黄金梯形 三角形

合集下载

相似多边形及位似--知识讲解

相似多边形及位似--知识讲解

相似多边形及位似--知识讲解【学习目标】1、掌握相似多边形的性质及应用;2、了解图形的位似,知道位似变换是特殊的相似变换,能利用位似的方法,将一个图形放大或缩小;3、了解黄金分割值及相关运算.【要点梳理】要点一、相似多边形相似多边形的性质:(1)相似多边形的对应角相等,对应边的比相等.(2)相似多边形的周长比等于相似比.(3)相似多边形的面积比等于相似比的平方.要点诠释:用相似多边形定义判定特殊多边形的相似情况:(1)对应角都相等的两个多边形不一定相似,如:矩形;(2)对应边的比都相等的两个多边形不一定相似,如:菱形;(3)边数相同的正多边形都相似,如:正方形,正五边形.要点二、位似1.位似图形定义:如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心.2.位似图形的性质:(1)位似图形的对应点和位似中心在同一条直线上;(2) 位似图形的对应点到位似中心的距离之比等于相似比;(3)位似图形中不经过位似中心的对应线段平行.要点诠释:(1)位似图形与相似图形的区别:位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形.(2)位似变换中对应点的坐标变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.3.平移、轴对称、旋转和位似四种变换的异同:图形经过平移、旋转或轴对称的变换后,虽然对应位置改变了,但大小和形状没有改变,即两个图形是全等的;而位似变换之后图形是放大或缩小的,是相似的.4.作位似图形的步骤第一步:在原图上找若干个关键点,并任取一点作为位似中心;第二步:作位似中心与各关键点连线;第三步:在连线上取关键点的对应点,使之满足放缩比例;第四步:顺次连接各对应点.要点诠释:位似中心可以取在多边形外、多边形内,或多边形的一边上、或顶点,下面是位似中心不同的画法.要点三、黄金分割【高清课程名称: 位似和黄金分割 高清ID 号:394501关联的位置名称(播放点名称):黄金分割及总结】定义:如图,将一条线段AB 分割成大小两条线段AP 、PB ,若小段与大段的长度之比等于大段的长度与全长之比,即ABAP AP PB =(此时线段AP 叫作线段PB 、AB 的比例中项),则P 点就是线段AB 的黄金分割点(黄金点),这种分割就叫黄金分割.要点诠释:1.黄金分割值:设AB=1,AP=x ,则BP=x -1∵ABAP AP PB = ∴11x x x =- ∴x x -=12∴618.0215≈-=x (舍负) 2.黄金三角形:顶角为36°的等腰三角形,它的底角为72°,恰好是顶角的2倍,人们称这种三角形为黄金三角形.黄金三角形性质:底角平分线将其腰黄金分割.【典型例题】类型一、相似多边形1.如图,矩形草坪长20m ,宽16m,沿草坪四周有2m宽的环形小路,小路内外边缘所形成的两个矩形相似吗?为什么?【答案与解析】因为矩形的四个角都是直角,所以关键是看矩形ABCD 与矩形EFGH 的对应边的比是否相等. 542016221616EF AB ==++=, 652420222020EH AD ==++= 而6554≠,∴EH AD EF AB ≠ ∴矩形ABCD 与矩形EFGH 的对应边的比不相等,因而它们不相似.【总结升华】两个边数相同的多边形,必须同时满足“对应边的比都相等,对应角都相等”这两个条件才能相似,缺一不可.举一反三【变式】如图,梯形ABCD 中,AD ∥BC ,E 、F 两点分别在AB 、DC 上.若AE=4,EB=6,DF=2,FC=3,且梯形AEFD 与梯形EBCF 相似,则AD 与BC 的长度比为( )A.1:2B. 2:3C. 2:5D.4:9【答案】D.2. 如图,在长为8cm 、宽为4cm 的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是( )A. 2cm 2B. 4cm 2C. 8cm 2D. 16cm 2【答案】C.A B C D E F G H【解析】长为8cm 、宽为4cm 的矩形的面积是32cm 2,留下的矩形(图中阴影部分)与原矩形相似,相似比是4:8=1:2,因而面积的比是1:4,因而留下矩形的面积是32×14=8cm 2.故选C . 【总结升华】本题考查相似多边形的性质.相似多边形面积之比等于相似比的平方.类型二、位似3. 利用位似图形的方法把五边形ABCDE 放大1.5倍.【答案与解析】即是要画一个五边形A ′B ′C ′D ′E ′,要与五边形ABCDE 相似且相似比为1.5.画法是:1.在平面上任取一点O.2.以O 为端点作射线OA 、OB 、OC 、OD 、OE.3.在射线OA 、OB 、OC 、OD 、OE 上分别取点A ′、B ′、C ′、D ′、E ′,使OA ′:OA = OB ′:OB =OC ′:OC =OD ′:OD =OE ′:OE =1.5.4.连结A ′B ′、B ′C ′、C ′D ′、D ′E ′、E ′A ′.这样:A ′B ′AB =B ′C ′BC =C ′D ′CD =D ′E ′DE =A ′E ′AE=1.5. 则五边形A ′B ′C ′D ′E ′为所求. 另外一种情况,所画五边形跟原五边形分别在位似中心的两侧.【总结升华】由本题可知,利用位似的方法,可以把一个多边形放大或缩小.4. 如图,矩形OABC 的顶点坐标分别为O (0,0),A (6,0),B (6,4),C (0,4).画出以点O 为位似中心,矩形OABC 的位似图形OA ′ B ′ C ′ ,使它的面积等于矩形OABC 面积的41,并分别写出A ′、B ′、C ′三点的坐标. AB C D E A 1 B 1 C 1D 1E 1 A B DE【答案与解析】因为矩形OA ′B ′C ′与矩形OABC 是位似图形,面积比为1:4,所以它们的位似比为1:2. 连接OB ,(1)分别取线段OA 、OB 、OC 的中点A ′、B ′、C ′,连接O A ′、A ′B ′、B ′C ′、 C ′O ,矩形OA ′B ′C ′就是所求的图形.A ′,B ′,C ′三点的坐标分别为A ′(3,0),B ′(3,2),C ′(0,2).(2)分别在线段OA ,OB ,OC 的反向延长线上截取O A ″、O B ″、O C ″,使OA ″=21OA ,OB ″=21OB ,O C ″=21OC ,连接 A ″B ″、B ″C ″,则矩形O A ″B ″C ″为所求. A ″、B ″、C ″三点的坐标分别为A ″(-3,0),B ″(-3,-2),C ″(0,-2).【总结升华】平面直角坐标系内画位似图形,若没有明确指出只画一个,一定要把两种情况都画在坐标系内,并写出两种坐标. 举一反三【高清课程名称: 位似和黄金分割 高清ID 号: 394501关联的位置名称(播放点名称):位似作图及例4】【变式】在已知三角形内求作内接正方形.【答案】作法:(1)在AB 上任取一点G ′,作G ′D ′⊥BC;(2)以G ′D ′为边,在△ABC 内作一正方形D ′E ′F ′G ′;(3)连接BF ′,延长交AC 于F ;(4)作FG∥CB,交AB 于G ,从F 、G 分别作BC 的垂线FE , GD ;∴四边形DEFG 即为所求.类型三、黄金分割5.求做黄金矩形(写出具体做题步骤)并证明.【答案与解析】 51-的矩形叫黄金矩形.(心理测试表明:黄金矩形令人赏心悦目,它给我们以协调,匀称的美感.)黄金矩形的作法如下(如图所示):第一步:作一个正方形ABCD ;第二步:分别取AD ,BC 的中点M ,N ,连接MN ;第三步:以N 为圆心,ND 长为半径画弧,交BC 的延长线于E ;第四步:过E 作EF⊥AD,交AD 的延长线于F .即矩形DCEF 为黄金矩形. 证明:在正方形ABCD 中,取2AB a =,∵ N 为BC 的中点,∴ 12NC BC a ==. G F F'B C G' A BC D EF M N在Rt DNC △中,ND ===.又∵ NE ND =,∴ 1)CE NE NC a =-=.∴ 1122CE a CD a ==). 故矩形DCEF 为黄金矩形.【总结升华】要求熟练掌握多边形相似的比例关系.会利用相似比,求未知线段的长度或比值.举一反三【变式】美是一种感觉,当人的肚脐是人的身高的黄金分割点时,人的下半身长与身高之比约为0.618,人的身段成为黄金比例,给人一种美感.某女士身高165cm ,下半身长与身高的比值是0.60,为尽可能达到匀称的效果,她应穿高跟鞋的高度大约为( )A.4cmB.5cmC.6cmD.8cm【答案】D.。

八年级数学下册课后补习班辅导图上距离与实际距离黄金分割讲学案苏科版

八年级数学下册课后补习班辅导图上距离与实际距离黄金分割讲学案苏科版

图上距离与实际距离、黄金分割【本讲教育信息】 一. 教学内容:10.1—10.3 图上距离与实际距离、黄金分割二. 教学目标:1、结合现实情境了解线段的比和成比例的线段,理解并掌握比例的性质。

2、了解黄金分割、黄金矩形、黄金三角形的意义,会找一条线段的黄金分割点,进一步感悟数学与生活的密切联系。

3、理解相似三角形、相似多边形、相似比的概念,能在诸多图形中找出相似图形。

三. 教学重点与难点:重点:1、成比例线段的意义和比例的性质。

2、相似三角形的概念与相似图形的识别。

难点:黄金分割的概念及其应用。

四. 课堂教学: (一)知识要点知识点1、两条线段的比:两条线段长度的比叫做两条线段的比。

两条线段的比值一定是没有单位的正数;两条线段的长度单位要一致,其比值与采用的长度单位无关。

知识点2、成比例的线段:在4条线段中,如果两条线段的比等于另两条线段的比,那么称这4条线段成比例。

知识点3、比例的性质(1)基本性质:如果d c b a =,那么ad =bc;反过来,如果ad =bc (b ≠0,d ≠0),那么d cb a =。

(2)合比性质:①如果dc b a =,那么;ddc b b a +=+ ②如果d c b a =,那么;dd c b b a -=-(3)等比性质:如果d c b a ==…=n m,且b +d +…+n ≠0,那么ba n db mc a =++++++ 。

知识点4、比例中项:如果cb b a =(或b 2=ac ),那么我们把b 叫做a 和c 的比例中项。

知识点5、黄金分割:点B 在线段AC 上,如果ABBCAC AB =,那么称线段AC 被点B 黄金分割,点B 为线段AC 的黄金分割点。

AB 与AC (或BC 与AB )的比值约为0.618(精确值为215-),这个比值称为黄金比。

知识点6、黄金矩形:若矩形的两条邻边长度的比值约为0.618,这种矩形称为黄金矩形。

知识点7、黄金三角形:顶角为36°的等腰三角形称为黄金三角形。

相似三角形及黄金分割

相似三角形及黄金分割

相似三角形知识点一、☆内容提要1、比例的有关性质:()b an d b m c a n d b n m d c b a =++++++⇒≠+++===ΛΛΛΛ等比性质:0 的比例中项是c a b c a b cbb a ,2⇒⋅=⇒= 应用变形:已知d c c b a a d c b a +=+=:,求证,dkdc b kb a ±=±。

证明:(1)∵d c b a = ∴c d a b = ∴c d c a b a +=+ ∴d c cb a a +=+ (2)d c b a =Θ k d c k b a ±=±∴ dkdc b kb a ±=±∴ 2、黄金分割的定义:在线段AB 上,点C 把线段AB 分成两条线段AC 和BC ,如果AC BC AB AC =(整段大线段大线段小线段=),那么称线段AB 被点C 黄金分割(golden section ),点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.其中215-=AB AC ≈0.618. ABC推导黄金比:设AB=1,AC=x ,则BC=1-x ,所以xxx -=11,即x x -=12,用配方法解得x=215-≈0.618特别提示:1、一条线段有2个黄金分割点,它们关于原点对称。

2、黄金比并不为黄金分割所专有,只要任两条线段的比值满足这一常数,就称这两条线段的比为黄金比。

黄金比没有单位。

例:若矩形的两邻边长度的比值约为0.618,这个矩形称为黄金矩形;若在黄金矩形中截取一个正方形,那么剩余的矩形仍是黄金矩形。

3、必须满足位置和数量两个条件,才能判断一个点是一条线段的黄金分割点。

涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。

cd a b = db c a a c b d ==或 合比性质:ddc b b a ±=± ⇒=⇔=bc ad d cb a (比例基本定理)二、☆有关知识点:1、相似三角形定义:对应角相等,对应边成比例的三角形,叫做相似三角形。

相似三角形判定典型题

相似三角形判定典型题

相似三角形典型题1、如图,△ADC ∽△ACB ,求证:AC 2=AD ·AB2、证明射影定理3、△ABC 中,AB=AC ,∠A=36°,求证:21-5AB BC(21-5也叫黄金比)4、梯形ABCD ,AD ∥BC ,∠A=90°,AB=7,AD=2,BC=3,在线段AB 上是否存在点P 使以P 、A 、D 为顶点的三角形与以P 、B 、C 为顶点的三角形相似?若存在,求出AP 的长。

5、△ABC中,CE、BD是高,二者交于点O(1)求证:△ADE∽△ABC.(2)图中共有几对相似三角形?请找出来。

6、△ABC中,AE、BD是高,△CDE面积是2,△ABC面积是12,DE=3,求AB的长。

7、△ABC中,AC=AB,∠BAC=90°,E、F在直线BC上,且∠EAF=135°(1)找出图中的相似三角形并证明。

(2)求证:BC2=2FC·BE=BE:CF(3)求证:AE2:AF28、△ABC中,AC=AB,AD是中线,P是AD上一点,过C作CF∥AB交BP延长线于F求证:BP2=PE·PF9、△ABC 中,AC=AB ,AD 是中线,P 是AD 延长线上一点,过C 作CF ∥AB 交BP 延长线于F ,BF 交AC 延长线于E . 求证:BP 2=PE ·PF10、△ABC 中,AD 是角平分线,EF 是AD 的中垂线,交BC 延长线于F 求证:(1)FD 2=FC ·FB (2)AB 2:AC 2=BF:CFF11、△ABC 中,∠BAC=90°,AD ⊥BC ,P 为AD 中点,BP 延长线交AC 于F 求证:EF 2=AE ·CE12、△ABC 中,∠BAC=90°,AD ⊥BC ,E 为AC 中点,ED 延长线交AB 延长线于F 求证:AFDFAC AB13.如图,设P 是等边△ABC 的一边BC 上的一点,连结AP ,它的垂直平分线交AB 、AC 于M 、N 两点(1)求证:BP ·PC=BM ·CN(2)PC=2BP ,则=ANAM________(3)若BP:PC=m:n ,则=ANAM________14、△ABC 中,∠A=2∠B.求证:a 2=b (b+c ) 用多种方法B15、如图,在等腰三角形ABC 中,AB=1,∠A=900,点E 为腰AC 中点,点F 在底边BC 上,且FE ⊥BE ,求△CEF 的面积。

2020年中考数学考点梳理:相似三角形和解直角三角形

2020年中考数学考点梳理:相似三角形和解直角三角形

知识点:一、比例线段1、比:选用同一长度单位量得两条线段。

a 、b 的长度分别是m 、n ,那么就说这两条线段的比是a :b =m :n (或nm b a =) 2、比的前项,比的后项:两条线段的比a :b 中。

a 叫做比的前项,b 叫做比的后项。

说明:求两条线段的比时,对这两条线段要用同一单位长度。

3、比例:两个比相等的式子叫做比例,如dc b a = 4、比例外项:在比例d cb a =(或a :b =c :d )中a 、d 叫做比例外项。

5、比例内项:在比例d cb a =(或a :b =c :d )中b 、c 叫做比例内项。

6、第四比例项:在比例dcb a =(或a :b =c :d )中,d 叫a 、b 、c 的第四比例项。

7、比例中项:如果比例中两个比例内项相等,即比例为abb a =(或a:b=b:c 时,我们把b 叫做a 和d 的比例中项。

8、比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么,这四条线段叫做成比例线段,简称比例线段。

9、比例的基本性质:如果a :b =c :d 那么ad =bc 逆命题也成立,即如果ad =bc ,那么a :b =c :d10、比例的基本性质推论:如果a :b=b :d 那么b 2=ad ,逆定理是如果b 2=ad 那么a :b=b :c 。

说明:两个论是比积相等的式子叫做等积式。

比例的基本性质及推例式与等积式互化的理论依据。

11、合比性质:如果d c b a =,那么d dc b b a +=+ 12.等比性质:如果n m d c b a ===K ,(0≠+++m d b Λ),那么ban d b m c a =++++++ΛΛ说明:应用等比性质解题时常采用设已知条件为k ,这种方法思路单一,方法简单不易出错。

13、黄金分割把一条线段分成两条线段,使较长的线段是原线段与较小的线段的比例中项,叫做把这条线段黄金分割。

蒙元帝国的黄金艺术

蒙元帝国的黄金艺术

蒙元帝国的黄金艺术中国是一个有着悠久用金历史的国家,早在距今三千年前的新石器时代就已出现了金器。

在古老的岁月中,经历了漫长的发展过程。

每一时期的金器都有特定的历史文化内涵,其艺术风格皆表现出鲜明的时代特征。

蒙古族统治的蒙元帝国,由于对黄金的痴迷,用金风气旷古未有,从而使这一时期的金器制品达到空前繁盛,展现出异彩纷呈的景象,在风格上形成了独具特点的黄金艺术。

金酒具荷花纹高足金杯(图一),高14.5厘米,口径11.4厘米,足径7.2厘米,重191克。

内蒙古包头市达茂旗明水墓出土。

敞口,口沿外卷成圆唇,深腹,圜底,高足,呈喇叭形。

口沿外錾刻一周卷草纹,腹壁分布三组海棠形开光,内饰牡丹、莲花,足缘饰一周花叶纹。

花卉纹高足金杯(图二),高14.1厘米,口径10.2厘米,重153.7克。

内蒙古锡林郭勒盟镶黄旗乌兰沟出土。

口沿外卷成圆唇,口微侈,深腹,喇叭形高圈足。

口沿外饰一周卷草纹,腹壁三组开光内饰牡丹花、莲花纹,足缘为一周卷草纹。

錾花高足金杯(图三),高10厘米,口径5.2厘米。

内蒙古锡林郭勒盟苏尼特左旗恩格尔河墓葬出土。

卷口,直径,深腹,喇叭形高圈足。

口沿和足缘饰缠枝卷草纹。

牡丹纹錾耳金杯(图四),高4.95厘米,通耳长14.4厘米,口沿12.1厘米,重188.9克。

内蒙古乌兰察布市兴和县五股泉出土,敝口,弧腹呈花瓣形,平底。

口沿外附月牙形耳,下连小指环。

耳及口沿外平錾缠枝卷草纹,内底心錾刻三朵缠枝牡丹纹团花。

双龙戏珠纹錾耳金杯(图五),通耳长17.9厘米,宽14.2厘米,重451.2克。

内蒙古锡林郭勒盟正蓝旗汉克乡征集。

敞口,弧腹,平底。

口沿外附月牙形耳,耳下连一指环。

底内平錾狮子戏珠纹,口沿外壁为缠枝卷草纹,耳饰双龙戏珠纹。

逐水草而居的蒙古族,他们的酒具与其奔波迁徙的生活相适应。

在金杯口沿外附加月牙形錾耳,这种造型既可饮酒,又可作舀酒器,轻便小巧,便于在马背上系挂携带,富有浓郁的草原气息,是蒙古族特有的风格。

黄金分割(知识讲解)九年级数学上册基础知识讲与练(北师大版)

黄金分割(知识讲解)九年级数学上册基础知识讲与练(北师大版)

专题4.4 黄金分割(知识讲解)【学习目标】1、理解黄金分割的概念;2、会找一条线段的黄金分割点;3、会判断一个点是否为一条线段的黄金分割点。

【要点梳理】要点一:黄金分割的定义: 点C 把线段AB 分割成AC 和CB 两段,如果AC BCAB AC=,那么线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.特别说明:51AC AB -=≈0.618AB(叫做黄金分割值). 要点二: 作一条线段的黄金分割点:如图,已知线段AB ,按照如下方法作图:(1)经过点B 作BD ⊥AB ,使BD =21AB . (2)连接AD ,在DA 上截取DE =DB . (3)在AB 上截取AC =AE .则点C 为线段AB 的黄金分割点.特别说明:一条线段的黄金分割点有两个.要点三: 黄金三角形和黄金矩形黄金三角形有2种:1、等腰三角形,两个底角为72°,顶角为36°;这种三角形既美观又标准。

这样的三角形的底与一腰之长之比为黄金比:; 2、等腰三角形,两个底角为36°,顶角为108°;这样的三角形的一腰与底之长之比为黄金比:黄金矩形:黄金矩形(Golden Rectangle)的长宽之比为黄金分割率,换言之,矩形的短边为长边的 0.618倍。

黄金分割率和黄金矩形能够给画面带来美感,令人愉悦。

在很多艺术品以及大自然中都能找到它,希腊雅典的巴特农神庙就是一个很好的例子。

达芬奇的脸符合黄金矩形,同样也应用了该比例布局。

512512512【典型例题】类型一、黄金分割的作法1.作出线段AB 的黄金分割点(不写作法,保留作图痕迹)【分析】作法:(1)延长线段AB 至F ,使AB BF =,分别以A 、F 为圆心,以大于等于线段AB 的长为半径作弧,两弧相交于点G ,连接BG ,则BG AB ⊥,在BG 上取点D ,使2ABBD =;(2)连接AD ,在AD 上截取DE DB =.(3)在AB 上截取AC AE =.点C 就是线段AB 的黄金分割点.解:如图,点C 即为所求.【点拨】本题主要是考查了黄金分割点的概念,熟记黄金分割分成的两条线段和原线段之间的关系,能够熟练求解和作图.【变式1】黄金分割为“最美丽”的几何比率,广泛应用于图案设计,下图是一个包装盒的俯视图,线段AB 是这个俯视图的中轴线.某公司想在中轴线AB 上找到黄金分割点,安装视频播放器.(1)请你用尺规作图的方式找出这个点(作出一点即可,保留作图痕迹); (2)请证明你找到的点是黄金分割点.【分析】(1)过点B 作AB 的垂线,并用圆规在垂线上截取BC ,使BC=12AB ,连接AC ,以C 为圆心,BC 为半径画弧,交AC 于点D ,以A 为圆心,AD 为半径画弧,交AB 于E ,则点E 即为线段AB 的黄金分割点;(2)设BC=a ,则AB=2a ,,通过计算证明2AE BE AB =⋅即可解决问题.解:(1)如图:点E 即为所求;(2)设BC=a ,则AB=2a ,, ∴CD=BC=a ,-a ,∴22226)AE a a =-=-,222(2)6AB BE a a a a ⋅=⋅+=-, ∴2AE BE AB =⋅,∴点E 是线段AB 的黄金分割点.【点拨】此题考查黄金分割,黄金分割的作图,勾股定理,正确掌握黄金分割的知识并熟练应用解决问题是解题的关键.【变式2】回顾:“黄金分割”给人以美感,它在建筑、艺术等领域有着广泛的应用,通.的矩形叫做“黄金矩形” . 若要将一张边长为2的正方形纸片ABCD 剪出一个以AB 为边的“黄金矩形ABEF ”,请在BC 边上作出这个黄金矩形的顶点E .(要求:尺规作图,保留作图痕迹.如用铅笔作图,必须用黑色水笔把线条描清楚.)【分析】此题主要是确定矩形的长边,根据黄金比,只需要保证较短的边是较长的边倍即可,这里可以熟练的运用勾股定理进行分析.解:第一步,用圆规作出BC的中点H,则由题意可知112BH BC==,第二步,连接AH,以H为圆心,以BH为半径画弧交AH于O,由勾股定理知AH OH=HB所以AO=AH-OH1,第三步,以A为圆心,以AO为半径画弧交AD于F,过F点作FE∴BC交BC于E,∴AF=AO1,∴AFAB=故矩形ABEF即为所求.【点拨】本题考查了作图-应用与设计,矩形的性质,正方形的性质等知识,此题主要类型二、由黄金分割点求值2.(1)已知a=4.5,b=2,c是a,b的比例中项,求c;(2)如图,C 是AB 的黄金分割点,且AC >BC ,AB =4,求AC 的长.【答案】(1)3c =±;(2)2 【分析】(1)由c 是a ,b 的比例中项,可得29c ab ==,由此求解即可; (2)根据黄金分割点的定义进行求解即可. 解:(1)∴a =4.5,b =2,c 是a ,b 的比例中项,∴29c ab ==, ∴3c =±;(2)∴C 是AB 的黄金分割点,且AC >BC ,∴2AC AB ==. 【点拨】本题主要考查了黄金分割点以及比例中项,正确理解比例中项和黄金分割点的定义是解题的关键.【变式1】如图所示,以长为2的定线段AB 为边作正方形ABCD ,取AB 的中点P ,连接PD ,在BA 的延长线上取点F ,使PF PD =,以AF 为边作正方形AMEF ,点M 在AD 上.(1)求AM DM ,的长;(2)点M 是AD 的黄金分割点吗?为什么?【答案】(1)AM 1,DM =32)是,理由见分析 【分析】(1)要求AM 的长,只需求得AF 的长,又AF PF AP =-,PF PD =,则1AM AF =,3DM AD AM =-=(2)根据(1)中的数据得:AM AD =M 是AD 的黄金分割点.解:(1)在Rt APD 中,1AP =,2AD =,由勾股定理知PD1AM AF PF AP PD AP ∴==-=-,3DM AD AM =-=故AM 1,DM 的长为3 (2)点M 是AD 的黄金分割点.由于AMAD= ∴点M 是AD 的黄金分割点.【点拨】此题综合考查了正方形的性质、勾股定理和黄金分割的概念.先求得线段AM ,DM 的长,然后求得线段AM 和AD ,DM 和AM 之间的比,根据黄金分割的概念进行判断.【变式2】如图,设线段AC =1.(1)过点C 画CD∴AC ,使CD 12=AC ;连接AD ,以点D 为圆心,DC 的长为半径画弧,交AD 于点E ;以点A 为圆心,AE 的长为半径画弧,交AC 于点B .(2)在所画图中,点B 是线段AC 的黄金分割点吗?为什么?【答案】(1)作图见分析;(2)是,理由见分析 【分析】(1)根据几何语言画出对应的几何图形;(2)设AC =1,则DE =DC 12=,利用勾股定理得到AD AE则AB B 是线段AC 的黄金分割点. 解:(1)如图,点B 为所作;(2)点B 是线段AC 的黄金分割点.理由如下:设AC =1,则CD 12=,∴DE =DC 12=,=∴AE =AD ﹣DE 12,∴ABBC ,BC AB =21AB AC == 即BC ABAB AC=, ∴点B 是线段AC 的黄金分割点. 【点评】本题考查了黄金分割:把线段AB 分成两条线段AC 和BC (AC >BC ),且使AC 是AB 和BC 的比例中项(即AB :AC =AC :BC ),叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点.求出线段长是解决问题的关键类型三、证明黄金分割点3.已知线段MN = 1,在MN 上有一点A ,如果AN=352,求证:点A 是MN的黄金分割点【分析】首先得出AM 的长,进而得出2AM AN MN =求出即可. 证明:作下图:线段1MN =,在MN 上有一点A ,AN , 1AM ∴== 22AM ∴= 2AM AN MN ∴=,∴点A 是MN 的黄金分割点.【点拨】本题主要考查了黄金分割,解题的关键是根据已知得出2AM AN MN =. 【变式1】如图,用纸折出黄金分割点:裁一张边长为2的正方形纸片ABCD ,先折出BC 的中点E ,再折出线段AE ,然后通过折叠使EB 落在线段EA 上,折出点B 的新位置F ,因而EF =EB .类似的,在AB 上折出点M 使AM =AF .则M 是AB 的黄金分割点吗?若是请你证明,若不是请说明理由.【答案】是,证明见分析【分析】设正方形ABCD的边长为2,根据勾股定理求出AE的长,再根据E为BC的中点和翻折不变性,求出AM的长,二者相比即可得到黄金比.解:M是AB的黄金分割点,理由如下:∴正方形ABCD的边长为2,E为BC的中点,∴BE=1∴AE∴EF=BE=1,∴AF=AE﹣EF=1,∴AM=AF=1,∴AM:AB1):2,∴点M是线段AB的黄金分割点.【点评】本题考查了黄金分割的应用,知道黄金比并能求出黄金比是解题的关键,把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫)叫做黄金比.【变式2】阅读理解:二次根式的除法,要化去分母中的根号,需将分子、分母同乘以一个恰当的二次根式.=的矩形叫黄金矩形.如图1,已知黄金矩形ABCD的宽AB(1)求黄金矩形ABCD 中BC 边的长;(2)如图2,将图1中的黄金矩形裁剪掉一个以AB 为边的正方形ABEF ,得到新的矩形DCEF ,猜想矩形DCEF 是否为黄金矩形,并证明你的结论.【答案】是黄金矩形,见分析 【分析】(1)根据黄金矩形的定义,列出比例式计算即可.(2)求得CD ,EC =BC -AB EC DC =即可.解:(1)∴ 的矩形叫黄金矩形,黄金矩形ABCD 的宽AB =∴AB BC ==,∴BC == (2)矩形DCEF 是黄金矩形.理由如下:∴ 黄金矩形裁剪掉一个以AB 为边的正方形ABEF ,得到新的矩形DCEF ,∴CD =AB =,EC =BC -AB∴EC DC=,故矩形DCEF 是黄金矩形.【点拨】本题考查了黄金矩形,二次根式的分母有理化,熟练掌握有理化的方法,理解定义是解题的关键.类型四、黄金分割点的应用4.梯形ABCD 中,AD//BC ,对角线AC 和BD 相交于点O ,G 1和G 2分别为三角形AOB 和三角形COD 的重心.(1)求证:G 1G 2//AD ;(2)延长AG 1交BC 于点P ,当P 为BC 的黄金分割点时,求ADBC的值.【答案】(1)证明见分析;(2)AD BC 【分析】(1)连接1BG 、2CG 并延长交AO 、OD 于点E 、F ,连接EF .易得EF 为AOD △的中位线,故EF//AD ,根据重心的性质可得12121=2EG FG BG CG =,即EF //12G G ,即可得证; (2)根据点P为黄金分割点,可得PC BC 解:(1)连接1BG 、2CG 并延长交AO 、OD 于点E 、F ,连接EF .因为1G 、2G 为三角形AOB 和三角形COD 的重心, 所以点E 、F 为AO 、DO 的中点, 所以EF 为AOD △的中位线, 所以EF//AD , 又因为12121=2EG FG BG CG =, 所以EF //12G G , 所以12G G //AD . (2)因为点P 为黄金分割点,所以PC BC 又因为RQ 是中位线,所以RQ//BC ,12RQ BC =, 因为AD//PQ , 所以1=2PQ DQ RO BO AD OA OD DO ==,所以AD BC 【点拨】本题考查重心的定义和性质、三角形中位线的性质、黄金分割,掌握重心的性质是解题的关键.【变式1】如图,某人跳芭蕾舞,踮起脚尖时显得下半身比上半身更修长.若以裙子的腰节为分界点,身材比例正好符合黄金分割,已知从脚尖到头顶高度为176cm ,那么裙子的腰节到脚尖的距离为______cm .(结果保留根号)【答案】88##88+885【分析】根据黄金分割的黄金数得腰节到脚尖的距离:脚尖到头顶距离即可解答.解:设腰节到脚尖的距离为x cm ,根据题意,得:176x =,解得:88x =,∴腰节到脚尖的距离为(88)cm ,故答案为:88.=较长线段:全线段是解答的关键.【变式2】(1)数学活动一的矩形叫做黄金矩形,黄金矩形给我们以协调、匀称的美感.世界各国许多著名的建筑,都采用了黄金矩形的设计.在数学活动课上,小红按如下步骤折叠出一个矩形:第一步,在一张矩形纸片的一端,利用图∴的方法折出一个正方形ABCD ,然后把纸片展平;第二步,如图∴,把这个正方形ABCD 对折成两个完全重合的矩形,再把纸片展平; 第三步,如图∴,折出内侧矩形EFBC 的对角线CF ,并把CF 折到图中所示FN 处; 第四步,如图∴,展平纸片,按照点N 折出NM ,得到矩形BNMC .若2AD =,请证明矩形BNMC 是黄金矩形.(2)数学活动二如图∴,点C 在线段AB 上,且满足::AC BC BC AB =,即2BC AC AB =⋅,此时,我们说点C 是线段AB 的黄金分割点,且通过计算可得BC AB =.小红发现还可以从活动一的第三步开始修改折叠方式,如图∴,折出右侧矩形EFBC 的对角线EB ,把AB 边沿BG 折叠,使得A 点落在对角线BE 上的K 点处,若2AD =,请通过计算说明G 点是AD 的黄金分割点.【答案】(1)证明见分析,(2)证明见分析【分析】(1)由正方形ABCD 的边长为2,根据折叠可知FB ,由勾股定理可得FC ,易得出BN 的值,再求BN :BC 的值即可判断;(2)如图,连接,GE 设,AG x 则,2,GK x GD x 再利用轴对称的性质与勾股定理求解52,KE 再利用勾股定理建立方程求解x ,从而可得答案.证明:(1)根据第一步折叠可知,ABCD 是正方形,由正方形边长为2, 根据第二步可知,1,FB在∴FCB 中,根据勾股定理, 得22215,FC 根据第三步可知,5,FCFN ∴51,BN∴ 51.2BNBC ∴矩形BNMC 是黄金矩形.(2)如图,连接,GE 正方形的边长2,AD由对折可得:1,2,,90,AFBF CE DE BA BK AG GK A GKB 22215,52,90,BE EK GKE设,AG x,2,GK x GD x所以由勾股定理可得:22222152,x x解得:1,x = 51,2AGAD 所以G 点是AD 的黄金分割点. 【点拨】本题考查的是成比例线段,黄金分割点的含义,正方形的性质,轴对称的性质,勾股定理的应用,理解题意利用轴对称的性质逐步计算是解本题的关键.。

比例线段 黄金分割 相似三角形

比例线段   黄金分割   相似三角形

学科教师辅导讲义六.三角形重心的定义:证(解)题规律、辅助线1.“等积”变“比例”,“比例”找“相似”。

2.找相似找不到,找中间比。

方法:将等式左右两边的比表示出来。

⑴)(,为中间比nm n m d c n m b a == ⑵'',,n n nm d c n m b a === ⑶),(,''''''nm n m n n m m n m d c n m b a =====或 3.添加辅助平行线是获得成比例线段和相似三角形的重要途径。

4.对比例问题,常用处理方法是将“一份”看着k;对于等比问题,常用处理办法是设“公比”为k 。

5.对于复杂的几何图形,采用将部分需要的图形(或基本图形)“抽”出来的办法处理。

例题分析:例1:如图 4-85. AB ⊥于l. CD ⊥l 于 C,E 为 AD 中点.求证:△EBC 是等腰三角形.例2:如图4-86,CB ⊥AB ,DA ⊥AB ,M 为CD 中点.求证:∠MAB =∠MBA .例3:若25a c eb d f ===,求ac bd --,234234a ce b df +-+-4.已知:如图20□AB C D 中E 为AD 的中点,AF :AB =1:6,EF 与AC 交于M 。

求:AM :AC 。

5.已知:E 是正方形ABCD 的AB 边延长线上一点,DE 交CB 于M ,MN ∥AE ,求证:MN =MB6、已知线段AB 长为1cm ,P 是AB 的黄金分割点,则线段PA= ;7、已知:M 是线段AB 的黄金分割点,AM>BM. 求证:AMAB AB AB AM =+。

相似三角形中的“8”字模型(3种题型)(解析版)--中考物理数学专项训练

相似三角形中的“8”字模型(3种题型)(解析版)--中考物理数学专项训练

相似三角形中的“8”字模型(3种题型)一、【知识梳理】8字_平行型条件:CD∥AB,结论:ΔPAB∼ΔPCD(上下相似);左右不一定相似,不一定全等,但面积相等;四边形ABCD为一般梯形.条件:CD∥AB,PD=PC.结论:ΔPAB∼ΔPCD∼ΔPDC(上下相似)ΔPAD≅ΔPBC左右全等;四边形ABCD为等腰梯形;8字_不平行型条件:∠CDP=∠BAP.结论:ΔAPB∼ΔDPC(上下相似);ΔAPD∼ΔBPC(左右相似);二、【考点剖析】8字-平行型1.直接利用“8”字型解题1如图,在平行四边形ABCD 中,点E 在边DC 上,若DE :EC =1:2,则BF :BE =.【答案】3:5.【解析】DE :EC =1:2,可知CE CD =CE AB =23,由CE ⎳AB ,可知BF EF =AB CE=32,故BF :BE =3:5.【总结】初步认识相似三角形中的“8”字型.2如图,P 为▱ABCD 对角线BD 上任意一点.求证:PQ ∙PI =PR ∙PS .【解析】证明:∵四边形ABCD 为平行四边形,∴AB ⎳CD ,AD ⎳BC ,∴RB ⎳DI ,SD ⎳BQ .根据三角形一边平行线的性质定理,则有PI PR =PD PB =PS PQ,∴PQ ⋅PI =PR ⋅PS .【总结】初步认识相似三角形中的“8”字型,一个图形中存在往往不只一个,可用来进行等比例转化.3如图,在平行四边形ABCD 中,CD 的延长线上有一点E ,BE 交AC 于点F ,交AD 于点G .求证:BF 2=FG ∙EF .【解析】证明:∵四边形ABCD 为平行四边形,∴AB ⎳CD ,AD ⎳BC ,∴AB ⎳CE ,AG ⎳BC .根据三角形一边平行线的性质定理,则有:EF BF =CF AF=BF FG ,∴BF 2=FG ∙EF .【总结】初步认识相似三角形中的“8”字型,一个图形中存在往往不只一个,可用来进行等比例转化.4如图,点C 在线段AB 上,ΔAMC 和ΔCBN 都是等边三角形.求证:(1)MD DC =AM CN;(2)MD ∙EB =ME ∙DC .【解析】证明:(1)∵ΔAMC 和ΔCBN 是等边三角形,∴∠ACM =∠NCB =∠AMC =60°.∵点C 在线段AB 上,∴∠MCN =180°-∠ACM -∠NCB =60°=∠AMC .∴AM ⎳CN ,∴MD DC =AM CN.(2)同(1)易证得CM ⎳BN ,则有ME EB =MC NB.∵ΔAMC 和ΔCBN 是等边三角形,∴MC =AM ,NB =CN ,∴MD DC=ME EB ,∴MD ∙EB =ME ∙DC .【总结】初步认识相似三角形中的“8”字型,一个图形中存在往往不只一个,可用来进行等比例转化.5如图,已知AB ⎳CD ⎳EF .AB =m ,CD =n ,求EF 的长.(用m 、n 的代数式表示).【答案】mn m +n .【解析】由AB ⎳CD ⎳EF ,则有EF AB =CF BC ,EF CD =BF BC ,即EF m +EF n =1,得EF =mn m +n.【总结】考查相似三角形中“8”字型的综合应用,得到比例关系.6如图,E 为平行四边形ABCD 的对角线AC 上一点,AE EC=13,BE 的延长线交CD 的延长线于点G ,交AD 于点F ,求BF :FG 的值.【答案】1:2.【解析】由AF ⎳BC ,可得AF BC =AE EC =13,即AF AD=13,故AF FD =12,由AB ⎳DG ,可得:BF :FG =AF :FD =1:2.【总结】考查相似三角形中“8”字型的综合应用,得到比例关系.7如图,l 1⎳l 2,AF :FB =2:5,BC :CD =4:1,求AE :EC 的值.【答案】2:1.【解析】由l 1⎳l 2,得:AG BD =AF FB =25,又BC :CD =4:1,可得AG CD=21,故AE :EC =AG :CD =2:1.【总结】考查相似三角形中“8”字型的综合应用,得到比例关系.2.添加辅助线构造“8”字模型解题8过ΔABC 的顶点C 任作一直线,与边AB 及中线AD 分别交于点F 、E .求证:AE ED =2AF FB.【解析】过点D 作DG ⎳AB 交CF 于点G .∵DG ⎳AB ∴AE ED =AF GD ,DG BF =CD CB ;∵AD 是中线, ∴BC =2CD , ∴DG BF =12;∴AE ED =2AF BF.【总结】题考查三角形一边的平行线知识,要学会构造平行基本模型.9如图,AD 是ΔABC 的内角平分线.求证:AB AC=BD DC .【解析】过点C作CM⎳AB交AD的延长线于点M.∵CM⎳AB ∴AB CM=BDDC,∠BAD=∠M∵AD是角平分线∴∠BAD=∠DAC;∴∠M=∠DAC∴AC=CM∴AB AC=BD DC.【总结】本题考查了三角形一边的平行线、角平分线及等腰三角形的相关知识.8字-不平行型1如图,∠BEC=∠CDB,下列结论正确的是()A.EF•BF=DF•CFB.BE•CD=BF•CFC.AE•AB=AD•ACD.AE•BE=AD•DC【分析】结合图形利用8字模型相似三角形证明△EFB∽△DFC,然后利用等角的补角相等得出∠AEC=∠ADB,最后证明△ABD∽△ACE,利用相似三角形的对应边成比例逐一判断即可.【解答】解:∵∠BEC=∠CDB,∠EFB=∠DFC,∴△EFB∽△DFC,∴EF DF=FB FC,∴EF•FC=DF•FB,故A不符合题意:∵△EFB∽△DFC,∴BE CD=BF FC,∴BE•CF=CD•BF,故B不符合题意;∵∠BEC=∠CDB,∠BEC+∠AEC=180°,∠BDC+∠ADB=180°,∴∠AEC=∠ADB,∴△ABD∽△ACE,∴AB AC=AD AE,∴AB•AE=AD•AC,故C符合题意;因为:AE,BE,AD,CD组不成三角形,也不存在比例关系,故D不符合题意;故选:C.【点评】本题考查了相似三角形的判定与性质,根据题目的已知条件并结合图形分析是解题的关键.1.【过关检测】一、选择题(共3小题)1(2023•静安区校级一模)如图,在△ABC中,中线AD与中线BE相交于点G,联结DE.下列结论成立的是()A. B. C. D.【分析】由AD,BE是△ABC的中线,得到DE是△ABC的中位线,推出△DEG∽△ABG,△CDE∽△CBA,由相似三角形的性质即可解决问题.【解答】解:AD,BE是△ABC的中线,∴DE是△ABC的中位线,∴DE∥AB,DE=AB,∴△DEG∽△ABG,∴DG:AG=DE:AB=1:2,BG:EG=AB:DE,==,∴DG=AG,∵BG:EG=AB:DE=2:1,∴GB:BE=2:3,∴S△AGB:S△AEB=2:3,∵AE=EC,∴S△AEB=S△ABC,∴S△AGB=S△ABC,∵△CDE∽△CBA,∴==,∴S △CDE =S △ABC ,∴=,结论成立的是=,故选:C .【点评】本题考查相似三角形的判定和性质,关键是掌握相似三角形的性质.2(2023•徐汇区一模)如图,点D 在△ABC 边AB 上,∠ACD =∠B ,点F 是△ABC 的角平分线AE 与CD 的交点,且AF =2EF ,则下列选项中不正确的是()A. B. C. D.【分析】过C 作CG ∥AB 交AE 延长线于G ,由条件可以证明△ACF ≌△GCE (ASA ),得到AF =EG ,CF =CE ,由△ADF ∽△GCF ,再由平行线分线段成比例,即可解决问题.【解答】解:过C 作CG ∥AB 交AE 延长线于G ,∴∠G =∠BAE ,∵AE 平分∠BAC ,∴∠BAE =∠CAE ,∴∠G =∠CAE ,∴CG =CA ,∵∠ACD =∠B ,∠ECG =∠B ,∴∠ACF =∠ECG ,∴△ACF ≌△GCE (ASA ),∴CF =CE ,AF =EG ,∵AF =2FE ,∴EG =2FE ,令EF =k ,则AF =EG =2k ,AE =GF =3k ,∵△ADF∽△GCF,∴AD:CG=AF:FG=2k:(3k)=2:3,∴=,故A正确.∵AB∥CG,∴CE:BE=GE:AE=2k:(3k)=2:3,∴=,故B正确.∵∠ACD=∠B,∠DAC=∠BAC,∴△ACD∽△ABC,∴==,故C正确.∵=,AC和BD不一定相等,∴不一定等于.故选:D.【点评】本题考查角的平分线,相似三角形的判定和性质,关键是通过辅助线构造相似三角形.3(2022秋•闵行区期末)如图,某零件的外径为10cm,用一个交叉卡钳(两条尺长AC和BD相等)可测量零件的内孔直径AB.如果==3,且量得CD=4cm,则零件的厚度x为()A.2cmB.1.5cmC.0.5cmD.1cm【分析】根据相似三角形的判定和性质,可以求得AB的长,再根据某零件的外径为10cm,即可求得x的值.【解答】解:∵==3,∠COD=∠AOB,∴△COD∽△AOB,∴AB:CD=2,∵CD=4cm.∴AB=8cm.∵某零件的外径为10cm,∴零件的厚度x为:(10-8)÷2=1(cm),故选:D.【点评】本题考查相似三角形的应用,解答本题的关键是求出AB的值.二、填空题(共8小题)4(2022秋•奉贤区期中)如图,已知点D为△ABC中AC边的中点,AE∥BC,ED交AB于点G,交BC的延长线于点F,若,BC=8,则AE的长为4.【分析】由AE∥BC,可得△AEG∽△BFG,△AED∽△CFD推出==,又有BC的值,再由==1,得出AE=CF,代入即可求解AE的长.【解答】解:∵AE∥BC,∴△AEG∽△BFG,△AED∽△CFD,∴==,==1,即AE=CF,又BC=8,∴=AE=4.故答案为:4.【点评】本题主要考查了平行线分线段成比例的性质问题,应熟练掌握.5(2022•浦东新区校级模拟)如图,已知点D、E分别在△ABC的边CA、BA的延长线上,DE∥BC.DE:BC=2:3,设=,试用向量表示向量,=- .【分析】由DE∥BC可得△ADE∽△ACB,由DE:BC=2:3,可得DA=CD,即可表示,从而得出答案.【解答】解:∵DE∥BC,∴△ADE∽△ACB,∵DE:BC=2:3,∴DA:CA=DE:BC=2:3,∵CD=DA+CA,∴DA=CD,∵=,∴=,∴=-,故答案为:-.【点评】本题考查向量的运算,相似三角形的判定与性质,熟练掌握相似三角形的性质和向量的运算的解题的关键.6(2022•静安区二模)如图,在梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,点E、F分别是边AB、CD的中点,AO:OC=1:4,设=,那么= .(用含向量的式子表示)【分析】由相似三角形性质可得=4=4,再根据梯形中位线定理即可求得答案.【解答】解:∵AD∥BC,∴△AOD∽△COB,∴==,∴=4=4,∵点E、F分别是边AB、CD的中点,∴=(+)=(+4)=,故答案为:.【点评】本题考查了相似三角形的判定和性质,梯形中位线定理,平面向量等,熟练掌握相似三角形的判定和性质是解题关键.7(2023•静安区校级一模)在矩形ABCD内作正方形AEFD(如图所示),矩形的对角线AC交正方形的边EF于点P.如果点F恰好是边CD的黄金分割点(DF>FC),且PE=2,那么PF= -1.【分析】先根据黄金分割的定义可得=,再利用正方形的性质可得:DF∥AE,DF=AE,从而可得=,然后证明8字模型相似三角形△CFP∽△AEP,从而利用相似三角形的性质进行计算即可解答.【解答】解:∵点F恰好是边CD的黄金分割点(DF>FC),∴==,∵四边形AEFD是正方形,∴DF∥AE,DF=AE,∴=,∵DC∥AB,∴∠FCP=∠PAE,∠CFP=∠AEP,∴△CFP∽△AEP,∴==,∵PE=2,∴PF=-1,故答案为:-1.【点评】本题考查了相似三角形的判定与性质,矩形的性质,正方形的性质,黄金分割,熟练掌握8字模型相似三角形是解题的关键.8(2022春•浦东新区校级期中)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,如果△BCD的面积是△ABD面积的2倍,那么△BOC与△BDC的面积之比是2:3.【分析】过点D作DM⊥BC,垂足为M,过点B作BN⊥AD,交DA的延长线于点N,根据已知易得DM=BN,再根据S△BCD=2S△ABD,从而可得BC=2AD,然后再证明8字模型相似三角形△AOD∽△COB,利用相似三角形的性质可得==,从而可得=,最后根据△BOC与△BDC 的高相等,即可解答.【解答】解:过点D作DM⊥BC,垂足为M,过点B作BN⊥AD,交DA的延长线于点N,∵AD∥BC,∴BN=DM,∵S△BCD=2S△ABD,∴BC•DM=2×AD•BN,∴BC=2AD,∵AD∥BC,∴∠ADB=∠DBC,∠DAC=∠ACB,∴△AOD∽△COB,∴==,∴=,∵△BOC与△BDC的高相等,∴==,故答案为:2:3.【点评】本题考查了平行线间的距离,相似三角形的判定与性质,梯形,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.9(2022秋•虹口区校级月考)如图,梯形ABCD中,AD∥BC,,点E为边BC的中点,点F在边CD上且3CF=CD,EF交对角线AC于点G,则AG:GC=7:2.【分析】如图,连接DE,交AC于M,过M作MH∥EF交CD于H,首先利用AD∥BC,,点E 为边BC的中点,可以得到AD:EC=AM:CM=DM:ME=3:2,然后利用MH∥EF,DH:HF= DM:ME=3:2=6:4,最后利用又3CF=CD即可求解.【解答】解:如图,连接DE,交AC于M,过M作MH∥EF交CD于H,∵AD∥BC,,点E为边BC的中点,∴△ADM∽△CME,∴AD:EC=AM:CM=DM:ME=3:2,∵MH∥EF,∴DH:HF=DM:ME=3:2=6:4,又3CF=CD,∴DF=2CF,∴CF:HF=5:4,∴CG:MG=5:4,∴CG=CM,MG=CM,而AM:CM=3:2,∴AM=CM,∴AG=AM+MG=CM,∴AG:GC=CM:CM=7:2.故答案为:7:2.【点评】此题主要考查了相似三角形的性质于判定,同时也利用了平行线的性质,解题的关键是会进行比例线段的转换,有一定的难度.10(2022秋•黄浦区期末)如图是一个零件的剖面图,已知零件的外径为10cm,为求出它的厚度x,现用一个交叉卡钳(AC和BD的长相等)去测量零件的内孔直径AB.如果==,且量得CD的长是3cm,那么零件的厚度x是0.5cm.的值.【解答】解:∵==,∠COD=∠AOB,∴△COD∽△AOB,∴AB:CD=3,∵CD=3cm.∴AB=9cm.∵某零件的外径为10cm,∴零件的厚度x为:(10-9)÷2=0.5(cm),故答案为:0.5.【点评】本题考查相似三角形的应用,解答本题的关键是求出AB的值.11(2022春•闵行区校级月考)如图,梯形ABCD中,∠D=90°,AB∥CD,将线段CB绕着点B按顺时针方向旋转,使点C落在CD延长线上的点E处.联结AE、BE,设BE与边AD交于点F,如果AB=4,且=,那么梯形ABCD的中位线等于7.【分析】过点B作BG⊥EC,利用同高的两个三角形的面积的比先求出EF:BF,再利用相似三角形的性质求出ED、EG,最后利用梯形中位线与上下底的关系得结论.【解答】解过点B作BG⊥EC,垂足为G∵=,∴=.∵AB∥CD,∴△EDF∽△BAF.∴==,∴ED=2,=.∵AD∥BG,∴=.∴EG=6.∵CB绕着点B按顺时针方向旋转,点C落在CD延长线上的点E处,∴BE=BC.∵BG⊥EC,∴EG=GC=6.∴DC=DG+CG=4+6=10.∴梯形ABCD的中位线=(AB+CD)=(4+10)=7.故答案为:7.【点评】本题主要考查了相似三角形的性质和判定,掌握等腰三角形的三线合一、等高的两个三角形的面积比等于底边的比、梯形的中位线等于上下底的和的一半是解决本题的关键.三、解答题(共12小题)1(2023•普陀区一模)如图,已知梯形ABCD中,AD∥BC,E是BC上一点,AE∥CD,AE、BD相交于点F,EF:CD=1:3.(1)求的值;(2)联结FC,设,,那么= ,= .(用向量、表示)【分析】(1)根据题意可证明四边形AECD为平行四边形,得到AE=CD,则EF:AE=1:3,EF:AF=1:2,易证明△BEF∽△DAF,由相似三角形的性质即可求解;(2)由AF=2EF得,,由三角形法则求出和,再求出,最后利用三角形法则即可求出.【解答】解:∵AD∥BC,AE∥CD,∴四边形AECD为平行四边形,∴AE=CD,∵EF:CD=1:3,∴EF:AE=1:3,EF:AF=1:2,∵AD∥BC,∴△BEF∽△DAF,∴;(2)联结FC,如图,由(1)可得AF=2EF,∵,∴,,∴=,=,∵,AD=EC,∴,∴==,∴==.故答案为:,.【点评】本题主要考查平行四边形的判定与性质、相似三角形的判定与性质、平面向量,熟练三角形法则是解题关键.2(2023•奉贤区一模)已知:如图,在梯形ABCD中,AD∥BC,点E在对角线BD上,∠EAD=∠BDC.(1)求证:AE•BD=AD•DC;(2)如果点F在边DC上,且,求证:EF∥BC.【分析】(1)利用平行线的性质证明∠ADB=∠DBC,然后利用已知条件可以证明△ADE∽△DBC,由此即可解决问题;(2)利用(1)的结论和已知条件可以证明△DEF∽△DBC,接着利用相似三角形的在即可求解.【解答】证明:(1)∵AD∥BC,∴∠ADB=∠DBC,又∵∠EAD=∠BDC,∴△ADE∽△DBC,∴AE:AD=DC:BD,∴AE•BD=AD•DC;(2)∵AE:AD=DC:BD,且,∴=,而∠EDF=∠BDC,∴△DEF∽△DBC,∴∠DEF=∠DBC,∴EF∥BC.【点评】此题主要考查了相似三角形的性质与判定,同时也利用了平行线的性质,比例的基本性质,有一定的综合性.3(2023•青浦区一模)如图,在平行四边形ABCD中,点F在边AD上,射线BA、CF相交于点E,DF=2AF.(1)求EA:AB的值;(2)如果,,试用、表示向量.【分析】(1)根据平行四边形的性质可得AB∥CD,AB=CD,易证△AEF∽△DCF,则=,由DF=2AF即可求解;(2)先算出,再根据即可求解.【解答】解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴△AEF∽△DCF,∴,∴,∵DF=2AF,∴,∴;(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵DF=2AF,∴,∵,,∴,,∴.【点评】本题主要考查相似三角形的判定与性质、平行四边形的性质、平面向量,熟练掌握平面向量的运算法则是解题关键.4(2022秋•金山区校级期末)已知:如图,在△ABC中,点D在边BC上,AE∥BC,BE与AD、AC 分别相交于点F、G,AF2=FG•FE.(1)求证:△CAD∽△CBG;(2)联结DG,求证:DG•AE=AB•AG.【分析】(1)通过证明△FAG∽△FEA,可得∠FAG=∠E,由平行线的性质可得∠E=∠EBC=∠FAG,且∠ACD=∠BCG,可证△CAD∽△CBG;(2)由相似三角形的性质可得=,且∠DCG=∠ACB,可证△CDG∽△CAB,可得=,由平行线分线段成比例可得=,可得结论.【解答】证明:(1)∵AF2=FG⋅FE.∴=,∵∠AFG=∠EFA,∴△FAG∽△FEA,∴∠FAG=∠E,∵AE∥BC,∴∠E=∠EBC,∴∠EBC=∠FAG,∵∠ACD=∠BCG,∴△CAD∽△CBG;(2)∵△CAD∽△CBG,∴=,∵∠DCG=∠ACB,∴△CDG∽△CAB,∴=,∵AE∥BC,∴=,∴=,∴=,∴DG•AE=AB•AG.【点评】本题考查了相似三角形的判定和性质,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.5(2022•松江区二模)已知:如图,两个△DAB和△EBC中,DA=DB,EB=EC,∠ADB=∠BEC,且点A、B、C在一条直线上,联结AE、ED,AE与BD交于点F.(1)求证:;(2)如果BE2=BF•BD,求证:DF=BE.【分析】(1)根据已知易证△DAB∽△EBC,然后利用相似三角形的性质可得∠DAB=∠EBC,=,从而可得AD∥EB,进而证明8字模型相似三角形△ADF∽△EBF,最后利用相似三角形的性质可得=,即可解答;(2)根据已知易证△BFE ∽△BED ,从而利用相似三角形的性质可得∠BEF =∠BDE ,进而可得∠DAF =∠BDE ,然后利用(1)的结论可证△ADF ≌△DBE ,再利用全等三角形的性质即可解答.【解答】证明:(1)∵DA =DB ,EB =EC ,∴=,∵∠ADB =∠BEC ,∴△DAB ∽△EBC ,∴∠DAB =∠EBC ,=,∴AD ∥EB ,∴∠DAF =∠AEB ,∠ADF =∠DBE ,∴△ADF ∽△EBF ,∴=,∴;(2)∵BE 2=BF •BD ,∴=,∵∠DBE =∠EBF ,∴△BFE ∽△BED ,∴∠BEF =∠BDE ,∵∠DAF =∠AEB ,∴∠DAF =∠BDE ,∵∠ADF =∠DBE ,AD =DB ,∴△ADF ≌△DBE (ASA ),∴DF =BE .【点评】本题考查了全等三角形的判定与性质,相似三角形的判定与性质,熟练掌握全等三角形的判定与性质,以及相似三角形的判定与性质是解题的关键.6(2023•宝山区二模)如图,四边形ABCD 中,AD ∥BC ,AC 、BD 交于点O ,OB =OC .(1)求证:AB =CD ;(2)E 是边BC 上一点,联结DE 交AC 于点F ,如果AO 2=OF •OC ,求证:四边形ABED 是平行四边形.【分析】(1)由等腰三角形的性质和判定及平行线的性质,说明△AOB 和△DOC 全等,利用全等三角形的性质得结论;(2)先说明△AOB∽△FOD,再说明AB∥DE,结合已知由平行四边形的判定可得结论.【解答】证明:(1)∵OB=OC,∴∠DBC=∠ACB.∵AD∥BC,∴∠DAC=∠ACB,∠ADB=∠DBC.∴∠DAC=∠ADB.∴OA=DO.在△AOB和△DOC中,,∴△AOB≌△DOC(SAS).∴AB=CD.(2)∵AO2=OF•OC,OA=OD,OC=OB,∴AO•OD=OF•OB,即.∵∠AOB=∠DOC,∴△AOB∽△FOD.∴∠BAO=∠DFO.∴AB∥DE.又∵AD∥BC,∴四边形ABED是平行四边形.【点评】本题主要考查了三角形全等和相似,掌握全等三角形的性质和判定、相似三角形的判定和性质、平行线的性质、等腰三角形的判定和性质及平行四边形的判定是解决本题的关键.7(2022秋•徐汇区期中)如图,在四边形ABCD中,对角线AC与BD交于点E,DB平分∠ADC,且AB2=BE•BD.(1)求证:△ABE∽△DCE;(2)AE•CD=BC•ED.【分析】(1)根据相似三角形的判定可得△ABE∽△DBA;所以∠BAC=∠BDC,由此可得出△ABE ∽△DCE;(2)由(1)中的相似可得出AE:DE=BE:CE,再由∠BEC=∠AED可得△ADE∽△BCE,所以∠EAD=∠EBC,∠ADE=∠BDC=∠BCE,可得△BCD∽△ADE,进而可得结论.【解答】证明:(1)∵AB2=BE•BD,∴AB:BE=BD:AB,∵∠ABE=∠DBA,∴△ABE∽△DBA,∴∠BAC=∠BDC,∵BD平分∠ADC,∴∠ADB=∠BDC=∠BAC,∴△ABE∽△DCE;(2)由(1)中相似可得,AE:DE=BE:CE,∵∠BEC=∠AED,∴△ADE∽△BCE,∴∠EAD=∠EBC,∠ADE=∠BDC=∠BCE,∴△BCD∽△AED,∴BC:AE=CD:ED,AE•CD=BC•ED.【点评】本题主要考查相似三角形的性质与安定,涉及A字型相似,8字型相似等相关内容,熟练掌握相关判定是解题关键.8(2022春•杨浦区校级期中)如图1,在△ABC中,点E在AC的延长线上,且∠E=∠ABC.(1)求证:AB2=AC•AE;(2)如图2,D在BC上且BD=3CD,延长AD交BE于F,若=,求的值.【分析】(1)利用两角相等的两个三角形相似,证明△ABC∽△AEB,然后利用相似三角形的性质即可解答;(2)过点E作EH∥CB,交AF的延长线于点H,利用(1)的结论可得===,先AC=2a,AB=3a,从而求出AE的长,进而求出的值,再根据已知设CD=m,BD=3m,从而求出BC,BE的长,然后证明A字模型相似三角形△ACD∽△AEH,利用相似三角形的性质可得EH=m,再证明8字模型相似三角形△BDF∽△EHF,利用相似三角形的性质可得=,从而求出EF的长,进行计算即可解答.【解答】(1)证明:∵∠E=∠ABC,∠A=∠A,∴△ABC∽△AEB,∴=,∴AB 2=AC •AE ;(2)解:过点E 作EH ∥CB ,交AF 的延长线于点H ,∵△ABC ∽△AEB ,∴===,∴设AC =2a ,AB =3a ,∴=,∴AE =a ,∴==,∵BD =3CD ,∴设CD =m ,则BD =3m ,∴BC =CD +BD =4m ,∴=,∴EB =6m ,∵EH ∥CD ,∴∠ACD =∠AEH ,∠ADC =∠AHE ,∴△ACD ∽△AEH ,∴==,∴EH =m ,∵EH ∥BD ,∴∠BDF =∠DHE ,∠DBF =∠FEH ,∴△BDF ∽△EHF ,∴===,∴EF =BE =m ,∴==,∴的值为.【点评】本题考查了相似三角形的判定与性质,平行线分线段成比例,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.9(2023•崇明区二模)已知:如图,在平行四边形ABCD中,对角线AC、BD交于E,M是边DC延长线上的一点,联结AM,与边BC交于F,与对角线BD交于点G.(1)求证:AG2=GF•GM;(2)联结CG,如果∠BAG=∠BCG,求证:平行四边形ABCD是菱形.【分析】(1)由平行线的性质和相似三角形的平行判定法,可得到△ABG∽△MDG、△ADG∽△FBG,再利用相似三角形的性质得结论;(2)利用“两角对应相等”先说明△GCF∽△GMC,再利用等腰三角形的三线合一说明BD⊥AC,最后利用菱形的判定方法得结论.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥DM,AD∥BC.∴△ABG∽△MDG,△ADG∽△FBG.∴=,=.∴=.∴AG2=GF•GM.(2)∵AB∥DM,∴∠BAG=∠M.∵∠BAG=∠BCG,∴∠M=∠BCG.∵∠MGC=∠FGC,∴△GCF∽△GMC.∴=,即CG2=GF•GM.∵AG2=GF•GM,∴CG2=AG2.∴CG =AG .∵四边形ABCD 是平行四边形,∴AE =CE .∴GE ⊥AC ,即BD ⊥AC .∴平行四边形ABCD 是菱形.【点评】本题主要考查了相似三角形的性质和判定,掌握相似三角形的判定和性质、平行四边形的性质、菱形的判定方法、等腰三角形的判定和性质等知识点是解决本题的关键.10(2021秋•虹口区期末)如图,在梯形ABCD 中,∠ABC =90°,AD ∥BC ,BC =2AD ,对角线AC 与BD 交于点E .点F 是线段EC 上一点,且∠BDF =∠BAC .(1)求证:EB 2=EF •EC ;(2)如果BC =6,sin ∠BAC =,求FC 的长.【分析】(1)先由AD ∥BC 得到△EAD ∽△ECB ,从而得到,然后由∠BDF =∠BAC 、∠AEB =∠DEF 得证△EAB ∽△EDF ,进而得到,最后得到结果;(2)先利用条件得到AC 、AB 的长,然后利用BC =2AD 得到AD 、BD 的长,再结合相似三角形的性质得到EB 、EC 的长,进而得到EF 的长和FC 的长.【解答】(1)证明:∵AD ∥BC ,∴△EAD ∽△ECB ,∴,即,∵∠BDF =∠BAC ,∠AEB =∠DEF ,∴△EAB ∽△EDF ,∴,∴,∴EB2=EF•EC.(2)解:∵BC=6,sin∠BAC==,BC=2AD∴AC=9,AD=3,∵∠ABC=90°,AD∥BC,∴∠BAD=90°,∴AB===3,∴BD===3,∵△EAD∽△ECB,∴,∴EC=AC=×9=6,EB=BD=×3=2,∵EB2=EF•EC,即(2)2=6EF,∴EF=4,∴FC=EC-EF=6-4=2.【点评】本题考查了直角梯形的性质、相似三角形的判定与性质、勾股定理,解题的关键是熟知“8”字模型相似三角形的判定与性质.11(2021秋•嘉定区期末)如图,在梯形ABCD中,AD∥BC,点E在线段AD上,CE与BD相交于点H,CE与BA的延长线相交于点G,已知DE:AE=2:3,BC=4DE,CE=10.求EH、GE的长.【分析】根据题目的已知并结合图形分析8字型模型相似三角形和A字型模型相似三角形,然后进行计算即可解答.【解答】解:∵AD∥BC,∴∠ADB=∠DBC,∠DEC=∠ECB,∴△DEH∽△BCH,∴,∵BC=4DE,∴,∵CE=10,∴HC=10-EH,∴,∴EH=2,∵BC=4DE,DE:AE=2:3,∴,∵AD∥BC,∴∠GAE=∠GBC,∠GEA=∠GCB,∴△GAE∽△GBC,∴,∵CE=10,∴GC=10+GE,∴,∴GE=6.【点评】本题考查了相似三角形的判定与性质,梯形,熟练掌握8字型模型相似三角形和A字型模型相似三角形是解题的关键.12(2021秋•杨浦区期末)如图,已知在Rt△ABC中,∠ACB=90°,AC=BC=5,点D为射线AB上一动点,且BD<AD,点B关于直线CD的对称点为点E,射线AE与射线CD交于点F.(1)当点D在边AB上时,①求证:∠AFC=45°;②延长AF与边CB的延长线相交于点G,如果△EBG与△BDC相似,求线段BD的长;(2)联结CE、BE,如果S△ACE=12,求S△ABE的值.【分析】(1)①如图1,连接CE,根据轴对称的性质可得:EC=BC,∠ECF=∠BCF,设∠ECF=∠BCF=α,则∠BCE=2α,∠ACE=90°-2α,再利用等腰三角形性质即可证得结论;②如图2,连接BE,CE,由△EBG∽△BDC,可得出∠G=∠BCD=22.5°,过点D作DH⊥AB交BC于点H,则△BDH是等腰直角三角形,推出CH=DH=BD,再根据CH+BH=BC=5,建立方程求解即可;(2)分两种情况:Ⅰ.当点D在AB上时,如图3,过点C作CM⊥AE于点M,连接BF,利用勾股定理、三角形面积建立方程求解即可;Ⅱ.当点D在AB的延长线上时,如图4,过点C作CM⊥AE于点M,连接BF,利用勾股定理、三角形面积建立方程求解即可.【解答】解:(1)①证明:如图1,连接CE,∵点B关于直线CD的对称点为点E,∴EC=BC,∠ECF=∠BCF,设∠ECF=∠BCF=α,则∠BCE=2α,∴∠ACE=90°-2α,∵AC=BC,∴AC=EC,∴∠AEC=∠EAC=[180°-(90°-2α)]=45°+α,∵∠AEC=∠AFC+∠ECF=∠AFC+α,∴∠AFC=45°;②如图2,连接BE,CE,∵B、E关于直线CF对称,∴CF垂直平分BE,由(1)知:∠AFC=45°,∴∠BEF=45°,∵△EBG与△BDC相似,∠BEG=∠DBC=45°,∵∠EBG与∠BDC均为钝角,∴△EBG∽△BDC,∴∠G=∠BCD=∠BAG,∵∠G+∠BAG=∠ABC=45°,∴∠G=∠BCD=22.5°,过点D作DH⊥AB交BC于点H,则△BDH是等腰直角三角形,∴DH=BD,BH=BD,∠BHD=45°,∵∠CDH=∠BHD-∠BCD=45°-22.5°=22.5°=∠BCD,∴CH=DH=BD,∵CH+BH=BC=5,∴BD+BD=5,∴BD==5-5,∴线段BD的长为5-5;(2)Ⅰ.当点D在AB上时,如图3,过点C作CM⊥AE于点M,连接BF,∵AC=EC=BC=5,∴AM=EM=AE,∴①AM2+CM2=AC2=25,∵S△ACE=AE•CM=12,∴②AM•CM=12,①+②×2,得:(AM+CM)2=49③,①-②×2,得:(AM-CM)2=49③,∵CM>AM>0,∴AM=3,CM=4,∴AE=6,由(1)知:∠AFC=45°,BE⊥CF,∴∠BEF=45°,∵∠AFC=∠ABC=45°,∴A、C、B、F四点共圆,∴∠AFB+∠ACB=180°,∴∠AFB=90°,∴△BEF是等腰直角三角形,∴EF=BF,设EF=BF=x,则AE=x+6,在Rt△ABF中,AF2+BF2=AB2,∴(x+6)2+x2=50,解得:x=1或x=-7(舍去),∴BF=1,∴S△ABE=AE•BF=×6×1=3;Ⅱ.当点D在AB的延长线上时,如图4,过点C作CM⊥AE于点M,连接BF,由(1)知:∠AFC=45°,CF垂直平分BE,∴∠BEF=45°,BF=EF,∴∠EBF=∠BEF=45°,∴∠BFE=90°,∵AC=EC=BC=5,∴AM=EM=AE,与Ⅰ同理可得:AM=EM=4,CM=3,AE=8,设BF=EF=y,则AF=8-y,在Rt△ABF中,AF2+BF2=AB2,∴(8-y)2+y2=50,解得:y=1或y=7(舍去),∴BF=1,∴S△ABE=AE•BF=×8×1=4;综上,S△ABE的值为3或4.【点评】本题考查了三角形面积,等腰直角三角形性质和判定,相似三角形的判定和性质,轴对称变换的性质,勾股定理等,解题关键是添加辅助线构造直角三角形,运用分类讨论思想和方程思想解决问题.。

最新苏教版八年级数学暑假作业练习(9)及答案

最新苏教版八年级数学暑假作业练习(9)及答案

最新苏教版八年级数学暑假作业练习(九)及答案16.如图,反比例函数ky x=的图象与一次函数y mx b =+的图象交于(13)A ,,(1)B n -,两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x17.如图,电线杆AB 直立于地面上,它的影子恰好照在土坡的坡面CD 和地面BC 上,若CD 与地面成︒45角,︒=∠60A ,m CD 4=,m BC )2264(-=,则电线杆AB 的长为多少米?第16题图18.将正面分别标有数字2,3,4,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上. (1)随机地抽取一张,求这张卡片上的数字为偶数的概率;(2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?恰好为“24”的概率是多少?解:22.(本题满分5 分)某服装店老板到厂家选购A、B两种品牌的服装,若购进A品牌的服装5套,B品牌的服装6套,需要950元;若购进A品牌的服装3套,B品牌的服装2套,需要450元.(1)求A、B两种品牌的服装每套进价分别为多少元?(2)若销售1套A品牌的服装可获利30元,销售1套B品牌的服装可获利20元,根据市场需求,服装店老板决定,购进B品牌服装的数量比购进A品牌服装数量的2倍还多4套,且B品牌服装最多可购进40套,这样服装全部售出后,可使总的获利不小于1200元,问有几种进货方案?如何进货?23.如图所示,在平面直角坐标中,四边形OABC是等腰梯形,BC∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的—个动点,但是点P不与点0、点A重合.连结CP,D点是线段AB上一点,连PD.(1)求点B 的坐标; (2)当点P 运动到什么位置时,△OCP 为等腰三角形,求这时点P 的坐标; (3)当∠CPD =∠OAB ,且AB BD =85,求这时点P 的坐标.第23题图24.我们知道:将一条线段AB 分割成大小两条线段AC 、CB ,若小线段CB 与大线段AC 的长度之比等于大线段AC 与线段AB 的长度之比,即...49896180339887.0215=-==AB AC AC CB 这种分割称为黄金分割,点C 叫做线段AB的黄金分割点.(1)类似地我们可以定义,顶角为︒36的等腰三角形叫黄金三角形,其底与腰之比为黄金数,底角平分线与腰的交点为腰的黄金分割点.如图24-1,在ABC ∆中,︒=∠36A ,,AC AB =ACB ∠的角平分线CD 交腰AB 于点D ,请你说明D 为腰AB 的黄金分割点的理由.(2) 若腰和上底相等,对角线和下底相等的等腰梯形叫作黄金梯形,其对角线的交点为对角线的黄金分割点. 如图24-2,AD ‖BC ,DC AD AB ==,BC BD AC ==,试说明O 为AC 的黄金分割点.(3)如图24-3,在ABC Rt ∆中,︒=∠90ACB ,CD 为斜边AB 上的高,ACB B A ∠∠∠、、的对边分别为c b a 、、.若D 是AB的黄金分割点,那么cb a 、、之间的数量关系是什么?并证明你的结论.24-1 图24-2 图24-3数学练习(九)参考答案16.解:(1)∵A (1,3)在xk y =的图象上,∴k =3,∴x y 3=又∵)1,(-n B 在xy 3=的图象上,∴3-=n ,即)1,3(--B ∵y =mx +b 过A (1,3),B (-3,-1) ⎩⎨⎧+-=-+=b m bm 313解得:⎩⎨⎧==.2,1b m ∴y =x +2 反比例函数的解析式为xy 3=, 一次函数的解析式为2+=x y(2)从图象上可知,当103<<-<x x 或时, 反比例函数的值大于一次函数的值17. 解:延长AD 交地面于E ,作DF ⊥BE 于F ,∵∠DCF =45°,又CD =4,∴CF =DF =22,由题意知AB ⊥BC , ∴∠EDF =∠A =60°, ∴∠DEF =30°∴EF =62,BE =BC +CF +FE =66.在Rt △ABE 中,∠E =30°, 所以AB =BEtan 30°=263366=⨯(m ).∴电线杆AB 的长为62米.18.解:(1)随机地抽取一张,所有可能出现的结果有3个,每个结果发生的可能性都相等,其中卡片上的数字为偶数的结果有2个.所以P (偶数)=32 (2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成的两位数为:23,24,32,34,42,43 P (恰好是“24”)=6122.解:(1)设A 种品牌的服装每套进价为x 元,B 种品牌的服装每套进价为y 元, 由题意得:⎩⎨⎧=+=+4502395065y x y x 解得⎩⎨⎧==75100y x 答:A 、B两种品牌的服装每套进价分别为100元、75元.(2)设A 种品牌的服装购进m 套,则B 种品牌的服装购进(2m +4)套. 根据题意得:⎩⎨⎧≥++≤+1200)42(20304042m m m 解得16≤m ≤18∵m 为正整数,∴m =16、17、18 ∴2m +4=36、38、40 答:有三种进货方案①A 种品牌的服装购进16套,B 种品牌的服装购进36套. ②A 种品牌的服装购进17套,B 种品牌的服装购进38套. ③A 种品牌的服装购进18套,B 种品牌的服装购进40套. 23.解:(1)作BQ ⊥x 轴于Q.∵四边形OABC 是等腰梯形,∴∠BAQ =∠COA =60°在Rt △BQA 中,BA =4, ∴BQ =AB ·sin ∠BAO =4×sin 60°=32AQ =AB ·cos ∠BAO =4×cos 60°=2,∴OQ =OA -AQ =7-2=5点B 在第一象限内,∴点B 的坐标为(5,32)(2)若△OCP 为等腰三角形,∵∠COP =60°,∴△OCP 为等边三角形或是顶角为120°的等腰三角形若△OCP 为等边三角形,OP =OC =PC =4,且点P 在x 轴的正半轴上, ∴点P 的坐标为(4,0)若△OCP 是顶角为120°的等腰三角形,则点P 在x 轴的负半轴上,且OP =OC =4∴点P 的坐标为(-4,0)∴点P 的坐标为(4,0)或(-4,0) (3)∵∠CPA =∠OCP +∠COP 即∠CPD +∠DPA =∠COP +∠OCP而∠CPD =∠OAB =∠COP =60°∴∠OCP =∠DPA ∵∠COP =∠BAP ∴△OCP ∽△APD ∴APOC ADOP = ∴OP ·AP =OC ·AD ∵85=AB BD∴BD =85AB =25,AD =AB -BD =4-25=23∵AP =OA -OP =7-OP ∴OP (7-OP )=4×23解得OP =1或6∴点P 坐标为(1,0)或(6,0)图24-1 图24-2 图24-324.(1)证明:在△ABC 中,∵∠A =36°,AB =AC ∴∠ACB =21(180°-∠A )=72°.∵CD 为∠ACB 的角平分线,∴∠DCB =21∠ACB =36°, ∴∠A =∠DCB .又∵∠ABC =∠CBD ∴△ABC ∽△CBD ∴BDCBCB AB =. ∵∠ABC =∠ACB =72°∴∠BDC =∠ABC =72°∴BC =CD 同理可证,AD =CD ∴BC =DC =AD , ∴BDADAD AB =∴D 为腰AB 的黄金分割点.(3) 证明:在△ABC 和△DCB 中,∵AB =DC ,AD ∥BC , ∴∠ABC =∠DCB . 又∵BC =BC , ∴△ABC ≌△DCB .∴∠ACB =∠DBC =α∵AD ∥BC , ∴∠DBC =∠BDA =α∵AB =AD ∴∠ABD =∠BDA =α∴∠ABC =2α. ∵AC =BC , ∴∠ABC =∠CAB =2α在△ABC 中,∵∠ABC +∠ACB +∠BAC =180°∴5α=180°∴α=36° 在等腰△ABC 中, ∵BO 为∠ABC 的角平分线,∠ACB =α=36° ∴O 为腰AC 的黄金分割点, 即COAOACCO =(3)a 、b 、c 之间的数量关系是b 2=ac . ∵∠ACB =90°,CD ⊥AB∴∠ACB =∠ADC =90°∵∠A =∠A ∴△ACB ∽△ADC ∴ACABAD AC =即AC 2=AD ·AB∴b 2=AD ·c 同理可证, a 2=BD ·c ∴AD =cb 2① BD =ca 2 ② 又∵D 为AB 的黄金分割点,∴AD 2=BD ·c ③把①、②代入③得 b 4=a 2c 2∵a 、c 均为正数, ∴b 2=ac ∴a 、b 、c 之间的数量关系为b 2=ac.。

初中数学 8大类基本图形全梳理 附结论

初中数学 8大类基本图形全梳理 附结论

初中8大类基本图形全梳理附结论一、平行线1、若∠1=∠2,∠3=∠4(即同旁内角的角平分线),则两条角平分线互相垂直注:如果是同位角或内错角,则两条角平分线互相平行2、若平行线间有折线,那么左侧锐角之和等于右侧锐角之和即:∠1+∠3+∠5=∠2+∠4+∠6∑∠右∑∠左=二、三角形1、等腰三角形“三线合一”∠B=∠C ,AB=AC○1AD ⊥BC○2∠1=∠2○31==2BD CD BC 2、等边三角形“三心合一”∠A=∠B=∠C ,AB=AC=BC○13条“三线合一”○2内心、外心、重心都是点G3、直角三角形(斜边中线)∠ACB=90°,AD=BD=0.5ABAC ²+BC ²=AB ²(勾股定理)○1AD=CD=BD ,∠1=∠2,∠3=∠4○2当∠B=30°时,△ACD 为等边三角形∠1=∠2=30°4、母子直角三角形∠ACB=∠ADC=90°○1△ADC∽△CDB∽△ACBBC²=AB·BDAC²=AB·ADCD²=BD·ADAC·BC=AB·CD(S△ABC)5、等腰直角三角形∠ACB=90°,AC=BC∠1=∠2=∠3=∠4=45°○1“三线合一”○2母子直角三角形○3当∠DCE=45°时AD²+BE²=DE²(沿CE、CD翻着)三、特殊线1、中垂线(垂直平分线)AM=BM=0.5AB,CD⊥AB○1中垂线任意一点到线段两端点的距离相等(AC=BC,AD=BD)○2到一条线段两端点距离相等的点在这条线短的中垂线上(至少需要两点确定中垂线)中垂线是所有到线段两端点距离相等的点的集合。

2、角平分线OD为∠AOB的平分线○1EF⊥OD交OD于C时◇1OE=OF,OD⊥EF(“三线合一”)◇2射线OD为EF中垂线○2DG⊥OA,DH⊥OB◇1DG=DH(Rt△全等)◇2到角的两边距离相等的点在这个角的角平分线上(至少需要一个点与角的顶点,确定角度平分线)角平分线是角内到角两边的距离相等的所有点的集合。

初三数学相似三角形典型例题(含答案)

初三数学相似三角形典型例题(含答案)

初三数学相似三角形典型例题(含答案)本节复的目标是理解相似三角形的概念和性质,并能应用其定理解决实际问题。

其中包括线段的比、成比例线段的概念,黄金分割,平行线分线段成比例定理等重要知识点。

相似三角形是平面几何的重要内容之一,常与四边形、圆的知识相结合构成高分值的综合题。

在中考试题中,相似三角形题型常以填空、选择、简答或综合出现,分值一般在10%左右。

相似三角形题目有利于培养学生的综合素质,形成创新与探索型试题。

重要知识点包括比例线段的有关概念、黄金分割、比例性质等。

比例线段的比例式中,a、d叫外项,b、c叫内项,a、c叫前项,b、d叫后项,d叫第四比例项。

黄金分割是把线段AB分成两条线段AC和BC,使AC=AB·BC,C叫做线段AB的黄金分割点。

比例性质包括基本性质、合比性质和等比性质。

平行线分线段成比例定理是相似三角形中的重要定理。

该定理指出,三条平行线截两条直线,所得的对应线段成比例。

同时,平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段也成比例。

如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

相似三角形的判定有五种情况。

其中,两角对应相等、两边对应成比例且夹角相等、三边对应成比例、直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例、平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

AEF=45°同理,∠CEA=45°XXX和△XXX都是等腰直角三角形,且∠AEF=∠CEAAEF∽△CEA2)∵四边形ABEG、GEFH、HFCD都是正方形AFB=∠EFG=90°同理,∠ACB=∠DCH=90°AFB+∠ACB=180°又因为四边形ABCD是平行四边形AFB+∠ACB=180°-∠BAC又因为△ABC是等边三角形BAC=60°AFB+∠ACB=180°-60°=120°AFB+∠ACB=45°+75°=120°AFB+∠ACB=45°+∠BAC=120°AFB+∠ACB=45°已知:在△ABC中,D为BC边上的一点,∠CAD=∠B,AD=6,AB=8,BD=7,求DC的长。

因式分解16种方法

因式分解16种方法

因式分解的16种方法因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。

而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。

注意三原则1分解要彻底2最后结果只有小括号3最后结果中多项式首项系数为正(例如:—3x2• x=-x3x —1)分解因式技巧1•分解因式与整式乘法是互为逆变形。

2. 分解因式技巧掌握:①等式左边必须是多项式;②分解因式的结果必须是以乘积的形式表示;③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数;④分解因式必须分解到每个多项式因式都不能再分解为止。

注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。

基本方法⑴提公因式法各项都含有的公共的因式叫做这个多项式各项的公因式。

如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。

具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。

如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。

提出“ ”号时,多项式的各项都要变号。

提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数在确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同。

口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶。

例如:-am+bm+cm=-m(a-b-c);a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。

初中数学知识

初中数学知识

初中数学基础知识一、数正整数(N+或N *)整数(Z) 零 自然数 有理数(R) 负整数实数(Q) 正分数 此分数为有限小数 复数(Z) (b=0) 分数 负分数 或无限循环小数 a+bi(a,b ∈R) 无理数(正、负):无限不循环小数 (i=1-) 虚数 虚数(a ≠0) ≠ 绝对值:正数的绝对值是它本身,负数绝对值是它的相反数,0的绝对值为0a 为实数,则⎩⎨⎧<-≥=)0a (a )0a (aa 数轴上,实数的绝对值是表示该数的点离原点距离。

处理任何类型的题目,只要有“││”出现,关键是去掉“││”符号。

完全平方数:有理数a 的平方等于有理数b ,b 叫完全平方数。

非负数:正实数与零的统称。

常见的非负数 │a │2a (a 为一切实数)性质:若干个非负数的和为0,则每个非负数均为0。

二、代数有理式:整式、分式(分子分母同乘、除以同一非0整式,值不变) 代数式无理式:根号内含有字母的代数式灵活运用:①式中字母可以代表仼意实数、代数式(含有理式、无理式) ②注意观察:移项、变形(如添项、拆分项、升降幂等)2、幂及幂的运算Ⅰ、根式方根:如果一个数的n 次方(n ≥2,n ∈N+)等于a ,这个数叫做a 的n 次方根。

开方:求一数的方根的运算叫做开方。

正数有两个互为相反数偶次方根,负数没有偶次方根。

0的任何次方根都是0。

注意:(1)当n a = (2)当n 是偶数时,,0||,0a a a a a ≥⎧==⎨-<⎩⑴算术平方根=非负数a 的正的平方根=a (a ≥0)……正数a 的平方根=a ±(a >0)性质:2a =a,)0()(2≥=a a a ,b a ab ⋅=(a ≥0,b ≥0) ,ba ba =(a ≥0,b >0)(正用、逆用)⑵算术平方根与绝对值:①联系:都是非负数,2a =│a │②区别:│a │中,a 为实数;a 中,a 为非负数。

Ⅱ、幂(1)零指数:0a =1(a ≠0)(2) a >0时,na >0; a <0时,na >0(n 是偶数),na <0(n 是奇数)Ⅲ、幂的运算①nm nma a a +=∙ ② nm n m aa a -=÷(a ≠0)③mnn m aa =)( ④ mmma ab a ∙=∙)(⑤mm m ba b a =)( (b ≠0)⑥ mma a 1=-(a ≠0)⑦0,,,1)m naa m n N n *=>∈>且注意:①在化简时,分母有理化:A.a1 B.aab ab = C.bn a m -1.②偶数不能轻易约分:122[(1]11-≠-3、对数log a x N= 注意:底数a>0且a ≠1,真数N >0;常用对数:以10为底的对数,lgN ;lg2=0.301 lg5=0.699 自然对数:以无理数e(=2.71828)为底的对数,ln, N 对数式与指数式的互化: 对数式 指数式log x a x N a N =⇔=对数底数←a→幂底数 对数←x→指数 真数←N→幂Ⅰ、对数的性质:(1)负数和零没有对数; (2) 01log =a ; (3) 1log =a a ; Ⅱ、对数换底公式: log log log m a m NN a=推论:(1) a b b a log 1log =(2) log log log log a b c a b c d d ∙∙=(3) log log m na a nb b m=Ⅲ、对数运算法则:若a >0,a ≠1,M >0,N >0,则(1) log ()log log a a a MN M N =+ (2) log log log aa a MM N N=- (3) log log ()n a a M n M n R =∈ (4) N nN a n a log 1log =特别注意:N M MN a a a log log log ⋅≠ ()N M N M a a a l o g l o g l o g ±≠±三、数的大小2、对数的大小比较(log ay x =)对数的定义、图像及性质是高考考查的重点,对数函数与其他函数、方程不等式及数列相融合的知识也是考查的热点。

—斐波那契数列与黄金分割

—斐波那契数列与黄金分割
2 > 1.666 > 1.625 > 1.6190 > 1.6181
1+ 5 2
=1.6180・・・
黄金比,黄金数
斐波那契数列的美妙性质
1 1 2 3 5 8 13 21 34 55 89 144 …
☆ 随着项数的增加,前一项与后一项之比越逼近 黄金分割0.6180339887…… ☆ 从第二项起,每个奇数项的平方都比前后两项之积 多1,每个偶数项的平方都比前后两项之积少1。
黄金矩形
a : b = 1 : 1.618…
b
a
A
C
B
于是 A AC Bx11251.618, 其倒数 AC 2 510.618.
AB1 5 2 即 C 点约在 AB 长度的 0.618 的位置上.
希腊数学家把这个几何问题里的点 C 叫作黄金分
割点,这个比值
AC 510.618 AB 2
称为黄金分割数.
A straight line is said to have been cut in extreme and mean radio when,as the whole line is to the greater segment,so is the greater to the less.
分一线段为二线段,当整体线段比大线段等于 大线段比小线段时,则称此线段被分为中外比。
A、自然界中花朵的花中存在斐氏数列特征
生物学家们发现,花瓣数是极有特征的。多 数情况下,花瓣的数目都是3,5,8,13,21,34, 55,89,144……
例如:百合花有3瓣花瓣,至良属的植物有5 瓣花瓣,许多翠雀属植物有8瓣花瓣,万寿菊的 花瓣有13瓣,紫莺属的植物有21瓣花瓣……

黄金三角形

黄金三角形

黄金三角形(总5页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除.黄金三角形如果等腰三角形的底与腰之比等于0.618,那我们就称这个三角形为黄金三角形,经过证明和计算,我们可以得知,黄金三角的顶角为36°,两底角分别为72°。

这样的三角形有许多有趣的性质。

性质一:黄金三角形ABC中,顶角∠A=36°,∠C平分线交AB于D,则△CDB也是黄金三角形(图125)。

性质二:如图125右中,△ABC,△CDB都是黄金三角形,作∠B的分平线交CD 于E,则BED也是黄金三角形。

并且,这个过程可以无限制地进行下去,于是得到一连串的黄金三角形,称为黄金三角形套。

性质三:性质二中所说的那些三角形都是相似的黄金三角形,每两个相邻的黄金三角形的相似比都等于黄金数,即约为0.618。

性质四:把黄金三角形套中的一连串三角依次编号为△1、△2、△3、…△n、…△n+3,那么△n+3的左腰平行于△n的右腰(在图125右中,△4的左腰DF平行于△1的右腰AC)。

2.黄金矩形矩形的宽与长之比如果等于黄金数,我们就称之为黄金矩形。

黄金矩形也类似于黄金三角形的性质:性质一:如图126,在黄金矩形ABCD内,作正方形CDEF,则矩形ABFE 也是黄金矩形。

性质二:按性质一的方法,在黄金矩形ABEF内,再作一正方形AHGE,则矩形BFGH也是黄金矩形,这个过程可以无限制地进行下去,于是得到一连串的黄金矩形。

这叫做黄金矩形套。

性质三:性质二中所说的黄金矩形,都是相似形,每两个相邻的黄金矩形的相似比等于黄金数。

3.和谐的五角星在我们庄严的国旗上,有金光闪闪的五角星。

在其他国家的旗帜上或一些建筑物尖顶上,也常常看到五角星。

五角星星美观、在态度、庄重、和谐,是最受人们喜爱的几何图形之一。

究其原因,是因为它与黄金比例有着密切的关系。

在一个圆中作正五边形。

直角梯形对角线形成的三角形

直角梯形对角线形成的三角形

直角梯形对角线形成的三角形1. 引言嘿,大家好!今天咱们聊聊一个有趣的几何话题,直角梯形对角线形成的三角形。

可能你在学校学过这个概念,但今天我们就来轻松聊聊,让这个看似复杂的内容变得简单易懂,顺便也增添点乐趣。

想象一下,咱们的直角梯形就像一个三明治,上面是面包,下面是面包,中间夹着美味的馅料。

而这个美味的部分,就是我们要讨论的对角线和它们形成的三角形。

2. 直角梯形的基本概念2.1 什么是直角梯形?直角梯形,这个名字听起来有点高深,其实它就像一个“倾斜的方块”,上边和下边是平行的,左右两边有一个直角。

想象一下,你在一个游乐园里,看到一个倾斜的滑梯,右边是高的,左边是低的。

这就跟直角梯形的形状差不多!很简单吧?2.2 对角线的作用那么,直角梯形的对角线又是什么呢?说白了,对角线就是把这个“倾斜的方块”从一个角拉到另一个角的线。

就像你和朋友在玩捉迷藏,你从一个角落跑到另一个角落的过程一样,简单又直接。

每当你画出这条对角线,就像给直角梯形加上了一条神奇的“魔法线”,将它的内部分成了两个小三角形。

3. 对角线形成的三角形3.1 三角形的特点现在,咱们终于要进入重点了,直角梯形的对角线形成的三角形!这两个三角形其实是非常特别的,它们拥有各自独特的特点。

比如,这两个三角形都有一个直角,嘿,这可是几何学里的“黄金法则”!每当有直角出现,很多问题就迎刃而解了。

而且,这两个三角形的面积之和,恰好等于整个直角梯形的面积。

这就像是大团圆的结局,大家都能吃到好东西,真是和谐美满啊!3.2 实际应用那么,为什么我们要关心这些三角形呢?其实,生活中有很多地方都能用到这些知识。

例如,建筑师在设计房子时,需要用到直角梯形和对角线的概念,确保房子既美观又安全。

再比如,你在玩拼图游戏的时候,某些拼图的形状就可能是这种结构。

总之,直角梯形和它的对角线,真的是生活中的小帮手呢!4. 结语最后,咱们来总结一下。

直角梯形和对角线形成的三角形就像是几何世界里的好朋友,互相依赖,缺一不可。

浅谈初中数学“选学内容”的使用

浅谈初中数学“选学内容”的使用

学科论文:初中数学浅谈初中数学“选学内容”的使用【摘要】“选学内容”作为教材的一个有机组成部分,在培养学生的数学素质方面有着十分积极而独到的作用。

利用“选学内容”可让学生看到更广阔的数学世界。

既有助于激发学生的学习兴趣;又可以培养学生良好的思想素质,以及提高学生的数学知识应用能力。

人教版初中数学中“选学内容”丰富,集趣味性、知识性、史料性、教育性于一体,是对教学内容的补充和开拓,是对学生进行思想教育的极好内容。

所以,本文依据新课程相关理念,结合教学实践,对数学教材中的“选学内容”的使用进行探索。

【关键词】数学选学内容使用人教版初中数学教材在每章节中安排了相关的“选学内容”,可谓是新教材的一个亮点。

选学内容主要以“数学趣闻”、“数学发现”和“数学史”为题材,为学生提供丰富的具有思想性、实践性、挑战性的反映数学本质的阅读材料,丰富了教材内容。

其目的是拓展学生的数学活动空间,培养学生学习的兴趣,激发他们的探索精神和创新意识,使学生在思维能力、情感态度和价值观等多方面得到发展。

所以,如何开发和利用“选学内容”这一宝贵材料,如何充分发挥材料的教育内涵和教育功能,成为教师努力探索的新课程。

本文结合自身教学的尝试,谈谈对初中数学“选学内容”的探索。

一、将“选学内容”创设成教学情境建构主义强调学生知识的获得不是单纯的复制和迁移,更重要的是学生的自我建构。

因此要求教师把问题设置在学生思维的“最近发展区”,关注与学生生活相关的活生生的经验,让学生在与社会环境的接触中产生问号。

有些“选学内容”的编写恰恰以实际生活作为素材,符合学生的认知心理特征.因此,可以适当加以修改,用来导入或完善某些概念。

案例一:在七年级(上)第一章第4节《有理数的乘除法》的教学中,我们可以把课后的选学材料《翻牌游戏中的数学道理》作为创设情境的素材,以游戏的形式来激发了学生的学习兴趣,以提高学生的积极性和参与意识,使课堂氛围充满生机活力。

课件演示翻牌游戏——桌上有9张正面向上的扑克牌每次翻动其中任意2张(包括已翻过的牌),使它们从一面向上变为另一面向上,这样一直做下去,观察能否使所有的牌都反面向上?你不妨试一试,看看会不会出现所有牌都反面向上?问:从这个结果,你能想到其中的数学道理吗?通过这个问题的提出,引导学生亲自动手,验证自己的想象,激起学生在认知上的冲突,诱发学生的学习欲望。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档