第五章 摩擦(H)
理论力学习题册答案
理论力学习题册答案班级姓名学号第一章静力学公理与受力分析(1)一.是非题1、加减平衡力系公理不但适用于刚体,还适用于变形体。
()2、作用于刚体上三个力的作用线汇交于一点,该刚体必处于平衡状态。
()3、刚体是真实物体的一种抽象化的力学模型,在自然界中并不存在。
()4、凡是受两个力作用的刚体都是二力构件。
()5、力是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果。
()二.选择题1、在下述公理、法则、原理中,只适于刚体的有()①二力平衡公理②力的平行四边形法则③加减平衡力系公理④力的可传性原理⑤作用与反作用公理三.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
(a)球A(b)杆AB- 1 -(c)杆AB、CD、整体(d)杆AB、CD、整体(e)杆AC、CB、整体(f)杆AC、CD、整体四.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
(a)球A、球B、整体(b)杆BC、杆AC、整体- 2 -班级姓名学号第一章静力学公理与受力分析(2)一.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
(a)杆AB、BC、整体(c)杆AB、CD、整体CAFAxDBFAyFBWEW(b)杆ABOriginal Figure、BC、轮E、整体FBD of the entire frame(d)杆BC带铰、杆AC、整体- 3 -(e)杆CE、AH、整体(g)杆AB带轮及较A、整体(f)杆AD、杆DB、整体(h)杆AB、AC、AD、整体- 4 -班级姓名学号第二章平面汇交和力偶系一.是非题1、因为构成力偶的两个力满足F= - F’,所以力偶的合力等于零。
()2、用解析法求平面汇交力系的合力时,若选用不同的直角坐标系,则所求得的合力不同。
()3、力偶矩就是力偶。
摩擦学原理知识点整理
绪论1、摩擦学定义:是关于相对运动的相互作用表面的科学技术,包括摩擦、润滑、磨损和冲蚀。
2、摩擦学研究内容主要包括:摩擦、磨损、润滑以及表面工程技术。
3、摩擦:是抵抗两物体接触表面在外力作用下发生切向相对运动的现象。
4、磨损:着重研究与分析材料和机件在不同工况下的磨损机理、发生规律和磨损特性。
5、润滑:研究内容包括流体动力润滑、静力润滑、边界润滑、弹性流体动力润滑等在内的各种润滑理论及其在实践中的应用。
6、表面工程技术:将表面与摩擦学有机结合起来,解决机器零部件的减摩、耐磨,延长使用寿命的问题。
第一章1、表面形貌:微观粗糙度、宏观粗糙度(即波纹度)和宏观几何形状偏差。
2、表面参数:(1)算术平均偏差Ra 是在一个取样长度lr 内纵坐标值Z (x )绝对值的算术平均值。
(2)轮廓的最大高度Rz 是在一个取样长度lr 内最大轮廓峰高Zp 和最大轮廓谷深Zv 之和的高度。
(3)均方根偏差Rq 是在一个取样长度lr 内纵坐标值Z (x )的均方根值。
3、对于液体,表层中全部分子所具有的额外势能的总和,叫做表面能。
表面能越高,越易粘着。
4、物理吸附:当气体或液体与固体表面接触时,由于分子或原子相互吸引的作用力而产生的吸附叫做物理吸附,是靠范德华力维系的,温度越高,吸附量越小。
物理吸附薄膜形成的特点是吸附和解吸附具有可逆性,无选择性。
5、化学吸附:极性分子与金属表面的电子发生交换形成化学键吸附在金属表面上,且极性分子呈定向排列。
化学吸附的吸附能较高,比物理吸附稳定,且是不完全可逆的,具有选择性。
6、粘附:是指两个发生接触的表面之间的吸引。
7、影响粘附的因素:①润湿性,②粘附功,③界面张力,④亲和力。
8、金属表面的实际结构:(1)外表层:①污染层,②吸附气体层,③氧化层;(2)内表层:①加工硬化层,②金属基体。
第二章1、固体表面的接触分类:(1)点接触和面接触。
(2)①弹性接触(赫兹接触),②塑性接触,③弹塑性接触,④粘弹性接触。
工程力学(静力学与材料力学)第四版习题答案
静力学部分 第一章基本概念受力图2-1 解:由解析法,23cos 80RX F X P P Nθ==+=∑故: 161.2R F N==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有故:3R F KN== 方向沿OB 。
2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。
(a ) 由平衡方程有:0.577AB F W=(拉力)1.155AC F W=(压力)(b ) 由平衡方程有:1.064AB F W=(拉力)0.364AC F W=(压力)(c ) 由平衡方程有:0.5AB F W= (拉力)0.866AC F W=(压力)(d ) 由平衡方程有:0.577AB F W= (拉力)0.577AC F W= (拉力)2-4 解:(a )受力分析如图所示:由x =∑ cos 450RA F P -=由Y =∑ sin 450RA RB F F P +-=(b)解:受力分析如图所示:由 联立上二式,得:2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以:5RA F KN= (压力)5RB F KN=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=由0Y =∑sin 0AC N F F W α+-=2-7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程 (1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:取E 为研究对象:由0Y =∑cos 0NH CEF F α'-=CECE F F '= 故有:2-11解:取A 点平衡:联立后可得:2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:由对称性及ADAD F F '=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力)列C 点平衡联立上二式得:1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡联立方程后解得: RD F = (2)取ABCE 部分,对C 点列平衡且RE REF F '=联立上面各式得: RA F = (3)取BCE 部分。
初二物理人教版下册一至八章所有计算公式和知识点
初二物理人教版下册一至八章所有计算公式和知识点. 求计算公式的整
理.各条公式的原型及变形公式.
本文主要给出了初二物理人教版下册一至八章中的所有计算公式及知识点,文章也列出所有公式的原型及变形公式,以此作为整理的参考。
题记:初二物理下册计算公式及知识点整理。
第一章静力学:
1. 平衡定律:F₁+F₂=0 或m•g=F₁=F₂
2. 合力定律:F=F₁+F₂
3. 动力定律:结论F=m•a
第二章动量定理:
1. 初始动量定理:p=m•v
2. 终点动量定理:p=p₁+p₂
3. 等量动量定理:Δp=Δm•v
第三章动能定理:
1. 初始动能定理:K=m•v²/2
2. 终点动能定理:K=K₁+K₂
3. 等量动能定理:ΔK=Δm•(v²-u²)/2
第四章牛顿第二定律:
1. 途经力定律:F=m•a
2. 周期运动:T=2π•√m/F
第五章摩擦:
1. 垂直摩擦力:F₁⊥=μ•N
2. 水平摩擦力:F₂∥=μ•N
第六章势能:
1. 弹簧势能:U=1/2 kx²
2. 重力势能:U=m•g•h
第七章交互作用力:
1. 普通匀强直线电场:E=F/q,F=q•E
2. 普朗克定律:F=K•Q₁•Q₂/r²
第八章小结:
1. 动量守恒定律:p=p₁+p₂=p₃
2. 动能守恒定律:K=K₁+K₂=K₃
3. 电子动量定理:p₁+p₂=p₃+p₄
4. 电子动能定理:K₁+K₂=K₃+K₄。
理论力学第五章 摩擦(Y)
0 Fs Fs,max
——平衡
0 f
f Fs Fs ,max ——临界平衡状态 摩擦角 f —— 物体处于临界平衡状态时全反力与
法线之间的夹角。
tan f
Fs ,max FN
f s FN fs FN
摩擦角的正切等于静滑动摩擦系数——几何意义。
当物体平衡时(包括平衡的临界状态)全约束反力 的作用线一定在摩擦角之内
摩擦轮传动——将左边轴的转动传给右边的轴
摩擦的分类:
摩擦
滑动摩擦
滚动摩擦
静滑动摩擦 ——仅有相对运动趋势 动滑动摩擦 ——已有相对运动 静滚动摩擦 动滚动摩擦
干摩擦 ——由于接触表面之间没有液体时产生的摩擦。 湿摩擦 ——由于物体接触面之间有液体。
摩擦
一、滑动摩擦
研究滑动摩擦规律的实验:
MB 0
l sin 30 0 M P cos 30 0 FND l cos 30 0 0 FSD 2
3 P 3l
(1 FSD
FSD f s FND
3 2 3 M M min Pl 8
(1)当M较大时,BD杆逆时针转动。 分别以OA、 BD杆为研究对象, 画受力图。 l 0 FND l cos 30 P 0 对于OA杆: M O 0 2
Y 0
Fs,max f s FN
(库仑摩擦定律)
(2)最大静摩擦力的方向:沿接触处的公切线,与相对 滑动趋势反向;
Fs,max f s FN f s ——静滑动摩擦系数——静摩擦系数
与两接触物体表面情况(粗糙度,干湿度,温度等) 和材料有关,与两物体接触面的面积无关。
郝桐生--第5章摩擦(执行)
第五章 摩擦
第五章 平面任意力系
§5-1 摩擦现象 §5-2 滑动摩擦 §5-3 具有滑动摩擦的平衡问题 §5-4 滚动摩擦
理论力学电子教程
第五章 摩擦
§5-1 摩擦现象
前面力系的研究都是忽略摩擦,实际上摩擦是不可忽略的。 按接触物体有无相对运动,分为:动摩擦和静摩擦。 按相对运动或相对运动趋势,分为:滑动摩擦和滚动摩擦。 滑动摩擦:相对运动为滑动或具有滑动趋势时的摩擦。 滚动摩擦:相对运动为滚动或具有滚动趋势时的摩擦。 按接触物体有无良好润滑,分为:干摩擦和湿摩擦。
P
F
30
(a )
(b)
理论力学电子教程
第五章 摩擦
(2)图中,A、B两物体分别重 P及2P,两物块间及B与斜面间 1 的摩擦系数均为 f s ,则( D ) 3 A. A平衡,B不平衡 A B. A不平衡,B平衡 B C. A、B均不平衡 25 D. A、B均平衡
(3)如图所示物块重P,在水平推力F作用下平衡,接触面间 的静滑动系数为 f s ,则物块与铅锤面间的摩擦力为( C )
M M max
( 3)轮子处于静止时 M M max , Fs Fmax (4)轮子处于临界滑动状态时
Fs Fs max f FN
(5)轮子处于临界滚动状态或滚动时 M M max (6)轮子只滚不滑时(滚而不滑,纯滚动) M M max Fs Fmax (7)轮子又滚又滑时
P
f s 0.32
P
F 0.3P
f s 0.32
F 0.35P
理论力学电子教程
第五章 摩擦
测验 图示平面机构中BC杆自重不计,为求铰A、B的约 束反力,可以采用 组平衡方程联立求解。 (A) M A ( F ) 0, (B) M A ( F ) 0, (C) Fx 0,
第五章 工程力学摩擦li
F1max
sin f s cos P cos f s sin
PAG 15
Northeastern University
§4-3
考虑摩擦时物体的平衡问题
y
(二)下滑 (1)取物体为研究对象
(2) 受力分析
(3) 建坐标系,列平衡方程
' 0 Fx 0, F1 cos P sin Fmax
PAG 21
③ M max与滚子半径无关;
Northeastern University
§4-4
滚动摩阻的概念
4.滚动摩擦系数 的说明 ①有长度量纲,单位一般用mm,cm; ②与滚子和支承面的材料的硬度和温度有关; ③ 的物理意义见图示。
根据力线平移定理
R
' N
P F
A
R
Fs A
§4-1 2、状态
P
Fs
FN
滑动 摩擦实验
滑动摩擦 ①静止: (静摩擦力)
FT
Fs FT (FT Fs 不固定值)
②临界:(将滑未滑)(最大静摩擦力)
力 静摩擦因数
Fx 0, FT FS 0 FS FT
法线间夹角的最大值
tan f Fmax f s FN fs FN FN
Fmax Fs
摩擦角的正切=静摩擦系数
PAG 9
Northeastern University
§4-2
摩擦角和自锁现象
二、自锁现象
①如果作用于物体的主动力合力的作用线在摩擦 锥内,则不论这个力多大,物体总能平衡。
PAG 17
Northeastern University
理论力学 第五章 桁架和摩擦
理想桁架 工程实际中计算桁架受力情况时,常 作如下简化: (1) 构成桁架的杆件都是直杆; (2) 杆件两端都用光滑铰链连接; (3) 所有外力(主动力及支座反力) 都作用在节点上; (4) 杆件自重略去不计。
这种桁架称为理想桁架。
平面桁架各杆内力
1.节点法 2.截面法
汇交力系 平面一般力系
已知平面桁架尺寸、载荷。求:各杆内力。
3 因 0 Fs Fmax ,问题的解有时在一个范围内.
考虑摩擦的平衡问题
(1)判断物体是否平衡,并求滑动摩擦力。
先假设物体处于平衡,根据平衡方程求出物体平衡时需 要的摩擦力以及相应接触面间的正压力。再根据摩擦定 律求出相应于正压力的最大静摩擦力并与之比较。若满
足F≤Fmax这一关系,说明物体接触面能提供足够的摩擦
当仅有滑动趋势时,产生的摩擦力,称为静滑动摩擦力
静滑动摩擦力性质
1)静滑动摩擦力FS 的方向与滑动趋势相反,大小由平衡
条件确定;
0≤FS ≤Fmax (物体平衡范围)
2)只有当物体处于将动未动的平衡临界状态时,静滑动摩
擦力FS 达到最大值,即 FS =Fmax=f FN
f — 静滑动摩擦系数;
FN— 法向反力(一般也由平衡条件决定)。
摩擦角和自锁现象
1 摩擦角
FRA ---全约束力
物体处于临界平衡状态时,全约束 力和法线间的夹角---摩擦角
tan f
Fmax FN
fs FN FN
fs
全约束力和法线间的夹角的正切等于静 滑动摩擦系数.
摩擦锥
0 f
2 自锁现象
摩擦自锁的实例
1.粗糙斜面。当 a<m时,
不论W多大,物块A均保持 平衡--摩擦自锁。
摩擦角
A
(F ) 0 FDsin60 0.7l G 0.5l 0
y A FN
Fs
FD
C 60 D B
联立求解,可得
FN 0.4124G
x
Fs 0.2857G
G
Fsmax FN fs 0.08248G
杆端不可能产生保持静止所需的摩擦力值0.2857G。假设不成立,故 A 端向下滑动。
【例5-5】如图所示的均质木箱重量P=5kN,它和地面间的摩擦系数fs=0.4,图 中h=2a=2m,θ=30o,求: (1) 当B处的拉力F=1kN时,木箱是否平衡?(2) 能保持平衡的最大拉力。 解:(1) 木箱在力F的作用下有三 种可能发生的情况:木箱处于平 衡状态,木箱滑动或翻倒。
F
y
a
C
面向上,物块受力分析如图所示。根据平衡条件可列静力平衡方程:
F
x
0
Qmin cos Fsmax Psin 0
F
y
0
Qminsin FN Pcos 0
临界状态时,最大静滑动摩擦力为 Fsmax fs FN 。联立求解,可得
Qmin
sin fs cos P Ptan( m ) cos fs sin
物体不至于上滑所充许Q的最大值为
Qmax
sin f s cos P Ptan( m ) cos fssin
sin fs cos P cos fs sin
因此,要维持物体平衡,力Q的值必须满足以下条件
sin fs cos P ≤ cos fs sin
通过分析可知,放在斜面上的物块在重力作用下不至于产生滑动的条件 是斜面的倾角小于或等于摩擦角,即斜面自锁条件为
工程力学第五章 摩擦(H)
Q
30°
FBA=2Q
(2) 取物块A为研究对象 ① 处于滑动的临界平衡状态时
Fx 0, FBA cos30 Fmax 0 Fy 0, FN P FBA sin 30 0 Fmax f s FN
B
FBC Q
FBA
FBA ′
FN
A
fs Q1max P 429.03N 3 fs
第 5 章
※ 滑动摩擦
摩
擦
※ 考虑摩擦时物体的平衡 ※ 摩擦角与自锁现象
※ 滚动摩阻
※ 结论与讨论
第五章 摩擦
引
摩擦的分类
言
按两物体的 相对运动形式 分,有滑动摩擦和滚动摩阻。
按两物体间 是否有良好的润滑,滑动摩擦又可分为干摩擦和 湿摩擦。
摩擦的机理
1. 接触表面的粗糙性 2. 分子间的引力
摩擦的利弊
P
Fmin 100N
F12 Ffs1 , F 100N
第五章 摩擦
(3)取书2为研究对象
F12 ′
2
Fy 0, F12 F23 P 0 F23 0N
FN1 ′
P
F23 FN2
思考题
1
有人想水平地执持一迭书,他用手在这迭书的两端加一压力225N。
如每本书的质量为0.95kg,手与书间的摩擦系数为0.45,书与书
Qmax
f
FR
f -
P FR
FR
f+
P
FR
f
P
P
Qmax
Qmin
Qmax P tan( f )
Qmin P tan( f )
第五章 减摩、耐磨及摩阻材料解读
(3) 耐磨性E:耐磨性E为磨损率的倒数。 对于线磨损率,耐磨性表示为: 对于体积磨损率,耐磨性表示为: 对于重量磨损率,耐磨性表示为: (4) 相对耐磨系数ε: 在同一试验条件下,标准材料试样的体积或线磨 损量hs (或磨损率) 与被测材料试样的体积或线磨损 量h (或磨损率) 之比:
(2) 低合金耐磨钢 高锰钢在冲击载荷不大的情况下,由于其加 工硬化不够,耐磨性并不高。而低合金钢在这种 情况下,显示出更高的耐磨性。 低合金钢具有仅次于高锰钢的高韧性,如果 合理选择合金成分和热处理方法,能够获得比高 锰钢还高的强度和比较深的表面硬化层,其适用 范围较广泛。 在耐磨粒磨损方面使用的低合金钢有中碳铬 锰硅钢和高碳铬锰硅钢,其化学成分一般为 Cr 1-3%, Mn 1%, Si 1-3%。
在农业机械、工程机械、矿山设备,摩擦副材 料应有高的耐磨性。
各类轴承、齿轮、蜗轮运动副、机床导轨等要 求摩擦副材料有低的摩擦系数和高的耐磨性。
运输和工程机械(如汽车、火车、拖拉机、飞机、 起重机、提升和卷扬机等),制动摩擦副材料应 有高而稳定的摩擦系数和耐磨性。
二、耐磨材料
1、材料耐磨性的定义 材料的耐磨性通常是指在一定的工况条件下,摩擦副材 料在摩擦过程中抵抗磨损的能力。 材料的耐磨性离不开工况条件(速度、载荷、温度、介 质等)。同一种材料,在不同的工况条件下其耐磨性相 差很大。 如,高锰钢。 高硬度的材料具有好的抗磨料磨损性能,而在交变 接触应力作用下抗疲劳磨损的能力却不好。 材料的配对、摩擦副的结构形状、磨损的形式、维护条 件等的不同,其耐磨性也不相同。 **因此,可以说并不存在一种材料,它在各种情况下都是耐 磨(或减摩)的。材料的耐磨性是有条件的,也是相对的。
理论力学训练题集(终)
第一章静力学公理和物体的受力分析一、选择题1、三力平衡定理是﹍﹍﹍﹍。
①共面不平行的三个力互相平衡必汇交于一点;②共面三力若平衡,必汇交于一点;③三力汇交于一点,则这三个力必互相平衡。
2、三力平衡汇交定理所给的条件是﹍﹍﹍﹍。
①汇交力系平衡的充要条件;②平面汇交力系平衡的充要条件;③不平行的三个力平衡的必要条件;④不平行的三个力平衡的充分条件;3、图示系统只受作用而平衡。
欲使A支座约束力的作用线及AB成30°角,则斜面的倾角应为﹍﹍﹍﹍。
①0°②30°③45°④60°4、作用在一个刚体上的两个力、,满足=-的条件,则该二力可能是﹍﹍﹍﹍.①作用力和反作用或是一对平衡的力;②一对平衡的力或一个力偶;③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。
二、填空题1、已知力沿直线AB作用,其中一个分力的作用线及AB成30°角,若欲使另一个分力的大小在所有分力中为最小,则此二分力间的夹角为﹍﹍﹍﹍﹍﹍﹍﹍度。
2、作用在刚体上的两个力等效的条件是﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍。
3、将力沿X、Y方向分解,已知F=100N,在X轴上的投影为86。
6N,而沿X方向的分力的大小为115。
47N,则的Y的方向分量及X轴的夹角为﹍﹍﹍﹍,在Y轴上的投影为﹍﹍﹍﹍。
4、若不计各物体重量,试分别画出各构杆和结构整体的受力图。
第二章平面汇交力系和平面力偶系一、选择题1、已知、、、为作用于刚体上的平面共点力系,其力矢关系如图所示为平行四边形,由此可知﹍﹍﹍﹍﹍﹍﹍。
(1)力系可合成为一个力偶;(2)力系可合成为一个力;(3)力系简化为一个力和一个力偶;(4)力系的合力为零,力系平衡。
2、汇交于O点的平面汇交力系,其平衡方程式可表示为二力矩形式。
即()=0,()=0,但必须﹍﹍﹍﹍﹍﹍﹍。
①A、B两点中有一点及O点重合;②点O不在A、B两点的连线上;③点O应在A、B两点的连线上;3、由n个力组成的空间平衡力系,若其中(n-1)个力相交于A点,则另一个力﹍﹍﹍﹍﹍﹍﹍。
工程力学--静力学第4版 第五章习题答案
第五章习题5-1 重为W=100N,与水平面间的摩擦因数f=0.3,(a)问当水平力P=10N时,物体受多大的摩擦力,(b)当P=30N时,物体受多大的摩擦力?(c)当P=50N时,物体受多大的摩擦力?5-2 判断下列图中两物体能否平衡?并问这两个物体所受的摩擦力的大小和方向。
已知:(a)物体重W=1000N,拉力P=200N,f=0.3;(b)物体重W=200N,拉力P=500N,f=0.3。
5-3 重为W的物体放在倾角为α的斜面上,物体与斜面间的摩擦角为ρ,且α>ρ。
如在物体上作用一力Q,此力与斜面平行。
试求能使物体保持平衡的力Qde 最大值和最小值。
5-4 在轴上作用一力偶,其力偶矩为m=-1000N.m,有一半径为r=25cm的制动轮装在轴上,制动轮与制动块间的摩擦因数f=0.25。
试问制动时,制动块对制动轮的压力N至少应为多大?5-5 两物块A和B重叠放在粗糙的水平面上,在上面的物块A的顶上作用一斜向的力P。
已知:A重1000N,B重2000N,A与B之间的摩擦因数f1=0.5,B与地面之间的摩擦因数f2=0.2。
问当P=600N时,是物块A相对物块B运动呢?还是A、B物块一起相对地面C运动?5-6 一夹板锤重500N,靠两滚轮与锤杆间的摩擦力提起。
已知摩擦因数f=0.4,试问当锤匀速上升时,每边应加正应力(或法向反力)为若干?5-7 尖劈顶重装置如图所示,重块与尖劈间的摩擦因数f(其他有滚珠处表示光滑)。
求:(1)顶住重物所需Q之值(P、α已知);(2)使重物不向上滑动所需Q。
注:在地质上按板块理论,太平洋板块向亚洲大陆斜插下去,在计算太平洋板块所需的力时,可取图示模型。
解:取整体∑Fy =0 FNA-P=0∴FNA=P当F<Q1时锲块A向右运动,图(b)力三角形如图(d)当F>Q2时锲块A向左运动,图(c)力三角形如图(e)5-8 图示为轧机的两个压辊,其直径均为d=50cm,两棍间的间隙a=0.5cm,两轧辊转动方向相反,如图上箭头所示。
第五章 磨损的定义、分类、
1923 - 2002
一、磨损的定义
(1) 磨损是相对运动中所产生的现象,因而橡胶 表面老化、材料腐蚀等非相对运动中的现象不 属于磨损研究的范畴; (2)磨损发生在运动物体材料表面,其它非表面 材料的损失或破坏,不包括在磨损范围之内; (3) 磨损是不断损失或破坏的现象,损失包括直 接耗失材料和材料的转移(材料从一个表面转移 到另一个表面上去),破坏包括产生残余变形, 失去表面精度和光泽等。不断损失或破坏则说 明磨损过程是连续的、有规律的,而不是偶然 的几次。
单位 时间 符 号
单 位 μm或 mm mm3 g 或mg
mm3/h或 mg/h mm3/m 或mg/m
名 称
符 号
单 位
h/mm h/mg或 h/mm3 1/mm 1/mg或 1/mm3
Wl Wv 或V Ww
耐磨性
& W −1
W-1
& Wt & Wl
相对耐 磨性
ε
单位 距离
磨损的评定 冲蚀磨损率Ev=
第一节 粘着磨损的定义和分类 粘着磨损过程: 粘着磨损实际上是相互接触表面上的微凸体不断地形 成粘着结点和结点断裂而导致摩擦表面破坏并形成磨 屑的过程。 粘着磨损发生: 粘着磨损不仅在干摩擦状态下会发生,而且在边界润 滑条件下以及润滑不当时也会出现。如在齿轮、轴承 及液压元件表面等也会发生粘着磨损。 Why? 齿轮、涡轮、刀具、模具、轴承等零件的失效都与粘 着磨损有关。 粘着磨损是一种常见的磨损形式,约占磨损中 的25%。
我国仅冶金矿山、农机、煤炭、电力和建材五个部门的不完全 统计,每年仅由于磨料磨损而需要补充的备件就达100万吨钢 材,相当于15-20亿元。 耐磨钢铁件耐磨钢铁件主要用于冶金、电力、建材、建
摩擦学原理(第5章磨损规律)
5.2.3 表面品质与磨损
• 摩擦副所处的工况条件不同,最优粗 糙度也不同。在繁重工况条件下,由 于摩擦副的磨损严重,因而最优粗糙
度也相应增大。如图5.11所示,工况
条件包含摩擦副的载荷、滑动速度的 大小、环境温度和润滑状况等。
HR0
图5.11 不同工况
HR 的值 0
5.2.3 表面品质与磨损
• 图5.12说明:不同粗糙度的表面在磨合过程中粗糙度的变化。在一定的 工况条件下,不论原有的粗糙度如何,经磨合后都会达到与工况相适应 的最优粗糙度。此后,表面粗糙度稳定在最优粗糙度下持续工作。
5.1.2 磨合磨损
1.表面形貌与性能的变化
• 生产实践中,主要有四种磨合方式,即干摩擦条件下的磨合、普通润滑 油中的磨合、添有磨料润滑油中的磨合和电火花磨合。在有润滑油的磨 合磨损中,除粘着磨损和磨粒磨损主要机理外,同时还存在化学磨损、 疲劳磨损、冲蚀磨损、气蚀磨损和电化磨损等多种复杂机理。在添有磨 料润滑油中的磨合中,采用的磨料有微米固体颗粒和纳米固体颗粒,研 究人员将微米和纳米固体粉末混合在一起作为磨料,取得了较好的磨合 效果。电火花磨合是利用放电原理使运转的摩擦副达到磨合的目的。 • 不同摩擦副结构和性质以及不同磨合工况,其磨合磨损机理的构成都不 一样。
1.表面形貌与性能的变化
Ra
磨合过程中粗糙度Ra 值的变化
1.表面形貌与性能的变化
图5.4表示较硬摩擦副 表面磨合前后表面形 貌变化。磨合使接触 面积显著地增加和峰 顶半径增大。
第五章_机械能守恒定律
机械能守恒定律第 1 课时 追寻守恒量 功基础知识归纳1.功是 过程量 ,即做功必定对应一个过程(位移),应明确是哪个力在哪个过程中对哪个物体做功.2.正功是 动力 对物体做功,负功是 阻力 对物体做功. 也常说成物体 克服 这个力做功.3.作用力与反作用力的功4.分析摩擦力做功5总功的求法.6.功的意义:功是力对空间的积累量,功是 能量转化的量度 .典例精析1.基本概念的应用【例1】如图所示,小物体A 位于光滑的斜面上,斜面位于光滑的水平地面上,从地面上看,在小物体沿斜面下滑的过程中,斜面对小物体的作用力( )A.垂直于接触面,做功为零B.垂直于接触面,做功不为零C.不垂直于接触面,做功为零D.不垂直于接触面,做功不为零【拓展1】如图所示,质量为m 的物体静止在倾角为θ的斜面上,物体与斜面间的动摩擦因数为μ,现使斜面水平向左匀速移动距离l .(1)斜面对物体的弹力做的功为( )A.0B.mgl sin θcos 2θC.-mgl cos θsin θD.mgl sin θcos θ(2)摩擦力对物体做的功为(物体与斜面相对静止)( )A.0B.μmgl cos θC.-mgl cos θsin θD.mgl sin θcos θ(3)重力对物体做的功( A )A.0B.mglC.mgl tan θD.mgl cos θ(4)斜面对物体做的总功是多少?各力对物体做的总功是多少?2.变力做功的求解【例2】如图所示,以初速度v 0竖直向上抛出一个质量为m 的小球,小球上升的最大高度为h 1,空气阻力的大小恒为F ,则小球从抛出至回到出发点下方h 2处,合外力对小球做的功为多少?【拓展2】如图所示,用恒力F 通过光滑的定滑轮把静止在水平面上的物体(大小可忽略)从位置A 拉到位置B ,物体的质量为m ,定滑轮离水平地面的高度为h ,物体在位置A 、B 时细绳与水平方向的夹角分别为θ1和θ2,求绳的拉力对物体做的功.3若F 是位移l 的线性函数时,先求平均值F =221F F ,由W =F l cos α求其功.例如:用铁锤把小铁钉钉入木板,设木板对钉子的阻力与钉进木板的深度成正比,已知铁锤第一次将钉子钉进d ,如果铁锤第二次敲钉子时对钉子做的功与第一次相同,那么,第二次进入木板的深度是多少?【例3】物块从光滑曲面上的P 点自由滑下,通过粗糙的静止水平传送带以后落到地面上的Q 点,若传送带的皮带轮沿逆时针方向转动起来,使传送带随之运动,如图所示,再把物块放到P 点自由滑下,则A.物块将仍落在Q 点B.物块将会落在Q 点的左边C.物块将会落在Q 点的右边D.物块有可能落不到地面上 第 2 课时 功 率基础知识归纳1.)平均功率与瞬时功率:.2.机械的额定功率与实际功率任何机械都有一个铭牌,铭牌上所注功率为这部机械的 额定功率 .它是任何机械长时间正常工作而不损坏机械的最大输出功率.机械运行过程中的功率是 实际功率 .机械的实际功率可以小于其额定功率(称机械没吃饱),可以等于其额定功率(称满负荷运行),还可以在短时间内略大于其额定功率(称超负荷运行).机械不能长时间处于超负荷运行,这样会损坏机械设备,缩短其使用寿命.机车的启动问题1.在额定功率下启动2.以恒定加速度a 启动3.求变力做功问题:如果汽车是以恒定功率启动,则牵引力是变力,发动机做功为变力做功,若汽车的功率不变,则可求汽车牵引力做的功.典例精析1.功率的计算【例1】(2009·宁夏)质量为m 的物体静止在光滑水平面上,从t =0时刻开始受到水平力的作用.力的大小F 与时间t 的关系如图所示,力的方向保持不变,则( )A.3t 0时刻的瞬时功率为m t F 0205 B.3t 0时刻的瞬时功率为m t F 02015C.在t =0到3t 0这段时间内,水平力的平均功率为mt F 423020 D.在t =0到3t 0这段时间内,水平力的平均功率为m t F 6250202.机车启动问题 【例2】质量是2 000 kg 、额定功率为80 kW 的汽车,在平直公路上行驶中的最大速度为20 m/s.若汽车从静止开始做匀加速直线运动,加速度大小为2 m/s 2,运动中的阻力不变.求:(1)汽车所受阻力的大小;(2)3 s 末汽车的瞬时功率;(3)汽车做匀加速运动的时间;(4)汽车在匀加速运动中牵引力所做的功.【拓展2】一汽车的额定功率P0=6×104 W,质量m=5×103 kg,在水平直路面上行驶时阻力是车重的0.1倍.若汽车从静止开始以加速度a=0.5 m/s2做匀加速直线运动,求:(g取10 m/s2)(1)汽车保持加速度不变的时间;(2)汽车实际功率随时间变化的关系;(3)此后汽车运动所能达到的最大速度.第 3 课时动能及动能定理基础知识归纳1.动能是状态量,也是相对量,公式中的v为瞬时速度, 物体的动能不会发生突变2.动能定理(1)动能定理的内容及表达式合外力对物体所做的功等于物体动能的变化.即W=ΔE k=E k2-E k1(2)物理意义动能定理给出了力对物体所做的总功与物体动能变化之间的关系,即外力对物体做的总功,对应着物体动能的变化,变化的多少由做功的多少来量度.3.求功的三种方法(1)根据功的公式W=Fl cos α(只能求恒力的功).(2)根据功率求功:W=Pt(P应是恒定功率或平均功率).(3)根据动能定理求功:W=12mv22-12mv21(W为合外力总功).典例精析1.对动能的理解【例1】关于物体的动能,下列说法中正确的是( )A.物体速度变化,其动能一定变化B.物体所受的合外力不为零,其动能一定变化C.物体的动能变化,其运动状态一定发生改变D.物体的速度变化越大,其动能一定变化也越大2.定理的应用典例精析1.用动能定理求解变力做功【例1】如图所示,竖直平面内放一直角杆AOB,杆的水平部分粗糙,动摩擦因数μ=0.2,杆的竖直部分光滑.两部分各套有质量均为1 kg的小球A和B,A、B球间用细绳相连.此时A、B均处于静止状态,已知:OA=3 m,OB=4 m.若A球在水平拉力F的作用下向右缓慢地移动1 m(取g=10 m/s2),那么(1)该过程中拉力F做功多少?(2)若用20 N的恒力拉A球向右移动1 m时,A的速度达到了2 m/s,则此过程中产生的内能为多少?【例2】人骑自行车下坡,坡长l=500 m,坡高h=8 m,人和车总质量为100 kg,下坡时初速度为4 m/s,人不踏车的情况下,到达坡底时车速为10 m/s,g取10 m/s2,则下坡过程中阻力所做的功为( )A.-4 000 JB.-3 800 JC.-5 000 JD.-4 200 J【拓展】电动机通过一条绳子吊起质量为8 kg的物体.绳的拉力不能超过120 N,电动机的功率不能超过1 200 W,要将此物体由静止起用最快的方式将物体吊高90 m(已知物体在被吊高90 m以前已开始以最大速度匀速上升),所需时间为多少?(g取10 m/s2)2.对系统运用动能定理【例2】如图所示,跨过定滑轮的轻绳两端的物体A和B的质量分别为M和m,物体A在水平面上.A 由静止释放,当B沿竖直方向下落h时,测得A沿水平面运动的速度为v,这时细绳与水平面的夹角为θ,试分析计算B下降h过程中,A克服地面摩擦力做的功.(滑轮的质量和摩擦均不计)3.多过程问题的求解【例3】如图所示,AB是倾角为θ的粗糙直轨道,BCD是光滑的圆弧轨道,AB恰好在B点与圆弧相切,圆弧半径为R.一个质量为m的物体(可以看做质点)从直轨道上的P点由静止释放,结果它能在两轨道间做往返运动.已知P点与圆弧的圆心O等高,物体与轨道AB间的动摩擦因数为μ.求:(1)物体做往返运动的整个过程中在AB轨道上通过的总路程;(2)最终当物体通过圆弧轨道最低点E时,对圆弧轨道的压力;(3)为使物体能顺利到达圆弧轨道的最高点D,释放点距B点的距离L′应满足什么条件?第 4课时 机械能守恒定律基础知识归纳1.重力势能可正,可负,可为零.若物体在零势能面上方,重力势能为 正 ;物体在零势能面下方,重力势能为 负 ;物体处在零势能面上,重力势能为 零 .重力势能属于 物体和地球 共有.通常所说“物体的重力势能”实际上是一种不严谨的习惯说法. 重力势能是相对的,但重力势能的变化却是 绝对 的,即与零势能面的选择无关.2.重力做功 mgh W G =,h 为初、末位置间的高度差.3.重力做功与重力势能变化间的关系W G =-ΔE p =-(E p2-E p1)=-(mgh 2-mgh 1)=E p1-E p2.4.机械能是物体 动能、重力势能、弹性势能 的统称,也可以说成物体动能和势能的总和.5.机械能守恒定律(1)内容:在只有重力或弹力做功的物体系统内, 动能与势能可以相互转化,而总的机械能保持不变 .(2)表达式: p22k p11k 21E E E E E E +=+=或.典例精析1.重力做功的特点【例1】一质量为5 kg 的小球从5 m 高处下落,碰撞地面后弹起,每次弹起的高度比下落高度低1 m ,求小球从下落到停在地面的过程中重力总共做了多少功?(取g =9.8 m/s 2)2.机械能守恒的条件及其应用【例2】如图所示,一轻质弹簧固定于O 点,另一端系一重物,将重物从与悬挂点等高的地方无初速度释放,让其自由摆下,不计空气阻力,重物在摆向最低点的位置的过程中( )A.重物重力势能减小B.重物重力势能与动能之和增大C.重物的机械能不变D.重物的机械能减少3.机械能守恒定律与动能定理的比较机械能守恒定律和动能定理是本章的两个重点内容,也是力学中的两个基本规律,在物理学中占有重要的地位,两者既有区别也有相同之处.(1)相同点:都是从 功和能量 的角度来研究物体动力学问题.(2)不同点:①解题范围不同, 动能定理 的范围相对来说要大些.②研究对象及角度不同,动能定理一般来说是研究 单个物体 在运动过程中合外力做功与动能的变化关系,而机械能守恒定律只要满足其成立条件,则只需找出 系统 初、末状态的机械能即可.典例精析1.机械能守恒定律与圆周运动的综合【例1】如图所示,光滑的倾斜轨道与半径为R 的光滑圆形轨道相连接,质量为m 的小球在倾斜轨道上由静止释放,要使小球恰能通过圆形轨道的最高点,小球释放点离圆形轨道最低点多高?通过轨道最低点时球对轨道压力多大?【拓展1】半径为R 的圆桶固定在小车上,有一光滑小球静止在圆桶的最低点,如图所示.小车以速度v 向右匀速运动.当小车遇到障碍物突然停止,小球在圆桶中上升的高度可能为( )A.等于g v 22B.大于g v 22C.小于g v 22D.等于2R2.系统机械能是否守恒的判断【拓展2】质量均为m 的a 、b 两球固定在轻杆的两端,杆可绕点O 在竖直面内无摩擦转动,两球到点O 的距离L 1>L 2,如图所示.将杆拉至水平时由静止释放,则在a 下降过程中( )A.杆对a 不做功B.杆对b 不做功C.杆对a 做负功D.杆对b 做负功3.系统机械能守恒的应用【例3】如图所示,质量分别为2m 和3m 的两个小球固定在一根直角尺的两端A 、B ,直角尺的顶点O 处有光滑的固定转动轴.AO 、BO 的长分别为2L 和L .开始时直角尺的AO 部分处于水平位置而B 在O 的正下方.让该系统由静止开始自由转动,求:(1)当A 到达最低点时,A 小球的速度大小v ;(2)B 球能上升的最大高度h ;(3)开始转动后B 球可能达到的最大速度v m .【拓展3】如图所示,一固定的楔形木块,其斜面倾角θ=30°,另一边与地面垂直,顶上有一定滑轮,一条细绳将物块A 和B 连接,A 的质量为4m ,B 的质量为m ,开始时将B 按在地面上不动,然后放开手,让A 沿斜面下滑而B 上升,物块A 与斜面间无摩擦,设当A 沿斜面下滑x 距离后,细绳突然断了,求物块B 上升的最大高度H .。
静力学选择题与填空题
第一章 静力学基础一. 填空题1.理论力学的任务是研究物体作 机械运动 的规律2.平衡是指 相对地球静止或做匀速直线运动 .3.力是物体之间 相互的机械 作用,这种作用使物体的 运动 或 形状 发生改变。
4.刚体是受力作用而 不变形 的物体。
5.刚体受到两个力作用而平衡的充分必要条件是 此两力共线,等值,反向 。
6.约束是指限制 非自由体某些位移 的周围物体。
7.对刚体而言,力的三要素是 大小 、 方向 、 作用线 。
8.二力平衡原理适用于 刚体 。
9.在光滑圆柱形铰链约束中,如接触点不能确定,可用通过 铰链中心 的一对正交分力表示。
10.对刚体而言,力是 滑移 矢量。
二. 单项选择题1. 图示系统受力F 作用而平衡。
欲使A 支座约束力的作用线与AB 成60º角,则斜面的倾角α应为____b__________。
(A ) 0º (B ) 30º(C ) 45º(D ) 60º2.如图所示的两个楔块A 、B 在m-m 处光滑接触,现在其两端沿轴线各加一个大 小相等、方向相反的力,则两个楔块的状态为 a 。
(A )A 、B 都不平衡 (B )A 平衡、B 不平衡(C )A 不平衡、B 平衡 (D )A 、B 都平衡3.三力平衡定理是 a 。
(A )共面不平行的三个力互相平衡必汇交于一点 (B )共面三力若平衡,必汇交于一点(C )三力汇交于一点,则这三个力必互相平衡。
(D )此三个力必定互相平行4.作用和反作用定律的适用范围是 d 。
(A ) 只适用于刚体(B ) 只适用于变形体(C ) 只适用于处于平衡状态的物体(D ) 适用于任何物体5.一物体是否被看作刚体,取决于 d 。
(A ) 变形是否微小(B ) 变形不起决定因素(C ) 物体是否坚硬(D ) 是否研究物体的变形6.力的可传性原理 a 。
(A ) 适用于刚体 (B ) 适用于刚体和弹性体(C ) 适用于所有物体 (D )只适用于平衡的刚体第一章 平面汇交力系与平面力偶系一、填空题1.平面汇交力系平衡的几何条件是 力多边形自行封闭 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Qmin
Qmax P tan( f )
Qmin P tan( f )
P tan( f ) Q P tan( f )
第五章 摩擦
例 题 9
用几何法求解例4
a极限
A
b d
f C f
解: 由图示几何关系得
B
F
O
a
d d (a极限 ) tan f (a极限 ) tan f b 2 2
已知:fs,b 。
A
B b
d
求:a为多大,推杆才不致被卡。
解:取推杆为研究对象
Fx 0, FNA FNB 0 Fy 0, FA FB F 0 d d M D ( F ) 0, Fa FNB b FB FA 0 2 2
考虑平衡的临界情况,可得补充方程
P
F12 Ff s1 , F 100 N
第五章 摩擦
Fmin 100N
(3)取书2为研究对象
F12 ′
2
Fy 0, F12 F23 P 0 F23 0 N
FN1 ′
P
F23 FN2
思考题
1
有人想水平地执持一迭书,他用手在这迭书的两端加一压力225N。
如每本书的质量为0.95kg,手与书间的摩擦系数为0.45,书与书
f
★ 如果作用于物块的全部主动力的合
力的作用线在摩擦角之内,则无论这 个力怎样大,物块必保持平衡。
FR
A
FRA
第五章 摩擦
f
FR
A
(2)非自锁现象
★ 如果作用于物块的全部主动力的合力 的作用线在摩擦角之外,则无论这个力怎 样小,物块一定会滑动。
第五章 摩擦
FRA
思考题
4
已知摩擦角 f= 20°,F=P,问物块动不 动?为什么?
§5-2
考虑摩擦时物体的平衡问题
考虑摩擦的系统平衡问题的特点
1. 平衡方程式中除主动、约束力外还出现了摩擦力,因而未知 数增多。 2. 除平衡方程外还可补充关于摩擦力的物理方程 Fs≤fsFN 。 3. 除为避免解不等式,可以解临界情况,即补充方程
Fmax = fsFN 。
● 检验物体是否平衡; ● 临界平衡问题; ● 求平衡范围问题。
FN
Qmin
Fmax
P
得:
sin f s cos Q min P cos f s sin
sin f s cos sin f s cos P Q P cos f s sin cos f s sin
第五章 摩擦
例 题 4
第五章 摩擦
几个有意义的实际问题
采用什么办法,可以将左边轴的转动 传给右边的轴?
第五章
摩擦
几个有意义的实际问题
第五章
摩擦
§5-1
滑动摩擦
FN
两个表面粗糙的物体,当其接触表面之间 有相对滑动趋势或相对滑动时,彼此作用 有阻碍相对滑动的阻力——滑动摩擦力
P FN Fs F
1. 静滑动摩擦力
Fx 0, Fs F
常见的问题有
第五章 摩擦
例 题 1
已知:Q=400N,P=1500N,fs=0.2,f = 0.18。
问:物块是否静止,并求此时摩擦力的大小和方向。
解:取物块为研究对象,并假定其平衡。
Fx 0, Q cos 30 P sin 30 Fs 0 Fy 0, FN P cos 30 Q sin 30 0
B
FNC
FC FB
FAy
A
C
FAx FNC ′ F
o
补充方程: FD FD max f D FND 解得:FD= FC =25.86N ,F = 47.81N
而此时
FC 25.86N FC max f C FNC 40N
FC ′
P FD D FND
故上述假定正确
第五章 摩擦
FNC ′ F
o
FC ′
FD
D
P FND
解得:FD=40N ,F = 26.6N,FND=184.6N
FD max f D FND 0.3 184.6 55.39N
由于 FD﹤FDmax,D处无滑动,上述假定正确
Fmin 26.6N
第五章 摩擦
(3) 当 fD =0.15 时
FD max f D FND 0.15 184.6 27.7 N
F
第五章
摩擦
解答
A B
解:(1)取小球 A 为研究对象
30° F
FSA Pf s
(2)取小球 B 为研究对象 FSA
A
FA
FSB Pf s
Fmax ( FSA FSB ) cos 30 3Pf s
第五章 摩擦
FSB
Fmax
FSA
解答
O
解:取杆 AB 为研究对象
A
x l
B
间的摩擦系数为0.40。求可能执书的最大数目。
第五章
摩擦
例 题 3
已知:P,,fs
求:平衡时水平力 Q 的大小。 Q
解:取物块为研究对象,先求其最大值。
Fx 0, Qmax cos P sin Fmax 0 Fy 0, FN P cos Qmax sin 0 Fmax f s FN
b b a极限 2 tan f 2 f s
第五章 摩擦
§5-4
滚动摩阻的概念
P O Fs
F
FN
A
P O
A
F
FR
P O
A
F
P O
F
FN
M
Fs A M
0 M M max
M max FN
滚动摩阻系数
P O Fs
A d
F F′ N
M max d FN
第五章 摩擦
d
Fmin 47.81N
思考题
2 重量均为 P 的小球A、B用一不计重量的杆连结。放置在水
平桌面上,球与桌面间摩擦系数为 fs ,一水平力F 作用于
A球,系统平衡时 Fmax 。
A
B
30°
F
第五章
摩擦
思考题
3
均质杆重P,长l,置于粗糙的水平 面上,两者间的静摩擦系数为fs。 现在杆的一端施加与杆垂直的力F, 试求使杆处于平衡时的Fmax.设杆的 高度忽略不计。
FRA FRA
摩擦角和自锁现象
f
FRA
f
FN
FN Fmax
A
f
A
FN
Fs
A
FRA=FN+FS
全约束反力
★ 摩擦角——全约束反力与法线间夹角的最大值 f
Fmax f s FN tan f fs FN FN
第五章 摩擦
摩擦角的正切等于静摩擦系数
2. 自锁现象
物块平衡时,0≤ F≤ Fmax , 因此 0≤ ≤ f
因 FD﹥Fdmax 故应设 D 处达到临界状态
M O ( F ) 0, FC r FD r 0 Fx 0, FNC sin 60 FC cos 60 F FD 0 Fy 0, FNC cos 60 FC sin 60 P FND 0
mgf s mgf s Fy 0, F x (l x) 0 l l mgf s x 2 mgf s (l x) 2 M O ( F ) 0, F x 0 2l 2l
F
2 x l 2 Fmax ( 2 1)mgf s
第五章 摩擦
§5-3
1. 摩擦角
第 5 章
※ 滑动摩擦
摩
擦
※ 考虑摩擦时物体的平衡 ※ 摩擦角与自锁现象
※ 滚动摩阻
※ 结论与讨论
第五章 摩擦
引
摩擦的分类
言
按两物体的 相对运动形式 分,有滑动摩擦和滚动摩阻。
按两物体间 是否有良好的润滑,滑动摩擦又可分为干摩擦和 湿摩擦。
摩擦的机理
1. 接触表面的粗糙性 2. 分子间的引力
摩擦的利弊
P
★ 静滑动摩擦力的大小必须由平衡方程确定
第五章 摩擦
2. 最大静滑动摩擦力
FN 静摩擦定律:最大静摩擦力的大小与两物体 间的正压力成正比 Fs P F
Fmax f s FN 0 Fs Fmax
3. 动滑动摩擦力
f s 静摩擦系数
Fd fFN
第五章 摩擦
f 动摩擦系数, f f s 且
摩擦
O
Fmax P
② 处于翻倒的临界平衡状态时
M O (F ) 0 P 2.5 FBA sin 30 2.5 FBA cos 30 5 0
Q2 max P 405.83N 2( 3 0.5)
Qmax 405.83N
FBA ′
FN
A
Q1max
a AD B
M
e
FA f s FNA FB f s FNB
第五章 摩擦
a极限
b 2 fs
FA FNB
FNA FB
F
O
例 题 5
已知: P=1000N, fs =0.52
C B 5cm 10cm A
求:不致破坏系统平衡时的Qmax 解: (1) 取销钉B为研究对象 Fy 0, FBA sin 30 Q 0
P
FN Qmax
Fmax