九年级数学第29章投影与视图导学案
人教版数学九年级下册第29章《投影与视图》课堂教案
人教版数学九年级下册第29章《投影与视图》课堂教案一. 教材分析《投影与视图》这一章主要让学生了解和掌握投影的性质和特点,以及如何通过不同的投影方式来得到物体的视图。
内容主要包括平行投影、中心投影的概念,三视图的绘制方法等。
通过这一章的学习,学生可以更好地理解和应用几何知识,提高空间想象能力和解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对空间图形有一定的认识。
但一部分学生可能对空间图形的理解和想象能力较弱,因此在教学过程中需要注重引导学生通过实际操作来加深对知识的理解。
三. 教学目标1.了解投影的性质和特点,掌握平行投影和中心投影的概念。
2.学会通过不同的投影方式来得到物体的视图,提高空间想象能力。
3.能够运用所学知识解决实际问题。
四. 教学重难点1.投影的性质和特点2.平行投影和中心投影的概念3.三视图的绘制方法五. 教学方法1.采用问题驱动的教学方法,引导学生通过实际操作来解决问题。
2.利用多媒体辅助教学,展示实物投影和视图,帮助学生直观理解。
3.采用小组合作学习,让学生在讨论和交流中提高对知识的理解。
六. 教学准备1.多媒体教学设备2.实物模型3.绘图工具七. 教学过程1.导入(5分钟)利用多媒体展示不同的实物投影和视图,让学生感受投影和视图的魅力,激发学生的学习兴趣。
2.呈现(10分钟)通过具体的实物模型,向学生展示不同的投影方式,引导学生总结投影的性质和特点。
3.操练(10分钟)学生分组讨论,每组选择一个实物,通过实际操作来绘制该实物的三视图。
教师在此过程中进行指导,帮助学生解决问题。
4.巩固(10分钟)学生独立完成教材中的相关练习题,教师进行讲解和答疑。
5.拓展(10分钟)教师提出一些实际问题,引导学生运用所学知识进行解决,提高学生的实际应用能力。
6.小结(5分钟)教师引导学生总结本节课所学内容,巩固知识。
7.家庭作业(5分钟)布置一些有关投影与视图的练习题,让学生在课后进行巩固和提高。
人教版九年级数学上册 第29章 - 投影和视图 导学案设计(无答案)
第二十九章投影与视图知识点一、平行投影1.物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影现象.一般地,用光线照射物体,在某个平面(底面,墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面.2.平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.3.平行投影中物体与投影面平行时的投影是全等的.4.判断投影是平行投影的方法是看光线是否是平行的.如果光线是平行的,所得到的投影就是平行投影.5.正投影:在平行投影中,投影线垂直于投影面产生的投影叫做正投影.例题:1.下列图形中,表示两棵小树在同一时刻阳光下的影子的图形可能是()A. B. C. D.2.在阳光的照射下,一个矩形框的影子的形状不可能是()A.线段B.平行四边形C.等腰梯形D.矩形3.如图所示的圆台的上下底面与投影线平行,圆台的正投影是()A.矩形B.两条线段C.等腰梯形D.圆环知识点二、中心投影1.中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影. 如物体在灯光的照射下形成的影子就是中心投影.2.中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.3.判断投影是中心投影的方法是看光线是否相交于一点,如果光线是相交于一点,那么所得到的投影就是中心投影.4. 中心投影光源的确定:分别过每个物体的顶端及其影子的顶端作一条直线,这两条直线的交点即为光源的位置.例题:1.幻灯机的投影是()A. 平行投影B.中心投影C.平行投影或中心投影D.以上均不是2.如图,晚上小亮在路灯下经过,在小亮由A处径直走到B处这一过程中,他在地上的影子()A.逐渐变短B.先变短后变长C.逐渐变长D.先变长后变短3.如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB= _________.第2题第3题知识点三、视点,视线,视角,盲区1.把观察者所处的位置定为一点,叫视点.2.由视点发出的线称为视线.3.人眼到视平面的距离视固定的(视距),视平面左右两个边缘到人眼的连线得到的角度就是视角.4.盲区:视线到达不了的区域为盲区.例题:1.我们把大型会场.体育看台.电影院建为阶梯形状,是为了2.“汽车驾驶员的座位设在前面而不是后面”这与“站得高,看得远”从数学原理上来说是为了3.有一圆柱形的水池,已知水池的底面直径为4米,水面离池口2米,水池内有一小青蛙,它每天晚上都会浮在水面上赏月,则它能观察到的最大视角为()A.45°B.60°C.90°D.135°4.关于盲区的说法正确的有()(1)我们把视线看不到的地方称为盲区(2)我们上山与下山时视野盲区是相同的(3)我们坐车向前行驶,有时会发现一些高大的建筑物会被比矮的建筑物挡住(4)人们常说“站得高,看得远”,说明在高处视野盲区要小,视野范围大5.如图,房间里有一只老鼠,门外蹲着一只小猫,如果每块正方形地砖的边长为1米,那么老鼠在地面上能避开小猫视线的活动范围为平方米第5题第6题第7题6.如图,在房子屋檐E处安有一台监视器,房子前有一面落地的广告牌,那么监视器的盲区是()A.△ACE B.△ADF C.△ABD D.△FBD7.如图,身高1.5米的小强站在离一个高大的建筑物20米处,他的前方5米有一堵墙,若墙高2米,则站立的小强观察这个建筑物时,盲区的范围8.如图,现有m.n两堵墙,两个同学分别在A处和B处,请问小明在哪个区域内活动才不会被这两个同学发现(画图用阴影表示).投影常考题型:题型一:比例求高1.如图,小华为了测量所住楼房的高度,他请来同学帮忙,在阳光下测量了同一时刻他自己的影长和楼房的影长分别是0.5米和15米.已知小华的身高为1.6米,那么他所住楼房的高度为________米.2.如图,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.已知铁塔底座宽CD=12 m,塔影长DE=18 m,小明和小华的身高都是1.6m,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m和1m,那么塔高AB________米3.如图,当阳光从正西方向照射过来时,旗杆AB的顶端A的影子落在教学楼前的坪地C处,测得影长CE=2m, DE=4m ,BD=20m,DE与地面的夹角30o.在同一时刻,测得一根长为1m的直立竹竿的影长恰为4m.根据这些数据求旗杆AB的高度.(结果保留两个有效数字)4.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图3,若此时落在地面上的影长为4.4米,则树高为________米题型二:三角函数求高1.如图,当太阳光与地面成55°角时,直立于地面的玲玲测得自己的影长为1.16m,则玲玲的身高约为___________m.(精确到0.01m)2.如果将太阳光改为照明灯,再适当改变已知条件和问题的形式:如图所示,点P表示广场上的一盏照明灯.若小丽到灯柱MO的距离为4.5米,照明灯P到灯柱的距离为1.5米,小丽目测照明灯P的仰角为55°,她的目高QB为1.6米,试求照明灯P到地面的距离(结果精确到0.1米).题型三:相似三角形求高1.如图,为了测量学校旗杆的高度,小东用长为3.2 m的竹竿做测量工具。
29章投影与试图导学案
3.由于中心投影与平行投影的投射线具有不同的性质,因此,在这两种投影下,物体的影子也就有明显的差别。
如图4-14,当线段AB与投影面平行时,AB的中心投影A…B‟把线段AB 了,且AB A‟B…,△OAB OA…B‟.又如图4-15,当△ABC所在的平面与投影面平行时,△ABC的中心投影△A…B‟C…也把△ABC 了,从△ABC到△A…B‟C…是我们熟悉的变换。
源的确定:分别自两个物体的顶端)两幅图表示两根标杆在同一时刻的投影图中画出形成投影的光线.它们是平行投影还是中心投影?并说明理由。
第二学习时间:课堂巩固案(根据同学们的展示,认真完成以下的练习,如有不会的可以向其他同学请教,找到自己在练习中存在的问题,并认真改正)8、如果在阳光下你的身影的方向是北偏东60°方向,太阳在你的方向?第三学习案:自主测试案(请同学们独立完成下面的题目,做完后举手示意,老师会给你批改)1.确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.2.平面直角坐标系中,一点光源位于A(0,5),线段CD⊥x轴于D,C(3,1),求:(1)CD在x轴上的影长;(2)点C的影子的坐标.BD,当他走到点P的底部,当他向前再步行20BD的底部,已知丁轩,则两路灯之间的距离是( )学习感悟(1)当纸板P平行于投影面Q时. P的正投影与P的形状、大小如何?(1)当正方体如图的位置时,正方体的一个面ABCD及与其相对的另一面与投影面平行,这两个面的正投影是与正方体的一个面的形状、大小A´B´C´D´.正方形A´B´C´D´的四条边分别是(这些面垂直于投影面)的投影.因此,正方体的正投影是一个正方形.投影图是( ),这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面形成阴影的示意图。
已知桌面的直径为1.2米,桌面距离地面1米。
若灯泡距离地米,则地面上阴影部分的面积为()π平方米B、0.81π平方米C、2π平方米D、3.24π平方米第三学习案:自主测试案(请同学们独立完成下面的题目,做完后举手示意,老师会给你批改)3.(2010山东淄博模拟灯的底部(点O)20时,人影的53,在Rt△ABC中,∠C=090,在阳光的垂直照射下⑴试探究线段AC、AB和AD之间的关系,并说明理由之间也有类似的关系吗?(一)、问题1:如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为A C2011安徽芜湖,)如图所示,下列几何体中主视图、左视图、俯视图都相同的是反思:通过这节课的学习,你有什么特殊的收获?好记性不如烂笔头,赶快请写下课题:29.2视图(2)桌面上放着1个长方体和1个圆柱体,按下图所示的方式摆放在一起,其左(011江西,3,3分)右图是一根钢管的直观图,画出它的三视图3 (2011山东聊城,2,3分)如图,空心圆柱的左视图是()分)如图所示的几何体的左视图是(是一个三视图,则此三视图所对应的直观图是10(2009,本溪)有一个铁制零件(正方体中间挖去一个圆柱形孔)如图放置,它的左视图是()A.B.C. D(A)(B)3.(2010 福建德化)如图是一个立体图形的三视图,则这个立体图形的名称叫.主,益阳)一个物体由多个完全相同的小正方体组成,它的三视图如图D. 55.(2011湖南湘潭市,4,3分)一个几何体的三视图如下图所示,这个几何第三学习案:自主测试案(请同学们独立完成下面的题目,做完后举手示意,老师会给你批改)某个长方体主视图是边长为1cm形的对角线向垂直于正方形的方向将长方体切开,截面是一个正方形.那3(2010广东广州,7,3分)长方体的主视图与俯视图如图所示,则这个长方体的体积是()A.52 B.323。
人教版九年级下数学29.2三视图(1)导学案
第二十九章投影与视图§29.2三视图——第一课时(P94-P97)一、自主探究(看书理解、记忆,把重点知识句划在书上,并把课后简单练习完成在书上)1.回顾: ________________________________ 叫正投影.2•当我们从某一个角度观察一个物体时,______________________ 叫做物体的一个视图.视图也可以看做___________________ .其中正对着我们的叫做__________ ,正面下方的叫做 ________ ,右边的叫做___________ .3._______________________________________________________ —个物体在三个投影面内同时进行正投影,_____________________________________ ,叫做主视图;叫做俯视图; _______________ 叫做左视图.4.将三个投影面展开在一个平面内,得到这一物体的一张三视图.注意:(1)主视图反映的是物体的长和高;俯视图反映的是物体的长和宽;左视图反映的是物体的宽和高. 因此,在画三种视图时,主视图与俯视图要长对正,主视图与左视图要高平齐,俯视图与左视图要宽相等.(2)三视图与投影密切相关,某些物体的三视图实际上是该物体在一定条件下所形成的平行投影,某些物体的主视图、俯视图、左视图可以看成在一束平行光线分别从物体的正面,上面,左面照射下,在垂直于这一方向的平面上所形成的投影•、合作探究(自主学习时完成,课上交流展示)1•小明从正面观察如图1所示的两个物体,看到的是()23OD—U图L D.2.如图2,水杯的俯视图是()W23.我们从不同的方向观察同一物体时,的左面看这个几何体的所得左视图是(可以看到不同的平面图形, 如图3,从图、探究应用(课上完成并交流展示) 例1.画出右图所示的一些基本几何体的三视图 解:例2.画出如图所示的支架(一种小零件)的三视图•支架的两个台阶的高度和宽度 都是同一长度出它的三视图解:(补充)例•右图是一根钢管的直观图,画出它的三视图解:总结:基本几何体包括圆柱、圆锥、球、直棱柱、圆台,它们的三视图是画复杂 几何体三视图的基础•基本几何体的三视图:(1) 正方体的三视图都是正方形.(2) 圆柱的三视图中有两个是长方形,另一个是圆 .B.C. D.(3)圆锥的三视图中有两个是三角形,另一个是圆和一个点.(4)四棱锥的三视图中有两个是三角形,另一个是矩形和它的对角线(5)球体的三视图都是圆形.四、巩固再现:P97练习五、能力提升:1.右图是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,那么这个几何体的主视图是(2.如图所示,画出该物体的三视图六、探究小结:1•你学会了什么? ____________________________________________________________2.你存在的问题?____________________________________________________________。
29.2.3 由三视图确定几何体的面积或体积导学案九年级数学下册教材配套教学课件(人教版)
人教版九年级下册第29章《投影与视图》导学案[29.2.3 由三视图确定几何体的面积或体积]1.能熟练地画出物体的三视图和由三视图想象出物体形状,进一步提高空间想象能力.(重点)2.由三视图想象出立体图形后能进行简单的面积或体积的计算.(难点)复习回顾根据三视图确定几何体的基本思路:由三视图想象立体图形时,先分别根据主视图、俯视图和左视图想象立体图形的前面、上面和左侧面的局部形状,然后再综合起来考虑整体图形.【练习】如图所示是一个立体图形的三视图,(1) 请根据视图说出立体图形的名称,并画出它的展开图.(2) 请指出三视图、立体图形、展开图之间的对应边.典例解析【例1】某工厂要加工一批密封罐,设计者给出了密封罐的三视图,请你按照三视图确定制作每个密封罐所需钢板的面积 (图中尺寸单位:mm).【归纳】三视图的有关计算1. 三种图形的转化:2. 由三视图求立体图形的面积的方法:(1) 先根据给出的三视图确定立体图形,并确定立体图形的长、宽、高.(2) 将立体图形展开成一个平面图形 (展开图),观察它的组成部分.(3) 最后根据已知数据,求出展开图的面积.【针对练习】如图是一个几何体的三视图.根据图示,可计算出该几何体的侧面积为 .【例2】如图是一个几何体的三视图,根据所示数据,求该几何体的表面积和体积.【针对练习】一个机器零件的三视图如图所示(单位:cm),这个机器零件是一个什么样的立体图形?它的体积是多少?达标检测1. 一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为 ( )A. 6B. 8C. 12D. 242. 如图是一个几何体的三视图,根据图中提供的数据 (单位:cm),可求得这个几何体的体积为 .3. 如图是某几何体的三视图及相关数据(单位:cm),则该几何体的侧面积为_______cm2.4. 如图是一个由若干个棱长为1cm的正方体构成的几何体的三视图.(1) 请写出构成这个几何体的正方体的个数为;(2) 计算这个几何体的表面积为.5. 如图是一个几何体的三视图,试描绘出这个零件的形状,并求出此三视图所描述的几何体的表面积.6. 某一空间图形的三视图如图所示,其中主视图是半径为1的半圆以及高为1的矩形;左视图是半径为1的四分之一圆以及高为1的矩形;俯视图是半径为1的圆,求此图形的体积 (参考公式:V球=43πR3).。
九年级数学下册第29章投影与视图29.3课题学习制作立体模型教案新版新人教版
四、尝试应用
下面的每一组平面图形都是由四个等边三角形组成的.
(1)指出其中哪些可折叠成多面体、把上面的图形描在综上,剪下来,叠一叠,验证你的答案;
(2)画出由上面图形能折叠成的多面体的三视图,并指出三视图中是怎样体现“长对正,高平齐,宽相等”的;
(A)4(B)5Βιβλιοθήκη (C)6(D)72.上列图形分别能折叠成什么图形.要想正确解答此题,需要我们熟悉一些常见几何体的展开图.
学生从不同角度分析问题,认识三视图反映立体图形和从展开图想象立体图形
对解决问题的过程进行反思,对思维方法进行提炼
六、体验收获
观察三视图,并综合考虑各视图所表示的意思以及视图间的联系,可以想象出三视图所表示的立体图形的现状,这是由视图转化为立体图形
(3)若图中小三角形的边长为1,则对应的多面体的体积和表面积各是多少?
学生先将图形描在纸上,剪下来,折叠,
验证你的答案
将折叠成的多面体画出它的三视图,观察三视图和展开图都是与立体图形有关的平面图形
五、巩固提高
1.由一些大小相同的小正方体组成的几何体的三种视图如图所示,那么组成几何体的小正方体有( )个.
综合考虑各视图所表示的意思以及视图间的联系,想象出三视图所表示的立体图形的现状,将视图转化为立体图形
教学过程
环节
教学内容
师生活动
一、创设情境
观察三视图,并综合考虑各视图所表示的意思以及视图间的联系,可以想象出三视图所表示的立体图形的现状,这是由视图转化为立体图形的工程,下面我们通过动手实践来体会一下这个过程.
工具准备:刻度尺、剪刀、小刀、胶水、硬纸板、马铃薯(或萝卜)等
九年级数学下册 29 投影与视图 课题 正投影学案 (新版)新人教版
课题:正投影【学习目标】1.了解正投影的概念,能根据正投影的性质画出简单平面图形的正投影.2.在经历观察、探究、思考、归纳的过程中,掌握正投影的特征.3.培养抽象、概括能力,发展空间想象.【学习重点】正投影的含义及其性质.【学习难点】归纳正投影的性质,正确画出简单平面图的正投影.情景导入生成问题旧知回顾:如图表示一块三角尺在光线照射下形成的投影.其中哪些是平行投影,哪些是中心投影?图(2)、(3)的投射线与投影面的位置关系有什么区别?解:(1)是中心投影,(2)是斜投影,(3)是垂直投影.自学互研生成能力知识模块一正投影定义【自主探究】阅读教材P88~P89,完成下列内容:投影线垂直于投影面产生的投影叫做正投影.【合作探究】教材P89探究1:把一根直的细铁丝(记为线段AB)放在三个不同位置,通过观察、测量可知:(1)当线段AB平行于投影面时,它的正投影是线段A1B1,它们的大小关系为AB=A1B1;(2)当线段AB倾斜于投影面时,它的正投影是线段A2B2,它们的大小关系是AB>A2B2;(3)当线段AB垂直于投影面时,它的正投影是一个点A3.教材P89探究2:把一块正方形硬纸板P(记为正方形ABCD)放在三个不同位置,通过观察、测量可知:(1)当纸板P平行于投影面时,P的正投影与P的形状、大小一样;(2)当纸板P倾斜于投影面时,P的正投影与P的形状、大小完全不一样;(3)当纸板P垂直于投影面时,P的正投影成为一条线段.归纳:当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.知识模块二正投影的应用【自主探究】阅读教材P90~P91,完成下列内容:1.猜想(1)、(2)的正投影各应该是什么形状?解:分别是正方形、矩形.2.怎样画出各自平行光线下的正投影?3.物体正投影的形状、大小与它相对于投影面的位置有关.【合作探究】1.若线段AB在投影面上的正投影为A1B1,则线段AB与线段A1B1的大小关系是( D)A.AB=A1B1B.AB>A1B1C.AB<A1B1D.AB≥A1B12.如图所示,△ABC被平行光线照射,CD⊥AB于D,AB在投影面上.(1)指出图中AC的投影是什么?CD与BC的投影呢?(2)探究:当△ABC为直角三角形(∠ACB=90°)时,易得AC2=AD·AB,此时有如下结论:直角三角形一直角边的平方等于它在斜边射影与斜边的乘积,这一结论我们称为射影定理.通过上述结论的推理,请证明以下两个结论:①BC2=BD·AB;②CD2=AD·BD.解:(1)AC 的投影是AD ,CD 的投影是点D ,CB 的投影是BD ; (2)①∵CD⊥AB,∴∠CDB =∠ACB=90°.又∵∠B=∠B,∴△BCD ∽△BAC ,∴BC AB =BD BC,∴BC 2=BD·AB; ②∵∠ACB =90°,∴∠ACD +∠BCD=90°.∵CD ⊥AB ,∴∠ACD +∠BAC =90°.∴∠BCD =∠B AC.又∵∠ADC=∠BDC=90°,∴△ACD ∽△CBD ,∴CD BD =AD CD,∴CD 2=AD·BD. 交流展示 生成新知【交流预展】1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.【展示提升】知识模块一 正投影定义知识模块二 正投影的应用检测反馈 达成目标【当堂检测】判断对错.(1)直线的平行投影一定是直线.( √ )(2)矩形的正投影一定是矩形.( × )(3)一个圆在平面上的平行投影可能是圆,也可能是椭圆或线段.( √ )【课后检测】见学生用书课后反思 查漏补缺1.这节课的学习,你的收获是:____________________________________________________________________2.存在困惑:________________________________________________________________。
人教版九年级数学下册教案第29章 投影与视图3 课题学习 制作立体模型
29.3课题学习制作立体模型教学目标一、基本目标【知识与技能】经历由视图转化为立体图形的过程,体会平面图形与立体图形之间的联系.【过程与方法】1.通过自主探索立体图形的制作过程,培养学生的动手操作能力和空间想象能力.2.通过模型制作,体会由平面图形转化为立体图形的过程和乐趣,激发学生学习数学的兴趣.【情感态度与价值观】1.通过参与动手实践,培养学生合作探究精神和与他人合作的能力.2.通过由平面图形到立体图形的动手操作,培养学生的创新精神和创造发明的意识.二、重难点目标【教学重点】经历由平面图形制作立体图形的探究过程.【教学难点】实现理论和实践的结合,经历由平面图形制作立体图形的过程.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P105~P106的内容,完成下面练习.【3 min反馈】1.若如图是某个几何体的三视图,则这个几何体是(D)A.长方体B.正方体C.圆柱D.圆锥2.由三视图想象立体图形时,要分别根据主视图、俯视图、左视图想象立体图形前面、上面、侧面,然后再结合起来考虑整体图形.3.一个立体图形的俯视图是圆,则这个图形可能是球.(只填一个)环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】学校小卖部货架上摆放着某品牌方便面,它们的三视图如图,则货架上的方便面至少有()A.7盒B.8盒C.9盒D.10盒【互动探索】(引发学生思考)从主视图可以知道什么?从左视图和俯视图呢?【分析】观察三视图可知,第一层有4盒,第二层最少有2盒,第三层最少有1盒,所以货架上的方便面至少有4+2+1=7(盒).【答案】A【互动总结】(学生总结,老师点评)本题考查了对三视图的掌握程度和灵活运用的能力,同时也考查了空间想象能力.活动2巩固练习(学生独学)1.如图,是一个几何体的表面展开图,则它的名称是(B)A.四棱柱B.三棱柱C.圆柱D.三棱锥2.如图是一个正方体的表面展开图,上面标有“我、爱、鲁、能、巴、蜀”六个字,图中“我”对面的字是(B)A.鲁B.能C.巴D.蜀3.如图是一圆锥的左视图,根据图中所示数据,可得圆锥侧面展开图的圆心角的度数为(C)A.60°B.90°C.120°D.135°4.如图,它是一个圆柱的表面展开图,那么,这个圆柱的高是8 cm,底面半径是4 cm.活动3拓展延伸(学生对学)【例2】如图是一个正方体的表面展开图,标注了A字母的是正方体的前面,如果正方体的左面与右面标注的数相等.(1)求x的值;(2)求正方体的上面和底面的数之和.【互动探索】(1)正方体的表面展开图,由相对面之间一定相隔一个正方形可确定出相对面,然后列出方程求解即可;(2)确定出上面和底面上的两个数为3和1,然后相加即可.【解答】根据正方体的表面展开图中相对面之间一定相隔一个正方形,得“A”与“-2”是相对面,“3”与“1”是相对面,“x”与“3x-2”是相对面.(1)∵正方体的左面与右面标注的数相等,∴x=3x-2,解得x=1.(2)∵标注了A字母的是正方体的前面,左面与右面标注的数相等,∴上面和底面上的两个数为3和1,∴上面和底面的数之和为3+1=4.【互动总结】(学生总结,老师点评)本题主要考查了正方体相对两个面上的数,注意正方体是空间图形,从相对面入手分析、解答问题.环节3课堂小结,当堂达标(学生总结,老师点评)由三视图制作立体模型的一般步骤:(1)根据三视图想象出对应的立体图形;(2)测量三视图中的线段长度,确定立体图形的长、宽、高;(3)根据“长对正,高平齐,宽相等”用硬纸板或萝卜制作出立体模型.练习设计请完成本课时对应练习!。
第29章 投影与视图全章教案
第二十九章投影与视图29.1投影(1)学习目标1、经历实践探索,了解投影、投影面、平行投影和中心投影的概念;2、了角平行投影和中心投影的区别。
3、使学生学会关注生活中有关投影的数学问题,提高数学的应用意识。
学习重点理解平行投影和中心投影的特征;学习难点在投影面上画出平面图形的平行投影或中心投影。
教学互动设计备注(一)创设情境你看过皮影戏吗?皮影戏又名“灯影子”,是我国民间一种古老而奇特的戏曲艺术,在关中地区很为流行。
皮影戏演出简便,表演领域广阔,演技细腻,活跃于广大农村,深受农民的欢迎。
(二)你知道吗北京故宫中的日晷闻名世界,是我国光辉出灿烂文化的瑰宝.它是我国古代利用日影测定时刻的仪器,它由“晷面”与“晷针”组成,当太阳光照在日晷中轴上产生投影,晷针的影子就会投向晷面,随着时间的推移,晷针的影的长度发生变化,晷针的影子在晷面上慢慢移动,聪明的古人以此来显示时刻.问题:那什么是投影呢?出示投影让学生感受在日常生活中的一些投影现象。
一般地.用光线照射物体.在某个平面(地面、墙壁等)上得到的影子叫做物体的投影.照射光线叫做投影线,投影所在的平面叫做投影面.有时光线是一组互相平行的射线.例如太阳光或探照灯光的一束光中的光线(如图).由平行光线形成的投影是平行投影.例如.物体在太阳光的照射下形成的影子(简称日影)就是平行投影.由同一点(点光源)发出的光线形成的投影叫做中心投影.例如.物体在灯泡发出的光照射下形成影子就是中心投影.(三)问题探究(在课前布置,以数学学习小组为单位)探究平行投影和中心投影和性质和区别1、以数学习小组为单位,观察在太阳光线下,木杆和三角形纸板在地面的投影。
2、不断改变木杆和三角形纸板的位置,什么时候木杆的影子成为一点,三角形纸板的影子是一条线段?当木杆的影子与木杆长度相等时,你发现木杆在什么位置?三角形纸板在什么位置时,它的影子恰好与三角形纸板成为全等图形?还有其他情况吗?(四)应用新知:(1)地面上直立一根标杆AB如图,杆长为2cm。
人教版九年级数学教案 第29章《投影与视图》全章导学案(共4课时)
人教版九年级数学《投影与视图》全章导学案第1课时投影的概念和分类知识点1:平行投影【例1】下列光线所形成的是平行投影的是( A )A. 太阳光线B. 台灯的光线C. 手电筒的光线D. 路灯的光线,1. 把一个正六棱柱如图1-29-90-1摆放,光线由上向下照射此正六棱柱时的正投影是( A )图1-29-90-1知识点2:中心投影【例2】如图1-29-90-2,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子( B )图1-29-90-2A. 逐渐变短B. 先变短后变长C. 先变长后变短D. 逐渐变长,2. 如图1-29-90-3,夜晚路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子( B )图1-29-90-3A. 越长B. 越短C. 一样长D. 随时间变化而变化知识点3:运用投影的知识解决相关问题【例3】如图1-29-90-4,AB和DE是直立在地面上的两根立柱,AB=4 m,某一时刻AB在阳光下的投影BC=3 m,同一时刻测得DE的影长为4.5 m,则DE=6m.图1-29-90-4,3. 如图1-29-90-5,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=1.5 m,CD=4.5 m,点P到CD的距离为2.7 m,则AB与CD间的距离是1.8m.图1-29-90-5A组4. 下列现象不属于投影的是( B )A. 皮影B. 素描画C. 手影D. 树影,5. 一个人离开灯光的过程中人的影长( A )A. 变长B. 变短C. 不变D. 不确定6. 正方形的正投影不可能是( D )A. 线段B. 矩形C. 正方形D. 梯形,7. 在阳光的照射下,一个矩形框的影子的形状不可能是( C )A. 线段B. 平行四边形C. 等腰梯形D. 矩形B组8. 在阳光照射下的升旗广场的旗杆从上午九点到十一点的影子长的变化规律为( B )A. 逐渐变长B. 逐渐变短C. 影子长度不变D. 影子长短变化无规律,9. 小红和小花在路灯下的影子一样长,则她们的身高关系是( D )A. 小红比小花高B. 小红比小花矮C. 小红和小花一样高D. 不确定10. 下列图中是在太阳光下形成的影子的是( A ),11. 如图1-29-90-6是同一天四个不同时刻树的影子,其时间由早到晚的顺序为( B )图1-29-90-6A. 1234B. 4312C. 3421D. 4231C组12. 如图1-29-90-7,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为3m.图1-29-90-7,13. 如图1-29-90-8,圆桌面(桌面中间有一个直径为0.4 m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图的圆环形阴影. 已知桌面直径为1.2 m,桌面离地面1 m,若灯泡离地面3 m,则地面圆环形阴影的面积是( D )图1-29-90-8A. 0.324πm2B. 0.288πm2C. 1.08πm2D. 0.72πm2第2课时简单物体的三视图知识点1:简单几何体的三视图【例1】如图1-29-91-1的圆柱体从正面看得到的图形可能是( B )图1-29-91-1,1. 如图1-29-91-2是一个正六棱柱的茶叶盒,其俯视图为( B )图1-29-91-2知识点2:简单组合体的三视图【例2】如图1-29-91-3是由几个相同的正方体搭成的一个几何体,从上面看得到的平面图形是( B )图1-29-91-3,2. 如图1-29-91-4是由一个正方体和一个正四棱锥组成的立体图形,它的俯视图是( C )图1-29-91-4知识点3:三视图的特征及画法【例3】如图1-29-91-5,画出这个几何体的三视图.图1-29-91-5解:如答图29-91-1.答图29-91-1,3. 图1-29-91-6是由大小相同的小立方块搭成的几何体,请在图中的方格纸中画出该几何体的三视图.解:如答图29-91-2.答图29-91-24. 由4个相同的小立方体搭成的几何体如图1-29-91-7,则它的俯视图是( D )图1-29-91-75. 如图1-29-91-8的立体图形,从左面看可能是( A )图1-29-91-86. 如图1-29-91-9的几何体从左面看到的图形是( A )图1-29-91-97. 如图1-29-91-10的几何体的主视图是( B )图1-29-91-10B组8. 在下面的四个几何体中,从它们各自的正面和左面看,不相同的是( B ),9. 如图1-29-91-11的四个几何体中,主视图与左视图相同的几何体有( D )图1-29-91-11A. 1个B. 2个C. 3个D. 4个C组10. 画出图1-29-91-12的空间几何体的三视图.图1-29-91-12答图29-91-3解:如答图29-91-3.,11. 如图1-29-91-13,在平整的地面上,用若干个棱长完全相同的小正方体堆成一个几何体. 请画出这个几何体的三视图.解:如答图29-91-4.第3课时由三视图确定物体的形状【例1】如图1-29-92-1是某个几何体的主视图、左视图、俯视图,该则几何体是( C )图1-29-92-1A. 圆柱B. 球C. 圆锥D. 棱锥,1. 某几何体的三视图如图1-29-92-2,则这个几何体是( D )图1-29-92-2A. 圆柱B. 长方体C. 三棱锥D. 三棱柱知识点2:根据三视图描述物体原来的形状——简单组合体【例2】如图1-29-92-3是由三个相同的小正方体组成的几何体的主视图,那么这个几何体可以是( A )图1-29-92-3,2. 如图1-29-92-4是一个几何体的三视图,则这个几何体是( B )图1-29-92-4知识点3:由三视图确定小正方体的个数【例3】由一些大小相同的小正方体组成的几何体的三视图如图1-29-92-5,那么,组成这个几何体的小正方体有( B )图1-29-92-5A. 6块B. 5块C. 4块D. 3块,3. 如图1-29-92-6是一个由若干个相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体的个数是( D )图1-29-92-6A. 7个B. 8个C. 9个D. 10个知识点4:利用三视图计算几何体的表面积和体积【例4】如图1-29-92-7是一个几何体的三视图.(1)写出这个几何体的名称;(2)根据数据计算这个几何体的表面积.图1-29-92-7解:(1)由三视图得几何体为圆锥.(2)圆锥的表面积是16π. ,4. 如图1-29-92-8是一个包装盒的三视图.(1)写出这个几何体的名称;(2)求这个几何体的体积.(结果保留π)图1-29-92-8解:(1)这个几何体是圆柱.(2)体积是2 000π.A组5. 某几何体的三种视图是全等的,这个几何体可能是( C )A. 圆柱B. 圆锥C. 球D. 三棱柱,6. 如图1-29-92-9是某几何体的三视图,那么该几何体是( D )图1-29-92-9A. 球B. 正方体C. 圆锥D. 圆柱B组7. 已知某物体的三视图如图1-29-92-10,那么与它对应的物体是( B )图1-29-92-10,8. 某几何体的左视图如图1-29-92-11,则该几何体不可能是( D )图1-29-92-119. 如图1-29-92-12,这是一个几何体的三视图,根据图中数据计算这个几何体的侧面积.图1-29-92-12解:几何体的侧面积为10π.,10. 如图1-29-92-13是一个几何体的三视图,其中俯视图是等边三角形. (1)请写出这个几何体的名称; (2)求这个几何体的表面积.图1-29-92-13解:(1)这个几何体为三棱柱.(2)这个几何体的表面积为44 33(cm 2).C 组11. 某一几何体的三视图均如图1-29-92-14,则搭成该几何体的小立方体的个数为( C )图1-29-92-14A. 9B. 5C. 4D. 3,12. 几个相同的小正方体所搭成的几何体的俯视图和左视图如图1-29-92-15,则小正方体的个数最多是( B )图1-29-92-15A. 5个B. 7个C. 8个D. 9个第4课时投影与视图单元复习课知识点1:投影的定义及分类【例1】人往路灯下行走的影子变化情况是( A )A. 长⇒短⇒长B. 短⇒长⇒短C. 长⇒长⇒短D. 短⇒短⇒长,1. 在阳光照射下的升旗广场的旗杆从上午十点到十二点的影子长的变化规律为( B )A. 逐渐变长B. 逐渐变短C. 影子长度不变D. 影子长短变化无规律知识点2:三视图【例2】下列几何体中,主视图、俯视图、左视图都相同的是( B )2. 如图1-29-93-1是某几何体的三视图,该几何体是( B )图1-29-93-1A. 三棱柱B. 长方体C. 圆锥D. 圆柱知识点3:三视图的相关计算【例3】已知圆锥的三视图如图1-29-93-2,则这个圆锥的侧面展开图的面积为( B )图1-29-93-2A. 60πcm2B. 65πcm2C. 120πcm2D. 130πcm2,3. 如图1-29-93-3是按1∶10的比例画出的一个几何体的三视图,则该几何体的侧面积是( D )图1-29-93-3A. 200 cm2B. 600 cm2C. 100πcm2D. 200πcm2知识点4:画三视图【例4】画出如图1-29-93-4的几何体的主视图、左视图和俯视图.图1-29-93-4答图29-93-1解:如答图29-93-1.4. 如图1-29-93-5的几何体是由棱长为1的正方体摆放成的形状. 请画出这个几何体的三视图.图1-29-93-5解:如答图29-93-2.答图29-93-2A组5. 在阳光下摆弄一个矩形,它的影子不可能是( C )A. 线段B. 矩形C. 等腰梯形D. 平行四边形,6. 下图的四幅图中,灯光与影子的位置合理的是( B )7. 如图1-29-93-6是一个几何体的主视图和俯视图,则这个几何体是( A )图1-29-93-6A. 三棱柱B. 正方体C. 三棱锥D. 长方体,8. 如图1-29-93-7的正六棱柱的主视图是( A )图1-29-93-7B组9. 用5个棱长为1的正方体组成如图1-29-93-8的几何体. 请在方格纸中用实线画出它的三个视图.图1-29-93-8解:如答图29-93-3.答图29-93-310. 某几何体从正面、左面、上面看到的平面图形如图1-29-93-9,其中从正面看到的图形和从左面看到的图形完全一样.(1)求该几何体的侧面面积(结果保留π);(2)求该几何体的体积(结果保留π).图1-29-93-9解:(1)该几何体的侧面面积为π·6×8=48π.(2)此圆柱体的体积为72π.C组11. 由一些大小相同的小正方体搭成的几何体的主视图和俯视图如图1-29-93-10,则搭成该几何体的小正方体最多是7个.图1-29-93-1012. 如图1-29-93-11是由一些小正方体搭成的几何体从上面看的图形(俯视图),数字表示该位置小正方体的个数,请画出这个几何体从正面看的图形(主视图)、从左面看的图形(左视图).图1-29-93-11答图29-93-4解:如答图29-93-4.。
第29章《投影与视图》导学案
第二十九章第1节第1课时《投影(1)》导学案A B(一)学生提出的问题:(二)注意事项:(师生总结,学生整理)二、分层训练(20分钟) (一)双基过关(二)能力提升:如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O )20米的点A 处,沿OA 所在的直线行走14米到点B 时,人影的长度【 】A .增大1.5米 B. 减小1.5米 C. 增大3.5米 D. 减小3.5米三、课堂小结(5分钟)(总结所学,建构知识)四、达标反馈(10-15分钟)必做题:1、下列物品①探照灯;②车灯;③太阳;④月亮;⑤台灯中所成的投影是中心投影的是( )A.①②B.①③C.①②③D.①②⑤ 2、.太阳发出的光照在物体上是______,车灯发出的光照在物体上是_____( ) A.中心投影,平行投影 B.平行投影,中心投影C.平行投影,平行投影D.中心投影,中心投影3.如图,晚上小亮在路灯下散步,他从A 处向着路灯灯柱方 向径直走到B 处,这一过程中他在该路灯灯光下的影子( ) A .逐渐变短 B .逐渐变长 C .先变短后变长 D .先变长后变短选做题:、如图4,丁轩同学在晚上由路灯AC 走向路灯BD ,当他走到点P 时,发现身后他影子的顶部刚好接触到路灯AC 的底部,当他向前再步行20m 到达Q 点时,发现身前他影子的顶部刚好接触到路灯BD 的底部,已知丁轩同学的身高是1.5m ,两个路灯的高度都是9m ,则两路灯之间的距离是( )时间____________________评价_______________________第二十九章第1节第2课时《投影(2)》导学案课题29.1.投影(2)课型新授课班级姓名学习目标1、了解正投影的概念;2、能根据正投影的性质画出简单的平面图形的正投影;3、培养动手实践能力,发展空间想象能力.重难点重点:正投影的含义及能根据正投影的性质画出简单的平面图形的正投影难点:归纳正投影的性质,正确画出简单平面图形的正投影前置学习(课前独学20分或30分钟)1、.温故知新下图表示一块三角尺在光线照射下形成投影,其中哪个是平行投影哪个是中心投影?图(2) (3)的投影线与投影面的位置关系有什么区别?2、自主预习并完成下列问题:1)(1)正投影的定义:叫做正投影.(2)物体的位置与其正投影的关系:当物体平行于投影面时,其正投影与原物体的形状、大小;当物体倾斜于投影面时,其正投影与原物体的形状、大小;当物体垂直于投影面时,其正投影成.2)教材P102探究(1):问题:三种情形下铁丝的正投影各是什么形状?3)教材P102探究(2)三种情形下纸板的正投影各是什么形状?归纳总结:通过活动1、活动2你发现了什么?3、跟踪练习:1、小明在操场上练习双杠时,在练习的过程中他发现在地上双杠的两横杠的影子()A. 相交 B. 平行 C. 垂直 D. 无法确定2、球的正投影是( ) (A)圆面.(B)椭圆面.(C)点. (D)圆环.3、正方形在太阳光的投影下得到的几何图形一定是( )(A)正方形.(B)平行四边形或一条线段.(C)矩形.(D)菱形.4、如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是( )课堂学习流程总结反思一、前置学习展示交流5-10分钟:(对学群学)(一)学生提出的问题:(二)注意事项:(师生总结,学生整理)三、分层训练(20分钟)(一)双基过关(二)能力提升:三、课堂小结(5分钟)(总结所学,建构知识)四、达标反馈(10-15分钟)选做题1.球的正投影是( ) (A)圆面.(B)椭圆面.(C)点.(D)圆环.2.底面与投影面垂直的圆锥体的正投影是( )(A)圆.(B)三角形.(C)矩形.D)正方形.3.指出如图所示的立体图各个面的正投影图形,并画出投影线的方向如箭头所示立体图的正投影.4.、正方形在太阳光的投影下得到的几何图形一定是( )(A)正方形.(B)平行四边形或一条线段.(C)矩形.(D)菱形.必做题:地面上直立一根标杆AB如图,杆长为2cm.①当阳光垂直照射地面时,标杆在地面上的投影是什么图形?②当阳光与地面的倾斜角为60°时,标杆在地面上的投影是什么图形?并画出投示意图;时间____________________评价_______________________第二十九章第2节第1课时《三视图(1)》导学案课题29.1.三视图(1)课型新授课班级姓名学习目标1、学会从投影的角度理解视图的概念2、会画简单几何体的三视图3、通过观察探究等活动使学生知道物体的三视图与正投影的相互关系及三视图中位置关系、大小关系.重难点重点:从投影的角度加深对三视图的理解和会画简单的三视图难点:对三视图概念理解的升华及正确画出三棱柱的三视图前置学习(课前独学20分或30分钟)1、.温故知新1)复习什么叫正投影?2、自主预习并完成下列问题:1)如图,直三棱柱的侧棱与水平投影面垂直。
人教版九年级数学下册第29章视图与投影29
(四)课堂练习
1.设计练习题:针对本节课所学内容,设计不同难度的练习题,让学生巩固投影知识。
2.学生练习:学生在课堂上独立完成练习题,教师巡回指导,解答学生疑问。
3.评价反馈:收集学生练习成果,进行评价,了解学生对投影知识掌握的情况。
2.创设生活情境,将投影与学生的日常生活紧密联系起来。例如,通过分析建筑物在不同光照条件下的影子,让学生感受平行投影的特点;通过展示摄影作品,让学生理解中心投影的效果。
3.采用任务驱动法,设计具有挑战性的实践活动。例如,让学生分组合作,为教室内的物品绘制三视图,并尝试根据三视图还原物品的三维形状。在此过程中,教师提供必要的指导,帮助学生克服难点。
4.利用多媒体教学资源,展示三视图的绘制过程,让学生在实际操作中掌握三视图的画法。
(三)情感态度与价值观
1.培养学生对投影现象的好奇心,激发他们学习数学的兴趣。
2.培养学生合作学习的意识,让他们在相互交流、探讨中共同成长。
3.培养学生勇于探索、积极思考的精神,使他们体会到数学在生活中的重要作用。
4.培养学生的空间想象能力,提高他们的审美素养,使他们对几何图形产生美感。
1.关注学生个体差异,针对不同学生的学习能力,适当调整教学难度和进度,使他们在原有基础上得到提高。
2.充分发挥学生的主体作用,鼓励他们积极参与课堂讨论和实践活动,培养他们的探究精神和创新能力。
3.注重启发式教学,引导学生运用已学过的几何知识,发现投影现象背后的规律,提高他们的逻辑思维能力。
4.考虑到学生在生活中对投影现象有一定的接触,可以结合实际情境进行教学,使抽象的投影知识变得具体、生动,增强学生的学习兴趣。
导学案九(下)29投影与视图
人教版数学九年级上导学案第二十九章投影与视图第1课时:§29.1.1 投影第2课时:§29.1.2 投影第3课时:§29.1.2 投影习题课第4课时:§29.2.1 三视图(1)第5课时:§29.2.2三视图(2)第6课时:§29.2.3三视图(3)第7课时:§29.2.4三视图(4)第8课时:§29 全章复习第9课时:§29 全章测试2§29.1.1投影学习目标1.了解投影、投影面、平行投影和中心投影的概念;2.了解角平行投影和中心投影的区别;自主学习一、课前准备(预习教材P106~ P107,找出疑惑之处)二、新课导学※互动探究探究任务一:什么叫做物体的投影问题探究:学生先独立阅读课本第106页,再彼此交流结果,举例。
教师点拨:一般地.用光线照射物体.在某个平面(地面、墙壁等)上得到的影子叫做物体的投影.照射光线叫做投影线,投影所在的平面叫做投影面.探究任务二:平行投影和中心投影是什么?问题探究:学生先独立阅读课本第106,107页,再交流结果。
教师点拨:有时光线是一组互相平行的射线.例如太阳光或探照灯光的一束光中的光线.由平行光线形成的投影是平行投影.例如.物体在太阳光的照射下形成的影子(简称日影)就是平行投影.由同一点(点光源)发出的光线形成的投影叫做中心投影.例如.物体在灯泡发出的光照射下形成影子就是中心投影.探究任务三:平行投影与中心投影的区别与联系问题探究:学生以数学习小组为单位,观察在太阳光线和灯光下,木杆和三角形纸板在地面的投影。
教师点拨:平行投影与中心投影的区别与联系新知:1、物体的投影的概念;2、平行投影和中心投影的概念3、平行投影与中心投影的区别与联系学生反思本节课未理解的知识点,写在下面:※探究升华(学生独立完成,并自己总结,教师点拨)例1、地面上直立一根标杆AB如图,杆长为2cm。
人教版数学九年级下《第29章视图与投影》复习学案
27复习学案【学习目标】2.培养空间想象能力.【重点难点】重点:利用相似三角形的知识解决实际的问题;位似的应用及在平面直角坐标系中作位似图形.难点:如何把实际问题抽象为相似三角形、位似形这一数学模型.【知识回顾】1、投影:(1)定义:一般地,用光线照射物体,在某个平面上得到的__________叫做物体的投影.(2)平行投影:由__________形成的投影.中心投影:由__________发出的光线形成的投影.(3)正投影:投影线__________投影面时产生的投影.2、三视图:在正面内得到的由前向后观察物体的视图,叫做_________.在水平面内得到的由上向下观察物体的视图,叫做_________.在侧面内得到的由左向右观察物体的视图,叫做_________.大小关系:长_________,宽_________,高_________3、面积公式:(1)圆锥:侧面积_________,全面积_________.体积_________.(2)圆柱:侧面积_________,全面积_________.体积_________.(3)边长为a正六边形的面积_________.【综合运用】1.已知两棵小树在同一时刻的影子,你如何确定影子是在太阳光线下还是在灯光的光线下形成的:第1题图2.如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是( )第2题图3.如图是某一几何体的三视图,则该几何体是( )第3题图4.某几何体的主视图、左视图和俯视图分别如图,则该几何体的体积为( )第4题图【矫正补偿】1.如图1,CD是木杆在阳光下的影子如图2,点P是影子的光源,EF就是人在光源下的影子第1题图2.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的表面积是多少?第2题图【完善整合】1.通过本节课的学习你有那些收获?2.你还有哪些疑惑?29复习学案答案综合运用:1.略2.D3. 圆柱4.6π矫正补偿:1.略2. 32。
29-1-1-平行投影与中心投影导学案
人教版九年级下册第29章《投影与视图》导学案[29.1.1 平行投影与中心投影]1.了解投影、投影线、投影面、平行投影和中心投影的概念. (重点)2.了解平行投影和中心投影的含义、特征、区别与联系. (难点)3.能利用平行投影和中心投影的相关知识解决实际问题. (难点)情境引入观察下列图片你发现了什么共同点?知识精讲投影的概念你知道物体与影子有什么关系吗?【归纳】一般地,用光线照射物体,在某个平面 (地面、墙壁等) 上得到的影子叫做物体的投影.照射光线叫做投影线,投影所在的平面叫做投影面.【针对练习】把下列物体与它们的投影用线连接起来:平行投影观察下列图片,你认为太阳光线有什么特征?________________________________________________________________________.【归纳】由平行光线形成的投影叫做平行投影.典例解析【例1】某校墙边有甲、乙两根木杆.已知乙杆的高度为1.5m.(1) 某一时刻甲木杆在阳光下的影子如下图所示,你能画出此时乙木杆的影子吗?(2) 当乙木杆移动到什么位置时,其影子刚好不落在墙上?(3) 在(2)的情况下,如果测得甲、乙木杆的影子长分别为1.24m和1m,那么你能求出甲木杆的高度吗?中心投影由同一点 (点光源) 发出的光线形成的投影叫做中心投影.例如:物体在灯泡发出的光照射下形成影子就是中心投影.【针对练习】请你分别指出下面的例子属于什么投影?____________ ____________ ____________ ____________ 典例解析确定下图路灯灯泡所在的位置.【归纳】平行投影和中心投影有什么区别和联系呢?1.下列物体的影子中,不正确的是 ( )2. 下面属于中心投影的是 ( )A. 太阳光下的树影B. 皮影戏C. 月光下房屋的影子D. 海上日出3. 晚上,人在马路上走过一盏路灯的过程中,其影子长度的变化情况是( )A. 先变短后变长B. 先变长后变短C. 逐渐变短D. 逐渐变长4. 小玲和小芳两人身高相同,两人站在灯光下的不同位置,已知小玲的影子比小芳的影子长,则可以判定小芳离灯光较______.(填“远”或“近”) .5.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察广场的旗杆随太阳转动的情况,无意之中,他发现这四个时刻广场的旗杆在地面上的影子的长度各不相同,那么影子最长的时刻为 .6. 将一个三角形放在太阳光下,它所形成的投影的形状是_____________.7. 小华在不同时间于天安门前拍了几幅照片,下面哪幅照片是小华在下午拍摄的?(天安门是坐北向南的建筑.)8. 确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.。
人教版九年级数学下册第29章投影与视图全章教案
第 29章投影与三视图一、教学内容及教材分析:1、本章的主要内容有测量、一是从不同方向看物体,以及由此而产生的盲区和影子的概念与性质,二是物体的三视图、投影时视图的基础。
2、空间观念的形成是一个长期的过程。
本章是第七章内容的继续和发展。
二、重难点与关键1、了解中心投影的概念以及中心投影下线段、平面图形与其投影的关系。
2、认识平行投影及其特征,能够画简单几何体在水平投影面和竖直投影面上的正投影。
3、能通过正投影理解三视图的概念、三视图的投影规律,能画出简单几何体的三视图。
4、能由三视图想象简单几何体。
难点:几何体与其投影的关系及由三视图想象几何体。
三、教学目标:1、通过实例,了解视点、视线、盲区的含义及生活上的应用。
2、通过实例,了解中心投影、平行投影和正投影的概念和基本性质。
3、了解三视图的概念:会画基本几何体的三视图,能判断简单的物体的视图,并会根据视图描述简单的儿何体。
4、通过简单几何体与它的三视图之间的相互转化,体会几何体与平面图形的之间的相互联系,感悟转化的数学思想,发展学生的空间观念。
5、通过三视图的学习,培养学生识图、画图的基本技能。
6、通过实例,了解视图在现实生活中的应用,增强学生的应用意识。
四、教学方法与策略:(一)重视结合实际例子讨论问题,在直观认识的基础上归纳基本规律数学易以数量关系和空间形式为主要研究对象的科学,数量关系和空间形式是从理牢世界中抽象出来的。
很明显,关于投影和视图的知识是从实际需要(建筑、制造等)中产生的,它们与实际模型联系得非常紧密。
在本章之前,学生已经数次接触过“从不同方向看物体”等内容,对投影和视图的知识已有初步的,朦胧的了解,只是还没有明碗地接触过一些基本名词术语,对有关基本规律还缺乏归纳总结。
(二)重视平面图形与立体图形的联系,重在培养空间想象能力在学习本章之前,学生已经具有一定的关于平面图形与立体图形的匆识,并且接鲀过“从不同方向观察物体”,基本儿何体的平面展开图等反映平面图形与立体图形之间的联系的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
29.1投影(第一课时)【学习目标】(一)知识技能:1、了解投影的有关概念,能根据光线的方向辨认物体的投影。
2、了解平行投影和中心投影的区别。
3、了解物体正投影的含义,能根据正投影的性质画出简单平面图形的正投影。
(二)数学思考:在探究物体与其投影关系的活动中,体会立体图形与平面图形的相互转化关系,发展学生的空间观念。
(三)解决问题:通过对物体投影的学习,使学生学会关注生活中有关投影的数学问题,提高数学的应用意识。
(四)情感态度:通过学习,培养学生积极主动参与数学活动的意识,增强学好数学的信心。
【学习重点】了解正投影的含义,能根据正投影的性质画出简单平面图形的正投影。
【学习难点】归纳正投影的性质,正确画出简单平面图形的正投影。
【学习准备】手电筒、三角尺、作图工具等。
【学习过程】【情境引入】活动1设问:你注意观察过周围物体在日光或灯光下的影子吗?影子与物体有着怎样的联系呢?教师展示实物及图片,学生观察、思考,感知物体与投影之间的关系。
学生讨论、发表观点;教师归纳。
总结出投影、投影线、投影面的概念。
总结:一般地,用光线照射物体,在 上,得到的叫做物体的投影,叫做投影线,投影所在的 叫做投影面。
【自主探究】活动2教师给学生展示一组阳光下的投影图片,设问:下列投影中,投影线、投影面分别是什么?这些投影线有何共同特征?学生观察、思考、归纳,教师指导。
归纳总结:由 形成的投影叫做平行投影。
试举出平行投影在生活中的应用实例。
活动3出示一组灯光下的投影,学生观察投影线、投影面分别是什么?这些投影线有何共同特征?学生分析、回答。
归纳总结:由发出的光线形成的投影叫做中心投影。
试举出中心投影在生活中的应用实例。
活动4出示教材101页练习:将物体与它们的投影用线连接起来。
【合作探究】活动5:问题1联系:。
区别:。
问题2图中三角板的投影各是什么投影?它们的投影线与投影面的位置关系有什么区别?学生观察、思考、互相交流。
联系:图中的投影都是投影。
区别:总结出正投影的概念:。
【巩固练习】1.物体在光线照射下,在地面或墙壁上留下的影子叫做它的_________.2.手电筒、路灯的光线可以看成是从_________发出的,它们所形成的投影是_________投影,而太阳光线所形成的投影是_________投影.3.将一个三角形放在太阳光下,它所形成的投影的形状是__________________.二、选择题4.小明从正面观察下图所示的两个物体,看到的是( )5.物体的影子在正北方,则太阳在物体的( )A.正北B.正南C.正西D.正东6.小明在操场上练习双杠时,发现两横杠在地上的影子( )A.相交B.平行C.垂直D.无法确定7.一只小狗在平面镜前欣赏自己(如图所示),它所看到的全身像是( )8.确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.二、选择题10.晚上,人在马路上走过一盏路灯的过程中,其影子长度的变化情况是( )A.先变短后变长 B.先变长后变短C.逐渐变短D.逐渐变长11.下面是一天中四个不同时刻两个建筑物的影子:将它们按时间先后顺序进行排列,正确的是( )A.③④②①B.②④③①C.③④①②D.③①②④12.如图是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径是1.2m,桌面距离地面1m,若灯泡距离地面3m,则地面上阴影部分的面积是( )A.0.36πm2B.0.81πm2C.2πm2D.3.24πm2【总结提高】(一)师生小结你的收获()你的不足()29.1投影(第二课时)【学习目标】(一)知识技能:1、进一步了解投影的有关概念。
2、能根据正投影的性质画出简单平面图形的正投影。
(二)数学思考:在探究物体与其投影关系的活动中,体会立体图形与平面图形的相互转化关系,发展学生的空间观念。
(三)解决问题:通过对物体投影的学习,使学生学会关注生活中有关投影的数学问题,提高数学的应用意识。
(四)情感态度:通过学习,培养学生积极主动参与数学活动的意识,增强学好数学的信心。
【学习重点】能根据正投影的性质画出简单平面图形的正投影。
【学习难点】归纳正投影的性质,正确画出简单平面图形的正投影。
【学习准备】手电筒、三角尺、作图工具等。
【学习过程】【知识回顾】正投影的概念:投影线 于投影面产生的投影叫正投影。
【自主探究】活动1 出示探究1 如图29.1—7中,把一根直的细铁丝(记为线段AB )放在三个不同位置: (1) 铁丝平行于投影面; (2) 铁丝倾斜于投影面: (3) 铁丝垂直于投影面(铁丝不一定要与投影面有公共点)。
三种情形下铁丝的正投影各是什么形状?通过观察、讨论可知: (1)当线段AB 平行于投影面P 时,它的正投影是线段A 1B 1,线段与它的投影的大小关系为AB A 1B 1; (2)当线段AB 倾斜于投影面P 时,它的正投影是线段A 2B 2,线段与它的投影的大小关系为AB A 2B 2; (3)当线段AB 垂直于投影面P 时,它的正投影是 。
设计意图:用细铁丝表示一条线段,通过实验观察,分析它的正投影简单直观,易于发现结论。
活动2 如图,把一块正方形硬纸板P (记为正方形ABCD )放在三个不同位置: (1) 纸板平行于投影面; (2) 纸板倾斜于投影面;(3)纸板垂直于投影面。
三种情形下纸板的正投影各是什么形状?通过观察、讨论可知: (1)当纸板P 平行于投影面时,P 的正投影与纸板P 的 一样; (2)当纸板P 倾斜于投影面时,P 的正投影与纸板P 的 ;(3)当纸板P 垂直于投影面时,P 的正投影成为 。
归纳总结:通过活动1、活动2你发现了什么?正投影的性质:。
活动3按照图中所示的投影方向,画出矩形和三角形的正投影。
活动4出示例题:例画出如图摆放的正方体在投影面P上的正投影。
(1)正方体的一个面ABCD平行于投影面P;(2)正方体的一个面ABCD倾斜于投影面P,上底面ADEF垂直于投影面P,并且上底面的对角线AE垂直于投影面P.【巩固练习】1、小明在操场上练习双杠时,在练习的过程中他发现在地上双杠的两横杠的影子()A. 相交B. 平行C. 垂直D. 无法确定2、球的正投影是( )(A)圆面.(B)椭圆面.(C)点. (D)圆环.3、正方形在太阳光的投影下得到的几何图形一定是( )(A)正方形. (B)平行四边形或一条线段. (C)矩形.(D)菱形.4、如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是( )5、将一个三角形放在太阳光下,它所形成的投影是;6、在同一时刻,身高1.6m的小强的影长是1.2m,旗杆的影长是15m,则旗杆高为()A、16mB、18mC、20mD、22m7、地面上直立一根标杆AB如图,杆长为2cm。
①当阳光垂直照射地面时,标杆在地面上的投影是什么图形?②当阳光与地面的倾斜角为60°时,标杆在地面上的投影是什么图形?并画出投影示意图;【总结提高】(一)师生小结你的收获()你的不足()【布置作业】作业:教科书105页练习题教科书106页第4题、第5题。
29.2三视图(第一课时)【学习目标】(一)知识技能:1.会从投影角度理解视图的概念。
2.会画简单几何体的三视图。
(二)数学思考:通过具体活动,积累观察,想象物体投影的经验。
(三)解决问题:会画实际生活中简单物体的三视图。
(四)情感态度:1.培养学生自主学习与合作学习相结合的学习方式,使学生体会从生活中发现数学。
2.在应用数学解决生活中问题的过程中,品尝成功的喜悦,激发学生应用数学的热情。
【学习重点】1.从投影的角度加深对三视图概念的理解。
2.会画简单几何体的三视图。
【学习难点】1.对三视图概念理解的升华。
2. 正确画出三棱柱的三视图和小零件的三视图。
【学习过程】 【情境引入】 活动一如图,直三棱柱的侧棱与水平投影面垂直。
请与同伴一起探讨下面的问题:(1) 以水平投影面为投影面,在正投影下,这个直棱柱的三条侧棱的投影是什么图形? (2) 画出直三棱柱在水平投影面的正投影,得到的投影是什么图形?它与直三棱柱的底面有什么关系?(3)这个水平投影能完全反映这个物体的形状和大小吗?如不能,那么还需哪些投影面?【自主探究】活动二学生观察思考:(1)三个视图位置上的关系。
(2)三个视图除了位置上的关系,在大小尺寸上,彼此之间又存在什么关系? 小结:1.三视图位置有规定,主视图要在,俯视图应在 , 左视图要在 。
2.三视图中各视图的大小也有关系。
主视图与俯视图表示同一物体的 ,主视图与左视图表示同一物体的,左视图与俯视图表示同一物体的。
因此三视图的大小是互相联系的。
画三视图时,三个视图要放在正确的位置,并且使主视图与俯视图的,主视图与左视图的,左视图与俯视图的。
活动三例1 画出下图2所示的一些基本几何体的三视图.题后小结:画这些基本几何体的三视图时,要注意从个方面观察它们.具体画法为:1.确定视图的位置,画出视图;2.在视图正下方画出视图,注意与主视图“”。
3.在视图正右方画出视图.注意与主视图“”,与俯视图“”.【巩固练习】1.画出图中的几何体的三视图。
题后小结:画三视图时,看得见的轮廓线通常画成_______,看不见的部分通常画成_______。
2、你能画出下图中几何体的三视图吗?【总结提高】(一)师生小结你的收获( ) 你的不足( ) (二)方法汇总画基本几何体的三视图时,要注意从 个方面观察它们.具体画法为: 1.确定视图的位置,画出 视图;2.在 视图正下方画出 视图,注意与主视图“ ”。
3.在 视图正右方画出 视图.注意与主视图“ ”,与俯视图“ ”.4.看得见的轮廓线通常画成_______,看不见的部分通常画成_______。
【布置作业】作业:教科书116页习题29.2复习巩固1、2、3题。
29.2三视图(第二课时)【学习目标】(一)知识技能:会画简单几何体的三视图。
(二)数学思考:通过具体活动,积累观察,体会立体图形的三视图与立体图形的密切关系。
(三)解决问题:会画实际生活中简单物体的三视图。
(四)情感态度:1.培养学生自主学习与合作学习相结合的学习方式,使学生体会从生活中发现数学。
2.在应用数学解决生活中问题的过程中,品尝成功的喜悦,激发学生应用数学的热情。
【学习重点】会画简单几何体的三视图。
【学习难点】1.对三视图概念理解的升华。
2.正确画出实际生活中物体的三视图。
【学习过程】 【知识回顾】 活动一1.圆柱对应的主视图是( )。
(A ) (B ) (C ) (D )2.主视图、左视图、俯视图都是圆的几何体是( )。
(A )圆锥(B )圆柱 (C )球 (D )空心圆柱3.画出下列几何体的三视图题后小结:画一个立体图形的三视图时要注意什么?【自主探究】活动二 出示例2画出如图所示的支架(一种小零件)的三视图. 支架的两个台阶的高度和宽度都是同一长度。