初中《简单事件的概率》知识点
九年级数学上人教版《概率初步》课堂笔记
《概率初步》课堂笔记
一、概率的定义和意义
1.定义:一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数
p附近,那么这个常数p就叫做事件A的概率,记为P(A) = p。
2.意义:概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表
现。
二、等可能事件和不可能事件
1.等可能事件:当一次试验要分成若干个相等的机会,并且这些机会是可数的,
或是有确定的数量时,出现各不相同的结果并且出现每种结果的可能性都相等的随机事件。
2.不可能事件:在一定条件下不可能发生的事件。
三、简单事件的概率计算
1.公式:P(A) = m/n,其中m是事件A发生的次数,n是试验总次数。
2.注意事项:在计算概率时,需要注意以下几点:
•要注意区分频率与概率的不同。
频率是试验中某个事件出现的次数与试验总次数的比值,而概率是频率的稳定值。
•要注意在等可能事件中,不同的试验结果出现的可能性是相等的。
•要注意任何一个事件的概率都应该是0到1之间的一个实数。
四、实例应用
通过实例分析,理解概率的概念和计算方法。
例如,抛硬币、掷骰子等实例的分析,可以引出概率的定义和计算方法。
同时,通过实例分析,也可以让学生更好地理解概率的意义和应用。
五、课堂小结
本节课学习了概率初步这一节内容,主要包括了概率的定义和意义、等可能事件和不可能事件、简单事件的概率计算等方面的知识。
通过本节课的学习,学生应该能够初步掌握概率的概念和计算方法,并且能够运用这些知识解决实际问题。
同时,学生也应该能够认识到概率在生活和其他领域中的应用,激发学习兴趣。
初中简单事件概率教案
初中简单事件概率教案教学目标:1. 理解概率的定义,掌握必然事件、不可能事件、随机事件的概念。
2. 学会使用频率估计概率,了解大量实验中频率与概率的关系。
3. 能够运用概率公式计算简单事件的概率。
教学重点:1. 概率的定义及各类事件的概念。
2. 频率与概率的关系。
3. 概率公式的运用。
教学难点:1. 理解并掌握必然事件、不可能事件、随机事件的概念。
2. 运用频率估计概率。
3. 运用概率公式计算简单事件的概率。
教学过程:一、导入(5分钟)1. 引入话题:讨论日常生活中的一些随机现象,如抛硬币、抽奖等。
2. 提问:这些现象中,哪些是必然事件?哪些是不可能事件?哪些是随机事件?二、新课讲解(15分钟)1. 讲解必然事件、不可能事件、随机事件的概念。
2. 讲解概率的定义:某种事件在某一条件下可能发生,也可能不发生,但可以知道它发生的可能性的大小,我们把刻划(描述)事件发生的可能性的大小的量叫做概率。
3. 讲解频率与概率的关系:对一个随机事件做大量实验时会发现,随机事件发生的次数(也称为频数)与试验次数的比(也就是频率)总是接近于一个常数,这个常数就是事件发生的概率。
三、实例演示与练习(15分钟)1. 通过抛硬币、抽奖等实例,让学生观察并记录实验结果,引导学生运用频率估计概率。
2. 让学生分组讨论,总结频率与概率的关系。
3. 运用概率公式计算一些简单事件的概率,如抛硬币两次正面朝上的概率等。
四、课堂小结(5分钟)1. 回顾本节课所学内容,巩固必然事件、不可能事件、随机事件的概念。
2. 强调频率与概率的关系,以及如何运用频率估计概率。
3. 提醒学生掌握概率公式的运用。
五、课后作业(课后自主完成)1. 完成教材课后练习题。
2. 运用概率公式计算生活中的一些简单事件概率。
教学反思:本节课通过讨论日常生活中的随机现象,引导学生理解必然事件、不可能事件、随机事件的概念。
通过实例演示和练习,让学生掌握频率与概率的关系,以及如何运用频率估计概率。
必备的九年级上册数学知识点:简单事件的概率
2019必备的九年级上册数学知识点:简单事件
的概率
学好知识就需要平时的积累。
知识积累越多,掌握越熟练,查字典数学网编辑了2019必备的九年级上册数学知识点:简单事件的概率,欢迎参考!
一、可能性:
1. 必然事件:有些事情我们能确定他一定会发生,这些事情称为必然事件;
2.不可能事件:有些事情我们能肯定他一定不会发生,这些事情称为不可能事件;
3.确定事件:必然事件和不可能事件都是确定的;
4.不确定事件:有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件。
5.一般来说,不确定事件发生的可能性是有大小的。
.
二、概率:
1.概率的意义:表示一个事件发生的可能性大小的这个数叫做该事件的概率。
2.必然事件发生的概率为1,记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;如果A为不确定事件,那么0
3.一步试验事件发生的概率的计算公式是P=k/n,n为该事件所有等可能出现的结果数,k为事件包含的结果数。
两步
试验事件发生的概率的发生的概率的计算方法有两种,一种是列表法,另一种是画树状图,利用这两种方法计算两步实验时,应用树状图或列表将简单的两步试验所有可能的情况表示出来,从而计算随机事件的概率。
通过对2019必备的九年级上册数学知识点:简单事件的概率的学习,是否已经掌握了本文知识点,更多参考资料尽在查字典数学网!。
简单概率计算知识点总结
简单概率计算知识点总结首先,让我们来了解一下概率的基本概念。
概率通常用一个介于0和1之间的数字来表示,其中0表示不可能事件发生,1表示一定会发生,而0.5表示发生和不发生的可能性相等。
我们可以用以下的公式来计算一个事件的概率:P(A) = n(A)/n(S)其中,P(A)表示事件A发生的概率,n(A)表示事件A发生的总次数,n(S)表示总的可能发生的次数。
这个公式告诉我们一个事件发生的概率等于这个事件发生的次数除以总的可能发生的次数。
接下来,让我们看一下一些常见的概率计算方法。
首先是求一个事件的概率。
我们可以通过直接统计来计算一个事件的概率,也可以通过给定的概率公式来计算。
例如,如果我们要计算掷一个骰子出现1的概率,我们可以通过计算出现1的次数除以总的出现次数来得到。
其次是条件概率的计算。
条件概率是指在某个条件下一个事件发生的概率,表示为P(A|B),读作在B条件下A的概率。
我们可以用以下的公式来计算条件概率:P(A|B) = P(A∩B)/P(B)其中,P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
这个公式告诉我们在给定事件B发生的条件下,事件A发生的概率等于事件A和事件B同时发生的概率除以事件B发生的概率。
此外,我们还可以用加法法则和乘法法则来计算概率。
加法法则是指对两个事件的概率求和,表示为P(A∪B) = P(A) + P(B) - P(A∩B),其中P(A∪B)表示事件A或事件B发生的概率,P(A)和P(B)分别表示事件A和事件B发生的概率,P(A∩B)表示事件A和事件B同时发生的概率。
而乘法法则是指对两个事件的概率求积,表示为P(A∩B) = P(A) × P(B|A),其中P(A∩B)表示事件A和事件B同时发生的概率,P(A)表示事件A发生的概率,P(B|A)表示在事件A发生的条件下事件B发生的概率。
最后,让我们来看一些概率的应用。
概率不仅可以帮助我们计算事件发生的可能性,还可以帮助我们做出更好的决策。
初中数学知识点总结:简单事件的概率
初中数学知识点总结:简单事件的概率 知识点总结【一】可能性:1. 必然事件:有些事情我们能确定他一定会发生,这些事情称为必然事件;2.不可能事件:有些事情我们能肯定他一定不会发生,这些事情称为不可能事件;3.确定事件:必然事件和不可能事件都是确定的;4.不确定事件:有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件。
5.一般来说,不确定事件发生的可能性是有大小的。
.【二】概率:1.概率的意义:表示一个事件发生的可能性大小的这个数叫做该事件的概率。
2.必然事件发生的概率为1,记作P〔必然事件〕=1;不可能事件发生的概率为0,记作P〔不可能事件〕=0;如果A为不确定事件,那么0<P〔A〕<1。
3.一步试验事件发生的概率的计算公式是P=k/n,n为该事件所有等可能出现的结果数,k为事件包含的结果数。
两步试验事件发生的概率的发生的概率的计算方法有两种,一种是列表法,另一种是画树状图,利用这两种方法计算两步实验时,应用树状图或列表将简单的两步试验所有可能的情况表示出来,从而计算随机事件的概率。
常见考法〔1〕判断哪些事件是必然事件,哪些是不可能事件;〔2〕直接求某个事件的概率。
误区提醒对一个不确定事件所有等可能出现的结果数做了重复计算或漏算。
【典型例题】〔2019福建宁德〕以下事件是必然事件的是〔〕.A.随意掷两个均匀的骰子,朝上面的点数之和为6B.抛一枚硬币,正面朝上C.3个人分成两组,一定有2个人分在一组D.打开电视,正在播放动画片【解析】必然事件指的是一定发生的事件,3个人分成两组,一定有2个人分在一组这是一定的,所以此题选C。
初中数学知识点归纳简单事件的概率
初中数学知识点归纳简单事件的概率数学中,概率是指其中一事件发生的可能性大小,常用数字来表征。
而简单事件是指一个试验中只有一个基本结果的事件。
本文将归纳初中数学中有关简单事件概率的知识点,以及相应的计算方法。
一、基本概念1.随机事件:在一定条件下可以发生或者不发生的事件。
2.样本空间:随机试验中所有可能的基本事件组成的集合,记作S。
3.随机事件的概率:事件A在随机试验中发生的可能性大小,记作P(A)。
4.概率的性质:a.非负性:对于任意事件A,P(A)≥0。
b.确定性:对于必然事件S,P(S)=1c.可列可加性:对于两个互不相容的事件A和B,有P(A∪B)=P(A)+P(B)。
二、计算概率的方法1.等可能概型:当所有基本事件发生的可能性相等时,称为等可能概型。
a.概率计算公式:P(A)=事件A的基本结果数/样本空间S的基本结果数。
b.例子:抛一枚均匀硬币的正反面,事件A为正面朝上,样本空间S为{正面,反面}。
则P(A)=1/22.不等可能概型:当基本结果发生的可能性不相等时,称为不等可能概型。
a.概率计算公式:P(A)=事件A的基本结果数/样本空间S的基本结果数。
b.例子:从一副扑克牌中抽取一张牌,事件A为得到红心,样本空间S为{52张牌}。
则P(A)=26/52=1/2三、计算概率的性质1.对立事件:对于事件A,它的对立事件为A',表示A不发生。
a.概率计算公式:P(A')=1-P(A)。
b.例子:掷一颗骰子,事件A为得到奇数点数,对立事件A'为得到偶数点数。
则P(A')=1-P(A)=1-1/2=1/22.互斥事件:对于事件A和B,它们不能同时发生。
a.概率计算公式:P(A∪B)=P(A)+P(B)。
b.例子:掷一颗骰子,事件A为得到1点,事件B为得到2点。
则P(A∪B)=P(A)+P(B)=1/6+1/6=1/33.独立事件:对于事件A和B,它们的发生与否互不影响。
初中数学同步知识点:简单事件的概率
初中数学同步知识点:简单事件的概率
初中数学同步知识点简单事件的概率
一、可能性
1. 必然事件有些事情我们能确定他一定会发生,这些事情称为必然事件;
2.不可能事件有些事情我们能肯定他一定不会发生,这些事情称为不可能事件;
3.确定事件必然事件和不可能事件都是确定的;
4.不确定事件有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件。
5.一般来说,不确定事件发生的可能性是有大小的。
.
二、概率
1.概率的意义表示一个事件发生的可能性大小的这个数叫做该事件的概率。
2.必然事件发生的概率为1,记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;如果A为不确定事件,那么0
3.一步试验事件发生的概率的计算公式是P=k/n,n为该事件所有等可能出现的结果数,k为事件包含的结果数。
两步试验事件发生的概率的发生的概率的计算有两种,一种是列表法,另一种是画树状图,利用这两种计算两步实验时,应用树状图或列表将简单的两步试验所有可能的情况表示出来,从而计算随机事件的概率。
常见考法
(1)判断哪些事件是必然事件,哪些是不可能事件;。
浙教版数学九年级上册《2.2简单事件的概率》说课稿
浙教版数学九年级上册《2.2 简单事件的概率》说课稿一. 教材分析浙教版数学九年级上册《2.2 简单事件的概率》这一节,是在学生已经掌握了概率的定义和一些基本概念的基础上进行讲解的。
本节课的主要内容是让学生理解并掌握简单事件的概率计算方法,能够运用概率知识解决实际问题。
教材通过大量的实例,使学生体会事件的随机性,培养学生的概率观念,提高学生运用概率知识分析和解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于概率的基本概念和定义已经有所了解。
但是,学生在学习过程中,对于事件的分类和概率的计算方法可能还存在一定的困难。
因此,在教学过程中,我将会注重引导学生理解事件之间的关系,掌握概率的计算方法,并能够将概率知识应用到实际问题中。
三. 说教学目标1.知识与技能:使学生理解并掌握简单事件的概率计算方法,能够运用概率知识解决实际问题。
2.过程与方法:通过大量的实例,让学生体会事件的随机性,培养学生的概率观念,提高学生运用概率知识分析和解决问题的能力。
3.情感态度与价值观:激发学生学习概率的兴趣,培养学生积极思考、合作交流的学习态度,使学生感受到数学与生活的紧密联系。
四. 说教学重难点1.教学重点:理解并掌握简单事件的概率计算方法,能够运用概率知识解决实际问题。
2.教学难点:事件的分类和概率的计算方法。
五. 说教学方法与手段在教学过程中,我将采用讲授法、案例分析法、讨论法等多种教学方法,引导学生通过观察、思考、交流、实践等方式,掌握概率知识。
同时,利用多媒体教学手段,展示实例和计算过程,提高学生的学习兴趣和效果。
六. 说教学过程1.导入:通过一个简单的实例,引出本节课的主题,激发学生的学习兴趣。
2.基本概念:讲解事件的分类和概率的定义,让学生理解并掌握基本概念。
3.实例分析:分析多个实例,让学生体会事件的随机性,引导学生掌握概率的计算方法。
4.方法讲解:讲解如何将概率知识应用到实际问题中,让学生学会运用概率知识解决问题。
简单事件的概率(1)
1 5
2 ? 5
一般地,如果在一次试验中,有n种可能的 结果,并且它们发生的可能性都相等,事 件A包含其中的m种结果,那么事件A发生的 概率为
P(A)=
m n
m 在P(A)= 中,分子m和分母n都表 n 示结果的数目,两者有何区别,它们之
间有怎样的数量关系?P(A)可能小于
0吗?可能大于1吗?
例1 掷一个骰子,观察向上的一面的点数,求下 列事件的概率: (1)点数为2; (2)点数为奇数; (3)点数大于2且小于5.
试着分析:试验1 抽出1号签的概率,抽出偶数号 的概率?
1 在上面的抽签试验中,“抽到1号”的可能性是 5 即在5种可能的上述特点的试验,我们可以从事件 所包含的各种可能的结果在全部可能性的试验 结果所占的比例分析出事件的概率
P(抽到1号的概率)=
为什么抽到偶数的概率
作业
同步教与学P
93-94
板书设计
等可能性事件的概 念: 范例:
两步实验概率的计算方法:
学生板书:
课后反思
初中数学有关概率的内容,在初一,初二章节中都有 所体现,学生并不陌生,而本节内容跟实际生活较为 接近,学生的学生积极性较高.根据本人对去年实验 区中考试题的分析,等可能事件中的两步实验是中考 的热点.所以我把教学重点放在如何利用树状图或列 表分析事件的各种可能性结果,从课堂练习的反馈情 况可知,有90%的学生以掌握了这两种方法.从总体 上看,本节课的重点落实,难点突破.
桂林装修 桂林装饰 / 桂林装修 桂林装饰
orz92msr
好啊,请各位稍等片刻!”说着一转身迈开大步直冲正面中间的一间房子去了。随着伙计的身影,耿正看到在这间房子的门口挂着写有 “柜房”的大木牌。只听伙计一边进门一边大声说:“耿掌柜,快去看,有一挂用红布蒙了的大骡车进咱们店了,一共三个人呢,说是 要见你!”话音刚落,那个让耿正兄妹三人经常回忆起来的,并且由于回忆而越来越熟悉的大哥快步走出来了。七年半过去了,昔日的 那个年轻大哥如今已经变成了一个结实的壮年汉子,但依然还是一脸的善良和慈祥模样。看着眼前这面带欣喜且激动不已的三个年青人, 耿大业一时间愣在了那里。略停顿一下,他试探着问:“请问,你们是?”耿正顺手将大白骡的缰绳递给那位报信的伙计。兄妹三人一 起上前眼含热泪给大哥深深施礼,耿正声音哽咽地说:“大哥,您可记得七年半之前的夏天,山那边发生溃坝的当晚,您和大嫂曾经挽 留落难的仨兄妹在您的小饭店里住了一夜,还„„”耿大业傻傻地张大嘴巴:“啊!你们是„„”“是我们!我们要回老家去了,特地 来看望您和大嫂的„„”“快请进屋说话!这骡车怎么„„”“咱们慢慢细说!”耿大业吩咐伙计将骡车赶进靠里边的大车棚内,将骡 子卸了喂上草料。伙计牵起大白骡进车棚去了。耿大业伸出有力的大手抓住耿正的双肩晃一晃,激动地大声说:“好兄弟,好兄弟啊!” 再转过来抓住耿直的双肩晃一晃,高兴地说:“小兄弟,你长大了,个头比你哥哥当年还高呢,长得也真像啊!”再仔细地端详耿英, 拍一拍她的肩膀,说:“好妹子,了不起啊!”他激动得不知道说什么好了:“七年多了,我和你们大嫂经常想起你们来,老惦念呢! 咱们到家里说话,你们大嫂又快生娃了,在家里歇着呢。”说着朝大院的西北方向扬扬头,说:“喏,就在大院儿里„„”当他领着耿 正兄妹仨往家里走去时,一个胖墩墩的小男娃儿忽然从靠北边的屋子里跑了出来,口里还欢叫着:“爹,我在屋里就能听见是你回来 了!”一边说着,一边就高兴地向耿大业扑来。耿正和耿英同时蹲下身来准备抱他,小家伙却像泥鳅一样“哧溜”一下就窜到了耿大业 的身后。耿大业把小家伙拉到身前来,挨个儿指着耿正、耿直和耿英对他说:“小铁蛋儿,这是大叔叔、这是二叔叔、这是姑姑,快叫 啊!”小家伙眨巴着小眼睛看看三人,再抬头看看爹爹。耿大业再说一遍:“叫大叔叔、二叔叔、姑姑!”这一回,小家伙亮着小嗓子 叫了。耿英高兴地答应着将小家伙抱起来,欣喜地说:“你叫小铁蛋儿,好一个可爱的小铁蛋儿啊!”这边正高兴着呢,耿大嫂听着外 面热闹的说话声也出来了。她已经怀孕八个多月了,笨拙地挺着大肚子一边往前走一边问:“他爹,这是„„”耿英一看见大嫂如此模 样,赶快将小铁蛋儿递到耿
简单事件的概率(5种题型)与测试-2023年新九年级数学核心知识点与常见题型(浙教版)(解析版)
简单事件的概率(5种题型)与测试【知识梳理】一.可能性的大小随机事件发生的可能性(概率)的计算方法:(1)理论计算又分为如下两种情况:第一种:只涉及一步实验的随机事件发生的概率,如:根据概率的大小与面积的关系,对一类概率模型进行的计算;第二种:通过列表法、列举法、树状图来计算涉及两步或两步以上实验的随机事件发生的概率,如:配紫色,对游戏是否公平的计算.(2)实验估算又分为如下两种情况:第一种:利用实验的方法进行概率估算.要知道当实验次数非常大时,实验频率可作为事件发生的概率的估计值,即大量实验频率稳定于理论概率.第二种:利用模拟实验的方法进行概率估算.如,利用计算器产生随机数来模拟实验.二.概率的意义(1)一般地,在大量重复实验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p.(2)概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.(3)概率取值范围:0≤p≤1.(4)必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.(4)事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.(5)通过设计简单的概率模型,在不确定的情境中做出合理的决策;概率与实际生活联系密切,通过理解什么是游戏对双方公平,用概率的语言说明游戏的公平性,并能按要求设计游戏的概率模型,以及结合具体实际问题,体会概率与统计之间的关系,可以解决一些实际问题.三.概率公式(1)随机事件A的概率P(A)=.(2)P(必然事件)=1.(3)P(不可能事件)=0.四.游戏公平性(1)判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.(2)概率=.五.利用频率估计概率(1)大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.(2)用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.(3)当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.【考点剖析】一.可能性的大小(共2小题)1.(2022秋•武义县期末)按小王、小李、小马三位同学的顺序从一个不透明的盒子中随机抽取一张标注“主持人”和两张空白的纸条,确定一位同学主持班级“交通安全教育”主题班会.下列说法中正确的是()A.小王的可能性最大B.小李的可能性最大C.小马的可能性最大D.三人的可能性一样大【分析】根据概率公式求出抽到“主持人”的概率,然后进行比较,即可得出答案.【解答】解:∵抽到“主持人”的概率都是,∴三人的可能性一样大.故选:D.【点评】此题考查了基本概率的计算及比较可能性大小,用到的知识点为:可能性等于所求情况数与总情况数之比.2.(2023•宁波模拟)袋子里有8个红球,m个白球,3个黑球,每个球除颜色外都相同,从中任意摸出一个球,若摸到红球的可能性最大,则m的值不可能是()A.1B.3C.5D.10【分析】摸到红球的可能性最大,即白球的个数比红球的少.【解答】解:袋子里有8个红球,m个白球,3个黑球,若摸到红球的可能性最大,则m的值不可能大于8.观察选项,只有选项D符合题意.故选:D .【点评】本题考查的是可能性大小的判断,解决这类题目要注意具体情况具体对待.可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.二.概率的意义(共2小题)3.(2023•舟山三模)如图,某天气预报软件显示“舟山市定海区明天的降水概率为85%”,对这条信息的下列说法中,正确的是( )A .定海区明天下雨的可能性较大B .定海区明天下雨的可能性较小C .定海区明天将有85%的时间下雨D .定海区明天将有85%的地区下雨【分析】根据概率反映随机事件出现的可能性大小,即可进行解答.【解答】解:“舟山市定海区明天的降水概率为85%”表示“舟山市区明天下雨的可能性较大”. 故选:A .【点评】本题考查了概率的意义,熟练掌握概率的意义是解题的关键.4.(2022•宁波模拟)一枚正方体骰子六个面上分别标有数字1,2,3,4,5,6,若连续抛掷四次,朝上一面的点数都为6,则第五次抛掷朝上一面的点数为6的概率为 .【解答】解:一枚正方体骰子六个面上分别标有数字1,2,3,4,5,6,若连续抛掷四次,朝上一面的点数都为6,则第五次抛掷朝上一面的点数为6的概率为:,故答案为:.【点评】本题考查了概率的意义,熟练掌握概率的意义是解题的关键.三.概率公式(共9小题)5.(2023春•乐清市月考)一枚质地均匀的骰子六面分别标有1到6的一个自然数,任意投掷一次,向上一面的数字是偶数的概率为( )A .B .C .D . 【分析】一枚质地均匀的骰子六面分别标有1到6的一个自然数,任意投掷一次共有6种等可能结果,其中向上一面的数字是偶数的有3种结果,再根据概率公式求解即可.【解答】解:一枚质地均匀的骰子六面分别标有1到6的一个自然数,任意投掷一次共有6种等可能结果,其中向上一面的数字是偶数的有3种结果,所以向上一面的数字是偶数的概率为=,故选:B.【点评】本题主要考查概率公式,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.6.(2023•鹿城区校级三模)在一个不透明的袋中装有9个只有颜色不同的球,其中2个白球、3个黄球和4个红球.从袋中任意摸出一个球,是黄球的概率为()A.B.C.D.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵袋子中共有9个小球,其中黄球有3个,∴摸出一个球是黄球的概率是.故选:B.【点评】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种可能,那么事件A的概率(A)=.7.(2023•杭州)一个仅装有球的不透明布袋里只有6个红球和n个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为,则n=.【分析】根据红球的概率公式,列出方程求解即可.【解答】解:根据题意,=,解得n=9,经检验n=9是方程的解.∴n=9.故答案为:9.【点评】本题考查概率公式,根据公式列出方程求解则可.用到的知识点为:概率=所求情况数与总情况数之比.8.(2023•南湖区二模)一个不透明的袋子里装有5个红球和3个黑球,它们除了颜色外其余都相同.从袋中任意摸出一个球是红球的概率为.【分析】从袋中任意摸出一个球共有8种等可能结果,其中是红球的有5种结果,再根据概率公式求解即可.【解答】解:从袋中任意摸出一个球共有8种等可能结果,其中是红球的有5种结果,所以从袋中任意摸出一个球是红球的概率为,故答案为:.【点评】本题主要考查概率公式,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.9.(2023•义乌市模拟)一个布袋里装有5个黑球、4个白球,它们除颜色外都相同,从中任意摸出一个球,摸到黑球的概率是.【分析】共有9个球,其中黑球5个,即可求出任意摸出1球是黑球的概率.【解答】解:袋子中共有9个球,其中黑球有5个,所以从中任意摸出1个球,摸到红球的概率是,故答案为:.【点评】本题考查概率公式,理解概率的定义和计算方法是解决问题的关键.10.(2023•衢州二模)一枚均匀的立方体骰子(六个面的点数分别是1,2,3,4,5,6),抛掷1次,则朝上一面的点数大于4的概率是.【分析】抛掷一枚均匀的立方体骰子1次共有6种等可能结果,其中朝上一面的点数大于4的有2种结果,再根据概率公式求解即可.【解答】解:抛掷一枚均匀的立方体骰子1次共有6种等可能结果,其中朝上一面的点数大于4的有2种结果,所以朝上一面的点数大于4的概率为=,故答案为:.【点评】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.11.(2023•西湖区校级二模)一个不透明的袋子里面装着3个白球和4个黑球,它们除颜色以外,其余全部相同,从袋子里面摸出一个黑球的概率等于.【分析】直接利用概率公式计算可得.【解答】解:∵袋子中球的总个数为3+4=7(个),其中黑球有4个,∴摸出黑球的概率是,故答案为:.【点评】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.12.(2023•义乌市校级模拟)上海某高校青年志愿者协会对报名参加2010年上海世博会志愿者选拔活动的学生进行了一次与世博会知识有关的测试,他们对测试的成绩作了适当的处理,将成绩分成三个等级:一般,良好,优秀,并将统计结果绘成了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:(1)请将两幅统计图补充完整;(2)一共有名学生参加了这次测试,如果青年志愿者协会决定让成绩为“优秀”的学生参加下一轮的测试,那么有人将参加下轮测试;(3)该校的小亮也参加了这次测试,并且获得了参加下一轮测试的资格.若学校最终只能从参加下一轮测试的人中推荐50人成为上海世博会志愿者,则小亮被选中的概率是多少?【分析】(1)测试一般的有100人,所占百分比为20%,则可求出参加测试的总人数,故优秀人数可求,测试良好所占百分比为1﹣20%﹣50%;(2)测试一般的有100人,所占百分比为20%,则可求出参加测试的总人数,用总人数×成绩为“优秀”的学生所占百分比即可;(3)用全校学生数×测试成绩为优秀的人数所占百分比,再根据概率公式,即可求出答案.【解答】解:(1)100÷20%=500(名),∴优秀人数为500×50%=250(人),良好所事百分比为1﹣20%﹣50%=30%;补全图形,如图所示:(2)100÷20%=500(名),500×50%=250(人);故答案为:500,250;(3)因为该校学生测试成绩为优秀的人数为500×50%=250人,又因为参加下一轮测试中推荐50人参加志愿者活动,所以小亮被选中的概率是=.【点评】本题考查的是条形统计图,扇形统计图和概率公式,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.13.(2023•慈溪市模拟)从甲、乙两个企业随机抽取部分职工,对某个月月收入情况进行调查,并把调查结果分别制成扇形统计图和条形统计图.(1)在扇形统计图中,“6;(2)在乙企业抽取的部分职工中,随机选择一名职工,求该职工月收入超过5千元的概率;(3)若要比较甲、乙两家企业抽取的职工的平均工资,小明提出自己的看法:虽然不知道甲企业抽取职工的人数,但是可以根据加权平均数计算甲企业抽取的职工的平均工资,因此可以比较;小明的说法正确吗?若正确,请比较甲企业抽取的职工的平均工资与乙企业抽取的职工的平均工资的多少;若不正确,请说明理由.【分析】(1)用360°乘以“6千元”所占的的百分比即可;(2)利用概率公式计算即可;(3)分别根据加权平均数和算术平均数的计算方法求出甲企业和乙企业的平均工资,然后可作出判断.【解答】解:(1)360°×(1−10%−10%−20%−20%)=144°,故答案为:144°;(2)由条形图可得:乙企业共抽取10人,其中月收入超过5千元的有3人,∴该职工月收入超过5千元的概率为:;(3)小明的说法正确,设甲企业的调查人数为m,∵“6千元”所占的百分比为:1−10%−10%−20%−20%=40%,∴甲企业的平均工资为:×(20%m×5+10%m×4+10%m×8+20%m×7+40%m×6)=6(千元),乙企业的平均工资为:=6(千元),∴甲企业的平均工资与乙企业的平均工资相等.【点评】本题考查的是条形统计图和扇形统计图的综合运用,概率公式,求加权平均数和算术平均数,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.四.游戏公平性(共3小题)14.(2022秋•西湖区校级月考)小亮和小芳都想参加学校社团组织的暑假实践活动,但只有一个名额,小亮提议用如下的办法决定谁去参加活动:将一个材质均匀的转盘9等分,分别标上1至9九个号码,随意转动转盘,若转到4的倍数,小亮去参加活动;转到3的倍数,小芳去参加活动;转到其它号码则重新转动转盘,(1)转盘转到4的倍数的概率是多少?(2)你认为这个游戏公平吗?请说明理由.【分析】(1)直接根据概率公式计算可得;(2)利用概率公式计算出两人获胜的概率即可判断.【解答】解:(1)∵共有1,2,3,4,5,6,7,8,9这9种等可能的结果,其中4的倍数有2个,∴P(转到4的倍数)=;(2)游戏不公平,∴小亮去参加活动的概率为,小芳去参加活动的概率为:=,∵≠,∴游戏不公平.【点评】本题主要考查游戏的公平性,判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.15.(2022秋•萧山区月考)有一盒子中装有6个乒乓球,除颜色外形状和大小完全一样,其中3个黑色乒乓球,2个白色乒乓球,1个红色乒乓球.王海同学从盒子中任意摸出一乒乓球.(1)你认为王海同学摸出的球,最有可能是颜色;(2则陈星获胜.请问这个游戏对双方公平吗?为什么?【分析】(1)因为黑色的乒乓球数量最多,所以最有可能是黑色;(2)公平,因为黑色球的数量和白色乒乓球以及红色乒乓球的数量一样多.【解答】解:(1)因为黑色的乒乓球数量最多,所以最有可能是黑色.故答案为:黑;(2)公平,理由如下:因为P(摸到黑球)==,P(摸到其他球)=,又∵=,∴这个游戏对双方公平.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.16.(2023春•鄞州区校级月考)如图是计算机“扫雷”游戏的画面,在9×9个小方格的雷区中,随机地埋藏着20颗地雷,每个小方格最多能埋藏1颗地雷.(1)如图1,小南先踩中一个小方格,显示数字2,它表示围着数字2的8个方块中埋藏着2颗地雷(包含数字2的黑框区域记为A).接着,小语选择了右下角的一个方格,出现了数字1(包含数字1的黑框区域记为B,A与B外围区域记为C).二人约定:在C区域内的小方格中任选一个小方格,踩中雷则小南胜,否则小语胜,试问这个游戏公平吗?请通过计算说明.(2)如图2,在D,E,F三个黑框区域中共藏有10颗地雷(空白区域无地雷),则选择D,E,F三个区域踩到雷的概率分别是.【分析】(1)求出小南胜的概率和小语胜的概率,再比较即可;(2)分别求出D,E,F三个黑框区域中共藏的地雷颗数,再由概率公式求解即可.【解答】解:(1)这个游戏不公平,理由如下:∵在C区域的(9×9﹣9﹣4)=68(个)方块中随机埋藏着(20﹣2﹣1)=17(颗)地雷,C区域中有(68﹣17)=51(个)方块中没有地雷,∴小南胜的概率为=,小语胜的概率为=,∵<,∴这个游戏不公平;(2)∵围着数字2的8个方块中埋藏着2颗地雷,空白区域无地雷,∴D区域中有2个地雷,∴选择D区域踩到雷的概率为1;∵围着数字2的8个方块中埋藏着2颗地雷,空白区域无地雷,∴E区域中有2个地雷,∴选择E区域踩到雷的概率为;∵在D,E,F三个黑框区域中共藏有10颗地雷(空白区域无地雷),∴F区域中有:10﹣2﹣2=6(颗)地雷,∴选择F区域踩到雷的概率为=;故答案为:1,,.【点评】本题考查了游戏公平性以及概率公式等知识,概率相等游戏就公平,否则就不公平;用到的知识点为:概率=所求情况数与总情况数之比.五.利用频率估计概率(共6小题)17.(2022秋•嵊州市期末)在一个暗箱里放有m个除颜色外完全相同的球,这m个球中红球只有4个,每次将球充分摇匀后,随机从中摸出一球,记下颜色后放回,通过大量的重复试验后发现,摸到红球的频率为0.4,由此可以推算出m约为()A.7B.3C.10D.6【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解答】解:由题意可得:,解得:m=10.故可以推算出m约为10.故选:C.【点评】本题主要考查了利用频率估计概率,解题的关键是掌握“利用大量试验得到的频率可以估计事件的概率.18.(2022秋•宁波期末)利用六张编号为1,2,3,4,5,6的扑克牌进行频率估计概率的试验中,同学小张统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是()A.抽中的扑克牌编号是3的概率B.抽中的扑克牌编号是3的倍数的概率C.抽中的扑克牌编号大于3的概率D.抽中的扑克牌编号是偶数的概率【分析】计算出各个选项中事件的概率,根据概率和统计图进行对比即可.【解答】解:A、抽中的扑克牌编号是3的概率为,不符合试验的结果;B、抽中的扑克牌编号是3的倍数的概率,基本符合试验的结果;C、抽中的扑克牌编号大于3的概率为,不符合试验的结果;D、抽中的扑克牌编号是偶数的概率,不符合试验的结果.故选:B.【点评】本题考查了频率估计概率,理解当试验的次数较多时,频率稳定在某一固定值附近,这个固定值即为概率是解题的关键.19.(2022秋•桐庐县期中)为了解某地区九年级男生的身高情况,随机抽取了该地区200名九年级男生,他们的身高x(cm)统计如下:根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm的概率是()A.0.42B.0.21C.0.79D.与m,n的取值有关【分析】先计算出样本中身高不低于180cm的频率,然后根据利用频率估计概率求解.【解答】解:样本中身高不低于180cm的频率==0.21,所以估计抽查该地区一名九年级男生的身高不低于180cm的概率是0.21.故选:B.【点评】本题考查了利用频率估计概率:大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随试验次数的增多,值越来越精确.20.(2023•温州模拟)一个密闭不透明的口袋中有质地均匀、大小相同的白球若干个,在不允许将球倒出来的情况下,为估计白球的个数,小华往口袋中放入10个红球(红球与白球除颜色不同外,其它都一样),将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有63次摸到红球.估计这个口袋中白球的个数约为个.【分析】估计利用频率估计概率可估计摸到红球的概率为0.63,然后根据概率公式计算这个口袋中红球的数量.【解答】解:设袋子中白球有x个,根据题意,得:=,解得x≈6,经检验x=6是分式方程的解,所以袋子中白球的个数约为6个,故答案为:6.【点评】本题考查用样本估计总体,解答本题的关键是明确题意,利用概率的知识解答.21.(2022秋•杭州期末)对一批衬衣进行抽检,统计合格衬衣的件数,得到合格衬衣的频数表如下:(1)估计任抽一件衬衣是合格品的概率(结果精确到0.01).(2)估计出售2000件衬衣,其中次品大约有几件.【分析】(1)根据大量重复实验下,频率稳定的数值即可估计任抽一件衬衣是合格品的概率;(2)用总数量×(1﹣合格的概率)列式计算即可.【解答】解:(1)由表可知,估计任抽一件衬衣是合格品的概率为0.95;(2)次品的件数约为2000×(1﹣0.95)=100(件).【点评】本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.22.(2023春•沭阳县月考)在一个不透明的口袋里装有若干个相同的红球,为了估计袋中红球的数量,九(1)班学生在数学实验室分组做摸球试验:每组先将15个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是这次活动统计汇总各小组数据后获得的全班数据统计表:(1)a=.(2)请估计:当次数s很大时,摸到红球的频率将会接近0.80(精确到0.01);请推测:摸到红球的概率是(精确到0.1).(3)求口袋中红球的数量.【分析】(1)根据频率=频数÷样本总数分别求得a的值即可;(2)从表中的统计数据可知,摸到红球的频率稳定在0.8左右;(3)根据红球的概率公式得到相应方程求解即可.【解答】解:(1)a=1200÷1500=0.8;故答案为:0.8;(2)当次数s很大时,摸到红球的频率将会接近0.80,0.8;故答案为:0.80,0.8;(3)设口袋中红球的数量为x个,0.8 (x+15)=x,解得:x=60.答:口袋中红球的数量为60个.【点评】本题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.正确记忆概率=所求情况数与总情况数之比.组成整体的几部分的概率之和为1是解题关键.【过关检测】一、单选题【答案】D【分析】直接利用概率公式计算可得.【详解】搅匀后任意摸出一个球,是白球的概率为12123355=++,故选:D.【点睛】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.2.下列事件是随机事件的是()A.抛出的篮球会下落B.没有水分,种子发芽C.购买一张彩票会中奖D.自然状态下,水会往低处流【答案】C【分析】根据随机事件的定义判断即可.【详解】解:A.抛出的篮球会下落,是必然事件;B.没有水分,种子发芽,是不可能事件;C.购买一张彩票会中奖,可能中奖也可能不中奖,是随机事件;D.自然状态下,水会往低处流,是必然事件;故选:C.【点睛】本题考查了事件发生的可能性的大小:必然事件是一定会发生的事件;不可能事件是一定不会发生的事件;随机事件是可能发生也可能不发生的事件.3.某娱乐设施每次能够容纳4人一组进场游玩,甲、乙、丙、丁排队等候,甲前面有若干人,乙排在甲后面,中间隔着2人,丙排在乙后面,中间隔着1人,丁排在丙后面,中间隔着1人,丁后面也有若干人.下列说法:①如果甲和乙同一组,那么丙和丁也同一组;②如果甲和乙不同一组,那么丙和丁也不同一组;③如果丙和丁同一组,那么甲和乙也同一组;④如果丙和丁不同一组,那么甲和乙也不同一组.正确的个数为()A.1B.2C.3D.4【答案】B【分析】根据题意,列出这8个人的位置,然后根据题意逐项分析即可求解.【详解】解:依题意,设中间隔着的人用x代替,则排序为:甲,x,x,乙,x,丙,x,丁①若分组为(甲,x,x,乙),(x,丙,x,丁),故①正确;②若分组为……甲),(x,x,乙,x),(丙,x,丁,……,故②错误,③由②可知③错误,④依题意,分组为:甲,x),(x,乙,x,丙),(x,丁,……,或甲,x,x,(乙,x,丙,x),(丁,……,故④正确,故选:B.【点睛】本题考查了推理,列举法求试验结果,根据题意举出反例或列举是解题的关键.....【答案】D【详解】试题分析:画树状图为:(用A、B、C表示三位同学,用a、b、c表示他们原来的座位)共有6种等可能的结果数,其中恰好有两名同学没有坐回原座位的结果数为3,所以恰好有两名同学没有坐回原座位的概率=.故选D.考点:列表法与树状图法.5.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>1B.k>﹣1且k≠0C.k<1D.k<1且k≠0。
九年级数学概率初步知识点
九年级数学概率初步知识点
九年级数学概率初步的知识点包括以下内容:
1. 事件与样本空间:事件是指在一次随机实验中可能发生的结果,样本空间是指随机实验的所有可能结果组成的集合。
2. 事件的概率:事件A的概率表示为P(A),计算方法为P(A) = 事件A的有利结果数/样本空间的总结果数。
3. 事件的互斥与对立:互斥事件指的是两个事件不可能同时发生,对立事件指的是两个事件只能发生其中一个。
4. 事件的并、交与差:事件A和事件B的并集是指事件A和事件B中至少有一个事件发生的情况,事件A和事件B的交集是指事件A和事件B同时发生的情况,事件A对事件B的差是指事件A发生但事件B不发生的情况。
5. 等可能事件:指在一个随机实验中,每个结果发生的概率相等。
6. 事件的组合:指将多个事件进行排列组合,计算不同情况发生的概率。
7. 古典概型:指样本空间有限,且每个样本发生的概率相等的情况。
8. 条件概率:指在已知事件A发生的情况下,事件B发生的概率,表示为P(B|A),计算方法为P(B|A) = P(A并B)/P(A)。
9. 独立事件:指事件A的发生与事件B的发生没有相互影响,即P(A并B) = P(A) ×P(B)。
10. 事件系列:指多个事件相继进行,每个事件的发生与否会影响下一个事件的发生概率计算。
这些知识点是九年级数学概率初步的基础,通过掌握这些知识,可以进行一些简单的概率计算与推理。
七年级概率初步知识点总结
七年级概率初步知识点总结概率,是指某件事情发生的可能性大小。
在数学中,概率是一个十分重要的概念,也是数学中比较基础的知识之一。
下面我们来总结一下七年级概率初步的知识点。
一、基础概念1. 事件:概率问题中所研究的问题2. 样本空间:在概率问题中,所有可能出现的情况组成的集合3. 事件的概率:事件发生的可能性大小,通常用P(A)表示4. 必然事件:有些事件必然会发生,如掷一枚硬币,正反两面一定会有一面朝上5. 不可能事件:有些事件不可能会发生,如掷一枚硬币的正反两面同时朝上二、概率的计算方法1. 等可能概型下的概率计算:对于每种可能性发生的概率相同的问题,可以使用总数与被计数项数的比值计算例如:在掷一枚硬币的情况下,正面向上的概率为1/2。
2. 容斥原理:指如果想要求得至少发生其中一个事件的概率,可以先将每个事件的概率相加,再减去同时发生两个事件的概率,最后加上同时发生所有事件的概率例如:一枚骰子掷两次,至少有一次出现3点的概率为11/36。
3. 互不相容事件的概率计算:指若两个事件不会发生重叠部分,概率可以直接相加例如:在掷一枚骰子的情况下,得到2点或3点的概率为1/6+1/6=1/3。
三、概率模型的修改1. 添加事件:指增加概率模型中事件的可能性例如:在掷两次一枚骰子的情况下,至少有一次获得5点及以上的概率为11/18。
2. 删除事件:指减少概率模型中事件的可能性例如:在初始有5个红球和3个蓝球的情况下,如果从中随机取出一个球,得到红球的概率为5/8;但如果从中取出一个红球后,放回去又取一次,得到两次都得到红球的概率为25/64。
以上就是七年级概率初步的知识点总结,希望能对大家的学习有帮助。
初中简单事件的概率知识点
初中简单事件的概率知识点概率是研究随机事件的发生可能性的一门数学分支。
初中阶段,学生开始接触到一些简单的概率问题,了解事件的发生概率以及如何计算概率。
下面是一些与初中简单事件的概率相关的知识点。
1.随机事件和样本空间:-随机事件是指在一定条件下可能发生的结果,可以表示为一些结果的集合。
-样本空间是指所有可能结果的集合,用S表示。
2.事件的发生可能性:-事件的发生可能性可以用概率来表示,概率通常使用P(E)表示,其中E是事件。
-概率的取值范围在0到1之间,概率为0表示事件不可能发生,概率为1表示事件一定会发生。
3.事件发生概率的计算:-对于随机均匀发生的事件,概率可以通过计算事件发生的结果数与样本空间中所有结果数的比值得到。
-P(E)=事件E的结果数/样本空间的结果数4.互斥事件:-互斥事件是指两个事件不能同时发生。
-如果事件A和事件B是互斥事件,那么P(A并B)=0。
5.事件的相互独立性:-事件A和事件B是相互独立的,意味着事件A的发生与事件B的发生没有任何关系。
-如果事件A和事件B是相互独立的,那么P(A交B)=P(A)*P(B)。
6.抽样和重复抽样:-抽样是指从样本空间中取出一部分结果作为样本,用来研究全体的特征。
-重复抽样是指从样本空间中重复取样,每次抽样结果都相互独立,抽出的结果又放回样本空间。
7.定义概率的方式:-经典定义概率:对于一个随机的均匀事件,事件E发生的概率等于事件E的结果数与样本空间的结果数的比值。
-频率定义概率:对于一个重复抽样的实验,事件E发生的概率等于事件E在多次重复实验中发生的频率。
-主观定义概率:对于一个主观判断的事件,概率是个人主观上对事件发生可能性的度量。
8.加法原理和乘法原理:-加法原理:对于两个互斥事件A和B,事件A或B发生的概率等于事件A发生的概率加上事件B发生的概率。
-乘法原理:对于两个独立事件A和B,事件A和B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。
初中《简单事件的概率》知识点
概率的简单应用一、可能性 1、必然事件:有些事件我们能确定它一定会发生,这些事件称为必然事件.2、不可能事件:有些事件我们能肯定它一定不会发生,这些事件称为不可能事件.3、确定事件:必然事件和不可能事件都是确定的。
4、不确定事件:有很多事件我们无法肯定它会不会发生,这些事件称为不确定事件。
5、一般来说,不确定事件发生的可能性是有大小的。
常见考法:判断哪些事件是必然事件,哪些是不可能事件例1:下列说法错误..的是( ) A .同时抛两枚普通正方体骰子,点数都是4的概率为16 B .不可能事件发生机会为0C .买一张彩票会中奖是可能事件D .一件事发生机会为0.1%,这件事就有可能发生二、简单事件的概率1、概率的意义:表示一个事件发生的可能性大小的这个数叫做该事件的概率。
2、必然事件发生的概率为1,记作P (必然事件)=1,不可能事件发生的概率为0,记作P(不可能事件)=0,如果A 为不确定事件,那么0<P(A)<1。
3、一步试验事件发生的概率的计算公式:nk p (n 为该事件所有等可能出现的结果数,k 为事件包含的结果数。
两步试验事件发生的概率的计算有两种方法(列表法和画树状图)常见考法:直接求某个事件的概率例2:如图5,电路图上有编号为①②③④⑤⑥共6个开关和一个小灯泡,闭合开关①或同时闭合开关②,③或同时闭合开关④⑤⑥都可使一个小灯泡发光,问任意闭合电路上其中的两个开关,小灯泡发光的概率为______.三、求复杂事件的概率:1.对于作何一个随机事件都有一个固定的概率客观存在。
2.2.有些随机事件不可能用树状图和列表法求其发生的概率,只能通过试验、统计的方法估计其发生的概率。
3.3.对随机事件做大量试验时,根据重复试验的特征,我们确定概率时应当注意几点:(1)做实验时应当在相同条件下进行;(2)实验的次数要足够多,不能太少;(3)把每一次实验的结果准确,实时的做好记录;(4)分阶段分别从第一次起计算,事件发生的频率,并把这些频率用折线统计图直观的表示出来;观察分析统计图,找出频率变化的逐渐稳定值,并用这个稳定值估计事件发生的概率,这种估计概率的方法的优点是直观,缺点是估计值必须在实验后才能得到,无法事件预测。
《简单事件的概率》2.2(1)简单事件的概率
10.某号码锁有6个拨盘,每个拨盘上有从 0到9共十个数字.当6个拨盘上的数字组成某 一个六位数字号码(开锁号码)时,锁才能打开. 如果不知道开锁号码,试开一次就把锁打开的 概率是多少?
整理课件
11.如图,有一只蚂蚁在△ABC木板上随意走
动,已知点E是线段AB的中点,点D是线段AC
的三等分点,则蚂蚁停留在黑色区域(△ABC)
方砖上,(每一块方砖除颜色外完
全相同)
(1)它最终停留在黑砖上的概率? (2)它最终停留在白砖上的概率?
P(停留在黑砖 )上 1 P(停留在白砖 )上 3
4
4
整理课件
4. 从标有1到15序号的15个台球中,任意摸出一个, 请计算下列事件发生的概率:
在一A个:不台透球明上的的盒数中是装5有的两倍个数白;球,n个黄球, 除颜色不同外均相同。若从中随机摸出一个球,
等可能性事件的概率公式:
P(A)
事件A发生的可能结果总数 所有事件可能发生果 的总 结数
要善于应用数学知识解决生活中的实际问题 整理课件
1.如图,转盘被等分成若干个扇形,转动转盘,计算转 盘停止后,指针指向红色区域的概率。
P(红色区)域 3 2.假如小猫在如图所示的地板上8自 由地走来走去,并随意停留在某块
整理课件
30°
甲
180°
乙
任意抛掷一枚 均匀的骰子,朝上一 面的点数为3的概率 是多少?朝上一面的 点数为6呢?朝上一面 的点数为3的倍数呢?
概率
整理课件
一个布袋里装有8个红球和2个黑球它们除 颜色外都相同,求下列事件发生的概率: (1)从中摸出一个球,是白球;
P(摸出白)球 0
(2)从中摸出一个球,不是白球;
七年级概率初步知识点
七年级概率初步知识点概率是数学中一个非常重要的概念,也是我们日常生活中不可避免的问题。
简单来说,概率就是某一个事件发生的可能性大小。
在七年级的初步学习中,我们将会学到概率的基本概念、公式运用、以及实际中的应用。
一、基本概念1.概率的定义概率是某个事件发生的可能性大小,通常是用一个介于0和1之间的数值来表示。
2.样本空间和事件样本空间是指某个试验中所有可能结果组成的集合,事件则是样本空间中的任意一个子集。
3.基本事件基本事件是指样本空间中的一个单独的结果,例如掷一枚骰子得到的点数就是一个基本事件。
二、公式运用1.频率和概率的关系频率是某个事件在大量试验中出现的相对次数,而概率则是某个事件出现的理论可能性大小。
当试验次数无限接近时,频率将会无限接近于概率。
2.概率的加法原理当某个事件可以用两个或多个不相交的事件来表示时,该事件的概率等于每个不相交事件的概率之和。
3.概率的乘法原理当某个事件可以用两个或多个独立事件的组合来表示时,该事件的概率等于每个独立事件概率的乘积。
三、实际应用1.在游戏中应用概率在玩掷骰子的游戏时,我们可以利用概率来计算掷出某个数字的可能性大小,从而决策自己的游戏策略。
2.概率在科学中的应用概率在统计学中广泛应用,可以用来对某些自然现象进行预测和研究,例如气象、物理等领域。
3.概率在经济中的应用概率在金融和股票市场中广泛应用,可以用来帮助投资者预测股市走向和做出相应的决策。
总结以上是七年级概率初步知识点的基本内容,希望同学们能够掌握概率的基本概念、公式运用以及实际中的应用。
在实践中,通过不断地练习和探索,我们可以更深入地了解概率,以及如何在实际应用中更好地运用概率。
2.2简单事件的概率(1)
(2) 自由转动如图三色转 盘一次,事件“指针落在红 色区域”的概率为 1 .
3
练一练 2.任意抛掷一枚均匀的骰子,观察向上一面 的点数,求下列事件的概率: (1)点数为3; P(点数为3)= 1
6
(2)点数为3的倍数;
P(点数为3或6)= 2 1
63
(3)点数大于2且小于5;
P(点数大于2且小于5)= 2 1 63
同数量的黄球,搅拌均匀后使从袋中摸出一
个是黄球的概率不小于 1 ,问至少取出了多
少个黑球?
3
7、(2012•温州)一个不透明的袋中装有红、黄、 白三种颜色球共100个,它们除颜色外都相同, 其中黄球个数是白球个数的2倍少5个.已知从袋 中摸出一个球是红球的概率是 3 . (1)求袋中红球的个数; 10 (2)求从袋中摸出一个球是白球的概率; (3)取走10个球(其中没有红球)后,求从剩 余的球中摸出一个球是红球的概率.
一般地,必然事件发生的概率为100%, 即P(必然事件)=1;
不可能事件发生的概率为0,即P(不可 能事件)=0.
而随机事件发生的概率介于0与1之间, 即0<P(随机事件)<1.
例2 求下列事件发生的概率:
(1)事件A:从一副扑克牌中任抽1张牌,抽 出的这张牌是红桃A。
(2)事件B:先从一副扑克牌中去掉2张王牌, 然后任抽1张牌,抽出的这张牌是红桃。
例1 一项答题竞猜活动,在6个式样、大小都 相同的箱子中有且只有一个箱子里藏有礼物。 参与选手将回答5道题目,每答对一道题,主 持人就从剩下的箱子中去掉一个空箱子;而一 旦答错,即取消后面的答题资格,选手从剩下 的箱子中选取一个箱子。求下列事件发生的概 率。
(2)事件B:选手连续答对了4道题,他选中 藏有礼物的箱子。
《简单事件的概率》 知识清单
《简单事件的概率》知识清单一、概率的定义概率,简单来说,就是用来衡量某个事件发生可能性大小的一个数值。
它的取值范围在 0 到 1 之间。
如果一个事件发生的概率为 0,那就意味着这个事件几乎不可能发生;如果概率为 1,那就表明这个事件肯定会发生;而如果概率在 0 和 1 之间,比如说 05,那就表示这个事件有一半的可能性会发生。
例如,抛一枚均匀的硬币,正面朝上和反面朝上的概率都是 05。
因为硬币只有正反两面,而且质地均匀,所以出现正面和反面的可能性是相等的。
二、简单事件的概念简单事件是指在一次试验中,只有一个结果的事件。
比如说,从一个装有 5 个红球和 3 个白球的袋子中随机摸出一个球,摸到红球或者摸到白球,这就是两个简单事件。
与简单事件相对的是复杂事件,复杂事件是由多个简单事件组合而成的。
三、概率的计算方法1、古典概型当试验的结果有限,且每个结果出现的可能性相等时,我们可以使用古典概型来计算概率。
计算公式为:P(A) = A 包含的基本事件数/基本事件总数例如,一个盒子里有 3 个红球和 2 个白球,从中随机取出一个球是红球的概率。
基本事件总数是 5(3 个红球+ 2 个白球),A 事件(取出红球)包含的基本事件数是 3,所以取出红球的概率 P = 3/5 = 062、几何概型如果试验的结果是无限的,而且每个结果出现的可能性相等,这时就需要用到几何概型来计算概率。
例如,在一个半径为 1 的圆内随机取一点,求这点到圆心的距离小于 05 的概率。
我们可以通过计算面积的比例来得到概率。
四、概率的性质1、0 ≤ P(A) ≤ 1任何事件的概率都在 0 到 1 之间。
2、 P(必然事件) = 1必然会发生的事件,其概率为 1。
3、 P(不可能事件) = 0不可能发生的事件,其概率为 0。
4、如果 A 和 B 是互斥事件(即 A 和 B 不可能同时发生),那么P(A 或 B) = P(A) + P(B)例如,掷骰子时,出现点数为 1 或者 2 的概率,因为出现 1 和出现2 这两个事件互斥,所以概率为 P(出现 1) + P(出现 2) = 1/6 + 1/6 =1/3五、独立事件如果事件 A 的发生不影响事件 B 的概率,事件 B 的发生也不影响事件 A 的概率,那么 A 和 B 就是独立事件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率的简单应用
一.可能性
1、必然事件:有些事件我们能确定它一定会发生,这些事件称为必然事件.
2、不可能事件:有些事件我们能肯定它一定不会发生,这些事件称为不可能事件.
3、确定事件:必然事件和不可能事件都是确定的。
4、不确定事件:有很多事件我们无法肯定它会不会发生,这些事件称为不确定事件。
5、一般来说,不确定事件发生的可能性是有大小的。
常见考法:判断哪些事件是必然事件,哪些是不可能事件
例下列说法错误的是()
• •
A.同时抛两枚普通正方体骰子,点数都是4的概率为丄
6
B.不可能事件发生机会为0
C.买一张彩票会中奖是可能事件
D.一件事发生机会为0. 1%,这件事就有可能发生
二、简单事件的概率
1、概率的意义:表示一个爭件发生的町能性人小的这个数叫做该爭件的概率。
2、必然事件发生的概率为1,记作P (必然事件)=1.不可能事件发生的概率为0,记作P(不可
能事件)=0,如果A为不确定爭件,那么0VP(A)<1。
3、一步试验事件发生的概率的计算公式:p = -(n为该爭件所有等町能出现的结果数,k为事
件包含的结果数。
两步试验〃件发生的概率的计算有两种方法(列表法和画树状图)常见考法:直接求某个事件的概率
例2:如图5,电路图上有编号为①②③④⑤⑥共6个开关和一个小灯泡,
闭合开关①或同时闭合开关②,③或同时闭合开关④⑤⑥都可使一个小灯泡发光,问任意闭合电路上其中的两个开关,小灯泡发光的概率为
三、求复杂事件的概率:
1•对于作何-个随机事件都有一个固定的概率客观存在。
2.2. 有些随机事件不可能用树状图和列表法求其发生的概率,只能通过试验、统计的方法估计其发生的概率。
3.3. 对随机那件做人量试验时,根据重复试验的特征,我们确定概率时应当注意几点:
(1)做实验时应当在相同条件下进行;
(2)实验的次数要足够多,不能人少;
(3)把每一次实验的结果准确,实时的做好记录;
(4)分阶段分别从第一次起计算,爭件发生的频率,并把这些频率用折线统计图直观的表示出来:观察分析统计图,找出频率变化的逐渐稳定值,并用这个稳定值估计爭件发生的概率,这种估计概率的方法的优点是直观,缺点是估计值必须在实验后才能得到,无法爭件预测。
(5)四、概率综合运用:
(6)概率町以和很多知识综介命题,主要涉及平面图形、统计图、平均数、中位数、众数、函数等。
常见考法
(1)判断游戏公平:游戏对双方公平是指双方获胜的可能性相同。
这类问题有两类一类是计算游戏双方的获胜理论概率,另一类是计算游戏双方的理论得分;
(2)命题者经常以摸球、抛硬币、转转盘、抽扑克这些既熟悉又感兴趣的事为載体,设计问题。
误区提程
进行摸球、抽卡片等实验时,没有注意''有序"还是''无序有放回"还是''无放回''故造成求解错误。
例3:分别把带有指针的圆形转盘力、3分成4等价、3等份的扇形区域,并在每一小区域内标上数字(如图所示).欢欢、乐乐两人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜:若指针所指两区域的数字之积为偶数,则乐乐胜:若有指针落在分割线上,则无效,需重新转动转盘.
(1)试用列表或画树状图的方法,求欢欢获胜的概率;
转盘兔转盘B
(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.
例4:苏州市区某居民小区共有800户家庭,有关部门准备对该小区的自来水管网系统进行改造,为此,需了解该小区的自来水用水的情况。
该部门通过随机抽样,调査了其中的30户家庭,已知这30户家庭共有87人。
(1)____________________________ 这30户家庭平均每户人;(精确到0.1人)
(2)这30户•家庭的月用水量见下表:
求这30户家庭的人均日用水量:(一个月按30天计算,精确到0.001/K3)
转盘兔转盘B
(3)根拯上述数拯,试估计该小区的日用水量?(稍确到1〃产)。