数中的无理数是()A.6.2B.C.D.π﹣3.143.(3分)不等式组的解集是()A.x<2B.x≥﹣5C.﹣5<x<2D.﹣5≤x<2 4.(3分)下列计算正确的是()A.a2•a3=a6B.a8÷a2=a4C.(a2)3=a6D.(﹣2ab)3=﹣8a3b5.(3分)若a<b,则下列结论不正确的是()A.a+4<b+4B.a﹣3<b﹣3C.﹣2a>﹣2b D.6.(3分)如图,在△ABC中,E为AC边上一点,若∠1=20°,∠C=60°,则∠AEB等于()A.90°B.80°C.60°D.50°7.(3分)下列命题正确的是()A.相等的两个角一定是对顶角B.两条平行线被第三条直线所截,内错角互补C.过直线外一点有且只有一条直线与已知直线平行D.在同一平而内,垂直于同一条直线的两条直线互相垂直8.(3分)某超市开展“六一节”促销活动,一次购买的商品超过200元时,就可享受打折优惠.小红同学准备为班级购买奖品,需买6本影集和若干支钢笔.已知影集每本15元,钢笔每支8元,她至少买多少支钢笔才能享受打折优惠?设买x支钢笔才能享受打折优惠,那么以下正确的是()A.15×6+8x>200B.15×6+8x=200C.15×8+6x>200D.15×6+8x≥2009.(3分)小何所在年级准备开展参观北京故宫博物院的实践活动,他和他选修的“博物馆课程”小组成员共同为同学们推荐了一条“古建之美”线路:行走在对公众开放的古老城墙之上,观“营造之道﹣﹣紫禁城建筑艺术展”,赏数字影视作品《角楼》,品“古建中的数学之美”.在故宫导览图中建立如图所示的平面直角坐标系xOy,午门的坐标为(0,﹣3),那么以下关于古建馆的这条参观线路“从午门途经东南角楼到达东华门展厅”的说法中,正确的是()A.沿(0,﹣3)→(﹣3,﹣3)→(﹣3,﹣2)到达东华门展厅B.沿(0,﹣3)→(2,﹣3)→(2,﹣2)→(3,﹣2)到达东华门展厅C.沿(0,﹣3)→(0,﹣2)→(3,﹣2)到达东华门展厅需要走4个单位长度D.沿(0,﹣3)→(3,﹣3)→(3,﹣2)到达东华门展厅需要走4个单位长度10.(3分)如图,在平面直角坐标系xOy中,A(1,1),B(﹣1,2),C(2,3),D(﹣2,4),E(3,5),F(﹣3,6).按照A→B→C→D→E→F的顺序,分别将这六个点的横、纵坐标依次循环排列下去,形成一组数1,1,﹣1,2,2,3,﹣2,4,3,5,﹣3,6,1,1,﹣1,2,…,第一个数记为a1,第二个数记为a2,…,第n个数记为a n(n为正整数),那么a9+a11和a2022的值分别为()A.0,3B.0,2C.6,3D.6,2二.填空题(本题共18分,第11~14题每小题2分,第15、16题每小题2分,第17、18题每小题2分)11.(2分)49的平方根是.12.(2分)计算:=.13.(2分)计算:3a(2a﹣1)+2ab3÷b3=.14.(2分)下列各组数:①2,3,4;②2,3,5;③2,3,7;④3,3,3,其中能作为三角形的三边长的是(填写所有符合题意的序号).15.(4分)在平面直角坐标系xOy中,A,B,C三点的坐标如图所示,那么点A到BC边的距离等于,△ABC的面积等于.16.(4分)图中的四边形均为矩形,根据图中提供的信息填空:(1)①,②;(2)(x+p)(x+)=x2+.17.(2分)若关于x的不等式x≥a的负整数解是﹣1,﹣2,﹣3,则实数a满足的条件是.18.(2分)某机店今年1~4月的手机销售总额如图1,其中一款音乐手机的销售额占当月手机销售总额的百分比如图2.有以下四个结论:①从1月到4月,手机销售总额连续下降;②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降;③音乐手机4月份的销售额比3月份有所下降;④今年1~4月中,音乐手机销售额最低的是3月;其中正确的结论是(填写序号).三.解答题(本题共52分,第19~23题每小题6分,第24、25题每小题6分,第26题8分)19.(6分)解不等式,并把解集表示在数轴上.20.(6分)先化简,再求值:(2a+b)2+(a+b)(a﹣b)﹣3ab,其中a=2,b=.21.(6分)如图,点F在线段AB上,点E,G在线段CD上,FG∥AE,∠1=∠2.(1)求证:AB∥CD;(2)若FG⊥BC于点H,BC平分∠ABD,∠D=100°,求∠1的度数.22.(6分)小明的作业中出现了如下解题过程解答下列问题:(1)以上解题过程中,从第几步开始出现了错误?(2)比较与3的大小,并写出你的判断过程.23.(6分)如图,在平面直角坐标系xOy中,A,B两点的坐标分别为A(4,1),B(2,﹣2).(1)过点B作x轴的垂线,垂足为M,在BM的延长线上截取MC=2BM,平移线段AB 使点A移动到点C,画出平移后的线段CD;(2)直接写出C,D两点的坐标;(3)画出以线段AD为斜边的等腰直角三角形ADE,并使点E与点B分别位于AD边所在直线的两侧.若点P在△ADE的三边上运动,直接写出线段PM长的最大值,以及相应点P的坐标.24.(7分)(1)2019年4月,中国新闻出版研究院发布了《第十六次全国国民阅读调查报告》,以下是小明根据该报告提供的数据制作的“2017﹣2018年我国未成年人图书阅读率统计图”的一部分.报告中提到,2018年9﹣13周岁少年儿童图书阅读率比2017年提高了3.1个百分点,2017年我国0﹣17周岁未成年人图书阅读率为84.8%.根据以上信息解决下列问题:①写出图1中a的值;②补全图1;(2)读书社的小明在搜集资料的过程中,发现了《人民日报》曾经介绍过多种阋读法,他在班上给同学们介绍了其中6种,并调查了全班40名同学对这6种阅读法的认可程度,制作了如下的统计表和统计图:最愿意使用的阅读方法人数统计表阅读方法类型划记人数1.读书不二法4B.比较品读法正5C.字斟句酌法8D.精华提炼法E.多维研读法6F.角色扮演法7合计4040根据以上信息解决下列问题:①补全统计表及图2;②根据调査结果估计全年级500名同学最愿意使用“D.精华提炼法”的人数.25.(7分)阅读下面材料:2019年4月底,“百年器象﹣﹣清华大学科学博物馆筹备展”上展出了一件清华校友捐赠的历史文物“Husun型六分仪”(图①),它见证了中国人民解放军海军的发展历程.六分仪是测量天体高度的手提式光学仪器,它的主要原理是几何光学中的反射定律.观测者手持六分仪(图②)按照一定的观测步骤(图③显示的是其中第6步)读出六分仪圆弧标尺上的刻度,再经过一定计算得出观测点的地理坐标.请大家证明在使用六分仪测量时用到的一个重要结论(两次反射原理).已知:在图④所示的“六分仪原理图”中,所观测星体记为S,两个反射镜面位于A,B 两处,B处的镜面所在直线FBC自动与0°刻度线AE保持平行(即BC∥AE),并与A 处的镜面所在直线NA交于点C,SA所在直线与水平线MB交于点D六分仪上刻度线AC 与0°刻度线的夹角∠EAC=ω,观测角为∠SDM.(请注意小贴士中的信息)求证:∠SDM=2ω.请在答题卡上完成对此结论的以下填空及后续证明过程(后续证明无需标注理由).证明:∵BC∥AE,∴∠C=∠EAC().∵∠EAC=ω,∴∠C=ω().∵∠SAN=∠CAD(),又∵∠BAC=∠SAN=α(小贴士已知),∴∠BAD=∠BAC+∠CAD=2α.∵∠FBA是△的外角,∴∠FBA=∠BAC+∠C().即β=α+ω.补全证明过程:(请在答题卡上完成)26.(6分)已知:△ABC,点M是平面上一点,射线BM与直线AC交于点D,射线CM 与直线AB交于点E.过点A作AF∥CE,AF与BC所在的直线交于点F.(1)如图1,当BD⊥AC,CE⊥AB时,写出∠BAD的一个余角,并证明∠ABD=∠CAF;(2)若∠BAC=80°,∠BMC=120°.①如图2,当点M在△ABC内部时,用等式表示∠ABD与∠CAF之间的数量关系,并加以证明;②如图3,当点M在△ABC外部时,依题意补全图形,并直接写出用等式表示的∠ABD与∠CAF之间的数量关系.参考答案与试题解析一.选择题(木题共30分,每小题3分)第1~10题均有四个选项,符合题意的选项只有一个.1.【分析】根据各象限内点的坐标特征解答即可.【解答】解:点P(﹣6,6)所在的象限是第二象限.故选:B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、6.2是有限小数,是有理数,选项错误;B、是分数,是有理数,选项错误;C、=3是整数,是有理数,选项错误;D、π﹣3.14是无限不循环小数,是无理数,选项正确.故选:D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.【分析】不等式组的解集是组成不等式组的两个不等式解集的交集.【解答】解:不等式组的解集是﹣5≤x<2.故选:D.【点评】考查了不等式的解集.不等式的解是一些具体的值,有无数个,用符号表示;不等式的解集是一个范围,用不等号表示.不等式的每一个解都在它的解集的范围内.4.【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则分别化简得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、a8÷a2=a6,故此选项错误;C、(a2)3=a6,正确;D、(﹣2ab)3=﹣8a3b3,故此选项错误;故选:C.【点评】此题主要考查了同底数幂的乘除运算以及幂的乘方运算,正确掌握相关运算法则是解题关键.5.【分析】由不等式的性质解答即可.【解答】解:A、∵a<b,∴a+4<b+4,故本选项不符合题意;B、∵a<b,∴a﹣3<b﹣3,故本选项不符合题意;C、∵a<b,∴﹣2a>﹣2b,故本选项不符合题意;D、∵a<b,∴a<b,故本选项符合题意;故选:D.【点评】本题考查了不等式的基本性质,不等式的变形:①两边都加、减同一个数,具体体现为“移项”,此时不等号方向不变,但移项要变号;②两边都乘、除同一个数,要注意只有乘、除负数时,不等号方向才改变.6.【分析】根据三角形的外角性质计算,得到答案.【解答】解:由三角形的外角性质可知,∠AEB=∠1+∠C=80°,故选:B.【点评】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.7.【分析】利用对顶角的定义、平行线的性质等知识分别判断后即可确定正确的选项.【解答】解:A、相等的两个角不一定是对顶角,故错误;B、两条平行线被第三条直线所截,内错角相等,故错误;C、过直线外一点有且只有一条直线与已知直线平行,正确;D、在同一平而内,垂直于同一条直线的两条直线互相垂直,错误,故选:C.【点评】本题考查了命题与定理的知识,解题的关键是了解对顶角的定义、平行线的性质等知识,难度不大.8.【分析】根据题意表示出购买6本影集和若干支钢笔的总钱数大于200进而得出答案.【解答】解:设买x支钢笔才能享受打折优惠,根据题意可得:15×6+8x>200.故选:A.【点评】此题主要考查了由实际问题抽象出一元一次不等式,正确表示出总钱数是解题关键.9.【分析】由午门(0,﹣3)到东南角楼(3,﹣3)需要走3个单位长度,东南角楼(3,﹣3)到达东华门展厅(3,﹣2)需要走1个单位长度可得答案.【解答】解:根据题意知从午门(0,﹣3)到东南角楼(3,﹣3)需要走3个单位长度,从东南角楼(3,﹣3)到达东华门展厅(3,﹣2)需要走1个单位长度,∴沿(0,﹣3)→(3,﹣3)→(3,﹣2)到达东华门展厅需要走4个单位长度,故选:D.【点评】本题主要考查坐标确定位置,解题的关键是掌握平面直角坐标系中点的坐标的概念和表示.10.【分析】这一组数每12个一循环,只需找出2022整除12的余数就可知道其值.【解答】解:由题可知,a9=3,a11=﹣3,∴a9+a11=0∵2022=12×168+6∴a2022=a6=3;故选:A.【点评】本题主要考查找规律的能力,熟练掌握找规律的能力是解答本题的关键.二.填空题(本题共18分,第11~14题每小题2分,第15、16题每小题2分,第17、18题每小题2分)11.【分析】根据平方根的定义解答.【解答】解:49的平方根是±7.故答案为:±7.【点评】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.【分析】首先计算乘方、开方,然后计算加法,求出算式的值是多少即可.【解答】解:=2+3=5故答案为:5.【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.13.【分析】单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式.关注:从法则可以看出,单项式除以单项式分为三个步骤:①系数相除;②同底数幂相除;③对被除式里含有的字母直接作为商的一个因式.【解答】解:3a(2a﹣1)+2ab3÷b3=6a2﹣3a+2a=6a2﹣a.故答案为6a2﹣a.【点评】本题考查了整式乘除,熟练运算整式乘除法则进行运算是解题的关键.14.【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:①3+2>4,能构成三角形.②2+3=5,不能构成三角形.③2+3<7,不能构成三角形.④3+3>3,能构成三角形.故答案为①④.【点评】本题考查了能够组成三角形三边的条件,其实用两条较短的线段相加,如果大于最长的那条就能够组成三角形.15.【分析】由A(2,4),B(﹣1,1),C(3,1),得出BC∥x轴,BC=4,得出点A到BC边的距离=3,由三角形面积公式即可求出△ABC的面积.【解答】解:由题意得:A(2,4),B(﹣1,1),C(3,1),∴BC∥x轴,BC=1+3=4,∴点A到BC边的距离=4﹣1=3,∴△ABC的面积=×4×3=6;故答案为:3,6.【点评】本题考查了三角形的面积、坐标与图形性质;熟练掌握三角形面积的计算,由点的坐标得出BC∥x轴,BC=4是解题的关键.16.【分析】(1)根据题意表示出所求即可;(2)利用多项式乘以多项式法则判断即可.【解答】解:(1)①q;②x;(2)(x+p)(x+q)=x2+(p+q)x+pq.故答案为:(1)①q;②x;(2)q,(p+q)x+pq【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.17.【分析】根据关于x的不等式x≥a的负整数解是﹣1,﹣2,﹣3,即可求出实数a满足的条件.【解答】解:∵关于x的不等式x≥a的负整数解是﹣1,﹣2,﹣3,∴实数a满足的条件是﹣4<a≤﹣3.故答案为﹣4<a≤﹣3.【点评】本题考查了一元一次不等式的整数解,理解关于x的不等式x≥a的负整数解是﹣1,﹣2,﹣3是解题的关键.18.【分析】根据图象信息一一判断即可.【解答】解:①从1月到4月,手机销售总额连续下降;错误,3月到4月是增长的.②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降;错误,2月到3月是增长的.③音乐手机4月份的销售额比3月份有所下降;错误,是增加长的.④今年1~4月中,音乐手机销售额最低的是3月;正确.故答案为④【点评】本题考查折线统计图,条形统计图等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三.解答题(本题共52分,第19~23题每小题6分,第24、25题每小题6分,第26题8分)19.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:2(x+2)﹣5(x﹣2)≥20,2x+4﹣5x+10≥20,2x﹣5x≥20﹣4﹣10,﹣3x≥6,x≤﹣2,将不等式的解集表示在数轴上如下:【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.20.【分析】原式利用平方差公式,完全平方公式化简,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=4a2+4ab+b2+a2﹣b2﹣3ab=5a2+ab,当a=2,b=﹣时,原式=20﹣1=19.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.21.【分析】(1)欲证明AB∥CD,只要证明∠1=∠3即可.(2)根据∠1+∠4=90°,想办法求出∠4即可解决问题.【解答】(1)证明:∵FG∥AE,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴AB∥CD.(2)解:∵AB∥CD,∴∠ABD+∠D=180°,∵∠D=100°,∴∠ABD=180°﹣∠D=80°,∵BC平分∠ABD,∴∠4=∠ABD=40°,∵FG⊥BC,∴∠1+∠4=90°,∴∠1=90°﹣40°=50°.【点评】本题考查三角形内角和定理,平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【分析】(1)由于≠+(a≥0,b≥0),故从第二步开始出现了错误;(2)先比较与的大小,再根据两个正数,被开方数较大,相应的算术平方根也较大即可求解.【解答】解:(1)以上解题过程中,从第二步开始出现了错误;(2)结论:<3.∵<,∴<,∴<3.【点评】本题考查了实数大小比较,算术平方根,掌握实数大小比较的法则以及算术平方根的定义是解题的关键.23.【分析】(1)先利用几何语言画出点M、点C,再利用点A和C点的坐标关系确定平移的方向与距离,然后根据此平移规律写出B点的对应点D的坐标,从而描点得到线段CD;(2)由(2)确定两点坐标;(3)根据等腰直角三角形的判定方法,利用E点在AD的垂直平分线上且到AD的距离等于AD的一半可确定E点位置,利用几何图形可确定线段PM长的最大值,从而得到P点坐标.【解答】解:(1)如图,CD为所作;(2)C点坐标为(2,4),D点坐标为(0,1);(3)如图,等腰直角三角形ADE为所作,线段PM长的最大值为3,此时点P的坐标为(2,3).【点评】本题考查了作图﹣平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.也考查了等腰直角三角形的判定.24.【分析】(1)求出a的值即可补全条形统计图,(2)求出表格中D组的人数,划记“正”字,表格补充完整,计算出C组、D组所占的百分比,即可补全扇形统计图,(3)样本估计总体,样本中D组占25%,因此根据500人的25%就是“精华提炼法”人数.【解答】解:(1)①a=93.2%+3.1%=96.3%,故a的值为96.3%.②补全的条形统计图如图所示:(2)①40﹣4﹣5﹣8﹣6﹣7=10人,划两个“正”字,补全统计表如下:C组占8÷40=20%,D组占10÷40=25%,补全的扇形统计图如图所示:②500×25%=125人,答:全年级500名同学最愿意使用“D.精华提炼法”的人数为125人.【点评】考查条形统计图、扇形统计图、频数统计表的制作方法,理解图表中的各个数据之间的关系是解决问题的关键,几个图表联系在一起分析数量关系是常用的方法.25.【分析】根据平行线的性质,三角形的外角的性质一一判断即可.【解答】证明:∵BC∥AE,∴∠C=∠EAC(两直线平行内错角相等).∵∠EAC=ω,∴∠C=ω(等量代换).∵∠SAN=∠CAD(对顶角相等),又∵∠BAC=∠SAN=α(小贴士已知),∴∠BAD=∠BAC+∠CAD=2α.∵∠FBA是△ABC的外角,∴∠FBA=∠BAC+∠C(三角形的一个外角等于和它不相邻的两个内角的和).即β=α+ω.故答案为:两直线平行内错角相等,等量代换,对顶角相等,ABC,三角形的一个外角等于和它不相邻的两个内角的和.【点评】本题考查三角形的外角的性质,坐标与图形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.26.【分析】(1)根据垂直的定义得:∠ADB=∠BAD+∠ABD=90°,可知:∠BAD与∠ABD互余;根据同角的余角可得∠ABD=∠CAF;(2)设∠ABD=x,①∠CAF+∠ABD=40°,根据平行线的性质得∠BEC=∠BAF,列方程可得结论;②∠CAF﹣∠ABD=40°,同理根据根据平行线的性质得∠BEC=∠BAF,列方程可得结论.【解答】解:(1)∵BD⊥AC,∴∠ADB=∠BAD+∠ABD=90°,∴∠BAD与∠ABD互余;∵CE∥AF,CE⊥AB,∴AF⊥AB,∴∠BAF=90°,∴∠BAD+∠CAF=90°,∴∠ABD=∠CAF;(2)设∠ABD=x,①∠CAF+∠ABD=40°,理由是:如图2,∵∠BMC=120°,∴∠BEC=120°﹣x,∵EC∥AF,∴∠BAF=∠BEC=∠BAC+∠CAF,∠BAC=80°,∴120°﹣x=80°+∠CAF,∴∠CAF=40°﹣x,即∠CAF+∠ABD=40°;②∠CAF﹣∠ABD=40°,理由是:如图3,∵∠BMC=120°,∴∠BEC=∠ABD+∠BMC=120°+x,∵AF∥CE,∴∠BAF=∠BEC=120°+x,∴∠BAF=∠BAC+∠CAF,∴80°+∠CAF=120°+x,∴∠CAF=40°+x,即∠CAF﹣∠ABD=40°.【点评】本题是三角形的综合题,主要考查三角形内角和,平行线的性质,直角三角形的性质等知识,难度适中,同时也考查了根据题意正确作图的能力,熟练掌握三角形内角和外角的性质是解题的关键.一、七年级数学易错题1.现有如图(1)的小长方形纸片若干块,已知小长方形的长为a ,宽为b .用3个如图(2)的全等图形和8个如图(1)的小长方形,拼成如图(3)的大长方形,若大长方形的宽为30cm ,则图(3)中阴影部分面积与整个图形的面积之比为( )A .15B .16C .17D .18【答案】B【解析】【分析】观察图③可知3个小长方形的宽与1个小长方形的长的和等于大长方形的宽,小长方形的4个长等于小长方形的3个长与3个宽的和,可列出关于a ,b 的方程组,解方程组得出a ,b 的值;利用a ,b 的值分别求得阴影部分面积与整个图形的面积,即可求得影部分面积与整个图形的面积之比.【详解】解:根据题意、结合图形可得:330433a b a a b +=⎧⎨=+⎩, 解得:155a b =⎧⎨=⎩, ∴阴影部分面积223()310300=-=⨯=a b ,整个图形的面积304304151800=⨯=⨯⨯=a , ∴阴影部分面积与整个图形的面积之比300118006==, 故选B .【点睛】本题考查了二元一次方程组的应用,理解题意并利用大长方形的长与宽和小长方形的关系建立二元一次方程组是解题的关键.2.某学校准备为七年级学生开设,,,,,A B C D E F 共6门选修课,选取了若干学生进行了我最喜欢的一门选修课调查,将调查结果绘制成了如图所示的统计图表(不完整). 选修课 ABC DE F人数4060100下列说法不正确的是( ) A .这次被调查的学生人数为400人 B .E 对应扇形的圆心角为80︒ C .喜欢选修课F 的人数为72人 D .喜欢选修课A 的人数最少【答案】B 【解析】 【分析】根据表格和扇形图,通过计算,对每个选项分别进行判断,即可得到答案. 【详解】解:这次被调查的学生人数为:60÷15%=400(人),故A 正确; ∵D 所占的百分比为:100100%=25%400⨯,A 所占的百分比为:40100%=10%400⨯, ∴E 对应的圆心角为:360(118%10%15%12%25%)36020%72︒⨯-----=︒⨯=︒;故B 错误;∵喜欢选修课F 的人数为:40018%=72⨯(人),故C 正确;∵喜欢选修课C 有:40012%=48⨯(人),喜欢选修课E 有:40020%=80⨯(人), ∴喜欢选修课A 的人数为40人,是人数最少的选修课;故D 正确; 故选:B. 【点睛】本题考查了条形统计图、扇形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.3.如果关于x 的不等式组520730x a x b ->⎧⎨-≤⎩的整数解仅有7,8,9,设整数a 与整数b 的和为M ,则M 的值的个数为( ) A .3个 B .9个C .7个D .5个【答案】D 【解析】 【分析】先求出不等式组的解集,再得出关于a 、b 的不等式组,求出a 、b 的值,即可得出选项. 【详解】520730x a x b ->⎧⎨-≤⎩①②∵解不等式①得:x >25a , 解不等式②得:x≤37b , ∴不等式组的解集为2357a b x <≤, ∵x 的不等式组520730x a x b ->⎧⎨-≤⎩的整数解仅有7,8,9,∴6≤25a <7,9≤37b<10, 解得:15≤a <17.5,21≤b <2313, ∴a=15或16或17,b=21或22或23, ∴M=a+b=36、37、38、39或40,共5种情况. 故选D 【点睛】本题考查了解一元一次不等式组,一元一次不等式组的整数解的应用,解此题的关键是能求出a 、b 的值,难度适中.4.如图,在Rt △PQR 中,∠PRQ =90°,RP =RQ ,边QR 在数轴上.点Q 表示的数为1,点R 表示的数为3,以Q 为圆心,QP 的长为半径画弧交数轴负半轴于点P 1,则P 1表示的数是( )A.-2 B.-22C.1-22D.22-1【答案】C【解析】【分析】首先利用勾股定理计算出QP的长,进而可得出QP1的长度,再由Q点表示的数为1可得答案.【详解】根据题意可得QP=222+2=22,∵Q表示的数为1,∴P1表示的数为1-22.故选C.【点睛】此题主要考查了用数轴表示无理数,关键是利用勾股定理求出直角三角形的斜边长.5.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是()A.3B.4C.5D.6【答案】D【解析】【分析】首先证明AB=AC=a,根据条件可知PA=AB=AC=a,求出⊙D上到点A的最大距离即可解决问题.【详解】∵A(1,0),B(1-a,0),C(1+a,0)(a>0),∴AB=1-(1-a)=a,CA=a+1-1=a,∴AB=AC,∵∠BPC=90°,∴PA=AB=AC=a,如图延长AD交⊙D于P′,此时AP′最大,∵A(1,0),D(4,4),∴AD=5,∴AP′=5+1=6,∴a的最大值为6.故选D.【点睛】本题考查圆、最值问题、直角三角形性质等知识,解题的关键是发现PA=AB=AC=a,求出点P到点A的最大距离即可解决问题,属于中考常考题型.6.巴广高速公路在5月10日正式通车,从巴中到广元全长约为126km.一辆小汽车,一辆货车同时从巴中,广元两地相向开出,经过45分钟相遇,相遇时小汽车比货车多行6km,设小汽车和货车的速度分别为xkm/h,ykm/h,则下列方程组正确的是()A.()() 45126 456x yx y⎧+=⎪⎨-=⎪⎩B.()3126 46x yx y⎧+=⎪⎨⎪-=⎩C.()()3126 4456x yx y⎧+=⎪⎨⎪-=⎩D .()()31264364x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩【答案】D 【解析】设小汽车的速度为xkm/h ,则45分钟小汽车行进的路程为34xkm ;设货车的速度为ykm/h ,则45分钟货车行进的路程为34ykm .由两车起初相距126km ,则可得出34(x+y )=126; 又由相遇时小汽车比货车多行6km ,则可得出34(x-y )=6.可得出方程组31264364x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩()(). 故选:D .点睛:学生在分析解答此题时需注意弄清题意,明白所要考查的要点.另外,还需注意单位的换算,避免粗心造成失误.7.已知点A (1,2a +1),B (-a ,a -3),若线段AB //x 轴,则三角形AOB 的面积为( ) A .21 B .28 C .14 D .10.5【答案】D 【解析】 【分析】根据线段AB∥x轴求得a的值后即可确定点A和点B的坐标,从而求得线段AB的长,利用三角形的面积公式求得三角形的面积即可.【详解】∵AB∥x轴,∴2a+1=a-3.解得a=-4.∴A(1,-7),B(4,-7).∴AB=3.过点O作OC⊥AB交BA的延长线于点C,则OC=7.∴△ABC的面积为:1•3710.5212AB OC=⨯⨯=.故答案为:D.【点睛】本题目考查了点与坐标的对应关系,根据AB∥x轴求得a的值是解题的关键.8.在大课间活动中,同学们积极参加体育锻炼.小丽在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,下列说法不正确...的是()。

人教版七年级下学期期末考试数学试题及解析

人教版七年级下学期期末考试数学试题及解析

人教版七年级下学期期末考试数学试题及解析一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个是正确的,请把正确的选项填入题后的括号内.1.(3分)下列四个实数中最大的是()A.B.0C.1D.﹣22.(3分)下列调查中,最适宜采用全面调查方式(普查)的是()A.对襄阳市中学生每天课外读书所用时间的调查B.对全国中学生心理健康现状的调查C.对七年级(2)班学生50米跑步成绩的调查D.对市面某品牌中性笔笔芯使用寿命的调查3.(3分)如图,小手盖住的点的坐标可能为()A.(5,2)B.(﹣6,3)C.(﹣4,﹣6)D.(3,﹣4)4.(3分)如果a>b,那么下列各式一定正确的是()A.a2>b2B.C.﹣2a<﹣2b D.a﹣1<b﹣1 5.(3分)将点A(2,﹣1)向左平移3个单位长度,再向上平移4个单位长度得到点B,则点B的坐标是()A.(5,3)B.(﹣1,3)C.(﹣1,﹣5)D.(5,﹣5)6.(3分)如图,将直尺与含30°角的三角尺放在一起,若∠1=25°,则∠2的度数是()A.30°B.45°C.55°D.60°7.(3分)把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.8.(3分)某班级的一次数学考试成绩统计图如图,则下列说法错误的是()A.得分在70~80分的人数最多B.该班的总人数为40C.人数最少的得分段的频数为2D.得分及格(≥60)的有12人9.(3分)如图,四边形ABCD中,点E在AB延长线上,则下列条件中不能判断AB∥CD 的是()A.∠3=∠4B.∠1=∠2C.∠5=∠C D.∠1+∠3+∠A=180°10.(3分)《九章算术》中记载:“今有善田一亩,价三百;恶田七亩,价五百.今并买一頃,价钱一万.问善、恶田各几何?”其大意是:今有好田1亩,价值300钱;坏田7亩,价值500钱.今共买好、坏田1顷(1顷=100亩),价钱10000钱.问好、坏田各买了多少亩?设好田买了x亩,坏田买了y亩,根意可列方程组为()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)请将每小题正确答案写在题中的横线上.11.(3分)的绝对值是.12.(3分)若点(m﹣4,1﹣2m)在第三象限内,则m的取值范围是.13.(3分)一大门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=150°,则∠ABC=度.14.(3分)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b=.15.(3分)关于x、y的二元一次方程组的解满足不等式x﹣y>4,则m的取值范围是.16.(3分)已知线段MN平行于x轴,且MN的长度为5,若M(2,﹣2),则点N的坐标.三、解答题(本大题共9小题,共72分)解答应写出演算步骤或文字说明,并将答案写在对应的答题区域内.17.解方程组:.18.解不等式组:,并将解集在数轴上表示出来.19.甲、乙两名同学在解方程组时,甲解题时看错了m,解得;乙解题时看错了n,解得.请你根据以上两种结果,求出原方程组的正确解.20.△ABC与△A′B′C′在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A′;B′;C′;(2)若点P(a,b)是△ABC内部一点,则平移后△A′B′C′内的对应点P′的坐标为;(3)求△ABC的面积.21.如图所示,已知AE平分∠BAC,DF平分∠BDE,且∠1=∠2.(1)能判定DF∥AE吗?为什么?(2)能判定DE∥AC吗?为什么?22.某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错的题目进行整理分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:请根据图中信息,解答下列问题:(1)该调查的样本容量为,a=%,b=%,“常常”对应扇形的圆心角为;(2)请你补全条形统计图;(3)若该校共有2300名学生,请你估计其中“总是”对错题进行整理、分析、改正的学生有多少名?23.如图,D,E分别是△ABC边AB,BC上的点,DE∥AC,点F在DE的延长线上,且∠DFC=∠A.(1)试判断AB与CF的位置关系,并说明理由;(2)若∠ACF比∠BDE大40°.求∠BDE的度数.24.为了让学生拓展视野、丰富知识,加深与自然和文化的亲近感,增加对集体生活方式和社会公共道德的体验,我区某中学决定组织部分师生去随州炎帝故里开展研学旅行活动.在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.为了安全,既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师.现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量/(人/辆)3042租金/(元/辆)300400(1)参加此次研学旅行活动的老师有人;学生有人;租用客车总数为辆;(2)设租用x辆乙种客车,租车费用为w元,请写出w与x之间的函数关系式;(3)在(2)的条件下,学校计划此次研学旅行活动的租车总费用不超过3100元,你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.25.将一矩形纸片OABC放在直角坐标系中,O为原点,点C在x轴上,点A在y轴上,OA=9,OC=15.(1)如图1,在OA上取一点E,将△EOC沿EC折叠,使O点落在AB边上的D点处,求直线EC的解析式;(2)如图2,在OA,OC边上选取适当的点M,N,将△MON沿MN折叠,使O点落在AB边上的点D'处,过D'作D'G⊥CO于点G,交MN于T点,连接OT,判断四边形OTD'M的形状,并说明理由;(3)在(2)的条件下,若点T坐标,点P在MN直线上,问坐标轴上是否存在点Q,使以M,D',Q,P为顶点的四边形是平行四边形?若存在,请直接写出点Q 坐标;若不存在,请说明理由.参考答案与试题解析一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个是正确的,请把正确的选项填入题后的括号内.1.【分析】直接利用实数比较大小的方法分析得出答案.【解答】解:∵2<<3,∴四个实数的大小关系为:﹣2<0<1<.故选:A.【点评】此题主要考查了实数比较大小,正确掌握比较方法是解题关键.2.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、对襄阳市中学生每天课外读书所用时间的调查,人数众多,适宜采用抽样调查,故此选项错误;B、对全国中学生心理健康现状的调查,人数众多,适宜采用抽样调查,故此选项错误;C、对七年级(2)班学生50米跑步成绩的调查,人数不多,适宜采用全面调查,故此选项正确;D、对市面某品牌中性笔笔芯使用寿命的调查,具有破坏性,适宜采用抽样调查,故此选项错误;故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.【分析】根据题意,小手盖住的点在第四象限,结合第四象限点的坐标特点,分析选项可得答案.【解答】解:根据图示,小手盖住的点在第四象限,第四象限的点坐标特点是:横正纵负;分析选项可得只有D符合.故选:D.【点评】解决本题解决的关键是记住各象限内点的坐标的符号,进而对号入座,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.【分析】看各不等式是加(减)什么数,或乘(除以)哪个数得到的,用不用变号.【解答】解:A、两边相乘的数不同,错误;B、不等式两边都除以2,不等号的方向不变,错误;C、不等式两边都乘﹣2,不等号的方向改变,正确;D、不等式两边都减1,不等号的方向不变,错误;故选:C.【点评】主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5.【分析】根据:横坐标,右移加,左移减;纵坐标,上移加,下移减的规律即可解决问题.【解答】解:将点A(2,﹣1)向左平移3个单位长度,再向上平移4个单位长度得到点B(﹣1.3),故选:B.【点评】本题考查坐标平移,记住坐标平移的规律是解决问题的关键.6.【分析】首先根据三角形外角的性质求出∠BEF的度数,再根据平行线的性质得到∠2的度数.【解答】解:∵∠BEF是△AEF的外角,∠1=25°,∠F=30°,∴∠BEF=∠1+∠F=55°,∵AB∥CD,∴∠2=∠BEF=55°,故选:C.【点评】本题主要考查了平行线的性质,解题的关键是掌握三角形外角的性质,此题难度不大.7.【分析】先解不等式组,然后再在数轴上表示.【解答】解:由①得x>﹣1,由②得x≤0,所以﹣1<x≤0.故选:D.【点评】本题考查一元一次不等式组的解集及在数轴上的表示方法;不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.8.【分析】根据条形图各组频数逐一判断可得.【解答】解:A.得分在70~80分的人数最多,此选项正确;B.该班的总人数为4+12+14+8+2=40(人),此选项正确;C.人数最少的得分段的频数为2,此选项正确;D.得分及格(≥60)的有12+14+8+2=36人,此选项错误;故选:D.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.9.【分析】根据平行线的判定定理对各选项进行逐一分析即可.【解答】解:A、∵∠3=∠4,∴AD∥BC,故本选项正确;B、∵∠1=∠2,∴AB∥CD,故本选项错误;C、∵∠5=∠C,∴AB∥CD,故本选项错误;D、∵∠1+∠3+∠A=180°,∴AB∥CD,故本选项错误.故选:A.【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.10.【分析】设好田买了x亩,坏田买了y亩,根据等量关系:共买好,坏田1顷(1顷=100亩),价线10000钱,列出方程组.【解答】解:1顷=100亩,设好田买了x亩,坏田买了y亩,依题意有:.故选:B.【点评】考查了由实际问题抽象出二元一次方程组,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程组.二、填空题(本大题共6个小题,每小题3分,共18分)请将每小题正确答案写在题中的横线上.11.【分析】先判断实数的正负,再根据负数的绝对值是它的相反数求值即可.【解答】解:的绝对值是.故答案为:.【点评】此题主要考查实数的绝对值,会根据实数的正负,运用绝对值的性质进行求值是解题的关键.12.【分析】根据点在第三象限的条件是:横坐标是负数,纵坐标是负数.【解答】解:根据题意可知,解不等式组得,即<m<4.故答案为:<m<4.【点评】本题考查象限点的坐标的符号特征以及解不等式,根据第三象限为(﹣,﹣),所以m﹣4<0,1﹣2m<0,熟记各象限内点的坐标的符号是解答此题的关键.13.【分析】先过点B作BF∥CD,由CD∥AE,可得CD∥BF∥AE,继而证得∠1+∠BCD =180°,∠2+∠BAE=180°,又由BA垂直于地面AE于A,∠BCD=150°,求得答案.【解答】解:如图,连接BF,BF∥CD,∵CD∥AE,∴CD∥BF∥AE,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=150°,∠BAE=90°,∴∠1=30°,∠2=90°,∴∠ABC=∠1+∠2=120°.故答案为:120.【点评】此题考查了平行线的性质.注意掌握辅助线的作法,注意数形结合思想的应用.14.【分析】由图可得到点B的纵坐标是如何变化的,让A的纵坐标也做相应变化即可得到b的值;看点A的横坐标是如何变化的,让B的横坐标也做相应变化即可得到a的值,相加即可得到所求.【解答】解:由题意可知:a=0+(4﹣2)=2;b=0+(2﹣1)=1;∴a+b=3.故答案为:3.【点评】本题主要考查坐标与图形的变化,解决本题的关键是得到各点的平移规律.15.【分析】先把两式相减求出x﹣y的值,再代入x﹣y>4中得到关于m的不等式,求出m 的取值范围即可.【解答】解:,①﹣②得,x﹣y=2m﹣2,∵x﹣y>4,∴2m﹣2>4,解得m>3.故答案为m>3.【点评】本题考查的是解二元一次方程组及解二元一次不等式组,解答此题的关键是把m当作已知条件表示出x、y的值,再得到关于m的不等式.16.【分析】根据平行于x轴的直线上点的纵坐标相同,再分点N在点M的坐左边和右边两种情况讨论求解.【解答】解:MN平行于x轴,故N的纵坐标不变,是﹣2,点N在点M的左边时,横坐标为2﹣5=﹣3,点N在点M的右边时,横坐标为2+5=7,所以,点N的坐标为(7,﹣2)或(﹣3,﹣2).故答案为:(7,﹣2)或(﹣3,﹣2).【点评】本题考查了坐标与图形性质,主要利用了平行于x轴的直线上点的纵坐标相同,难点在于要分情况讨论.三、解答题(本大题共9小题,共72分)解答应写出演算步骤或文字说明,并将答案写在对应的答题区域内.17.【分析】根据加减消元法,可得答案.【解答】解:②×3﹣①,得11y=22,解得y=2,将y=2代入①,得3x=3,解得x=1,原方程组的解为.【点评】本题考查了解一元二次组,加减消元法是解题关键.18.【分析】分别求出每个不等式的解集,再求其解集的公共部分即可.【解答】解:由①得x≥﹣4由②得x<3,∴不等式组的解集为﹣4≤x<3,在数轴上表示为:【点评】此题考查了不等式组的解法,求不等式组的解集要根据以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.【分析】把甲的结果代入第二个方程,乙的结果代入第一个方程,联立求出m与n的值,即可确定出原方程组的解.【解答】解:把代入得:7+2n=13,把代入得:3m﹣7=5,解得:n=3,m=4,∴原方程组为,解得:.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.【分析】(1)根据平面直角坐标系的特点直接写出坐标;(2)首先根据A与A′的坐标观察变化规律,P的坐标变换与A点的变换一样,写出点P′的坐标;(3)先求出△ABC所在的矩形的面积,然后减去△ABC四周的三角形的面积即可.【解答】解:(1)如图所示:A′(﹣3,1),B′(﹣2,﹣2)、C′(﹣1,﹣1),故答案为:(﹣3,1),(﹣2,﹣2),(﹣1,﹣1);(2)A(1,3)变换到点A′的坐标是(﹣3,1),横坐标减4,纵坐标减2,∴点P的对应点P′的坐标是(a﹣4,b﹣2),故答案为:(a﹣4,b﹣2);(3)△ABC的面积为:3×2﹣×2×2﹣×3×1﹣×1×1=2.【点评】此题主要考查了平移变换作图,三角形的面积,网格图形中经常利用三角形所在的矩形的面积减去四周三角形的面积的方法求解.21.【分析】(1)根据角平分线的定义得出∠BAC=2∠BAE=2∠2,∠BDE=2∠FDE=2∠1,求出∠BAE=∠FDE即可;(2)根据角平分线的定义和已知得出∠BDE=∠BAC,根据平行线的判定得出即可.【解答】解:(1)能判定DF∥AE,理由:∵AE平分∠BAC,∴∠BAC=2∠BAE=2∠2,∵DF平分∠BDE,∴∠BDE=2∠FDE=2∠1,∵∠1=∠2,∴∠BAE=∠FDE,∴DF∥AE;(2)能判定DE∥AC,理由是:∵AE平分∠BAC,∴∠BAC=2∠2.∵DF平分∠BDE,∴∠BDE=2∠1,∵∠1=∠2,∴∠BAC=∠BDE,∴DE∥AC.【点评】本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键.22.【分析】(1)首先用“有时”对错题进行整理、分析、改正的学生的人数除以22%,求出该调查的样本容量为多少;然后分别用很少、总是“对自己做错的题目进行整理、分析、改正”的人数除以样本容量,求出a、b的值各是多少;用360°乘以“常常”的人数所占比例.(2)求出常常“对自己做错的题目进行整理、分析、改正”的人数,补全条形统计图即可.(3)用该校学生的人数乘“总是”对错题进行整理、分析、改正的学生占的百分率即可.【解答】解:(1)∵44÷22%=200(名)∴该调查的样本容量为200;a=24÷200=12%,b=72÷200=36%,“常常”对应扇形的圆心角为:360°×30%=108°.故答案为:200、12、36、108°;(2)常常的人数为:200×30%=60(名),补全图形如下:(3)∵2300×36%=828(名)∴“总是”对错题进行整理、分析、改正的学生有828名.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.【分析】(1)由DE∥AC,利用“两直线平行,同旁内角互补”可得出ADF+∠A=180°,结合∠DFC=∠A可得出∠ADF+∠DFC=180°,再利用“同旁内角互补,两直线平行”可得出AB∥CF;(2)由DF∥AC,利用“两直线平行,同旁内角互补”可得出∠ACF+∠F=180°,结合∠ADF+∠F=180°可得出∠ACF=∠ADF,由∠ACF=∠BDE+40°可得出∠ADF=∠BDE+40°,结合∠ADF+∠BDE=180°可求出∠BDE的度数.【解答】解:(1)AB∥CF,理由如下:∵DE∥AC,∴∠ADF+∠A=180°.∵∠DFC=∠A,∴∠ADF+∠DFC=180°,∴AB∥CF.(2)∵DF∥AC,∴∠ACF+∠F=180°.∵∠ADF+∠F=180°,∴∠ACF=∠ADF.∵∠ACF=∠BDE+40°,∴∠ADF=∠BDE+40°.∵∠ADF+∠BDE=180°,∴2∠BDE=180°﹣40°,∴∠BDE=70°.【点评】本题考查了平行线的判定与性质,牢记各平行线的判定与性质定理是解题的关键.24.【分析】(1)设出老师有x名,学生有y名,列出二元一次方程组,解出即可;再由每辆客车上至少要有2名老师,且要保证300名师生有车坐,可得租用客车总数;(2)由租用x辆乙种客车,得甲种客车数为:(8﹣x)辆,由题意得出w=400x+300(8﹣x)即可;(3)由题意得出400x+300(8﹣x)≤3100,且x≥5,得出x取值范围,分析得出即可【解答】解:(1)设老师有x名,学生有y名.依题意,列方程组,解得,∴老师有16名,学生有284名,∵每辆客车上至少要有2名老师,∴汽车总数不能超过8辆;又要保证300名师生有车坐,汽车总数不能小于(取整为8)辆,综合起来可知汽车总数为8辆;故答案为:16;284;8.(2)∵租用x辆乙种客车,∴甲种客车数为:(8﹣x)辆,∴w=400x+300(8﹣x)=100x+2400.(3)∵租车总费用不超过3100元,租用乙种客车不少于5辆,∴400x+300(8﹣x)≤3100,解得:x≤7,为使300名师生都有座,∴42x+30(8﹣x)≥300,解得:x≥5,∴5≤x≤7,x取整数为5,6,7.∴共有3种租车方案:方案一:租用甲种客车3辆,乙种客车5辆;方案二:租用甲种客车2辆,乙种客车6辆;方案三:租用甲种客车1辆,乙种客车7辆;由(2)W=100x+2400,k=100>0,∵W随x的减小而减小,∵5≤x≤7且x为整数,∴当x=5时,W最小=2900元,故最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆.【点评】此题主要考查了二元一次方程组的应用与一次不等式的综合应用,由题意得出租用x辆甲种客车与租车费用的不等式关系是解决问题的关键.25.【分析】(1)设OE=ED=x,在Rt△ADE中,x2=(9﹣x)2+32,解得x=5,求出点E 坐标即可解决问题.(2)如图2中,四边形OTD'M为菱形,根据邻边相等的平行四边形是菱形即可证明.(3)分点Q在y轴或x轴上两种情形分别求解即可解问题.【解答】解:(1)如图1中,∵OA=9,OC=15,△DEC是由△OEC翻折得到,∴CD=OC=15,在Rt△DBC中,,∴AD=3,设OE=ED=x,在Rt△ADE中,x2=(9﹣x)2+32,解得x=5,∴E(0,5),设直线EC的解析式为y=kx+5,把(15,0)代入得到,∴直线EC的解析式为.(2)结论:如图2中,四边形OTD'M为菱形,理由:∵△D'MN是由△OMN翻折得到,∴∠MD/N=∠MON=90°,∠D′NM=∠ONM,D′M=MO,∴∠D'MN=∠MON=90°,∠D'MN+∠D'NM=∠GTN+∠ONM=90°,∴∠D'MN=∠GTN,而∠D′TN=∠GTN,∴∠D′MN=∠D′TM,∴D′T=D′M=OM,∵MO∥D′T,∴四边形OTD′M为菱形,∵MO=MD′,∴四边形OTD'M为菱形.(3)以M、D′、Q、P为顶点的四边形是平行四边形时,∵T(6,),∴OM=TD′=9﹣=,∴M(0,),∴直线MT的解析式为y=﹣x+,当点Q在y轴上时,易知Q(0,0)或(0,13)满足条件,当Q在x轴上时,直线D′Q″的解析式为y=﹣x+13,∴Q″(,0),综上所述,点Q坐标(0,0)或(0,13)或.【点评】本题属于一次函数综合题,考查了一次函数的性质,矩形的性质,翻折变换,菱形的判定等知识,解题的关键是学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.一、七年级数学易错题1.已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有5个,则a 的取值范围是( ) A .﹣4<a <﹣3B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <32【答案】B【解析】【分析】求出不等式组的解集,根据不等式组的解集和已知不等式组的整数解有5个即可得出a 的取值范围是﹣4≤a <﹣3.【详解】解不等式x ﹣a >0,得:x >a ,解不等式3﹣2x >0,得:x <1.5,∵不等式组的整数解有5个,∴﹣4≤a <﹣3,故选B .【点睛】本题考查了解一元一次不等式,解一元一次不等式组,一元一次不等式组的整数解等知识点,关键是能根据不等式组的解集和已知得出a 的取值范围.2.12312342345345145125x x x a x x x a x x x a x x x a x x x a ++=⎧⎪++=⎪⎪++=⎨⎪++=⎪++=⎪⎩,其中1a ,2a ,3a ,4a ,5a 是常数,且12345a a a a a >>>>,则1x ,2x ,3x ,4x ,5x 的大小顺序是( )A .12345x x x x x >>>>B .42135x x x x x >>>>C .31425x x x x x >>>>D .53142x x x x x >>>>【答案】C【解析】【分析】本方程组涉及5个未知数1x ,2x ,3x ,4x ,5x ,如果直接比较大小关系很难,那么考虑方程①②,②③,③④,④⑤,⑤①均含有两个相同的未知数,通过12345a a a a a >>>>可得1x ,2x ,3x ,4x ,5x 的大小关系.【详解】方程组中的方程按顺序两两分别相减得1412x x a a -=-,2523x x a a -=-,3134x x a a -=-,4245x x a a -=-.∵12345a a a a a >>>>∴14x x >,25x x >,31x x >,42x x >,于是有31425x x x x x >>>>.故选C .【点睛】本题要注意并不是任何两个方程都能相减,需要消去两个未知数,保留两个未知数的差,这才是解题的关键.3.如图,在Rt △PQR 中,∠PRQ =90°,RP =RQ ,边QR 在数轴上.点Q 表示的数为1,点R 表示的数为3,以Q 为圆心,QP 的长为半径画弧交数轴负半轴于点P 1,则P 1表示的数是( )A .-2B .-2C .1-2D .2-1【答案】C【解析】【分析】 首先利用勾股定理计算出QP 的长,进而可得出QP 1的长度,再由Q 点表示的数为1可得答案.【详解】根据题意可得222+22,∵Q 表示的数为1,∴P 1表示的数为2.故选C.【点睛】此题主要考查了用数轴表示无理数,关键是利用勾股定理求出直角三角形的斜边长.4.关于x 的不等式组12x x m⎧≤-⎪⎨⎪>⎩的所有整数解的积为2,则m 的取值范围为( )A .m >-3B .m <-2C .m -3≤<-2D .m -3<≤-2【答案】C 【解析】分析:首先确定不等式组的解集,先利用含m 的式子表示,可表示出整数解,根据所有整数解的积为2就可以确定有哪些整数解,从而求出m 的范围. 详解:原不等式组的解集为m <x ≤12-.整数解可能为-1,-2,-3…等 又因为不等式组的所有整数解的积是2,而2=-1×(-2),由此可以得到-3≤m <-2. 故选C .点睛:本题主要考查了一元一次不等式组的整数解,是一道较为抽象的中考题,利用数轴就能直观的理解题意,列出关于m 的不等式组,要借助数轴做出正确的取舍.5.若关于x 的一元一次不等式组213(2)x x x m --⎧⎨⎩><的解集是x <5,则m 的取值范围是( )A .m ≥5B .m >5C .m ≤5D .m <5【答案】A 【解析】解不等式2x-1>3(x-2)可得x <5,然后由不等式组的解集为x <5,可知m≥5. 故选A.6.若数a 使关于x 的不等式52x x a -≥+的最小正整数解是1x =,则a 的取值范围是( ) A .2a >- B .2a < C .22a -<<D .2a ≤【答案】D 【解析】 【分析】由不等式的最小正整数解为1x =,可得出关于a 的一元一次不等式,解之即可得出a的取值范围.【详解】解:∵关于x的不等式52x x a-≥+的最小正整数解是1x=∴21 4a+≤2a≤故选:D.【点睛】此题主要考查一元一次不等式的正整数解的问题,熟练利用数轴理解一元一次不等式的解集是解题的关键.7.已知点A(3a,2b)在x轴上方,在y轴左侧,则点A到x轴、y的距离分别为() A.3a,-2b B.-3a,2b C.2b,-3a D.-2b,3a【答案】C【解析】【分析】应先判断出点A的横纵坐标的符号,进而判断点A到x轴、y轴的距离.【详解】∵点A(3a,2b)在x轴上方,∴点A的纵坐标大于0,得到2b>0,∴点A到x轴的距离是2b;∵点A(3a,2b)在y轴的左边,∴点A的横坐标小于0,即3a<0,∴点A到y轴的距离是-3a;故答案为C.【点睛】本题主要考查点的坐标的几何意义,到x轴的距离就是纵坐标的绝对值,到y轴的距离就是横坐标的绝对值.8.关于x 的不等式组0723x m x +<⎧⎨-≤⎩恰好有5个整数解,则m 的取值范围是( )A .76m -<-≤B .76m --≤≤C .76m -<-≤D .76m -<<-【答案】A 【解析】 【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出不等式组的解集,根据解集中整数解有5个,即可得到m 的范围. 【详解】解:0723x m x +<⎧⎨-⎩①②…,由①解得:x m <-, 由②解得:2x ≥,故不等式组的解集为2x m <-…,由不等式组的整数解有5个,得到整数解为2,3,4,5,6, ∴,67m <-≤,则m 的范围为.76m -<-≤ 故选:A . 【点睛】此题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键.9.甲、乙两地相距360千米,一轮船往返于甲、乙两地之间,顺水行船用18小时,逆水行船用24小时,若设船在静水中的速度为x 千米/时,水流速度为y 千米/时,则下列方程组中正确的是( ) A .()()1836024360x y x y ⎧+=⎪⎨-=⎪⎩ B .()()1836024360x y x y ⎧+=⎪⎨+=⎪⎩ C .()()1836024360x y x y ⎧-=⎪⎨-=⎪⎩ D .()()1836024360x y x y ⎧-=⎪⎨+=⎪⎩【答案】A 【解析】 【详解】根据题意可得,顺水速度为:x y +,逆水速度为:x y -,所以根据所走的路程可列方程组为()()1836024360x y x y ⎧+=⎪⎨-=⎪⎩,故选A .10.已知关于x 、y 的方程组343x y ax y a+=-⎧⎨-=⎩其中31a -≤≤,给出下列说法:①当1a =时,方程组的解也是方程2x y a +=-的解;②当2a =-时,x 、y 的值互为相反数;③若1x ≤,则14y ≤≤;④43x y =⎧⎨=-⎩是方程组的解,其中说法正确的是( )A .①②③④B .①②③C .②④D .②③【答案】D 【解析】 【分析】①②④将a 的值或方程组的解代入方程组,通过求解进行判断,③解方程组,用含a 的代数式表示x ,y ,根据x 的取值范围求出a 的取值范围,进而可得y 的取值范围. 【详解】①当1a =时,方程组为333x y x y +=⎧⎨-=⎩,解得,30x y =⎧⎨=⎩,∴321x y +=≠-,故错误;②当2a =-时,方程组为366x y x y +=⎧⎨-=-⎩,解得,33x y =-⎧⎨=⎩,即x 、y 的值互为相反数,故正确;③343x y ax y a+=-⎧⎨-=⎩,解得,121x a y a =+⎧⎨=-⎩,∵1x ≤, ∴0a ≤, ∵31a -≤≤, ∴30a -≤≤,∴14y ≤≤,故正确;④当43x y =⎧⎨=-⎩时,原方程组为494433aa-=-⎧⎨+=⎩,无解,故错误;综上,②③正确, 故选D . 【点睛】本题考查解二元一次方程组,解一元一次不等式,方程(组)的解,熟练掌握其运算法则是解题的关键,一般采用直接代入的方法进行求解.11.若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222327327a x b y c a x b y c +=⎧⎨+=⎩的解是()n n n nA .2128x y =⎧⎨=⎩B .98x y =⎧⎨=⎩C .714x y =⎧⎨=⎩D .9787x y ⎧=⎪⎪⎨⎪=⎪⎩【答案】C 【解析】 【分析】先将111222327327a x b y c a x b y c +=⎧⎨+=⎩化简为11122232773277a x b y c a x b y c ⎧+=⎪⎪⎨⎪+=⎪⎩,然后用“整体代换”法,求出方程组的解即可; 【详解】 解:111222327327a x b y c a x b y c +=⎧⎨+=⎩Q ,11122232773277a x b y c a x b y c ⎧+=⎪⎪∴⎨⎪+=⎪⎩,设3727x t y s ⎧=⎪⎪⎨⎪=⎪⎩,111222a t b s c a t b s c +=⎧∴⎨+=⎩, Q 方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,∴方程组111222a t b s c a t b s c +=⎧⎨+=⎩的解为34t s =⎧⎨=⎩,337247x y ⎧=⎪⎪∴⎨⎪=⎪⎩, 解得:714x y =⎧⎨=⎩.故选C . 【点睛】此题考查了解二元一次方程组,弄清阅读材料中的“整体代入”方法是解本题的关键.12.定义新运算,*(1)a b a b =-,若a 、b 是方程2104x x m -+=(0m <)的两根,则**b b a a -的值为()A .0B .1C .2D .与m 有关【答案】A 【解析】根据题意可得()()22**11b b a a b b a a b b a a -=---=--+,又因为a ,b 是方程2104x x m -+=的两根,所以2104a a m -+=,化简得214a a m -=-,同理2104b b m -+=,214b b m -=-,代入上式可得()()222211044b b a a b b a a m m ⎛⎫⎛⎫--+=--+-=--+-= ⎪ ⎪⎝⎭⎝⎭,故选A .13.我们知道,任意一个正整数n 都可以进行这样的分解:n =p ×q (p ,q 是正整数,且p ≤q ),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解,并规定:F (n )=pq.例如:12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F (12)=34.如果一个两位正整数t ,t =10x +y (1≤x ≤y ≤9,x ,y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t 为“吉祥数”.根据以上新定义,下列说法正确的有:(1)F (48)=34;(2)如果一个正整数m 是另外一个正整数n 的平方,我们称正整数m 是完全平方数,则对任意一个完全平方数m ,总有F (m )=1;(3)15和26是“吉祥数”;(4)“吉祥数”中,F (t )的最大值为34. ( ) A .1个 B .2个C .3个D .4个【答案】D 【解析】 【分析】根据最佳分解的定义判断(1)和(2),根据吉祥数的定义判断(3)和(4),即可得出答案. 【详解】(1)48可以分解为1×48,2×24,3×16,4×12,6×8 ∵48-1>24-2>16-3>12-4>8-6 ∴6×8是48的最佳分解,∴F (48)=34,故(1)正确; (2)对任意一个完全平方数m 设m=n 2(n 为正整数) ∵0n n -= ∴n×n 是m 的最佳分解∴对任意一个完全平方数m ,总有()1nF m n==,故(2)正确; (3)51-15=36,故15为吉祥数;62-26=36,故36为吉祥数,故(3)正确; (4)设交换t 的个位上的数与十位上的数得到的新数为T=10y+x ∵t 为吉祥数∴T-t=10y+x-(10x+y)=9y-9x=36。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下学期期末考试数学试题一.选择题(共10小题)1.已知x=2是关于x的一元一次方程mx+2=0的解,则m的值为()A.﹣1 B.0 C.1 D.22.《侯马盟书》是山西博物馆藏得十大国宝之一,其中很多篆文具有较高的历史意义和研究价值,下面四个悬针篆文文字明显不是轴对称图形的是()A.B.C.D.3.根据不等式的性质,下列变形正确的是()A.由a>b得ac2>bc2B.由ac2>bc2得a>bC.由﹣a>2得a<2 D.由2x+1>x得x>14.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.5.如图,数轴上所示的解集用不等式表示正确的是()A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣26.如图,在△ABC中,BC边上的高为()A.BF B.CF C.BD D.AE7.已知等腰三角形两边a,b,满足|2a﹣3b+5|+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或10 C.6或7 D.7或108.一次数学活动课上,小聪将一副含30°角的三角板的一条直角边和45°角的三角板的一条直角边重叠,则∠1的度数为()A.45°B.60°C.75°D.85°9.如图所示,在△ABC中,已知点D、E、F分别为边BC、AD、CE的中点,且△ABC的面积是4cm2,则阴影部分面积等于()A.2cm2B.1cm2C.0.25cm2D.0.5cm210.如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第10层中含有正三角形个数是()A.102个B.114个C.126个D.138个二.填空题(共5小题)11.已知方程2x﹣y=1,用含x的代数式表示y,得.12.在△ABC中,如果∠A:∠B:∠C=1:2:3,那么△ABC的形状是三角形.13.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图①主视图、②左视图、③俯视图中,是中心对称图形的有.14.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连结AA′,若∠1=20°,则∠B=度.15.书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是元.三.解答题(共8小题)16.(1)解方程:y﹣=2﹣;(2)解方程组:.17.解不等式组:,并写出它所有的整数解.18.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1;(2)在网格中画出△ABC关于直线m对称的△A2B2C2;(3)在直线m上画一点P,使得C1P+C2P的值最小.19.“五一”黄金周,小梦一家计划从家B出发,到景点C旅游,由于BC之间是条湖,无法通过,如图所示只有B﹣A﹣C和B﹣P﹣C两条路线,哪一条比较近?为什么?(提示:延长BP交AC于点D)20.数学课上,老师出了一道题,如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=80°,∠C=40°(1)求∠DAE的度数;(2)小红解完第(1)小题说,我只要知道∠B﹣∠C=40°,即使不知道∠B、∠C的具体度数,也能推出∠DAE的度数小红的说法,对不对?如果你认为对,请推导出∠DAE 的度数:如果你认为不对,请说明理由.21.科技改变世界.2017年底,快递分拣机器人从微博火到了朋友圈.据介绍,这些机器人不仅可以自动规划最优路线,将包裹准确地放入相应的路口,还会感应避让障碍物,自动归队取包裹,没电的时候还会自己找充电桩充电.某快递公司启用40台A种机器人、150台B种机器人分拣快递包裹,A、B两种机器人全部投入工作,1小时共可以分拣0.77万件包裹;若全部A种机器人工作1.5小时,全部B种机器人工作2小时,一共可以分拣1.38万件包裹.(1)求两种机器人每台每小时各分拣多少件包裹?(2)为进一步提高效率,快递公司计划再购进A、B两种机器人共100台.若要保证新购进的这批机器人每小时的总分拣量不少于5500件,求至少应购进A种机器人多少台?22.已知:如图,E点是正方形ABCD的边AB上一点,AB=4,DE=6,△DAE逆时针旋转后能够与△DCF重合.(1)旋转中心是.旋转角为度.(2)请你判断△DFE的形状,并说明理由.(3)求四边形DEBF的周长和面积.23.阅读材料,并回答下列问题如图1,以AB为轴,把△ABC翻折180°,可以变换到△ABD的位置;如图2,把△ABC沿射线AC平移,可以变换到△DEF的位置.像这样,其中的一个三角形是另一个三角形经翻折、平移等方法变换成的,这种只改变位置,不改变形状大小的图形变换,叫三角形的全等变换.班里学习小组针对三角形的全等变换进行了探究和讨论(1)请你写出一种全等变换的方法(除翻折、平移外),.(2)如图2,前进小组把△ABC沿射线AC平移到△DEF,若平移的距离为2,且AC=5,则DC=.(3)如图3,圆梦小组展开了探索活动,把△ABC纸片沿DE折叠,使点A落在四边形BCDE内部点A′的位置,且得出一个结论:2∠A′=∠1+∠2.请你对这个结论给出证明.(4)如图4,奋进小组则提出,如果把△ABC纸片沿DE折叠,使点A落在四边形BCDE 外部点A′的位置,此时∠A′与∠1、∠2之间结论还成立吗?若成立,请给出证明,若不成立,写出正确结论并证明.参考答案与试题解析一.选择题(共10小题)1.已知x=2是关于x的一元一次方程mx+2=0的解,则m的值为()A.﹣1 B.0 C.1 D.2【分析】把x=2代入方程计算,即可求出m的值.【解答】解:把x=2代入方程得:2m+2=0,解得:m=﹣1,2.《侯马盟书》是山西博物馆藏得十大国宝之一,其中很多篆文具有较高的历史意义和研究价值,下面四个悬针篆文文字明显不是轴对称图形的是()A.B.C.D.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,据此进行分析即可.【解答】解:A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不符合题意.3.根据不等式的性质,下列变形正确的是()A.由a>b得ac2>bc2B.由ac2>bc2得a>bC.由﹣a>2得a<2 D.由2x+1>x得x>1【分析】根据不等式的性质,可得答案.【解答】解;A、a>b,c=0时,ac2=bc2,故A错误;B、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故B正确;C、不等式的两边都乘以或除以同一个负数,不等号的方向改变,右边没诚乘以﹣2,故C错误;D、不等式的两边都加或都减同一个整式,不等号的方向不变,故D错误;故选:B.4.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【解答】解:设索长为x尺,竿子长为y尺,根据题意得:.5.如图,数轴上所示的解集用不等式表示正确的是()A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣2【分析】根据数轴上表示的解集写出不等式即可.【解答】解:根据数轴上表示的解集得:x<﹣2,6.如图,在△ABC中,BC边上的高为()A.BF B.CF C.BD D.AE【分析】根据三角形的高线的定义解答.【解答】解:根据高的定义,AE为△ABC中BC边上的高.故选:D.7.已知等腰三角形两边a,b,满足|2a﹣3b+5|+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或10 C.6或7 D.7或10【分析】先根据非负数的性质求出a,b的值,再分两种情况确定第三边的长,从而得出三角形的周长.【解答】解:∵|2a﹣3b+5|+(2a+3b﹣13)2=0,∴,解得,当a为底时,三角形的三边长为2,3,3,则周长为8;当b为底时,三角形的三边长为2,2,3,则周长为7;故选:A.8.一次数学活动课上,小聪将一副含30°角的三角板的一条直角边和45°角的三角板的一条直角边重叠,则∠1的度数为()A.45°B.60°C.75°D.85°【分析】根据平行线的判定求出AB∥EF,根据平行线的性质求出∠AOF,根据三角形的外角性质求出∠1即可.【解答】解:如图所示,∵∠ABC=∠DEF=90°,∴∠ABC+∠DEF=180°,∴AB∥EF,∴∠AOF=∠F=45°,∵∠A=30°,∴∠1=∠A+∠AOF=30°+45°=75°,故选:C.9.如图所示,在△ABC中,已知点D、E、F分别为边BC、AD、CE的中点,且△ABC的面积是4cm2,则阴影部分面积等于()A.2cm2B.1cm2C.0.25cm2D.0.5cm2【分析】如图,因为点F是CE的中点,所以△BEF的底是△BEC的底的一半,△BEF高等于△BEC的高;同理,D、E、分别是BC、AD的中点,△EBC与△ABC同底,△EBC的高是△ABC高的一半;利用三角形的等积变换可解答.【解答】解:如图,点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=EC,高相等;∴S△BEF=S△BEC,同理得,S△EBC=S△ABC,∴S△BEF=S△ABC,且S△ABC=4,∴S△BEF=1,即阴影部分的面积为1.故选:B.10.如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第10层中含有正三角形个数是()A.102个B.114个C.126个D.138个【分析】观察三角形的规律,发现:三角形依次是6+12×(1﹣1),6+12×(2﹣1),…,6+12×(n﹣1)块.【解答】解:根据题意分析可得:从里向外的第1层包括6个正三角形.第2层包括18个正三角形.此后,每层都比前一层多12个.依此递推,第10层中含有正三角形个数是6+12×9=114个.故选:B.二.填空题(共5小题)11.已知方程2x﹣y=1,用含x的代数式表示y,得y=2x﹣1 .【分析】要把方程2x﹣y=1,用含x的代数式表示y,就要把方程中含有y的项移到方程的左边,其它的项移到方程的右边,再进一步合并同类项、系数化为1即可.【解答】解:移项,得﹣y=1﹣2x,系数化1,得y=2x﹣1.故填y=2x﹣1.12.在△ABC中,如果∠A:∠B:∠C=1:2:3,那么△ABC的形状是直角三角形.【分析】根据三角形内角和定理列出方程,解方程即可.【解答】解:设∠A、∠B、∠C的度数分别为x、2x、3x,则x+2x+3x=180°,解得,x=30°,则2x=60°,3x=90°,∴△ABC是直角三角形,故答案为:直角.13.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图①主视图、②左视图、③俯视图中,是中心对称图形的有③俯视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个田字,“田”字是中心对称图形,主视图是1,2,1,不是中心对称图形,左视图是1,2,1,不是中心对称图形,故答案为:③俯视图14.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连结AA′,若∠1=20°,则∠B=65 度.【分析】先根据旋转的性质得到∠ACA′=90°,CA=CA′,∠B=∠CB′A′,则可判断△CAA′为等腰直角三角形,所以∠CAA′=45°,然后利用三角形外角性质计算出∠CB′A′,从而得到∠B的度数.【解答】解:∵Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,∴∠ACA′=90°,CA=CA′,∠B=∠CB′A′,∴△CAA′为等腰直角三角形,∴∠CAA′=45°,∵∠CB′A′=∠B′AC+∠1=45°+20°=65°,∴∠B=65°.故答案为65.15.书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是248或296 元.【分析】设第一次购书的原价为x元,则第二次购书的原价为3x元.根据x的取值范围分段考虑,根据“付款金额=第一次付款金额+第二次付款金额”即可列出关于x的一元一次方程,解方程即可得出结论.【解答】解:设第一次购书的原价为x元,则第二次购书的原价为3x元,依题意得:①当0<x≤时,x+3x=229.4,解得:x=57.35(舍去);②当<x≤时,x+×3x=229.4,解得:x=62,此时两次购书原价总和为:4x=4×62=248;③当<x≤100时,x+×3x=229.4,解得:x=74,此时两次购书原价总和为:4x=4×74=296;④当100<x≤200时,x+×3x=229.4,解得:x≈76.47(舍去);⑤当x>200时,x+×3x=229.4,解得:x≈81.93(舍去).综上可知:小丽这两次购书原价的总和是248或296元.故答案为:248或296.三.解答题(共8小题)16.(1)解方程:y﹣=2﹣;(2)解方程组:.【分析】(1)方程去分母,去括号,移项合并,把y系数化为1,即可求出解;(2)方程组利用加减消元法求出解即可.【解答】解:(1)去分母得:12y﹣6y+6=24﹣2y﹣4,移项合并得:8y=14,解得:y=;(2),①×3+②得:5x=25,解得:x=5,把x=5代入①得:y=2,则方程组的解为.17.解不等式组:,并写出它所有的整数解.【分析】先分别解两个不等式确定不等式组的解集,再找出其中的整数解.【解答】解:,解①得x<2,解②得x≥﹣1,故不等式组的解集为﹣1≤x<2,故不等式组的整数解为﹣1,0,1.18.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1;(2)在网格中画出△ABC关于直线m对称的△A2B2C2;(3)在直线m上画一点P,使得C1P+C2P的值最小.【分析】(1)根据图形平移的性质画出△A1B1C1即可;(2)根据轴对称的性质画出△ABC关于直线m对称的△A2B2C2即可;(3)连接C1C2交直线m于点P,则点P即为所求点.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)连接C1C2交直线m于点P,则点P即为所求点.19.“五一”黄金周,小梦一家计划从家B出发,到景点C旅游,由于BC之间是条湖,无法通过,如图所示只有B﹣A﹣C和B﹣P﹣C两条路线,哪一条比较近?为什么?(提示:延长BP交AC于点D)【分析】延长BP交AC于点D.依据三角形两边之和大于第三边,即可得出结论.【解答】解:如图,延长BP交AC于点D.∵△ABD中,AB+AD>BD=BP+PD,△CDP中,PD+CD>CP,∴AB+AD+PD+CD>BP+PD+CP,即AB+AD+CD>BP+CP,∴AB+AC>BP+CP,∴B﹣P﹣C路线较近.20.数学课上,老师出了一道题,如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=80°,∠C=40°(1)求∠DAE的度数;(2)小红解完第(1)小题说,我只要知道∠B﹣∠C=40°,即使不知道∠B、∠C的具体度数,也能推出∠DAE的度数小红的说法,对不对?如果你认为对,请推导出∠DAE 的度数:如果你认为不对,请说明理由.【分析】(1)根据角平分线的定义求出∠BAE,根据垂直定义求出∠ADB,根据三角形内角和定理求出∠BAC和∠BAD,即可求出答案;(2)根据角平分线的定义求出∠BAE,根据垂直定义求出∠ADB,根据三角形内角和定理求出∠BAC和∠BAD,即可求出答案.【解答】解:(1)∵∠B=80°,∠C=40°,∴∠BAC=180°﹣∠B﹣∠C=60°,∵AE平分∠BAC,∴∠BAE=∠BAC=30°,∵AD⊥BC,∴∠ADB=90°,∵∠B=80°,∴∠BAD=180°﹣∠B﹣∠ADB=180°﹣80°﹣90°=10°,∴∠DAE=∠BAE﹣∠BAD=30°﹣10°=20°;(2)对,理由是:∵∠BAC+∠B+∠C=180°,∴∠BAC=180°﹣∠B﹣∠C,∵AE平分∠BAC,∴∠BAE=∠BAC=(180°﹣∠B﹣∠C)=90°﹣(∠B+∠C),∵AD⊥BC,∴∠ADB=90°,∴∠BAD=180°﹣∠B﹣∠ADB=180°﹣∠B﹣90°=90°﹣∠B,∴∠DAE=∠BAE﹣∠BAD=90°﹣(∠B+∠C)﹣(90°﹣∠B)=∠B﹣∠C=(∠B﹣∠C),∵∠B﹣∠C=40°,∴∠DAE=20°,所以小红的说法正确.21.科技改变世界.2017年底,快递分拣机器人从微博火到了朋友圈.据介绍,这些机器人不仅可以自动规划最优路线,将包裹准确地放入相应的路口,还会感应避让障碍物,自动归队取包裹,没电的时候还会自己找充电桩充电.某快递公司启用40台A种机器人、150台B种机器人分拣快递包裹,A、B两种机器人全部投入工作,1小时共可以分拣0.77万件包裹;若全部A种机器人工作1.5小时,全部B种机器人工作2小时,一共可以分拣1.38万件包裹.(1)求两种机器人每台每小时各分拣多少件包裹?(2)为进一步提高效率,快递公司计划再购进A、B两种机器人共100台.若要保证新购进的这批机器人每小时的总分拣量不少于5500件,求至少应购进A种机器人多少台?【分析】(1)A种机器人每台每小时分拣x件包裹,B种机器人每台每小时分拣y件包裹,根据题意列方程组即可得到结论;(2)设应购进A种机器人a台,购进B种机器人(100﹣a)台,由题意得,根据题意两不等式即可得到结论.【解答】解:(1)A种机器人每台每小时拣x件包裹,B种机器人每台每小时分拣y件包裹,由题意得,,解得,,答:A种机器人每台每小时分拣80件包裹,B种机器人每台每小时分拣30件包裹;(2)设应购进A种机器人a台,购进B种机器人(100﹣a)台,由题意得,80a+30(100﹣a)≥5500,解得:a≥50,答:至少应购进A种机器人50台.22.已知:如图,E点是正方形ABCD的边AB上一点,AB=4,DE=6,△DAE逆时针旋转后能够与△DCF重合.(1)旋转中心是D.旋转角为90 度.(2)请你判断△DFE的形状,并说明理由.(3)求四边形DEBF的周长和面积.【分析】(1)确定旋转中心及旋转的角度,首先确定哪是对应点,即可确定旋转中心以及旋转角;(2)根据旋转的性质,可以得到旋转前后的两个图形全等,以及旋转角的定义即可作出判断;(3)根据△DAE≌△DCF,可以得到:AE=CF,DE=DF,则四边形DEBF的周长就是正方形的三边的和与DE的和.【解答】解:(1)旋转中心是点D.旋转角为90度.(2)根据旋转的性质可得:△DAE≌△DCF,则DE=DF,∠EDF=∠ADC=90°,则△DFE的形状是等腰直角三角形.(3)四边形DEBF的周长是BE+BC+CF+DF+DE=AB+BC+DE+DF=20;面积等于正方形ABCD的面积=16.23.阅读材料,并回答下列问题如图1,以AB为轴,把△ABC翻折180°,可以变换到△ABD的位置;如图2,把△ABC沿射线AC平移,可以变换到△DEF的位置.像这样,其中的一个三角形是另一个三角形经翻折、平移等方法变换成的,这种只改变位置,不改变形状大小的图形变换,叫三角形的全等变换.班里学习小组针对三角形的全等变换进行了探究和讨论(1)请你写出一种全等变换的方法(除翻折、平移外),旋转.(2)如图2,前进小组把△ABC沿射线AC平移到△DEF,若平移的距离为2,且AC=5,则DC= 3 .(3)如图3,圆梦小组展开了探索活动,把△ABC纸片沿DE折叠,使点A落在四边形BCDE内部点A′的位置,且得出一个结论:2∠A′=∠1+∠2.请你对这个结论给出证明.(4)如图4,奋进小组则提出,如果把△ABC纸片沿DE折叠,使点A落在四边形BCDE 外部点A′的位置,此时∠A′与∠1、∠2之间结论还成立吗?若成立,请给出证明,若不成立,写出正确结论并证明.【分析】(1)根据三种全等变换翻折、平移、旋转的定义可知判断;(2)根据平移的距离的定义可知AD=2,则DC=AC﹣AD;(3)根据轴对称及三角形内角和定理得出;(4)根据轴对称及三角形内角和定理得出;【解答】解:(1)旋转;故答案为:旋转(2)∵AD=2,∴DC=AC﹣AD=5﹣2=3;故答案为:3(3)∵把△ADE沿DE翻折,得到△A'DE,∴△ADE≌△A'DE,∴∠ADE=∠A'DE,∠AED=∠A'ED,在△DEA'中,∠A'=180°﹣(∠A'DE+∠A'ED);由平角定义知,∠2=180°﹣∠A'DA=180°﹣2∠A'DE,∠1=180°﹣∠A'EA=180°﹣2∠A'ED,∴∠1+∠2=180°﹣2∠A'DE+180°﹣2∠A'ED=2(180°﹣∠A'ED﹣∠A'DE)∴2∠A′=∠1+∠2.(4)∠2﹣∠1=2∠A',理由如下:∵把△ADE沿DE翻折,得到△A'DE,∴△ADE≌△A'DE,∴∠ADE=∠A'DE,∠AED=∠A'ED,在△DEA'中,∠A'=180°﹣(∠A'DE+∠A'ED),由平角定义知,∠2=180°﹣∠A'DA=180°﹣2∠A'DE,∠1=2∠A'ED﹣180°∴∠2﹣∠1=(180°﹣2∠A'DE)﹣(2∠A'ED﹣180°)=180°﹣(∠A'DE+∠A'ED),∴∠2﹣∠1=2∠A'.。

相关文档
最新文档