SIFT算法英文详解
ASIFT算法
1. 绪论目标识别是在图像或视频中寻找目标的过程。
在目标识别的应用中,特征提取和特征选择是第一个步骤,而且也是决定最后效果最重要的一个步骤之一。
如果说一个完整应用是一个系统的话,那么特征就代表着由输入数据转化而来的,传送给系统其它部分的数据。
很多时候最终能否得到一个理想的结果,在很大程度上依赖于能否找到最具代表性的特征。
好的特征将会较大地降低后续工作的难度;不好的特征则会对系统后续处理产生干扰甚至使系统产生错误的输出。
良好的特征也降低了系统后续处理的复杂度,为其广泛应用提供了可能。
SIFT(Scale-Invariant Feature Transform, 尺度不变特征转换)特征是一个检测和描述图像局部特征的算法,这种算法具有优良的特性,能较准确地用于特征匹配。
它具有广泛的用途,包括目标识别,三维重建、表情识别以及视频和运动追踪。
SIFT基于两个大的组成部分,并使用了多种改进技术以改善各项指标。
这里简要介绍经典SIFT算法和基于SIFT的目标识别应用。
为后面介绍ASIFT算法作铺垫。
SIFT是一种检测与描述图像局部特征的方法。
为了识别和描述图像中的目标,需要从图像中提取出与目标相联系的特征。
利用这些特征可以从众多背景目标中识别出所需目标。
为了确保准确无误地识别出目标,要求在各种视角、光照、距离以及噪声条件下仍然可以准确地进行匹配。
SIFT使用不同的技术解决以上问题。
对物体距离远近,大小和噪声条件的适应由高斯尺度空间来完成,而视角、光照等条件则对应于特征描述符。
SIFT并不是一开始就以解决上述问题为设计目标,而是先提出一种算法,而后发现它有诸多优良的性质。
在SIFT算法提出以前,若干技术已经趋于成熟,而SIFT则成功地把它们整合为一个整体,并包括一些创新点。
SIFT的两个主要组成部分是尺度空间检测和特征描述符。
图像的特征点一般都比周围的点显著,比如位于极值点或灰度值变化加速率大的位置。
特征的类型一般包括点、块、边缘、脊等。
sift特征点检测算法原理
sift特征点检测算法原理SIFT特征点检测算法原理SIFT(Scale-Invariant Feature Transform)是一种用于在图像中检测和描述局部特征的算法。
它的原理是通过在不同尺度空间中寻找关键点,并计算这些关键点的局部特征描述子,从而实现图像的特征匹配和识别。
1. 尺度空间构建SIFT算法首先通过高斯金字塔构建尺度空间,以便在不同尺度下检测出特征点。
高斯金字塔是通过对原始图像进行多次降采样得到的一系列图像,每个图像都是前一层图像的二分之一。
在每一层图像上应用高斯滤波器,得到一系列平滑图像。
2. 关键点检测在构建好的尺度空间中,SIFT算法使用Difference of Gaussian (DoG)来检测关键点。
DoG是通过对相邻两层平滑图像进行相减得到的,可以有效地检测出图像中的边缘和角点。
在DoG图像中,局部极值点被认为是潜在的关键点。
3. 关键点定位为了准确定位关键点的位置,SIFT算法采用了尺度空间极值点的精确定位方法。
它使用T aylor展开式对DoG图像进行拟合,通过求解极值点的二阶导数来精确定位关键点的位置。
同时,为了排除低对比度的关键点和边缘响应的干扰,SIFT算法会对关键点进行一定的筛选。
4. 方向分配为了使特征描述子具有旋转不变性,SIFT算法对每个关键点分配一个主方向。
它通过计算关键点周围像素的梯度方向直方图,找出主要梯度方向,并将其作为关键点的方向。
这样可以保证特征描述子在旋转变换下具有一定的稳定性。
5. 特征描述在关键点的周围区域内构建特征描述子,用于表示关键点的局部特征。
SIFT算法将关键点周围的图像区域划分为若干个子区域,并在每个子区域内计算梯度方向直方图。
最后将这些直方图连接起来,得到一个具有128维特征向量的特征描述子。
通过以上步骤,SIFT算法可以在图像中检测出大量的关键点,并为每个关键点生成一个128维的特征描述子。
这些特征描述子具有尺度不变性、旋转不变性和光照不变性等特点,可以用于图像匹配、物体识别和三维重建等应用领域。
siftkeypoint参数
siftkeypoint参数
SIFT(Scale-Invariant Feature Transform)是一种用于图像处理和计算机视觉领域的特征提取算法,它可以在不同尺度和旋转下提取出稳定的特征点。
在SIFT算法中,关键点(keypoint)是指图像中具有显著特征的点,这些点可以用来进行图像配准、目标识别和其他计算机视觉任务。
SIFT算法中的关键点参数包括:
1. 尺度空间参数(octaves),SIFT算法使用高斯滤波器构建图像的尺度空间金字塔,octaves参数指定金字塔的层数,影响了提取关键点的尺度范围。
2. 尺度参数(sigma),高斯滤波器的标准差,用于控制图像的平滑程度和特征点的尺度。
3. 阈值参数(contrastThreshold和edgeThreshold),用于筛选关键点的对比度和边缘响应阈值,可以控制提取出的关键点质量和数量。
4. 方向参数(orientationBins),用于计算关键点的主方向,可以提高关键点的旋转不变性。
在使用SIFT算法时,调整这些关键点参数可以影响到提取出的
关键点的数量、质量和稳定性,需要根据具体的应用场景和图像特
点进行合理的选择和调整。
同时,SIFT算法也有一些默认的参数值,可以根据具体情况进行调整以获得最佳的特征提取效果。
sift特征提取的几个主要步骤
sift特征提取的几个主要步骤SIFT(Scale-Invariant Feature Transform)是一种能够提取图像中的稳定、具有尺度不变性的特征点的算法,它广泛应用于计算机视觉和图像处理领域。
SIFT特征提取主要有以下几个主要步骤:1. 尺度空间构建(Scale Space Pyramid):SIFT算法首先通过使用不同尺度的高斯模糊函数对原始图像进行滤波,产生一系列图像金字塔,也称为尺度空间。
这是因为图像中的物体在不同尺度下具有不同的细节。
高斯金字塔的构建会产生一系列模糊程度不同的图像。
2. 特征点检测(Scale-Space Extrema Detection):在尺度空间中,SIFT算法通过在每个尺度上对图像进行梯度计算,并寻找图像中的极值点来检测潜在的关键点。
这些关键点通常是在空间和尺度上稳定的,它们能够在不同尺度和旋转下保持一定的不变性。
3. 关键点定位(Keypoint Localization):为了更准确地定位关键点,SIFT算法通过使用DoG(Difference of Gaussians)图像金字塔来检测潜在的关键点位置。
DoG图像是通过对高斯图像金字塔的相邻尺度进行相减得到的。
对DoG图像进行极值点检测可以找到潜在的关键点。
4. 关键点方向确定(Orientation Assignment):在确定了潜在的关键点位置后,SIFT算法会对每个关键点周围的领域计算梯度幅度和方向。
然后,使用梯度直方图来确定关键点的主要方向。
这样做能够使得后续的特征描述过程对旋转更具有鲁棒性。
5. 特征描述(Feature Description):在关键点方向确定后,SIFT算法会在每个关键点周围的邻域中构建一个针对尺度和旋转不变性的局部特征描述符。
这个描述符是由关键点周围的梯度直方图组成的,梯度直方图反映了关键点周围的图像局部特征。
6. 特征匹配(Feature Matching):在特征描述生成后,可以使用一些匹配算法来比较两个图像之间的特征点,找到两个图像中相对应的关键点对。
sift算法详解
2、高斯模糊
SIFT 算法是在不同的尺度空间上查找关键点,而尺度空间的获取需要使用高斯模糊来 实现,Lindeberg 等人已证明高斯卷积核是实现尺度变换的唯一变换核,并且是唯一的线性 核。本节先介绍高斯模糊算法。
2.1 二维高斯函数
高斯模糊是一种图像滤波器,它使用正态分布(高斯函数)计算模糊模板,并使用该模板 与原图像做卷积运算,达到模糊图像的目的。 N 维空间正态分布方程为:
G (r ) =
1 2πσ
2
N
e −r
2
/(2 σ 2 )
(1-1)
其中, σ 是正态分布的标准差, σ 值越大,图像越模糊(平滑)。r 为模糊半径,模糊半 径是指模板元素到模板中心的距离。如二维模板大小为 m*n,则模板上的元素(x,y)对应的高 斯计算公式为:
G ( x, y ) =
1
2πσ 2
3.1 尺度空间理论
尺度空间(scale space)思想最早是由 Iijima 于 1962 年提出的,后经 witkin 和 Koenderink 等人的推广逐渐得到关注,在计算机视觉领域使用广泛。 尺度空间理论的基本思想是: 在图像信息处理模型中引入一个被视为尺度的参数, 通过 连续变化尺度参数获得多尺度下的尺度空间表示序列, 对这些序列进行尺度空间主轮廓的提 取,并以该主轮廓作为一种特征向量,实现边缘、角点检测和不同分辨率上的特征提取等。 尺度空间方法将传统的单尺度图像信息处理技术纳入尺度不断变化的动态分析框架中, 更容易获取图像的本质特征。 尺度空间中各尺度图像的模糊程度逐渐变大, 能够模拟人在距 离目标由近到远时目标在视网膜上的形成过程。 尺度空间满足视觉不变性。该不变性的视觉解释如下:当我们用眼睛观察物体时,一方 面当物体所处背景的光照条件变化时, 视网膜感知图像的亮度水平和对比度是不同的, 因此 要求尺度空间算子对图像的分析不受图像的灰度水平和对比度变化的影响, 即满足灰度不变 性和对比度不变性。另一方面,相对于某一固定坐标系,当观察者和物体之间的相对位置变 化时,视网膜所感知的图像的位置、大小、角度和形状是不同的,因此要求尺度空间算子对 图像的分析和图像的位置、 大小、 角度以及仿射变换无关, 即满足平移不变性、 尺度不变性、 欧几里德不变性以及仿射不变性。
SIFTSURFORBFAST特征提取算法比较
SIFTSURFORBFAST特征提取算法比较在计算机视觉领域中,SIFT(Scale-Invariant Feature Transform,尺度不变特征转换)、SURF(Speeded Up Robust Features,加速鲁棒特征)、ORB(Oriented FAST and Rotated BRIEF,方向性的快速特征和旋转的BRIEF)、FAST(Features from Accelerated Segment Test,加速线段测试特征)都是常用的特征提取算法。
本文将对这四种算法进行比较,主要从算法原理、特点以及在不同应用场景的优缺点进行分析。
1.SIFT算法SIFT算法是由Lowe在1999年提出的一种获取图像局部特征的算法。
其主要兴趣点在于尺度不变特征的提取,通过尺度空间构建和关键点提取和描述来实现图像匹配。
SIFT算法的特点是具有旋转不变性、尺度不变性和光照不变性。
然而,SIFT算法计算复杂度较高,不适合实时应用。
2.SURF算法SURF算法是由Bay等人在2024年提出的一种加速鲁棒特征提取算法。
与SIFT算法相比,SURF算法主要优化了尺度空间构建、关键点检测和描述子生成等步骤。
SURF算法利用图像的Hessian矩阵来检测尺度空间的极值点,并通过Haar小波响应计算描述子。
该算法具有较好的尺度不变性和旋转不变性,同时计算速度更快。
然而,SURF算法对于局部对比度较低的图像特征提取效果较差。
3.ORB算法ORB算法是由Rublee等人在2024年提出的一种速度和描述能力兼具的特征提取算法。
该算法结合了FAST关键点检测和BRIEF描述子生成算法,并引入了旋转和尺度不变性。
ORB算法在FAST检测关键点时,通过计算像素灰度和检测周围点的弧长度来提高检测的稳定性。
在描述子生成过程中,ORB算法利用了方向梯度直方图(DOG)来提取关键点的旋转信息。
ORB算法具有快速、简单和可靠的特点,适合于实时应用。
找特征点的算法SIFT和SURF算法
找特征点的算法SIFT和SURF算法SIFT算法和SURF算法是用于图像特征点的检测与描述的两种经典算法。
它们在图像处理、计算机视觉和模式识别等领域得到广泛应用。
下面将分别介绍SIFT算法和SURF算法,并对其原理和应用进行详细阐述。
一、SIFT算法(Scale-Invariant Feature Transform)SIFT算法是由Lowe于1999年提出的一种用于图像特征点检测与描述的算法。
它通过分析图像的局部特征来提取与尺度无关的特征点,具有尺度不变性、旋转不变性和仿射不变性等优点。
1.特征点检测SIFT算法首先通过高斯差分金字塔来检测图像中的特征点。
高斯差分金字塔是由一系列模糊后再进行差分操作得到的,通过不同尺度的高斯核函数对图像进行卷积,然后对结果进行差分运算,得到图像的拉普拉斯金字塔。
在拉普拉斯金字塔上,通过寻找局部最大值和最小值来确定特征点的位置。
2.特征点描述在确定特征点的位置后,SIFT算法使用梯度直方图表示特征点的局部特征。
首先,计算特征点周围邻域内每个像素点的梯度幅值和方向,然后将邻域分为若干个子区域,并统计每个子区域内的梯度幅值和方向的分布,最后将这些统计结果组合成一个向量作为特征点的描述子。
3.特征点匹配SIFT算法通过计算特征点描述子之间的欧式距离来进行特征点的匹配。
欧式距离越小表示两个特征点越相似,因此选择距离最近的两个特征点作为匹配对。
二、SURF算法(Speeded Up Robust Features)SURF算法是由Bay等人于2024年提出的一种在SIFT算法的基础上进行改进的图像特征点检测与描述算法。
它通过加速特征点的计算速度和增强特征点的稳定性来提高算法的实时性和鲁棒性。
1.特征点检测SURF算法使用Hessian矩阵来检测图像中的特征点。
Hessian矩阵是图像的二阶导数矩阵,通过计算Hessian矩阵的行列式和迹来确定图像的局部最大值和最小值,从而找到特征点的位置。
SIFT特征提取算法
SIFT特征提取算法SIFT(Scale-Invariant Feature Transform)特征提取算法是一种用于图像的局部特征分析的算法。
它能够提取出图像中的关键点,并对这些关键点进行描述,从而可以用于图像匹配、物体识别等应用领域。
本文将详细介绍SIFT算法的原理和过程。
1.尺度空间构建SIFT算法首先通过使用高斯滤波器来构建图像的尺度空间,以便在不同尺度下检测关键点。
高斯滤波器可以通过一系列的高斯卷积操作实现,每次卷积之后对图像进行下采样(降低分辨率),得到不同尺度的图像。
2.关键点检测在尺度空间构建完成后,SIFT算法使用差分运算来检测关键点。
差分运算可以通过对图像进行高斯平滑操作来实现,然后计算相邻尺度之间的差分图像。
对差分图像进行极值检测,即寻找局部最大和最小值的像素点,这些像素点就是图像中的关键点。
3.关键点精确定位关键点的精确定位是通过拟合关键点周围的局部图像来实现的。
SIFT算法使用了一种高度鲁棒的方法,即利用关键点周围梯度的方向和大小来进行拟合。
具体来说,SIFT算法在关键点周围计算图像的梯度幅值和方向,并构建梯度直方图。
然后通过在梯度直方图中寻找局部极值来确定关键点的方向。
4.关键点描述关键点的描述是为了提取关键点周围的特征向量,用于后续的匹配和识别。
SIFT算法使用了一种局部特征描述算法,即将关键点周围的图像区域划分为小的子区域,并计算每个子区域的梯度方向直方图。
然后将这些直方图组合起来,构成一个维度较高的特征向量。
5.特征向量匹配在完成关键点描述之后,SIFT算法使用一种近似的最近邻方法来进行特征向量的匹配。
具体来说,使用KD树或者暴力匹配的方法来寻找两幅图像中最相似的特征向量。
通过计算特征向量之间的距离,可以找到最相似的匹配对。
6.尺度不变性SIFT算法具有尺度不变性的特点,即对于图像的缩放、旋转和视角变化等变换具有较好的鲁棒性。
这是因为在特征提取的过程中,SIFT算法对图像进行了多尺度的分析,并利用了关键点周围的梯度信息进行描述。
s i f t 算 法 原 理 解 析
SIFT特征提取原理SIFT(Scale-invariant feature transform)是一种检测局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points)及其有关scale 和 orientation 的描述子得到特征并进行图像特征点匹配,获得了良好效果。
2.算法分析SIFT特征不只具有尺度不变性,即使改变旋转角度,图像亮度或拍摄视角,仍然能够得到好的检测效果。
整个算法分为以下几个部分:2.1?构建尺度空间这是一个初始化操作,尺度空间理论目的是模拟图像数据的多尺度特征。
高斯卷积核是实现尺度变换的唯一线性核,于是一副二维图像的尺度空间定义为:其中 G(x,y,σ) 是尺度可变高斯函数:(x,y)是空间坐标,也是尺度坐标。
σ大小决定图像的平滑程度,大尺度对应图像的概貌特征,小尺度对应图像的细节特征。
大的σ值对应粗糙尺度(低分辨率),反之,对应精细尺度(高分辨率)。
为了有效的在尺度空间检测到稳定的关键点,提出了高斯差分尺度空间(DOGscale-space)。
利用不同尺度的高斯差分核与图像卷积生成。
下图所示不同σ下图像尺度空间:关于尺度空间的理解说明:2kσ中的2是必须的,尺度空间是连续的。
在 ?Lowe的论文中,将第0层的初始尺度定为1.6(最模糊),图片的初始尺度定为0.5(最清晰). 在检测极值点前对原始图像的高斯平滑以致图像丢失高频信息,所以 Lowe 建议在建立尺度空间前首先对原始图像长宽扩展一倍,以保留原始图像信息,增加特征点数量。
尺度越大图像越模糊。
图像金字塔的建立:对于一幅图像I,建立其在不同尺度(scale)的图像,也成为子八度(octave),这是为了scale-invariant,也就是在任何尺度都能够有对应的特征点,第一个子八度的scale为原图大小,后面每个octave为上一个octave降采样的结果,即原图的1-4(长宽分别减半),构成下一个子八度(高一层金字塔)。
SIFT特征点提取与匹配
SIFT特征点提取与匹配SIFT(Scale-Invariant Feature Transform)特征点提取与匹配是一种在计算机视觉领域广泛使用的图像特征提取和匹配算法。
它由David G. Lowe于1999年提出,并在后续的研究中得到了改进和优化。
关键点检测的目标是找到一些具有局部极值的图像点。
这里的局部极值是指该点所在位置的像素值在周围邻域中达到最大或最小值。
为了实现尺度不变性,SIFT算法使用了高斯金字塔来检测不同尺度下的关键点。
高斯金字塔是通过对原始图像进行多次平滑操作得到的一系列图像,每一层图像的尺度比上一层的尺度大约减少一半。
在每一层中,使用DoG (Difference of Gaussians)来寻找关键点。
DoG是通过对两个邻近的高斯平滑图像进行差分操作得到的,它可以提供图像中的边缘和角点等信息。
通过在每一层的DoG图像中找到局部极值点,即可得到关键点的粗略位置。
为了进一步提高关键点的准确性,还需要对这些粗略位置进行精细的插值。
最终得到的关键点具有尺度和旋转不变性,并且能够抵抗光照变化的影响。
描述子的计算是对关键点周围区域的图像内容进行编码,生成一个具有较高区分度的特征向量。
首先,将关键点周围的邻域划分为若干个子区域,每个子区域内的像素值作为一个特征向量的元素。
然后,对每个子区域内的像素值进行高斯加权,以减小光照变化对特征描述子的影响。
最后,对加权后的像素值进行方向直方图统计,得到一个具有旋转不变性的特征描述子。
对于每个关键点,都会得到一个128维的特征向量。
这些特征向量可以通过比较欧式距离来进行匹配。
SIFT特征点匹配是通过在两个图像中的特征描述子之间进行比较,找到最佳匹配的特征点对。
常用的匹配方法是计算两个特征向量之间的欧式距离,并将距离最小的两个特征点视为匹配点。
为了提高匹配的准确性和鲁棒性,还可以采用诸如RANSAC(RANdom SAmple Consensus)的算法来剔除错误匹配。
SIFT算法详解及应用
SIFT算法详解及应用SIFT(Scale-Invariant Feature Transform)是一种在计算机视觉中常用的特征点提取算法,由David Lowe在1999年提出,并在2004年的论文中进行了详细阐述。
SIFT算法可以在不同尺度和旋转下保持图像的特征点不变性,因此在图像拼接、目标识别、图像匹配等领域具有广泛的应用。
1.尺度空间构建:SIFT算法使用高斯差分函数来检测不同尺度下的特征点。
通过在图像中采用不同尺度的高斯滤波,构建尺度空间,从而检测到不同尺度的图像特征。
2.关键点提取:在构建的尺度空间中,SIFT算法通过在每个像素点检测局部极值点来获取关键点。
具体的做法是对每个像素点在尺度空间上进行比较,找出该点与它相邻像素点和尺度上的极值,从而得到关键点。
3. 关键点定位:在关键点提取后,SIFT算法通过利用二阶偏导数的Hessian矩阵来对关键点进行进一步定位。
Hessian矩阵可以描述图像对灰度变化的响应,通过计算关键点周围像素点的Hessian矩阵,可以对关键点进行精确定位。
4.方向分配:在关键点定位后,SIFT算法为每个关键点分配一个主导方向。
通过对关键点周围的图像梯度进行统计,找到梯度方向分布最大的方向作为主导方向,以此来保证关键点对旋转具有不变性。
5.特征描述:在分配了主导方向后,SIFT算法使用局部图像梯度的方向直方图来描述关键点的局部特征。
将关键点周围的16x16邻域划分为4x4的小格子,计算每个小格子内的梯度方向直方图,最终得到一个128维的特征向量来表示关键点的局部特征。
1.尺度不变性:SIFT算法通过在不同尺度下检测特征点,使得算法对于图像缩放具有不变性。
这一特性使得SIFT在目标识别和图像匹配等领域具有广泛应用,可以应对不同尺寸的目标和场景。
2.旋转不变性:SIFT算法通过为每个关键点分配主导方向,使得算法对于图像旋转具有不变性。
这一特性使得SIFT在图像拼接和图像匹配中能够应对图像的旋转变换。
SIFT算法详解
SIFT算法详解SIFT(Scale-Invariant Feature Transform)算法是一种用于计算图像特征的算法,最早由David Lowe于1999年提出,是一种用于在不同尺度和旋转下具有不变性的特征描述算法。
1.关键点检测:SIFT算法首先对图像进行多尺度空间的检测,即在图像中寻找尺度空间极值点。
为了实现尺度不变性,SIFT算法采用了高斯金字塔的方法来对图像进行多尺度模糊处理。
金字塔的每一层可以通过对上一层图像进行下采样和卷积来生成。
然后,在每一层金字塔上使用一种拉普拉斯算子来计算尺度空间的极值点,这些极值点包括图像的边缘点、角点和斑点等。
极值点的检测是通过对每个像素点的周围像素点进行梯度计算和方向估计来实现的。
2.关键点描述:在关键点检测之后,SIFT算法通过计算每个关键点的局部图像梯度直方图来对关键点进行描述。
首先,将关键点周围的领域分为若干个子区域,一般为16个,每个子区域可以通过将关键点周围的区域划分为4×4个小区域来实现。
然后,对每个小区域中的像素点计算其梯度幅值和方向,并将其分到相应的方向直方图中。
通过对所有子区域的梯度方向直方图进行拼接,就可以得到整个关键点的描述子。
描述子的维度一般为128维,特征向量的每个维度包含了关键点的领域中的梯度方向信息。
3.特征匹配:在关键点描述之后,SIFT算法使用一种基于特征向量距离的匹配方法来实现图像特征点的匹配。
常用的方法是计算两个特征向量之间的欧式距离,并使用一个阈值来筛选出较为相似的特征点。
为了提高匹配的准确性和稳定性,SIFT算法使用了一种自适应的阈值筛选方法,通过计算两个特征向量距离的比值来判断特征点的匹配性。
总结来说,SIFT算法通过对图像进行多尺度的检测、关键点的描述和特征的匹配,实现了对图像特征的提取和匹配。
这种算法对于图像的尺度变化、旋转变换和部分遮挡等具有一定的不变性,因此被广泛应用于图像处理、目标识别和三维重建等领域。
SIFT算法详解及应用
SIFT算法详解及应用SIFT(Scale-Invariant Feature Transform)是一种用于图像处理和计算机视觉中的特征提取算法。
它的主要目标是提取具有尺度和旋转不变性的局部特征点。
SIFT算法的独特之处在于它不依赖于特定的图像属性,而是通过一系列处理步骤构建出具有稳定性和描述性的特征点。
1. 尺度空间极值检测(Scale Space Extrema Detection):通过在不同的尺度上使用高斯差分函数,找到图像中的极值点作为潜在特征点。
2. 关键点定位(Keypoint Localization):在尺度空间中找到极值点后,使用插值方法精确定位特征点的位置。
同时,通过计算Hessian矩阵的主曲率来排除边缘响应。
3. 方向分配(Orientation Assignment):为每个特征点分配一个主要的方向,使得后续的特征描述能够具有旋转不变性。
4. 特征描述(Feature Description):根据每个特征点的主方向,构建特征描述子。
描述子被构建为一个128维的向量,它具有对尺度、旋转和光照变化的不变性。
5. 特征匹配(Feature Matching):通过比较特征描述子,找到两幅图像中具有相似特征的匹配点。
常用的方法是计算特征向量之间的欧式距离或相似性度量。
1.目标识别:SIFT算法可以检测并描述图像中的关键点,通过与预先训练好的模板特征进行匹配,可以在输入图像中快速准确地定位和识别目标物体。
2.图像拼接:SIFT算法可以提取图像中的特征点,并通过对这些特征点进行匹配来确定它们之间的对应关系。
这样,可以将多张图像拼接在一起,生成一个大的全景图像。
3.目标跟踪:SIFT算法可以提取图像中的关键点,并构建其特征描述子。
通过与之前的图像帧进行匹配,可以实现目标的跟踪和定位。
4.三维重建:使用多个图像拍摄同一场景,并通过SIFT算法提取特征点并进行匹配,可以推断出相机的位置和场景的结构,从而实现三维重建。
SIFT特征提取算法
SIFT特征提取算法SIFT特征提取算法(Scale-Invariant Feature Transform)是一种计算机视觉领域广泛应用的特征提取算法,它具有尺度不变性和旋转不变性的特点,能够在图像中鲁棒地提取出关键点,并生成与这些关键点相关的描述子,以实现图像特征的匹配和识别。
SIFT特征提取算法包含以下几个重要的步骤:尺度空间极值检测、关键点定位、关键点方向确定、关键点描述子生成等。
首先,SIFT特征提取算法从一幅图像中构建尺度空间。
为了实现尺度不变性,SIFT算法利用高斯金字塔模拟不同尺度下的图像,通过对图像进行多次高斯模糊操作得到一系列尺度不同的图像。
然后,通过对这些图像进行差分运算,得到一组差分图像用于尺度空间极值检测。
接下来,SIFT算法从尺度空间极值检测结果中选取稳定的关键点。
在差分图像中,极值点表示着尺度空间中的局部最大值或最小值,这些极值点对应着图像中的关键点。
为了保证关键点的稳定性,SIFT算法会过滤掉一些不稳定的候选关键点,例如低对比度的关键点和边缘响应较大的关键点。
然后,对于选取的关键点,SIFT算法会计算它们的主方向。
利用关键点附近的梯度直方图,SIFT算法可以确定关键点的方向。
这个主方向可以提高后续描述子生成的旋转不变性。
最后,SIFT算法根据关键点的位置和主方向生成关键点的描述子。
在关键点周围的邻域内,SIFT算法通过计算邻域内像素的梯度幅值和方向,生成一个特征向量来描述关键点的外观特征。
这个特征向量被称为SIFT特征描述子,通常是一个128维的向量。
为了保证描述子的不变性,SIFT算法对特征向量进行了归一化和方向旋转等处理。
总结来说,SIFT特征提取算法通过尺度空间极值检测、关键点定位、关键点方向确定和关键点描述子生成等步骤,能够从图像中提取出具有尺度不变性和旋转不变性的关键点和描述子。
SIFT特征提取算法在计算机视觉领域有着广泛的应用,例如图像匹配、物体识别和三维重建等任务中都能够发挥重要作用。
SIFT特征提取算法详解
SIFT特征提取算法详解SIFT(Scale-Invariant Feature Transform)特征提取算法是一种用于在图像中寻找关键点的方法,该算法具有尺度不变性,能够提取出能够对图像进行描述的稳定的局部特征。
本文将从算法原理、关键步骤以及优缺点等方面进行详细解析。
一、算法原理SIFT算法的主要思想是通过寻找关键点和计算这些关键点的特征向量,来描述图像中的局部特征,并实现对尺度、旋转和亮度的不变性。
1.尺度空间极值检测SIFT算法首先通过DoG(Difference of Gaussian)来检测图像中的关键点。
DoG是指在不同尺度下的高斯平滑图像之间的差异,这样可以有效地检测出图像中的尺度空间极值点。
2.关键点精确定位通过在DoG金字塔中精确定位关键点,SIFT算法可以找到图像中的关键点。
该算法使用了Hessian矩阵的近似来计算特征点的位置和尺度,并用Taylor展开来精确计算特征点的位置。
3.方向分配为了使特征具有旋转不变性,SIFT算法通过计算特征点周围的梯度方向直方图来分配特征点的主方向。
具体步骤是确定特征点周围像素的梯度幅值和方向,并将方向分配到主方向上。
4.特征描述在计算了特征点的尺度和方向之后,SIFT算法通过计算特征点周围的局部图像块的梯度直方图来描述特征。
这些梯度直方图能够描述特征点周围的领域特征,并且具有尺度和旋转不变性。
二、关键步骤详解1.构建高斯金字塔SIFT算法首先对输入的图像进行平滑处理,然后通过不断降采样生成高斯金字塔。
高斯金字塔能够提供多尺度图像。
2.构建差分金字塔利用高斯金字塔计算DoG金字塔。
通过对相邻两层高斯图像进行差分操作,可以得到相应的两层DoG图像。
3.检测尺度空间极值点在DoG金字塔上,通过比较每一个像素点与其8邻域和相邻的26个像素点的像素值来确定极值点。
具体方法是通过比较每一层图像的像素值与周围像素值进行判定。
4.精确定位关键点通过利用Taylor展开公式来精确定位关键点的位置,这可以减小特征点在尺度和位置上的误差。
特征点匹配——SIFT算法详解
特征点匹配——SIFT算法详解SIFT(Scale-Invariant Feature Transform)是一种用于在图像中寻找关键点并进行匹配的算法。
该算法由David Lowe在1999年发布,并且一直被广泛应用于计算机视觉领域。
SIFT算法具有尺度不变性和旋转不变性,可以在不同的图像尺度和旋转角度下进行特征点的匹配。
SIFT算法的主要步骤包括关键点检测、关键点描述和特征点匹配。
关键点检测:在一张图像中,关键点通常是指存在于不同尺度和方向上的局部最大值或局部最小值。
SIFT使用高斯差分金字塔来检测关键点。
首先,通过对原始图像进行高斯模糊,创建一个金字塔,然后在每一组金字塔中计算高斯差分图像。
接着,通过比较每个像素周围的8个像素和自身像素的差值,找到局部极值点。
最后,使用尺度空间极大值抑制来进一步过滤出稳定的关键点。
关键点描述:在关键点检测后,需要对每个关键点进行描述。
SIFT使用局部图像梯度的直方图来描述关键点。
首先,在每个关键点周围的16x16像素块上计算梯度的幅值和方向。
然后将这个块分成16个4x4的子块,并在每个子块上计算一个8方向的直方图。
最后,将这些直方图连接起来形成一个128维的向量,用来表示该关键点。
在对两幅图像提取出关键点并进行描述后,需要对这些特征点进行匹配。
SIFT使用欧式距离来计算特征向量之间的相似性。
对于每个特征点,将其描述子与另一幅图像中的所有描述子进行比较,选择最佳匹配的特征点对。
SIFT算法在匹配过程中还引入了RANSAC算法来排除错误的匹配。
RANSAC(Random Sample Consensus)是一种迭代的鲁棒性估计方法,可以通过随机选择一个小子集来估计模型参数,并通过计算剩余误差和阈值来确定最终的模型。
总结一下,SIFT算法通过关键点检测、关键点描述和特征点匹配三个步骤来实现对图像中的特征点进行匹配。
该算法具有尺度不变性和旋转不变性,可以在不同的图像尺度和旋转角度下进行特征点的匹配。
SIFT算法简介
SIFT算法简介•o▪1、 STFT(Scale Invariant Feature Transform)简介▪ 1.1 SIFT特征检测的步骤▪ 1.2 SIFT算法的特点▪ 1.3 SIFT算法可以解决的问题▪ 2 、尺度空间▪ 2.1 多分辨率金字塔▪ 2.2 高斯金字塔构建示例▪ 2.3 高斯尺度空间(使用不同的参数)▪3、DoG空间极值检测(查找关键点)▪4、删除不好的极值点(特征点)▪5、求取特征点的主方向▪6、生成特征描述▪7、总结1、 STFT(Scale Invariant Feature Transform)简介匹配的核心问题是将同一目标在不同时间、不同分辨率、不同光照、不同方向的情况下所成的像对应起来。
传统的匹配算法往往是直接提取角点或边缘,对环境的适应能力较差,需要一种鲁棒性强,能够适应不同情况的有效的目标识别的方法。
SIFT由David Lowe在1999年提出,在2004年加以完善 [1-2] 。
SIFT在数字图像的特征描述方面当之无愧可称之为最红最火的一种,许多人对SIFT进行了改进,诞生了SIFT的一系列变种。
SIFT已经申请了专利。
1.1 SIFT特征检测的步骤•尺度空间的极值检测:搜索所有尺度空间上的图像,通过高斯微分函数来识别潜在的对尺度和旋转不变的兴趣点。
•特征点定位:在每个候选的位置上,通过一个拟合精细模型来确定位置尺度,关键点的选取依据他们的稳定程度。
•特征方向赋值:基于图像局部的梯度方向,分配给每个关键点位置一个或多个方向,后续的所有操作都是对于关键点的方向、尺度和位置进行变换,从而提供这些特征的不变性。
•特征点描述:在每个特征点周围的邻域内,在选定的尺度上测量图像的局部梯度,这些梯度被变换成一种表示,这种表示允许比较大的局部形状的变形和光照变换。
•(图源)1.2 SIFT算法的特点1.图像的局部特征,对旋转、尺度缩放、亮度变化保持不变,对视角变化、仿射变换、噪声也保持一定程度的稳定性。
SIFT算法原理SIFT算法详细介绍
SIFT算法原理SIFT算法详细介绍SIFT(Scale-Invariant Feature Transform)算法是一种用于图像特征提取和匹配的算法,被广泛应用于计算机视觉领域。
SIFT算法的核心思想是在不同尺度空间中检测和描述图像的局部特征,通过这些特征可实现图像的匹配、识别和定位。
1.尺度空间极值点检测:首先,SIFT算法通过高斯平滑滤波器构建高斯金字塔,每一层都是由上一层进行降采样得到的。
在不同尺度空间的图像上,通过比较每个像素点与其相邻像素点的灰度值,找出尺度空间极值点,作为关键点候选。
2.关键点定位:通过对尺度空间的极值点进行精确定位,以获取更加准确的关键点。
在关键点候选集合中,利用尺度空间的极值点与梯度方向直方图等局部特征进行过滤,剔除低对比度和边缘响应的关键点。
3.方向分配:为了使SIFT算法具有旋转不变性,需要为每个关键点分配主方向。
采用梯度直方图对关键点周围的图像区域进行统计,找到梯度方向直方图的峰值,作为该关键点的主方向。
4.关键点描述:在每个关键点周围的图像区域内,构建128维的特征向量,用于描述该关键点的局部特征。
通过计算每个像素点周围的梯度幅值和方向,并将其转换为特征向量的模式,构成关键点的描述符。
5.特征匹配:对于待匹配的图像,通过计算两个图像的特征向量之间的欧氏距离,进行特征匹配。
采用距离比值方法,选取最匹配和次匹配之间的距离比值小于预先设定的阈值的特征点,进行最终匹配。
6.特征筛选:通过应用RANSAC(随机抽样一致性)算法,对匹配结果进行筛选,剔除外点,保留内点,从而得到更准确的匹配结果。
SIFT算法的应用非常广泛,常用于目标识别、图像拼接、图像检索、三维重建和运动估计等领域。
在目标识别中,通过提取图像的SIFT特征,并与模板图像进行匹配,可以实现目标的识别和定位。
在图像拼接中,通过寻找多幅图像之间的共同特征点,并根据特征点的位置关系进行配准,可以实现图像的自动拼接。
SIFT算法原理SIFT算法详细介绍
SIFT算法原理SIFT算法详细介绍SIFT(Scale-Invariant Feature Transform)是一种用于计算机视觉领域的算法,用于检测和描述图像中的局部特征。
它被广泛应用于目标识别、图像匹配和三维重建等任务中。
SIFT算法通过提取图像的稳定特征点来实现图像的尺度和旋转不变性。
下面详细介绍SIFT算法的原理和步骤。
1.尺度空间极值检测:SIFT算法首先在不同的尺度空间中通过高斯差分金字塔(Difference of Gaussian,DoG)寻找稳定的特征点。
通过对输入图像进行高斯滤波,得到一系列不同尺度的图像。
然后,通过对相邻的两个不同尺度的图像进行差分操作,得到高斯差分图像,即DoG金字塔。
接着,在DoG金字塔中寻找局部极值点,即该点的像素值在其周围的3×3×3邻域内最大或最小。
2.生成关键点:在尺度空间极值点检测后,通过插值计算亚像素精度的关键点位置,以获得更精确的特征点位置。
对比邻域像素的梯度幅值和方向,重新定位关键点位置。
3.消除边缘响应:排除低对比度的稳定特征点和位于边缘的特征点,以提高匹配的准确性。
通过计算Hessian矩阵的迹和行列式来判断是否为边缘响应。
4.计算主方向:为了使SIFT算法对旋转具有不变性,对每个关键点计算该点的主方向。
在关键点周围的邻域内,计算梯度幅值和方向直方图,选取主方向作为该特征点的方向描述符。
5.生成特征描述子:在关键点检测和主方向计算后,利用关键点附近的图像区域创建描述子。
以关键点为中心,将图像区域分为若干个子区域,并在每个子区域内计算局部特征。
对每个子区域,计算梯度幅值和方向直方图,形成一个向量。
最后将这些向量串联形成一个特征向量,作为该特征点的描述子。
6.特征点匹配:使用描述子来匹配不同图像中的特征点。
通过计算两个特征点描述子之间的距离来判断它们的相似性。
通常使用欧氏距离或余弦相似度来度量特征点之间的差异。
然后,根据距离进行特征点匹配,通过选取最佳匹配对的阈值来过滤不准确的匹配。
siftsurf视差深度计算
siftsurf视差深度计算SIFT(Scale-Invariant Feature Transform)和SURF(Speeded-Up Robust Features)是计算机视觉领域常用的特征提取算法,用于在图像中寻找关键点并进行匹配。
在SIFT算法中,通过检测图像的极值点,并计算这些极值点的尺度、方向等信息来确定关键点;SURF算法则是通过计算图像中的兴趣点的哈西和尺度空间对峰值来找出关键点。
视差深度计算是指在计算机视觉中,根据两个相机(或摄像机)的图像之间的差异,从而计算出图像中物体的深度信息。
其中视差(disparity)是指参考图像中的特征点与目标图像中的对应特征点之间的水平像素差。
在使用SIFT和SURF算法进行视差深度计算时,可以按照以下步骤进行:1.图像预处理:将两个相机(或摄像机)拍摄的图像进行预处理,包括去噪、亮度调整等操作。
这些预处理操作可以提升SIFT和SURF算法的性能。
2.提取关键点:使用SIFT算法或SURF算法提取两幅图像中的关键点。
这些关键点的选取有助于在两幅图像之间建立对应关系。
3.关键点匹配:对提取的关键点进行匹配。
一种常用的方法是通过计算两个关键点之间的欧几里得距离,选择距离最小的关键点进行匹配。
如果匹配得到的关键点对是可靠的,那么它们会在两幅图像中表示同一个特征点。
4.计算视差:根据匹配的关键点对,计算它们在水平方向上的像素差,即视差。
视差值越大,表示该特征点所对应的物体离相机越远;反之,视差值越小,表示该特征点所对应的物体离相机越近。
5.深度计算:根据视差值和摄像机参数,可以使用三角测量或双目视觉几何关系来计算图像中物体的深度信息。
三角测量方法利用了相似三角形的原理,根据视差和相机的基线长度,可以计算出目标物体的深度。
双目视觉几何关系则是利用两个摄像机之间的距离、焦距等参数,通过一个数学模型计算出物体的深度。
6.深度图显示:将计算得出的深度信息表示为深度图,用于显示图像中各个像素点的深度值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SIFT: Scale Invariant Feature TransformThe algorithmSIFT is quite an involved algorithm. It has a lot going on and can be come confusing, So I’ve split up the entire algorithm into multiple parts. Here’s an outline of what happens in SIFT. Constructing a scale spaceThis is the initial preparation. You create internal representations of the original image to ensure scale invariance. This is done by generating a “scale space”.LoG ApproximationThe Laplacian of Gaussian is great for finding interesting points (or key points) in an image. But it’s computationally expensive. So we cheat and approximate it using the representation created earlier.Finding keypointsWith the super fast approximation, we now try to find key points. These are maxima and minima in the Difference of Gaussian image we calculate in step 2Get rid of bad key pointsEdges and low contrast regions are bad keypoints. Eliminating these makes the algorithm efficient and robust. A technique similar to the Harris Corner Detector is used here.Assigning an orientation to the keypointsAn orientation is calculated for each key point. Any further calculations are done relative to this orientation. This effectively cancels out the effect of orientation, making it rotation invariant. Generate SIFT featuresFinally, with scale and rotation invariance in place, one more representation is generated. This helps uniquely identify features. Lets say you have 50,000 features. With this representation, you can easily identify the feature you’re looking for (sa y, a particular eye, or a sign board).That was an overview of the entire algorithm. Over the next few days, I’ll go through each step in detail. Finally, I’ll show you how to implement SIFT in OpenCV!What do I do with SIFT features?After you run through the algorithm, you’ll have SIFT features for your image. Once you have these, you can do whatever you want.Track images, detect and identify objects (which can be partly hidden as well), or whatever you can think of. We’ll get into this later as well.But the catch is, this algorithm is patented.>.<So, it’s good enough for academic purposes. But if you’re looking to make something commercial, look for something else! [Thanks to aLu for pointing out SURF is patented too]1. Constructing a scale spaceReal world objects are meaningful only at a certain scale. You might see a sugar cube perfectly on a table. But if looking at the entire milky way, then it simply does not exist. This multi-scale nature of objects is quite common in nature. And a scale space attempts to replicate this concepton digital images.Scale spacesDo you want to look at a leaf or the entire tree? If it’s a tree, get rid of some detail from the image (like the leaves, twigs, etc) intentionally.While getting rid of these details, you must ensure that you do not introduce new false details. The only way to do that is with the Gaussian Blur (it was proved mathematically, under several reasonable assumptions).So to create a scale space, you take the original image and generate progressively blurred out images. Here’s an example:Look at how the cat’s helmet loses detail. So do it’s whiskers.Scale spaces in SIFTSIFT takes scale spaces to the next level. You take the original image, and generate progressively blurred out images. Then, you resize the original image to half size. And you generate blurred out images again. And you keep repeating.Here’s what it would look like in SIFT:Images of the same size (vertical) form an octave. Above are four octaves. Each octave has 5 images. The individual images are formed because of the increasing “scale” (the amount of blur).The technical detailsNow that you know things the intuitive way, I’ll get into a few technical details.Octaves and ScalesThe number of octaves and scale depends on the size of the original image. While programming SIFT, you’ll have to decide for yourself how many octaves and scales you want. However, the creator of SIFT suggests that 4 octaves and 5 blur levels are ideal for the algorithm.The first octaveIf the original image is doubled in size and antialiased a bit (by blurring it) then the algorithm produces more four times more keypoints. The more the keypoints, the better!BlurringMathematically, “blurring” is referred to as the convolution of the gaussian operator and the image. Gaussian blur has a particular expression or “operator” that is applied to each pixel. What results is the blurred image.The symbols:L is a blurred imageG is the Gaussian Blur operatorI is an imagex,y are the location coordinatesσ is the “scale” para meter. Think of it as the amount of blur. Greater the value, greater the blur. The * is the convolution operation in x and y. It “applies” gaussian blur G onto the image I.This is the actual Gaussian Blur operator.Amount of blurringThe amount of blurring in each image is important. It goes like this. Assume the amount of blur in a particular image is σ. Then, the amount of blur in the next image will be k*σ. Here k is whatever constant you choose.This is a table of σ’s for my current example. See how each σ differs by a fa ctor sqrt(2) from the previous one.SummaryIn the first step of SIFT, you generate several octaves of the original image. Each octave’s image size is half the previous one. Within an octave, images are progressively blurred using the Gaussian Blur operator.In the next step, we’ll use all these octaves to generate Difference of Gaussian images.2. LoG ApproximationIn the previous step , we created the scale space of the image. The idea was to blur an image progressively, shrink it, blur the small image progressively and so on. Now we use those blurred images to generate another set of images, the Difference of Gaussians (DoG). These DoG images are a great for finding out interesting key points in the image.Laplacian of GaussianThe Laplacian of Gaussian (LoG) operation goes like this. You take an image, and blur it a little. And then, you calculate second order derivatives on it (or, the “laplacian”). This locates edges and corners on the image. These edges and corners are good for finding keypoints.But the second order derivative is extremely sensitive to noise. The blur smoothes it out the noise and stabilizes the second order derivative.The problem is, calculating all those second order derivatives is computationally intensive. So we cheat a bit.The ConTo generate Laplacian of Guassian images quickly, we use the scale space. We calculate the difference between two consecutive scales. Or, the Difference of Gaussians. Here’s how:These Difference of Gaussian images are approximately equivalent to the Laplacian of Gaussian. And we’ve replaced a computationally intensive process with a simple subtraction (fast and efficient). Awesome!These DoG images comes with another little goodie. These approximations are also “scale invariant”. What does that mean?The BenefitsJust the Laplacian of Gaussian images aren’t great. They are not scale invariant. That is, they depend on the amount of bl ur you do. This is because of the Gaussian expression. (Don’t panic)See the σ2 in the demonimator? That’s the scale. If we somehow get rid of it, we’ll have true scale independence. So, if the laplacian of a gaussian is represented like this:Then the scale invariant laplacian of gaussian would look like this:But all these complexities are taken care of by the Difference of Gaussian operation. The resultant images after the DoG operation are already multiplied by the σ2. Great eh!Oh! And it has also been proved that this scale invariant thingy produces much better trackable points! Even better!Side effectsYou can’t have benefits without side effects >.<You know the DoG result is multiplied with σ2. But it’s also multiplied by another number. That number is (k-1). This is the k we discussed in the previous step.But we’ll just be looking for the location of the maximums and minimums in the images. We’ll never check the actual values at those locations. So, this additional factor won’t be a problem to us. (Even if you multiply throughout by some constant, the maxima and minima stay at the same location)ExampleHere’s a gigantic image to demonstrate how this difference of Gaussians works.3. Finding keypointsUp till now, we have generated a scale space and used the scale space to calculate the Difference of Gaussians. Those are then used to calculate Laplacian of Gaussian approximations that is scale invariant. I told you that they produce great key points. Here’s how it’s done!Finding key points is a two part processLocate maxima/minima in DoG imagesFind subpixel maxima/minimaLocate maxima/minima in DoG imagesThe first step is to coarsely locate the maxima and minima. This is simple. You iterate through each pixel and check all it’s neighbours. The check is done within the current image, and also the one above and below it. Something like this:X marks the current pixel. The green circles mark the neighbours. This way, a total of 26 checks are made. X is marked as a “key point” if it is the greatest or least of all 26 neighbours. Usually, a non-maxima or non-minima position won’t have to go through all 26 checks. A few initial checks will usually sufficient to discard it.Note that keypoints are not detected in the lowermost and topmost scal es. There simply aren’t enough neighbours to do the comparison. So simply skip them!Once this is done, the marked points are the approximate maxima and minima. They are “approximate” because the maxima/minima almost never lies exactly on a pixel. It lies somewhere between the pixel. But we simply cannot access data “between” pixels. So, we must mathematically locate the subpixel location.Here’s what I mean:The red crosses mark pixels in the image. But the actual extreme point is the green one.Find subpixel maxima/minimaUsing the available pixel data, subpixel values are generated. This is done by the Taylor expansion of the image around the approximate key point.Mathematically, it’s like this:We can easily find the extreme points of this equation (differentiate and equate to zero). On solving, we’ll get subpixel key point locations. These subpixel values increase chances of matching and stability of the algorithm.ExampleHere’s a result I got from the example image I’ve been using till now:Assigning an orientation to the keypointsThe author of SIFT recommends generating two such extrema images. So, you need exactly 4DoG images. To generate 4 DoG images, you need 5 Gaussian blurred images. Hence the 5 level of blurs in each octave.In the image, I’ve shown just one octave. This is done for all octaves. Also, this image just sh ows the first part of keypoint detection. The Taylor series part has been skipped.SummaryHere, we detected the maxima and minima in the DoG images generated in the previous step. This is done by comparing neighbouring pixels in the current scale, the sca le “above” and the scale “below”.Next, we’ll reject some keypoints detected here. This is because they either don’t have enough contrast or they lie on an edge4. Get rid of bad key pointsKey points generated in the previous step produce a lot of key points. Some of them lie along an edge, or they don’t have enough contrast. In b oth cases, they are not useful as features. So we get rid of them. The approach is similar to the one used in the Harris Corner Detector for removing edge features. For low contrast features, we simply check their intensities.Removing low contrast featuresThis is simple. If the magnitude of the intensity (i.e., without sign) at the current pixel in the DoG image (that is being checked for minima/maxima) is less than a certain value, it is rejected. Because we have subpixel keypoints (we used the Taylor expansion to refine keypoints), we again need to use the taylor expansion to get the intensity value at subpixel locations. If it’s magnitude is less than a certain value, we reject the keypoint.Removing edgesThe idea is to calculate two gradients at the keypoint. Both perpendicular to each other. Based on the image around the keypoint, three possibilities exist. The image around the keypoint can be:A flat regionIf this is the case, both gradients will be small.An edgeHere, one gradient will be big (perpendicular to the edge) and the other will be small (along the edge)A “corner”Here, both gradients will be big.Corners are great keypoints. So we want just corners. If both gradients are big enough, we let it pass as a key point. Otherwise, it is rejected.Mathematically, this is achieved by the Hessian Matrix. Using this matrix, you can easily check if a point is a corner or not.If you’re interested in the math, first check the posts on the Harris corner detector. A lot of the same math used used in SIFT. In the Harris Corner Detector, two eigenvalues are calculated. In SIFT, efficiency is increased by just calculating the ratio of these two eigenvalues. You never need to calculate the actual eigenvalues.ExampleHere’s a visual example of what happens in this step:Both extrema images go through the two tests: the contrast test and the edge test. They reject a few keypoints (sometimes a lot) and thus, we’re left with a lower number of keypoints to deal with.SummaryIn this step, the number of keypoints was reduced. This helps increase efficiency and also the robustness of the algorithm. Keypoints are rejected if they had a low contrast or if they were located on an edge.In the next step we’ll assign an orientation to all the keypoints that passed both tests.5. Assigning an orientation to the keypointsAfter step 4, we have legitimate key points. They’ve been tested to be stable. We already know the scale at which the keypoint was detected (it’s the same as the scale of the blurred image). So wehave scale invariance. The next thing is to assign an orientation to each keypoint. This orientationprovides rotation invariance. The more invariance you have the better it is.The ideaThe idea is to collect gradient directions and magnitudes around each keypoint. Then we figureout the most prominent orientation(s) in that region. And we assign this orientation(s) to thekeypoint.Any later calculations are done relative to this orientation. This ensures rotation invariance.The size of the “orientation collection region” around the keypoint depends on it’s scale. The bigger the scale, the bigger the collection region.The detailsNow for the little details about collecting orientations.Gradient magnitudes and orientations are calculated using these formulae:The magnitude and orientation is calculated for all pixels around the keypoint. Then, A histogram is created for this.In this histogram, the 360 degrees of orientation are broken into 36 bins (each 10 degrees). Lets say the gradient direction at a certain point (in the “orientation collection region”) is 18.759 degrees, then it will go into the 10-19 degree bin. And the “amount” that is added to the bin is proportional to the magnitude of gradient at that point.Once you’ve done this for all pixels around the keypoint, the histogram will have a peak at some point.Above, you see the histogram peaks at 20-29 degrees. So, the keypoint is assigned orientation 3 (the third bin)Also, any peaks above 80% of the highest peak are converted into a new keypoint. This new keypoint has the same location and scale as the original. But it’s orientation is equal to the otherpeak.So, orientation can split up one keypoint into multiple keypoints.The Technical DetailsMagnitudesSaw the gradient magnitude image above? In SIFT, you need to blur it by an amount of 1.5*sigma. Size of the windowThe window size, or the “orientation collection region”, is equal to the size of the kernel for Gaussian Blur of amount 1.5*sigma.SummaryTo assign an orientation we use a histogram and a small region around it. Using the histogram, the most prominent gradient orientation(s) are identified. If there is only one peak, it is assigned to the keypoint. If there are multiple peaks above the 80% mark, they are all converted into a new keypoint (with their respective orientations).Next, we generate a highly distinctive “fingerprint” for each keypoint. Here’s a little teaser. This fingerprint, or “feature vector”, has 128 different numbers.6. Generate SIFT featuresNow for the final step of SIFT. Till now, we had scale and rotation invariance. Now we create a fingerprint for each keypoint. This is to identify a keypoint. If an eye is a keypoint, then using this finge rprint, we’ll be able to distinguish it from other keypoints, like ears, noses, fingers, etc.The ideaWe want to generate a very unique fingerprint for the keypoint. It should be easy to calculate. We also want it to be relatively lenient when it is being compared against other keypoints. Things are never EXACTL Y same when comparing two different images.To do this, a 16×16 window around the keypoint. This 16×16 window is broken into sixteen 4×4 windows.Within each 4×4 window, gradient magnitudes and orientations are calculated. These orientations are put into an 8 bin histogram.Any gradient orientation in the range 0-44 degrees add to the first bin. 45-89 add to the next bin. And so on.And (as always) the amount added to the bin depends on the magnitude of the gradient. Unlike the past, the amount added also depends on the distance from the keypoint. So gradients that are far away from the keypoint will add smaller values to the histogram.This is done u sing a “gaussian weighting function”. This function simply generates a gradient (it’s like a 2D bell curve). You multiple it with the magnitude of orientations, and you get a weighted thingy. The farther away, the lesser the magnutide.Doing this for all 16 pixels, you would’ve “compiled” 16 totally random orientations into 8 predetermined bins. You do this for all sixteen 4×4 regions. So you end up with 4x4x8 = 128numbers. Once you have all 128 numbers, you normalize them (just like you would normalize a vector in school, divide by root of sum of squares). These 128 numbers form the “feature vector”. This keypoint is uniquely identified by this feature vector.You might have seen that in the pictures above, the keypoint lies “in between”. It does not lie exactly on a pixel. That’s because it does not. The 16×16 window takes orientations and magnitudes of the image “in-between” pixels. So you need to interpolate the image to generate orientation and magnitude data “in between” pixels.ProblemsThis feature vector introduces a few complications. We need to get rid of them before finalizing the fingerprint.Rotation dependenceThe feature vector uses gradient orientations. Clearly, if you rotate the image, everything changes. All gradient orientations also change. To achieve rotation independence, the keypoint’s rotation is subtracted from each orientation. Thus each gradient orientation is relative to the keypoint’s orientation.Illumination dependenceIf we threshold numbers that are big, we can achieve achieve illumination independence. So, any number (of the 128) greater than 0.2 is changed to 0.2. This resultant feature vector is normalized again. And now you have an illumination independent feature vector!SummaryYou take a 16×16 window of “in-between” pixels around the keypoint. You split that window into sixteen 4×4 windows. From each 4×4 window you generate a histogram of 8 bins. Each bin corresponding to 0-44 degrees, 45-89 degrees, etc. Gradient orientations from the 4×4 are put into these bins. This is done for all 4×4 blocks. Finally, you normalize the 128 values you get.To solve a few problems, you subtract the keypoint’s orie ntation and also threshold the value of each element of the feature vector to 0.2 (and normalize again).。