第13章 波动光学

合集下载

吴百诗,大学物理习题解析答案1,2,3,4目录

吴百诗,大学物理习题解析答案1,2,3,4目录

吴百诗,《大学物理(下册)(第3次修订本B)》荣获国家教委优秀教材一等奖
大学物理习题解析答案2_西安交通大学出版社_吴百诗
文件(一)页码顺序P.1,10;P.100~109;P.11,P.110~119;P.12;P.120~129;P.13;P.130~139;P.14;P.140~149; P.15;P150~159;P.16;P.160~169;P.17。

第2章牛顿运动定律习题
第3章功和能习题(文件四)
第4章冲量和动量习题(文件四)
第5章刚体力学基础动量矩习题(文件四)
第6章机械振动基础习题第11章(文件二)
第7章机械波习题第12章(文件二)
第8章热力学习题第9章(文件二)
第9章气体动理论习题第10章(文件二)
《大学物理(下册)(第3次修订本B)》。

第10章静电场习题第6章(文件一、四)
第11章恒定电流的磁场习题第7章(文件一)
第12章电磁感应与电磁场习题第8章(文件一)
第13章波动光学基础习题(文件三)
第14章狭义相对论力学基础习题(文件三)
第15章量子物理基础习题(文件三)
第16章原子核物理和粒子物理简介习题(文件三)
第17章固体物理简介激光习题(文件三)。

医学物理学(第7版)教学大纲

医学物理学(第7版)教学大纲

前言《医学物理学》是国家教育部规定的高等医学院校临床医学、预防医学等专业的一门必修基础课,是为这些专业的学生提供较系统的物理学知识,使他们在中学物理学教育基础上,进一步学习医学专业所必需的物理学的基本概念、基本规律、基本方法,为后继课程的学习以及将来从事专业工作打下一个良好的基础。

我校《医学物理学》教材选用人民卫生出版社出版普通高等教育“十一五”国家级规划教材《医学物理学》第7版(胡新珉主编)。

依据学校的教学计划,本课程共96学时,其中理论课68学时,实验课28学时。

因此制定本“教学大纲”。

因为教材是按72~108学时编写。

所以,“教学大纲”既参照卫生部1982年“高等医学院校《医用物理学》教学大纲(试用本)”和医药类大学物理课程教学的基本要求,也结合当前教育改革倡导素质教育,针对临床医学、预防医学、影像学、法医学、护理学、药学等专业的特点编写。

“大纲”内容分为掌握、熟悉、了解和自学。

自学内容课堂上教师原则上不讲授,属自学内容,结业考试中一般不作要求。

第一章力学的基本定律(自学)第二章物体的弹性一、学习要求本章要求熟悉描述物体弹性的基本概念,对人体骨骼和肌肉组织的力学特性要有一定的了解。

二、讲授内容和要求等级章节次序内容等级第一节线应变与正应力一线应变熟悉二正应力熟悉三正应力与线应变的关系熟悉四弯曲自学第二节切应变与切应力一切应变熟悉二切应力熟悉三切应力与切熟应变的关系悉四扭转自学第三节体应变与体应力一体应变熟悉二体应力熟悉三体应力与体应变的关系熟悉第四节生物材料的黏弹性自学三、授课学时:2学时。

四、练习:第27~28页,2-6、2-9。

第三章流体的运动一、学习要求本章要求掌握理想流体作稳定流动时的基本规律,即连续性方程和伯努利方程以及它们的应用;熟悉实际流体的流动规律和泊肃叶定律;了解斯托克司定律和血液在循环系统中的流动规律。

二、讲授内容和要求等级章节次序内容等级第一节理想流体的稳定流动一理想流体熟悉二稳定流动熟悉三连续性方程掌握第二节伯努利方程一伯努利方程掌握二伯努利方程的应用掌握第三节黏性流体的流动一层流和湍流熟悉二牛顿黏滞定律熟悉三雷诺数了解第四节黏性流体的运动规律一黏性流体的伯努利方程了解二泊肃叶定律熟悉三斯托克司定律了解第五节血液在循环系统中的流动一血液的组成及特性自学二心脏做功了解三血流速度分布自学四血流过程中的血压分布自学三、授课学时:4学时。

大学物理复习题分解

大学物理复习题分解

大学物理复习题分解第一章质点运动学htz?(h?0,??0,R、1、设质点的运动方程x?Rcos?t,y?Rsin?t,2?h、ω=常数),求:①位置矢量的表达式;②任意时刻速度;③任意时刻加速度。

2、一质点在xoy平面上运动,运动函数为x=2t,y=4t2-8(采用国际单位制),求:①质点的轨道方程;②t=1s和t=2s 时,质点的位置、速度和加速度。

3、一质量为10kg的物体沿x轴无摩擦地运动,设t?0时物体位于原点,速度为零,求:①设物体在力F?(3?4t)N的作用下运动了3s,它的速度及加速度各为多少?②设物体在力F?(3?4x)N的作用下移动了3m,它的速度和加速度各为多少?4、有一学生在体育馆阳台上以投射角??300和速率v0?20m/s向台前操场投出一垒球。

球离开手时距离操场水平面的高度h?10m。

试问球投出后何时着地?在何处着地?5、一吊扇翼片长R?0.50m,以n?180r/min的转速转动。

关闭电源开关后,吊扇均匀减速,经tA?1.50min转动停止。

(1)求吊扇翼尖原来的转动角速度?0与线速度v0;(2)求关闭电源开关后时翼尖的角加速度、切向加速度、法向加速度和总加速度。

6、质量m?2kg质点在力F的作用下,在OX直线上运动,运动方程为:x?1t2?2t?4(F,x,t采用国际单位),求:⑴ t=2s 21末的速度v?? 和加速度a??⑵ 在t=1s到t=2s的过程中,力F的冲量I??⑶在t=1s到t=2s的过程中,力F做的功W??第二章牛顿运动定律1、质量为m的小球从高处落下,设它所受到的空气阻力与它的速度的大小成正比f当小球下落的速度vT?80m/s 时,?kv。

重力与阻力平衡,小球作匀速直线运动。

求小球下落到速度v1?1vT时,所经历的时间。

22、一个质量m为的珠子系在线的一端,线的另一端绑在墙上的钉子上,线长为l。

先拉动珠子使线保持水平静止,然后松手使珠子下落。

求线摆下?角时这个珠子的速率和线的张力。

大学物理讲义(第13章波动光学)第一节

大学物理讲义(第13章波动光学)第一节

第13章波动光学光是能激起视觉的一类电磁波.人们主要通过光来接受自然界的信息.研究光现象、光的本性和光与物质相互作用等规律的学科称为光学.它是物理学的又一个重要分支.光学通常分为几何光学、波动光学和量子光学三部分.当光的波长可以忽略,其波动效应不明显时,把光的能量看成是沿着一根根光线传播的,光遵从直进、反射、折射等定律,这便是几何光学.波动光学研究的是光在传播过程中显示出的干涉、衍射和偏振等波动现象和特点.通常人们把建立在光的量子性基础上,深入到微观领域研究光与物质相互作用规律的分支学科,称为量子光学.从20世纪60年代以来,由于激光和光信息技术的出现,光学又有了新的发展,并且派生出许多属于现代光学范畴的一些新分支.本章讨论光的波动理论.§13.1 光干涉的一般理论光是一定波长范围内的电磁波.可见光是能够被人的眼睛直接看到的电磁波,它的波长范围在400~760nm之间.一、光的叠加原理在通常的情况下,光和其他波动一样,在空间传播时,遵从波的叠加原理.当几列光波在空间传播时,它们都将保持原有的特性,此即光波的独立传播原理.由此,在它们交叠的区域内各点的光振动是各列光波单独存在时在该点所引起的光振动的矢量和,这就是光的叠加原理.但应指出,光并不是在任何情况下都遵从这一原理的.当光通过非线性介质(例如变色玻璃),或者光强很强(如激光,同步辐射)时,该原理不成立.通常当强光通过介质时将出现许多非线性效应,研究这类光现象的理论称为非线性光学.这是现代光学中很活跃的研究领域之一.不过,在本章所涉及的范围内,光波叠加原理仍然是一个基本的原理.二、光的相干叠加1. 光波的相干条件在讨论机械波时,我们已给出了波干涉的定义,即当两列波同时在空间传播时,在两波交叠的区域内某些地方振动始终加强,而另一些地方振动始终减弱的现象.光的干涉定义与之完全相同.能产生干涉现象的光叫相干光.干涉并不违背叠加原理,且正是后者的结果.但并不是任何两列波在空间相遇时都能发生干涉,产生干涉是有条件的,即干涉是特殊条件下的叠加.波的相干条件是:1) 频率相同;2) 振动方向相同(或存在相互平行的振动分量);3) 具有恒定的相位差.这三个条件,对机械波来说比较容易实现,因此观察机械波的干涉现象比较方便.但对光波来说就不那么容易做到了.这与普通光源的发光机制有关.光是光源中大量分子或原子等微观粒子的能量状态发生变化而引起的电磁辐射.近代物理学已完全肯定分子或原子的能量是量子化的,即能量具有分立值,当分子或原子由较高能态跃迁到较低能态时就发出一个波列,一个波列的长度是有限的,持续的时间约为10-8s.发出一个波列后,它还可以从外界吸收能量,由低能态跃迁到高能态,当它再次由高能态向低能态跃迁时它就再发出一个波列.这是一个随机的过程,每一个原子或分子先后发射的不同波列以及不同原子或分子同时发射的各个波列,彼此之间在初相上没有联系,振动方向也各不相同,频率也可以不同.我们所观察到的光看起来是连续的光波,实际上是由大量原子或分子发射的许许多多彼此完全独立的有限长波列组成的,如图13.1所示.2. 相干光的获得由前面的讨论可知,普通光源发出的光是由光源中各个分子或原子发出的波列组成的,而这些波列之间没有固定的相位关系.因此,来自两个独立光源的光波,即使频率相同,振动方向相同,它们的相位差也不可能保持恒定,因而不是相干光;同一光源的两个不同部分发出的光,也不满足相干条件.因此也不是相干光.只有从同一光源的同一部分发出的光通过某些装置进行分束后,才能获得符合相干条件的相干光.因此获得相干光的方法的基本原理是把由光源上同一点发出的光设法“一分为二”,然后再使这两部分叠加起来,由于这两部分光的相应部分实际上都来自同一发光原子的同一次发光,即每一个光波列都分成两个频率相同、振动方向相同、相位差恒定的波列,因而这两部分是满足相干条件的相干光.把同一光源发出的光分成两部分的方法有两种:一种叫分波振面法,由于同一波振面上各点的振动具有相同相位,所以从同一波振面上取出的两部分可以作为相干光源.如杨氏双缝实验等就用了这种方法;另一种叫分振幅法,其原理是利用反射、折射把波面上某处的振幅分成两部分,再使它们相遇从而产生干涉现象.例如薄膜干涉和迈克耳孙干涉仪等就采用了这种方法.上面讨论的是普通光源,对激光光源,所有发光的原子或分子都是步调一致的动作,所发出的光具有高度的相干稳定性.从激光束中任意两点引出的光都是相干的,可以方便的观察到干涉现象,因而不必采用上述获得相干光束的方法.3. 相干光的干涉光波是电磁波,在光波中,产生感光作用与生理作用的主要是电场强度E ,因此,一般我们将E 称为光矢量.如图13.2所示,光振幅为21E E ,的两束相干光,在空间叠加,按照光的干涉理论知,叠加后任一点P 的合振幅为 )cos( 12102021222122r r E E E E E 在波动光学中,主要讨论的是光波所到之处的相对光强.由于光强(平均能流密度)2E I ,因此可直接把光强表示为2E I ,所以由上式得)cos(121020212122r r I I I I I (13.1) 21I I 、分别为两束相干光的强度,I 为叠加后的强度.可见,两束相干光叠加后,空间各点的光强取决于两束光波在该点的相位差:1210202r r (13.2) 2121212*********I I I I I P k I I I I I P k k min max ,)(,),,,(点的光强最小点的光强最大当 (13.3) 其他位置的光强介于两者之间,即max min I I IP 点的光强分布曲线如图13.3所示.如果两束相干光的光强相等,则干涉后040 min max ,I I I必须指出,对于两束相干光,只有在I 1=I 2或I 1~I 2的情况下,才能观察到清楚的明暗相间的干涉图样;当 I 1、I 2相差甚大时, I max 与I min 相差不大,干涉图样模糊不清.对于两束相干光,在很多情况下初相相同,这时r r r 2212 在这种情况下,干涉明暗点的位置决定于两束光到观察点的波程差 :暗点亮点212210/)(),,,(k k k r (13.5) 三、光程 光程差上面讨论了两束相干光在真空中传播时的干涉情况,现在讨论两束相干光在介质中传播时的干涉情况.我们知道,光在真空中传播的速度为c,在介质中传播的速度为n c / ;因此,光在介质中的波长为nn c /' λ为光在真空中的波长.如上所述,两束初相相同的相干光,在真空中传播时,到空间某观察点的波程差为r ,则这两束光到该点的相位差为r 2 如果两束光在折射率为n 的介质中传播,它们到观察点的相位差为r n r 22' 由此可见,两束光在真空中传播时,它们到某点的相位差决定于波程差r ;而两束光在介质中传播时,它们到某点的相位差决定于波程差r 与介质折射率n 的乘积,这里n r 称为这两束光的光程差;一般把折射率n 与波程r 的乘积称为光程,21I I 212I I21I I a )(21I I b )(图13.3 两相干光在相遇点的光强随相位差的分布曲线用L 表示,即L=nr .普遍情况下,两束光的光程差δ表示两束光光程之差.如图13.4所示.112212r n r n L L (13.6)两相干光的干涉效果决定于相位差,而相位差决定于光程差;因此,光的干涉规律决定于光程差δ.可见,光程差是讨论光的干涉现象的非常重要的概念.许多干涉装置都满足两束相干光初相相等的条件,因此相位差与光程差的关系及干涉明、暗点的位置决定于光程差δ2 干涉明暗点位置 暗点明点212210/)(),,,(k k k (13.7) 注意:式(13.5 )与(13.7 )实际上是一致的,前者适用于真空情况(r ),而后者则适用一般情况,它是光的干涉中最基本的公式.由它可知,要确定干涉图样的规律,就必须计算两束光的光程差δ.。

波动光学案例习题(含答案)

波动光学案例习题(含答案)
d
x (2k 1) d
d2
11/5 条纹间距
x
xk 1
xk
d
d
4
2.薄膜干涉 (分振幅法)
光程差
2d
n22
n12
s in 2
i
2
i

② n1 n2 d
n1 n2 n3 n1 n2 n3 n1 n2 n3
n1 n2 n3
11/5
n3
光程差不附加
2
光程差附加
2
5
光程差
2d
答: (C)
11/5
21
例: 在牛顿环实验装置中,曲率半径为R的平 凸透镜与平玻璃板在中心恰好接触,它们之间 充满折射率为n的透明介质,垂直入射到牛顿 环装置上的平行单色光在真空中的波长为λ, 则反射光形成的干涉条纹中暗环半径的表达式 为:
( A)r kR (C)r knR
(B)r kR / n (D)r k /(nR)
解: 条纹间距 x d D
dd
中央明纹两侧的第10级明纹中心间距
210x 210 D 0.11m
d
11/5
32
(2)将此装置用一厚度为 e 6.6106 m ,折射率
解: 据明环半径公式 rk
( k 1 )R
2
充液前: r120 19R / 2 充液后: r102 19R /( 2n )
n r120 1.36
11/5
r102
20
例,在相同的时间内,一束波长为λ的单色光在 空气中和在玻璃中:
(A)传播的路程相等,走过的光程相等 (B)传播的路程相等,走过的光程不相等 (C)传播的路程不相等,走过的光程相等 (D)传播的路程不相等,走过的光程不相等

第13章 光的干涉

第13章 光的干涉
0
0
3.光强 光强
λ−
∆λ 2
λ λ + ∆λ λ
2
E 矢量,称为光矢量。 E 矢量的振动称为光振动。 矢量,称为光矢量。 矢量的振动称为光振动。 光强I 在光学中,通常把平均能流密度称为光强。 光强 :在光学中,通常把平均能流密度称为光强。
I ∝E
2 0
在波动光学中,主要讨论的是相对光强, 在波动光学中,主要讨论的是相对光强,因此 在同一介质中直接把光强定义为: 在同一介质中直接把光强定义为:
16
三、光程与光程差
干涉现象决定于两束相干光的位相差∆ϕ 干涉现象决定于两束相干光的位相差∆ϕ 两束相干光通过不同的介质时, 两束相干光通过不同的介质时,位相差不能单纯 由几何路程差决定。 由几何路程差决定。
S1 S2
r1
n1
P
r2
n2
光在介质中传播几何路程为r, 光在介质中传播几何路程为 ,相应的位相变化为 r 2π 2π = ⋅ nr λn λ r r2 2π 1 (n1r − n2r2 ) ∆ϕ = 2π − 2π = 1
(k = 0,1,2…)
8
I 4I1两相干光束 2I1 两非相干光束 π π -5π -3π -π π π I1一个光源 3π π 5π π ∆ϕ
普通光源获得相干光的途径(方法) 普通光源获得相干光的途径(方法) (1) 分波阵面方法: 分波阵面方法 方法: (2)分振幅的方法: 分振幅的方法: 分振幅的方法 杨氏干涉 等倾干涉、 等倾干涉、等厚干涉
3
独立(同一原子先后发的光 独立 同一原子先后发的光) 同一原子先后发的光 独立(不同原 独立 不同原 子发的光) 子发的光 光波列频率、位相、振动方向等具有随机性。 光波列频率、位相、振动方向等具有随机性。 2.光的颜色和光谱 2.光的颜色和光谱 可见光频率范围: 7.7×1014 ~ 3.9×1014Hz 可见光频率范围 × × 可见光波长范围: 7600Å 可见光波长范围 3900 Å ∼ 7600 可见光颜色对照: 可见光颜色对照 紫 ~ 红 单色光——只含单一波长的光。 单色光——只含单一波长的光。 ——只含单一波长的光 复色光——含多种波长的光。 复色光——含多种波长的光。 ——含多种波长的光

第13章 波动光学(习题)

第13章 波动光学(习题)
条纹间距
−2
条纹角间距 ∆θ ′ =
λ
d

480 ×10−9 ∆x′ = f ∆θ ′ = 50 × 10 × = 2.4mm −3 0.1× 10
条干涉主极大, (3)单缝衍射的中央包线内共有 条干涉主极大,两端处出现缺级 )单缝衍射的中央包线内共有9条干涉主极大
波长为500nm和 520nm的两种单色光同时 例 13-15 波长为 和 的两种单色光同时 垂直入射在光栅常量为0.002cm的光栅上 , 紧靠光栅 的光栅上, 垂直入射在光栅常量为 的光栅上 后用焦距为2m的透镜把光线聚焦在屏幕上 的透镜把光线聚焦在屏幕上。 后用焦距为 的透镜把光线聚焦在屏幕上。求这两束 光的第三级谱线之间的距离。 光的第三级谱线之间的距离。 x2 解: (a + b) sin ϕ = kλ x
A2o A2e C
d(no − ne ) 4300 ∴λ = = k k M 满足上式的波长λ即是在透射光中缺少的光波波长 即是在透射光中缺少的光波波长, 满足上式的波长 即是在透射光中缺少的光波波长, 的可见光范围内, 在400~700nm的可见光范围内,有: 的可见光范围内 k =10, λ10 = 430(nm) k = 9, λ9 = 478(nm)
4.薄膜干涉 4.薄膜干涉
2 δ = 2n2 e cos γ + δ 0 = 2e n2 − n12 sin 2 i + δ 0
5.迈克尔逊干涉仪 5.迈克尔逊干涉仪
三、光的衍射
1.惠更斯1.惠更斯-菲涅尔原理 惠更斯 2.单缝的夫琅和费衍射 2.单缝的夫琅和费衍射 3.圆孔的夫琅和费衍射 3.圆孔的夫琅和费衍射 4.多缝的夫琅和费衍射 4.多缝的夫琅和费衍射 5.X射线衍射 5.X射线衍射 亮纹 asin θ = ±(2k +1) λ , 2 λ θ 0 ≈ 1.22 爱利斑角半径

导波光学

导波光学

导波光学清华大学电子工程系范崇澄等编著内容简介本书系1988年出版的同名教材的修改版。

全书由九章增至十二章,系统讨论了用于光通信、光传感和光信息处理的光波导的基本原理和特性。

内容包括光波理论的一般问题、平面与条形光波导、耦合波理论、阶跃和渐变折射率光导纤维中的场解、光波导中的损耗、信号沿光波导传输时的弥散、单模光纤中的双折射和偏振态的演化、光纤光栅、有源掺杂光纤以及光纤中的非线性等内容。

在叙述中强调基本物理概念和处理方法的思路,并介绍了本学科近期发展的某些重要成果。

本书适合于有关光通信、信息光电子学、电子物理、以及微波技术等专业的大学高年级学生及研究生阅读,并可作为有关领域的教学、科学研究和工程技术人员参考。

教学大纲总学时:60。

授课方式:讲课+自学。

主要内容(根据需要有所取舍):第一章光导波理论的一般问题§1-1 导波光学的基本问题及研究方法§1-2 几何光学方法§1-3 波动光学方法及波动方程§1-4 电磁波在介质界面上的反射及古斯-汉欣位移§1-5 光波导中模式的基本性质§1-6 弱导近似§1-7 传播常数(本征值)的积分表达式及变分定理§1-8 相速、群速及色散特性§1-9 本地平面波方法§1-10 光束的衍射·几何光学及本地平面波方法的应用范围§1-11 介质波导与金属波导的若干比较第二章平面及条型光波导§2-1 用本地平面波方法平面光波导的本征值方程§2-2 用电磁场方法求解平面光波导§2-3 条形光波导的近似解析解§2-4 条形光波导的数值解法概述第三章耦合模理论§3-1 模式正交性的及模式展开§3-2 导波模式的激励§3-3 耦合模方程及耦合系数§3-4 耦合模理论的局限及其改进第四章导波光束的调制§4-1 光波调制的一般概念§4-2 晶体的电-光特性§4-3 光波导的电-光调制§4-4 定向耦合型调制器/开关第五章阶跃折射率光纤中的场解§5-1 数学模型及波动方程的解§5-2 模式分类准则及模式场图(本征函数)§5-3 导波模的色散特性及U值的上、下限§5-4 色散特性的进一步简化§5-5 弱导光纤中场的标量近似解—线偏振模§5-6 平均功率与功率密度§5-7 模式场的本地平面波描述第六章渐变折射率弱导光纤中的场解§6-1 无界抛物线折射率弱导光纤中场的解析解§6-2 WKB法求解导波模的本征函数及本征值§6-3 模式容积及主模式号·泄漏模§6-4 单模光纤的近似解法(一)——高斯近似§6-5 单模光纤的近似解法(二) -- 等效阶跃光纤近似(ESF)§6-6 单模光纤的近似解法(三) - 矩等效阶跃折射率近似及其改进§6-7 单模光纤的模场半径§6-8 单模光纤的截止波长第七章光波导中的传输损耗§7-1 损耗起因和损耗谱§7-2 本征吸收及瑞利散射损耗§7-3 杂质吸收§7-4 弯曲损耗§7-5 弯曲过渡损耗§7-6 连接损耗第八章信号沿线性光波导传输时的畸变§8-1 脉冲沿线性光波导传输时畸变的起因及描述方法§8-2 材料色散§8-3 g型多模光纤的模间弥散§8-4 单模光纤的色散§8-5 单模光纤的色散对系统色散的影响§8-6 新型石英系光纤第九章单模光波导中的双折射及偏振态的演化§9-1 双折射现象及其意义§9-2 双折射光纤的参数及其分类§9-3 光纤中的线双折射§9-4 光纤中的圆双折射§9-5 偏振态沿光纤的演化(一)—琼斯矩阵法§9-6 单模光纤中偏振态的演化(二)—邦加球法§9-7 偏振模色散在邦加球上的描述第十章光纤光栅§10-1 概述§10-2光纤布拉格光栅(FBG)的基本原理、结构和分析方法§10-3 常见的FBG§10-4 采样布拉格光栅(SBG)§10-5 长周期光纤光栅第十一章掺铒光纤放大器§11-1 引言§11-2 掺铒光纤放大器的基本工作原理与特性§11-3 EDFA内部物理过程的进一步讨论和Giles参数§11-4 EDFA的稳态工作特性§11-5 EDFA中的增益瞬态过程§11-6 EDFA的设计原则第十二章光纤中的非线性效应§12-1 引言§12-2 光纤中的非线性薛定鄂方程§12-3 光纤中的受激散射§12-4 光纤中的四波混频效应§12-5 自相位调制(SPM)§12-6 非线性色散光纤中信道内的噪声演化与调制不稳定性§12-7 信道间的串扰噪声:互相位调制(XPM)和受激拉曼散射(SRS) 结语。

13.1.3-4 光程和光程差 薄膜干涉(等倾干涉)解析

13.1.3-4 光程和光程差 薄膜干涉(等倾干涉)解析

n 短 n
n 2n n 2
2
c u n

n
2
光程相等
13.1.3、4 光程 薄膜干涉(等倾)
(2)光程差 (两光程之差) S 1 波程差 r r2 r 1 光程差 Δ n2r2 n1r1
S 2
r1 r2

n1 n2
相位差

Δ (2k 1) , k 0,1,2, 2 干涉减弱 (2k 1)π , k 0,1,2,
第十三章 波动光学
5

二 透镜不引起附加的光程差
问题
A B C
不同光线通过透镜要改变传播方向, 会不会引起附加光程差?
b
a
c
F
A、B、C 的位相相同, 在F点会聚,干涉加强 F '
第十三章 波动光学
14
13.1.3、4 光程 薄膜干涉(等倾)
已知
n1=1.20
解 (1)Δr 2dn1 k
n2=1.30
d=460 nm
2n1d , k 1,2, k k 1, 2n1d 1104nm
k 2,
k 3,
n2
n1
n1d 552nm
transmission
第十三章 波动光学
11
13.1.3、4 光程 薄膜干涉(等倾)
当光线垂直入射时 i 0
23
Δr 2n2 d

2
n1 n2 n1
(k 1, 2,)

2
k
加强
减弱

(2k 1)
(k 0,1, 2,)
第十三章 波动光学
12

第十三章_波动光学

第十三章_波动光学

·p
S *
薄膜
反射光1和2干涉加强、减弱的条件.
补充:薄透镜的等光程性
A B F
A、B光线 在F点 会聚,互相加强
解 释
AF的光程与BF的光程相等, AF比BF经过的几 何路程长,但BF在透镜中经过的路程比AF长, 透镜折射率大于1,因此光程相等。
结论:与光束正交的波面上各点到透镜焦平面 上像点的光程相同。
四、劳埃德镜(Lloyd mirror)实验
P'
P
s1
d
s2
M
L
d'
四、劳埃德镜(Lloyd mirror)实验
思考: 光屏移到 紧贴住反 射镜的端 面处,该 处会出现 眀纹还是 暗纹?
反射光发生了相位为π的突变,相当于光波多走 了(或少走了)半个波长的距离,此现象称为半 波损失(half-wavelength loss)。
在入射单色光一定时,劈尖的楔角θ愈小,则l愈大,
干涉条纹愈疏; θ 愈大,则l愈小,干涉条纹愈密。
当用白光照射时,将看到由劈尖边缘逐渐分开的 彩色直条纹。
劈尖干涉的应用
1 检测工件是否平整
等厚条纹 平晶
待测工件
劈尖干涉的应用
2 测定样品的热膨胀系数
平板玻 璃 石英圆 环
样品
物件向上平移λ/4的距离,上下表面的两反射光的
太阳光
大量光波列形成 了光。太阳光即 由大量的不同波 长、振动方向各 异的波列组成。
2. 获得相干光的途径(方法)
分波阵面方法
从同一波阵面上的不同部分产生次级波相干
分振幅的方法
利用光的反射和折射将同一光束分割成振幅 较小的两束相干光 分波面法 分振幅法 p · 薄膜

物理课后习题及解析

物理课后习题及解析

第十一章恒定磁场11-1两根长度一样的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度一样,R =2r ,螺线管通过的电流一样为I ,螺线管中的磁感强度大小r R B B 、满足〔 〕〔A 〕r R B B 2= 〔B 〕r R B B = 〔C 〕r R B B =2 〔D 〕r R B B 4=分析与解在两根通过电流一样的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度一样的细导线绕成的线圈单位长度的匝数之比因而正确答案为〔C 〕.11-2一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量为〔 〕〔A 〕B r 2π2 〔B 〕B r 2π〔C 〕αB r cos π22 〔D 〕αB r cos π2题 11-2 图分析与解作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;S B ⋅=m Φ.因而正确答案为〔D 〕.11-3以下说法正确的选项是〔 〕〔A 〕闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过〔B 〕闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零〔C 〕磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零〔D 〕磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零分析与解由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零.因而正确答案为〔B 〕.11-4在图〔a〕和〔b〕中各有一半径一样的圆形回路L1、L2,圆周内有电流I1、I2,其分布一样,且均在真空中,但在〔b〕图中L2回路外有电流I3,P 1、P 2为两圆形回路上的对应点,则〔 〕〔A 〕⎰⎰⋅=⋅21L L d d l B l B ,21P P B B = 〔B 〕⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B = 〔C 〕 ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B ≠ 〔D 〕⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B ≠ 题 11-4 图分析与解由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为〔C 〕.11-5半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,假设导体中流过的恒定电流为I ,磁介质的相对磁导率为μr〔μr<1〕,则磁介质内的磁化强度为〔 〕 〔A 〕()r I μr π2/1-- 〔B 〕()r I μr π2/1-〔C 〕r I μr π2/-〔D 〕r μI r π2/分析与解利用安培环路定理可先求出磁介质中的磁场强度,再由M =〔μr-1〕H 求得磁介质内的磁化强度,因而正确答案为〔B 〕.11-11如下图,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感强度各为多少?题 11-11 图分析应用磁场叠加原理求解.将不同形状的载流导线分解成长直局部和圆弧局部,它们各自在点O 处所激发的磁感强度较容易求得,则总的磁感强度∑=i B B 0. 解 〔a〕长直电流对点O 而言,有0d =⨯rl I ,因此它在点O 产生的磁场为零,则点O 处总的磁感强度为1/4圆弧电流所激发,故有 B 0的方向垂直纸面向外.〔b〕将载流导线看作圆电流和长直电流,由叠加原理可得B 0的方向垂直纸面向里.〔c 〕将载流导线看作1/2圆电流和两段半无限长直电流,由叠加原理可得B 0的方向垂直纸面向外.11-13如图(a)所示,载流长直导线的电流为I ,试求通过矩形面积的磁通量.题 11-13 图分析由于矩形平面上各点的磁感强度不同,故磁通量Φ≠BS .为此,可在矩形平面上取一矩形面元d S =l d *,如图〔b〕所示,载流长直导线的磁场穿过该面元的磁通量为 矩形平面的总磁通量解由上述分析可得矩形平面的总磁通量第十二章电磁感应电磁场和电磁波12-1一根无限长平行直导线载有电流I ,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动〔如下图〕,则〔 〕〔A 〕线圈中无感应电流〔B 〕线圈中感应电流为顺时针方向〔C 〕线圈中感应电流为逆时针方向〔D 〕线圈中感应电流方向无法确定题 12-1 图分析与解由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为〔B 〕.12-2将形状完全一样的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则〔 〕〔A 〕铜环中有感应电流,木环中无感应电流〔B 〕铜环中有感应电流,木环中有感应电流〔C 〕铜环中感应电动势大,木环中感应电动势小〔D 〕铜环中感应电动势小,木环中感应电动势大分析与解根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等,但在木环中不会形成电流.因而正确答案为〔A 〕.12-3有两个线圈,线圈1对线圈2的互感系数为M 21,而线圈2对线圈1的互感系数为M 12.假设它们分别流过i 1和i 2的变化电流且ti t i d d d d 21<,并设由i 2变化在线圈1中产生的互感电动势为12,由i 1变化在线圈2中产生的互感电动势为ε21,下述论断正确的选项是〔 〕. 〔A 〕2112M M =,1221εε=〔B 〕2112M M ≠,1221εε≠〔C 〕2112M M =, 1221εε<〔D 〕2112M M =,1221εε<分析与解教材中已经证明M21=M12,电磁感应定律t i M εd d 12121=;t i M εd d 21212=.因而正确答案为〔D 〕.12-4对位移电流,下述说法正确的选项是〔 〕〔A 〕位移电流的实质是变化的电场〔B 〕位移电流和传导电流一样是定向运动的电荷〔C 〕位移电流服从传导电流遵循的所有定律〔D 〕位移电流的磁效应不服从安培环路定理分析与解位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为〔A 〕.12-5以下概念正确的选项是〔 〕〔A 〕感应电场是保守场〔B 〕感应电场的电场线是一组闭合曲线〔C 〕LI Φm =,因而线圈的自感系数与回路的电流成反比〔D 〕 LI Φm =,回路的磁通量越大,回路的自感系数也一定大分析与解对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而正确答案为〔B 〕.12-7 载流长直导线中的电流以tI d d 的变化率增长.假设有一边长为d 的正方形线圈与导线处于同一平面内,如下图.求线圈中的感应电动势.分析 此题仍可用法拉第电磁感应定律tΦd d -=ξ,来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=SS B Φd 来计算.为了积分的需要,建立如下图的坐标系.由于B 仅与*有关,即B =B (*),故取一个平行于长直导线的宽为d *、长为d 的面元d S ,如图中阴影局部所示,则d S =d d *,所以,总磁通量可通过线积分求得〔假设取面元d S =d *d y ,则上述积分实际上为二重积分〕.此题在工程技术中又称为互感现象,也可用公式tI M d d -=ξ求解. 解1 穿过面元d S 的磁通量为因此穿过线圈的磁通量为再由法拉第电磁感应定律,有解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为线圈与两长直导线间的互感为 当电流以tI d d 变化时,线圈中的互感电动势为 题 12-7 图第十四章 波 动 光 学14-1 在双缝干预实验中,假设单色光源S 到两缝S 1 、S 2 距离相等,则观察屏上中央明条纹位于图中O 处,现将光源S 向下移动到图中的S ′位置,则〔 〕〔A 〕 中央明纹向上移动,且条纹间距增大〔B 〕 中央明纹向上移动,且条纹间距不变〔C 〕 中央明纹向下移动,且条纹间距增大〔D 〕 中央明纹向下移动,且条纹间距不变分析与解 由S 发出的光到达S 1 、S 2 的光程一样,它们传到屏上中央O 处,光程差Δ=0,形成明纹.当光源由S 移到S ′时,由S ′到达狭缝S 1 和S 2 的两束光产生了光程差.为了保持原中央明纹处的光程差为0,它会向上移到图中O ′处.使得由S ′沿S 1 、S 2 狭缝传到O ′处的光程差仍为0.而屏上各级条纹位置只是向上平移,因此条纹间距不变.应选〔B 〕.题14-1 图14-2 如下图,折射率为n 2 ,厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1 和n 3,且n 1 <n 2 ,n 2 >n 3 ,假设用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两外表反射的光束的光程差是〔 〕题14-2 图分析与解 由于n 1 <n 2 ,n 2 >n 3 ,因此在上外表的反射光有半波损失,下外表的反射光没有半波损失,故它们的光程差222λ±=∆e n ,这里λ是光在真空中的波长.因此正确答案为〔B 〕.14-3 如图〔a 〕所示,两个直径有微小差异的彼此平行的滚柱之间的距离为L ,夹在两块平面晶体的中间,形成空气劈形膜,当单色光垂直入射时,产生等厚干预条纹,如果滚柱之间的距离L 变小,则在L *围内干预条纹的〔 〕〔A 〕 数目减小,间距变大 〔B 〕 数目减小,间距不变〔C 〕 数目不变,间距变小 〔D 〕 数目增加,间距变小题14-3图分析与解 图〔a 〕装置形成的劈尖等效图如图〔b 〕所示.图中 d 为两滚柱的直径差,b 为两相邻明〔或暗〕条纹间距.因为d 不变,当L 变小时,θ 变大,L ′、b 均变小.由图可得L d b n '==//2sin λθ,因此条纹总数n d b L N λ//2='=,因为d 和λn 不变,所以N 不变.正确答案为〔C 〕14-4用平行单色光垂直照射在单缝上时,可观察夫琅禾费衍射.假设屏上点P 处为第二级暗纹,则相应的单缝波阵面可分成的半波带数目为〔 〕〔A 〕 3 个 〔B 〕 4 个 〔C 〕 5 个 〔D 〕 6 个分析与解 根据单缝衍射公式因此第k 级暗纹对应的单缝处波阵面被分成2k 个半波带,第k 级明纹对应的单缝波阵面被分成2k +1 个半波带.则对应第二级暗纹,单缝处波阵面被分成4个半波带.应选〔B 〕.14-5 波长λ=550 nm 的单色光垂直入射于光栅常数d =='+b b 1.0 ×10-4cm 的光栅上,可能观察到的光谱线的最大级次为〔 〕〔A 〕 4 〔B 〕 3 〔C 〕 2 〔D 〕 1分析与解 由光栅方程(),...1,0dsin =±=k k λθ,可能观察到的最大级次为即只能看到第1 级明纹,正确答案为〔D 〕.14-6 三个偏振片P 1 、P 2 与P 3 堆叠在一起,P 1 与P 3的偏振化方向相互垂直,P 2与P 1 的偏振化方向间的夹角为30°,强度为I 0 的自然光入射于偏振片P 1 ,并依次透过偏振片P 1 、P 2与P 3 ,则通过三个偏振片后的光强为〔 〕〔A 〕 3I 0/16 〔B 〕 3I 0/8 〔C 〕 3I 0/32 〔D 〕 0分析与解 自然光透过偏振片后光强为I 1 =I 0/2.由于P 1 和P 2 的偏振化方向成30°,所以偏振光透过P 2 后光强由马吕斯定律得8/330cos 0o 212I I I ==.而P 2和P 3 的偏振化方向也成60°,则透过P 3 后光强变为32/360cos 0o 223I I I ==.故答案为〔C 〕.14-7自然光以60°的入射角照射到两介质交界面时,反射光为完全线偏振光,则折射光为〔 〕〔A 〕 完全线偏振光,且折射角是30°〔B 〕 局部偏振光且只是在该光由真空入射到折射率为3的介质时,折射角是30° 〔C 〕 局部偏振光,但须知两种介质的折射率才能确定折射角〔D 〕 局部偏振光且折射角是30°分析与解 根据布儒斯特定律,当入射角为布儒斯特角时,反射光是线偏振光,相应的折射光为局部偏振光.此时,反射光与折射光垂直.因为入射角为60°,反射角也为60°,所以折射角为30°.应选〔D 〕.14-9 在双缝干预实验中,用波长λ=546.1 nm 的单色光照射,双缝与屏的距离d ′=300mm .测得中央明纹两侧的两个第五级明条纹的间距为12.2mm ,求双缝间的距离.分析 双缝干预在屏上形成的条纹是上下对称且等间隔的.如果设两明纹间隔为Δ*,则由中央明纹两侧第五级明纹间距*5 -*-5 =10Δ* 可求出Δ*.再由公式Δ* =d ′λ/d 即可求出双缝间距d .解 根据分析:Δ* =〔*5 -*-5〕/10 =1.22×10-3m双缝间距: d =d ′λ/Δ* =1.34 ×10-4 m14-11如下图,将一折射率为1.58的云母片覆盖于杨氏双缝上的一条缝上,使得屏上原中央极大的所在点O 改变为第五级明纹.假定λ=550 nm ,求:〔1〕条纹如何移动? 〔2〕 云母片的厚度t.题14-11图 分析(1)此题是干预现象在工程测量中的一个具体应用,它可以用来测量透明介质薄片的微小厚度或折射率.在不加介质片之前,两相干光均在空气中传播,它们到达屏上任一点P 的光程差由其几何路程差决定,对于点O ,光程差Δ=0,故点O 处为中央明纹,其余条纹相对点O 对称分布.而在插入介质片后,虽然两相干光在两介质薄片中的几何路程一样,但光程却不同,对于点O ,Δ≠0,故点O 不再是中央明纹,整个条纹发生平移.原来中央明纹将出现在两束光到达屏上光程差Δ=0的位置.(2) 干预条纹空间分布的变化完全取决于光程差的变化.因此,对于屏上*点P 〔明纹或暗纹位置〕,只要计算出插入介质片前后光程差的变化,即可知道其干预条纹的变化情况. 插入介质前的光程差Δ1 =r 1 -r 2 =k 1λ〔对应k 1 级明纹〕,插入介质后的光程差Δ2 =〔n -1〕d +r 1 -r 2 =k 1λ〔对应k 1 级明纹〕.光程差的变化量为Δ2 -Δ1 =〔n -1〕d =〔k 2 -k 1 〕λ式中〔k 2 -k 1 〕可以理解为移过点P 的条纹数〔此题为5〕.因此,对于这类问题,求解光程差的变化量是解题的关键.解 由上述分析可知,两介质片插入前后,对于原中央明纹所在点O ,有将有关数据代入可得14-13 利用空气劈尖测细丝直径.如下图,λ=589.3 nm ,L =2.888 ×10-2m ,测得30 条条纹的总宽度为4.259 ×10-3 m ,求细丝直径d .分析 在应用劈尖干预公式L nb d 2λ= 时,应注意相邻条纹的间距b 是N 条条纹的宽度Δ* 除以〔N -1〕.对空气劈尖n =1.解 由分析知,相邻条纹间距1-∆=N x b ,则细丝直径为 题14-13 图14-21 一单色平行光垂直照射于一单缝,假设其第三条明纹位置正好和波长为600 nm 的单色光垂直入射时的第二级明纹的位置一样,求前一种单色光的波长.分析 采用比拟法来确定波长.对应于同一观察点,两次衍射的光程差一样,由于衍射明纹条件()212sin λϕ+=k b ,故有()()22111212λλ+=+k k ,在两明纹级次和其中一种波长的情况下,即可求出另一种未知波长.解 根据分析,将32nm 600122===k k ,,λ代入()()22111212λλ+=+k k ,得第十五章 狭义相对论15-1有以下几种说法:(1) 两个相互作用的粒子系统对*一惯性系满足动量守恒,对另一个惯性系来说,其动量不一定守恒;(2) 在真空中,光的速度与光的频率、光源的运动状态无关;(3) 在任何惯性系中,光在真空中沿任何方向的传播速率都一样.其中哪些说法是正确的? ( )(A) 只有(1)、(2)是正确的 (B) 只有(1)、(3)是正确的(C) 只有(2)、(3)是正确的 (D) 三种说法都是正确的分析与解 物理相对性原理和光速不变原理是相对论的根底.前者是理论根底,后者是实验根底.按照这两个原理,任何物理规律(含题述动量守恒定律)对*一惯性系成立,对另一惯性系也同样成立.而光在真空中的速度与光源频率和运动状态无关,从任何惯性系(相对光源静止还是运动)测得光速均为3×108 m ·s -1.迄今为止,还没有实验能推翻这一事实.由此可见,(2)(3)说法是正确的,应选(C).15-2 按照相对论的时空观,判断以下表达中正确的选项是( )(A) 在一个惯性系中两个同时的事件,在另一惯性系中一定是同时事件(B) 在一个惯性系中两个同时的事件,在另一惯性系中一定是不同时事件(C) 在一个惯性系中两个同时又同地的事件,在另一惯性系中一定是同时同地事件(D) 在一个惯性系中两个同时不同地的事件,在另一惯性系中只可能同时不同地(E) 在一个惯性系中两个同时不同地事件,在另一惯性系中只可能同地不同时分析与解 设在惯性系S中发生两个事件,其时间和空间间隔分别为Δt 和Δ*,按照洛伦兹坐标变换,在S′系中测得两事件时间和空间间隔分别为 221ΔΔΔβx c t t --='v 和 21ΔΔΔβt x x --='v 讨论上述两式,可对题述几种说法的正确性予以判断:说法(A)(B)是不正确的,这是因为在一个惯性系(如S系)发生的同时(Δt =0)事件,在另一个惯性系(如S′系)中是否同时有两种可能,这取决于那两个事件在S 系中发生的地点是同地(Δ*=0)还是不同地(Δ*≠0).说法(D)(E)也是不正确的,由上述两式可知:在S系发生两个同时(Δt =0)不同地(Δ*≠0)事件,在S′系中一定是既不同时(Δt ′≠0)也不同地(Δ*′≠0),但是在S 系中的两个同时同地事件,在S′系中一定是同时同地的,故只有说法(C)正确.有兴趣的读者,可对上述两式详加讨论,以增加对相对论时空观的深入理解.15-3 有一细棒固定在S′系中,它与O*′轴的夹角θ′=60°,如果S′系以速度u 沿O*方向相对于S系运动,S系中观察者测得细棒与O* 轴的夹角( )(A) 等于60° (B) 大于60° (C) 小于60°(D) 当S′系沿O* 正方向运动时大于60°,而当S′系沿O*负方向运动时小于60°分析与解 按照相对论的长度收缩效应,静止于S′系的细棒在运动方向的分量(即O* 轴方向)相对S系观察者来说将会缩短,而在垂直于运动方向上的分量不变,因此S系中观察者测得细棒与O* 轴夹角将会大于60°,此结论与S′系相对S系沿O* 轴正向还是负向运动无关.由此可见应选(C).15-4 一飞船的固有长度为L ,相对于地面以速度v 1 作匀速直线运动,从飞船中的后端向飞船中的前端的一个靶子发射一颗相对于飞船的速度为v 2 的子弹.在飞船上测得子弹从射出到击中靶的时间间隔是( ) (c 表示真空中光速) (A)21v v +L (B)12v -v L (C)2v L (D)()211/1c L v v - 分析与解 固有长度是指相对测量对象静止的观察者所测,则题中L 、v 2 以及所求时间间隔均为同一参考系(此处指飞船)中的三个相关物理量,求解时与相对论的时空观无关.应选(C).讨论 从地面测得的上述时间间隔为多少? 建议读者自己求解.注意此处要用到相对论时空观方面的规律了.15-5 设S′系以速率v =0.60c 相对于S系沿**′轴运动,且在t =t ′=0时,* =*′=0.(1)假设有一事件,在S系中发生于t =2.0×10-7s,*=50m 处,该事件在S′系中发生于何时刻?(2)如有另一事件发生于S系中t =3.0×10-7 s,*=10m 处,在S′系中测得这两个事件的时间间隔为多少?分析 在相对论中,可用一组时空坐标(*,y ,z ,t )表示一个事件.因此,此题可直接利用洛伦兹变换把两事件从S系变换到S′系中.解 (1) 由洛伦兹变换可得S′系的观察者测得第一事件发生的时刻为(2) 同理,第二个事件发生的时刻为所以,在S′系中两事件的时间间隔为15-6 设有两个参考系S 和S′,它们的原点在t =0和t ′=0时重合在一起.有一事件,在S′系中发生在t ′=8.0×10-8s ,*′=60m ,y ′=0,z ′=0处,假设S′系相对于S系以速率v =0.6c 沿**′轴运动,问该事件在S系中的时空坐标各为多少?分析 此题可直接由洛伦兹逆变换将该事件从S′系转换到S系.解 由洛伦兹逆变换得该事件在S 系的时空坐标分别为 y =y ′=0z =z ′=015-7 一列火车长0.30km(火车上观察者测得),以100km ·h -1的速度行驶,地面上观察者发现有两个闪电同时击中火车的前后两端.问火车上的观察者测得两闪电击中火车前后两端的时间间隔为多少?分析 首先应确定参考系,如设地面为S系,火车为S′系,把两闪电击中火车前后端视为两个事件(即两组不同的时空坐标).地面观察者看到两闪电同时击中,即两闪电在S系中的时间间隔Δt =t 2-t 1=0.火车的长度是相对火车静止的观察者测得的长度(注:物体长度在不指明观察者的情况下,均指相对其静止参考系测得的长度),即两事件在S′系中的空间间隔Δ*′=*′2 -*′1=0.30×103m.S′系相对S系的速度即为火车速度(对初学者来说,完成上述根本分析是十分必要的).由洛伦兹变换可得两事件时间间隔之间的关系式为 ()()21221212/1cx x c t t t t 2v v -'-'+'-'=- (1) ()()21221212/1c x x c t t t t 2v v ----='-' (2) 将条件代入式(1)可直接解得结果.也可利用式(2)求解,此时应注意,式中12x x -为地面观察者测得两事件的空间间隔,即S系中测得的火车长度,而不是火车原长.根据相对论,运动物体(火车)有长度收缩效应,即()21212/1c x x x x 2v -'-'=-.考虑这一关系方可利用式(2)求解.解1 根据分析,由式(1)可得火车(S′系)上的观察者测得两闪电击中火车前后端的时间间隔为负号说明火车上的观察者测得闪电先击中车头*′2 处.解2 根据分析,把关系式()21212/1c x x x x 2v -'-'=- 代入式(2)亦可得 与解1一样的结果.相比之下解1较简便,这是因为解1中直接利用了12x x '-'=0.30km 这一条件.15-8 在惯性系S中,*事件A 发生在*1处,经过2.0 ×10-6s后,另一事件B 发生在*2处,*2-*1=300m.问:(1) 能否找到一个相对S系作匀速直线运动的参考系S′,在S′系中,两事件发生在同一地点?(2) 在S′系中,上述两事件的时间间隔为多少?分析 在相对论中,从不同惯性系测得两事件的空间间隔和时间间隔有可能是不同的.它与两惯性系之间的相对速度有关.设惯性系S′以速度v 相对S系沿* 轴正向运动,因在S 系中两事件的时空坐标,由洛伦兹时空变换式,可得 ()()2121212/1c t t x x x x 2v v ----='-' (1) ()()2121212/1c x x t t t t 22v c v ----='-' (2)两事件在S′系中发生在同一地点,即*′2-*′1=0,代入式(1)可求出v 值以此作匀速直线运动的S′系,即为所寻找的参考系.然后由式(2)可得两事件在S′系中的时间间隔.对于此题第二问,也可从相对论时间延缓效应来分析.因为如果两事件在S′系中发生在同一地点,则Δt ′为固有时间间隔(原时),由时间延缓效应关系式2/1ΔΔc t t 2v -='可直接求得结果.解 (1) 令*′2-*′1=0,由式(1)可得(2) 将v 值代入式(2),可得这说明在S′系中事件A 先发生.第十六章 量子物理16-1 以下物体哪个是绝对黑体( )(A) 不辐射可见光的物体 (B) 不辐射任何光线的物体(C) 不能反射可见光的物体 (D) 不能反射任何光线的物体分析与解 一般来说,任何物体对外来辐射同时会有三种反响:反射、透射和吸收,各局部的比例与材料、温度、波长有关.同时任何物体在任何温度下会同时对外辐射,实验和理解证明:一个物体辐射能力正比于其吸收能力.做为一种极端情况,绝对黑体(一种理想模型)能将外来辐射(可见光或不可见光)全部吸收,自然也就不会反射任何光线,同时其对外辐射能力最强.综上所述应选(D).16-2 光电效应和康普顿效应都是光子和物质原子中的电子相互作用过程,其区别何在? 在下面几种理解中,正确的选项是( )(A) 两种效应中电子与光子组成的系统都服从能量守恒定律和动量守恒定律(B) 光电效应是由于电子吸收光子能量而产生的,而康普顿效应则是由于电子与光子的弹性碰撞过程(C) 两种效应都相当于电子与光子的弹性碰撞过程(D) 两种效应都属于电子吸收光子的过程分析与解 两种效应都属于电子与光子的作用过程,不同之处在于:光电效应是由于电子吸收光子而产生的,光子的能量和动量会在电子以及束缚电子的原子、分子或固体之间按照适当的比例分配,但仅就电子和光子而言,两者之间并不是一个弹性碰撞过程,也不满足能量和动量守恒.而康普顿效应中的电子属于"自由〞电子,其作用相当于一个弹性碰撞过程,作用后的光子并未消失,两者之间满足能量和动量守恒.综上所述,应选(B).16-3 关于光子的性质,有以下说法(1) 不管真空中或介质中的速度都是c ; (2) 它的静止质量为零;(3) 它的动量为ch v ; (4) 它的总能量就是它的动能; (5) 它有动量和能量,但没有质量.其中正确的选项是( )(A) (1)(2)(3) (B) (2)(3)(4)(C) (3)(4)(5) (D) (3)(5)分析与解 光不但具有波动性还具有粒子性,一个光子在真空中速度为c (与惯性系选择无关),在介质中速度为nc ,它有质量、能量和动量,一个光子的静止质量m 0=0,运动质量2c h m v = ,能量v h E =,动量cv h λh p ==,由于光子的静止质量为零,故它的静能E 0 为零,所以其总能量表现为动能.综上所述,说法(2)、(3)、(4)都是正确的,应选(B). 16-4 关于不确定关系h p x x ≥ΔΔ有以下几种理解:(1) 粒子的动量不可能确定,但坐标可以被确定;(2) 粒子的坐标不可能确定,但动量可以被确定;(3) 粒子的动量和坐标不可能同时确定;(4) 不确定关系不仅适用于电子和光子,也适用于其他粒子.其中正确的选项是( )(A) (1)、(2) (B) (2)、(4)(C) (3)、(4) (D) (4)、(1)分析与解 由于一切实物粒子具有波粒二象性,因此粒子的动量和坐标(即位置)不可能同时被确定,在这里不能简单误认为动量不可能被确定或位置不可能被确定.这一关系式在理论上适用于一切实物粒子(当然对于宏观物体来说,位置不确定量或动量的不确定量都微缺乏道,故可以认为可以同时被确定).由此可见(3)、(4)说法是正确的.应选(C).16-5 粒子在一维矩形无限深势阱中运动,其波函数为则粒子在* =a /6 处出现的概率密度为( ) (A) a /2 (B) a /1 (C) a /2 (D) a /1分析与解 我们通常用波函数Ψ来描述粒子的状态,虽然波函数本身并无确切的物理含义,但其模的平方2ψ表示粒子在空间各点出现的概率.因此题述一线粒子在a x ≤≤0区间的概率密度函数应为()x aa x ψπ3sin 222=.将* =a /6代入即可得粒子在此处出现的概率为a /2.应选(C).16-7 太阳可看作是半径为7.0 ×108 m 的球形黑体,试计算太阳的温度.设太阳射到地球外表上的辐射能量为1.4 ×103 W ·m -2 ,地球与太阳间的距离为1.5 ×1011m.分析 以太阳为中心,地球与太阳之间的距离d 为半径作一球面,地球处在该球面的*一位置上.太阳在单位时间内对外辐射的总能量将均匀地通过该球面,因而可根据地球外表单位面积在单位时间内承受的太阳辐射能量E ,计算出太阳单位时间单位面积辐射的总能量()T M ,再由公式()4T σT M =,计算太阳温度.。

波动光学_精品文档

波动光学_精品文档

波动光学第一节 光的干涉一、光波的相干叠加1、光波叠加原理:每一点的光矢量等于各列波单独传播时在该点的光矢量的矢量和。

2、光波与机械波相干性比较:(1)相同点:相干条件、光强分布。

(2)不同点:发光机制不同。

3、从普通光获得相干光的方法:(1)分波阵面法:将同一波面上不同部分作为相干光源。

(2)分振幅法:将透明薄膜两个面的反射(透射)光作为相干光源。

4、光程与光程差:(1)光程:即等效真空程:Δ=几何路程×介质折射率。

(2)光程差:即等效真空程之差。

5、光程差引起的相位差:Δφ=φ2-φ1+λ∆∏2,Δ为光程差,λ为真空中波长。

(1)Δφ=2k ∏时,为明纹。

(2)Δφ=(2k+1)∏时,为暗纹。

6、常见情况:(1)真空中加入厚d 的介质,增加(n-1)d 光程。

(2)光由光疏介质射到光密介质界面上反射时附加λ/2光程。

(3)薄透镜不引起附加光程。

二、分波面两束光的干涉1、杨氏双缝实验:(1)Δ=±k λ时,(k=0,1,2,3……)为明纹。

Δ=±(2k-1)2λ时,(k=1,2,3……)为暗纹。

(2)x=λdD k ±时,为明纹。

x=2)12(λd D k -±时,为暗纹。

(k=0,1,2,……) (3)条纹形态:平行于缝的等亮度、等间距、明暗相间条纹。

(4)条纹亮度:Imax=4I1,Imin=0.(5)条纹宽度:λdD x =∆. 2、其他分波阵面干涉:菲涅耳双棱镜、菲涅耳双面镜。

三、分振幅干涉1、薄膜干涉:2sin 222122λ+-=i n n e Δ反(2λ项:涉及反射,考虑有无半波损失) 透Δi n n e 22122sin 2-=(无2λ项) 讨论:(1)反Δ/透Δ=k λ时,(k=1,2,3……)为明纹,(2k+1)2λ时,(k=0,1,2……)为暗纹。

(2)等倾干涉:e 一定,Δ随入射角i 变化。

(3)等厚干涉:i 一定,Δ随薄膜厚度e 变化。

医学物理学知识点汇总知识讲解

医学物理学知识点汇总知识讲解

Thank you !
2024/7/19
结束语
谢谢大家聆听!!!
16
第九章 静电场
p 电场强度、电势的含义、关系及计算。 p 电通量与电场强度的关系。 p 高斯定理的物理意义及其应用。 p 保守力场的特点。 p 均匀带电球面的电场和电势。 p 均匀带电圆环的电场和电势。
第十章 直流电
传导电流产生的条件。 电流密度的含义。 欧姆定律的微分形式。 基尔霍夫定律解题及符号规则。 理解动作电位及其产生过程。
第十一章 稳恒磁场
磁场的性质及各量的方向判断。 磁通量与磁场的关系。 电流的磁场及解题。 磁场的生物效应。
第十三章 波动光学
杨氏双缝干涉 夫琅禾费衍射 光栅衍射的基本原理和公式 偏振的有关概念及马斯定律。 光程、光程差、半波损失 物质的旋光性
第十四章 几何光学
单球面折射计算与符号规则。 焦度的含义及单位。 逐次成像法。 非正视眼的形成原因及矫正。
第一章 力学基本定律
• 位移、速度、加速度的关系。 • 切向加速度与法向加速度。 • 惯性系与非惯性系。 • 国际单位制和量纲。 • 转动惯量、理解刚体转动规律。 • 角动量守恒定律的应用(定性)。
第四章 振 动
• 简谐振动的特点及判断。 • 简谐振动方程及特征量的名称与含义。 • 同方向、同频率简谐振动的合成。
况下动能的表达式。 • 自由度 • 输运过程包括几种,各为什么的输运。 • 表面张力系数的含义。 • 曲面下附加压强的理解、气体栓塞的解释。
第八章 热力学基础
• 热力学系统的分类。 • 作功与传热的异同;内能的含义。 热力学第一定律的
含义与计算。 • 热力学第一定律在热力学过程中的应用(定性) • 热机效率(国际单位) • 热力学第二定律的表述及统计意义、熵增加原理。

大学物理学C基本内容

大学物理学C基本内容

《大学物理学C 》课程基本内容第一章 质点的运动1.直角坐标系、极坐标系、自然坐标系※2.质点运动的描述:位置矢量r 、位移矢量r ∆=)()(t r t t r-∆+、运动方程)(t r r =。

在直角坐标系中,k t z j t y i t x t r)()()()(++=速度:t rv d d=; 加速度:22d d d d t r t v a == 在直角坐标系中,速度k v j v i v v z y x ++=,加速度k a j a i a a z y x++=自然坐标系中,速度 τ v v ==τts d d ,加速度t n a a a +==n r v t v 2d d +τ 在极坐标系中,角量的描述:角速度t d d θω=,角加速度22d d d d t t θωα==3.运动学的两类基本问题:第一类问题:已知运动方程求速度、加速度等。

此类问题的基本解法是根据各量定义求导数。

第二类问题:已知速度函数(或加速度函数)及初始条件求运动方程。

此类问题的基本解法是根据各量之间的关系求积分。

例如据txv d d =,可写出积分式⎰x d =⎰t v d .由此求出运动方程)(t x x =。

4.相对运动:位移:t u r r ∆+'∆=∆ ,速度:u v v+'=,加速度:0a a a +'=第七章 气体动理论1.对“物质的微观模型”的认识;对“理想气体”的理解。

※2.理想气体的压强公式23132v n p k ρε==,其中221v m k =ε※理想气体物态方程:RT MmpV =或 nkT p =理解压强与微观什么有关,即压强的物理含义是什么.※3.理想气体分子的平均平动动能与温度的关系:kT k 23=ε 理解温度与微观什么有关,即温度的物理含义。

※4.能量均分定理:气体处于平衡态时,分子每个自由度上的平均能量均为2kT概念:自由度※理想气体内能公式:RT iM m E 2=5.麦克斯韦气体分子速率分布律 ※麦克斯韦气体分子速率分布函数:定义:vNN v f d d 1)(=函数:22232π2π4)(v v v kTm ekT m f -⎪⎭⎫⎝⎛= 以及v v f NNd )(d =;v v Nf N d )(d =;⎰21d )(v v v v Nf ;⎰21d )(v v v v f 等表示的物理含义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第13章 波动光学一、选择题1. 在双缝干涉实验中,若单色光源S 到两缝1S 、2S 距离相等,则观察屏上中央明条纹位于图中O 处,现将光源S 向下移动到示意图中的S '位置,则 (A )中央明纹向上移动,且条纹间距增大; (B )中央明纹向上移动,且条纹间距不变; (C )中央明统向下移动,且条纹间距增大;(D )中央明纹向下移动,且条纹间距不变。

[ ]2. 如图1所示,1S 、2S 是两个相干光源,他们到P 点的距离分别为 1r 和 2r .路径PS 1垂直穿过一块厚度为1t 、折射率为1n 的一种介质;路径P S 2垂直穿过一块厚度为2t 、折射率为2n(A) )()(111222t n r t n r +-+(B) ])1([])1([121222t n r t n r -+--+ (C) )()(111222t n r t n r --- (D) 1122t n t n -3. 在相同的时间内,一束波长为λ的单色光在空气和在玻璃中 (A) 传播的路程相等,走过的光程相等 (B) 传播的路程相等,走过的光程不相等 (C) 传播的路程不相等,走过的光程相等(D) 传播的路程不相等,走过的光程不相等 [ ]4. 在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5λ,则屏上原来的明纹处 (A) 仍为明条纹(B) 变为暗条纹(C) 既非明条纹也非暗条纹(D) 无法确定是明纹还是暗纹 [ ]5. 用波长可以连续改变的单色光垂直照射一劈形膜, 如果波长逐渐变小, 干涉条纹的变化情况为 (A) 明纹间距逐渐减小, 并背离劈棱移动 (B) 明纹间距逐渐变小, 并向劈棱移动 (C) 明纹间距逐渐变大, 并向劈棱移动(D) 明纹间距逐渐变大, 并背向劈棱移动 [ ]6. 关于光的干涉,下面说法中唯一正确的是 (A) 在杨氏双缝干涉图样中, 相邻的明条纹与暗条纹间对应的光程差为2λ1S S P图1(B) 在劈形膜的等厚干涉图样中, 相邻的明条纹与暗条纹间对应的厚度差为2λ (C) 当空气劈形膜的下表面往下平移2λ时, 劈形膜上下表面两束反射光的光程差将增加2λ (D) 牛顿干涉圆环属于分波振面法干涉 [ ] 7. 如图2所示,一束平行单色光垂直照射到薄膜上,经上、下两表面反射的光束发生干涉.若薄膜的厚度为d ,且n 1 < n 2 > n 3,λ为入射光在折射率为n 1的介质中的波长,则两束反射光在相遇点的相位差为: [ ](A) 212πn d n λ⋅ (B)124ππn d n λ⋅+(C)214πn e d n λ⋅+ (D)214πn d n λ⋅8. 如图3所示,用白光垂直照射厚度d = 350nm 的薄膜,若膜的折射率n 2 = 1.4 ,薄膜上面的介质折射率为n 1,薄膜下面的介质折射率为n 3,且n 1 < n 2 < n 3.则反射光中可看到的加强光的波长为 (A) 450nm (B) 490nm [ ] (C) 690nm(D) 553.3nm9. 在单缝衍射中, 若屏上的P 点满足5sin 2a θ=则该点为(A) 第二级暗纹 (B) 第五级暗纹(C) 第二级明纹(D) 第五级明纹 [ ]10. 在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度为3λ的单缝上,对应于衍射角为30o 的方向,单缝处波阵面可分成的半波带数目为(A )2个; (B )3个; (C )4个; (D )6个。

[ ]11. 波长nm 550=λ的单色光垂直入射于光栅常数41.010cm d -=⨯的光栅上, 可能观察到的光谱线的最大级次为(A )4; (B )3; (C )2; (D )1。

[ ] 12. 一衍射光栅由宽300 nm 、中心间距为900 nm 的缝构成, 当波长为600 nm 的光垂直照射时, 屏幕上最多能观察到的亮条纹数为 [ ](A) 2条 (B) 3条 (C) 4条 (D) 5条13. 三个偏振片P 1、P 2与P 3堆叠在一起,P 1与P 3的偏振化方向相互垂直, P 2与P 1的偏振化方向间的夹角为45o ,强度为I 0的自然光入射于偏振片P 1,并依次透过偏振片P 1、P 2与P 3,则通过三个偏振片后的光强为 [ ](A )160I ; (B )830I ; (C ) 80I ; (D ) 40I 。

图314. 自然光以布儒斯特角由空气入射到一玻璃表面上,则反射光是 [ ] (A) 在入射面内振动的完全线偏振光 (B) 平行于入射面的振动占优势的部分偏振光 (C) 垂直于入射面的振动的完全偏振光 (D) 垂直于入射面的振动占优势的部分偏振光二、填空题1. 如图4所示,在双缝干涉实验中SS 1=SS 2,用波长为λ的光照射双缝S 1和S 2,通过空气后在屏幕E 上形成干涉条纹.已知P 点处为第三级明条纹,则S 1和S 2到P 点的光程差为 ____________.若将整个装置放于某种透明液体中,P 点为第四级明条纹,则该液体的折射率n = ____________.2.两条狭缝相距2 mm, 离屏300 cm, 用600 nm 的光照射时, 干涉条纹的相邻明纹间距为___________mm.3. 将一块很薄的云母片(n = 1.58)覆盖在杨氏双缝实验中的一条缝上,这时屏幕上的中央明纹中心被原来的第7级明纹中心占据.如果入射光的波长λ = 550 nm, 则该云母片的厚度为___________.4. 分别用波长λ1=600 nm 与波长λ2=700 nm 的平行单色光垂直照射到劈形膜上,劈形膜的折射率为3.1,膜两侧是同样的介质,则这两种波长的光分别形成的第七条明纹所对应的膜的厚度之差为__________nm .5. 波长为λ的平行单色光垂直照射到劈尖薄膜上,劈尖角为θ,劈尖薄膜的折射率为n ,第k 级明条纹与第k +7级明条纹的间距是 .6. 波长为λ的平行单色光垂直地照射到劈尖薄膜上,劈尖薄膜的折射率为n ,第二级明纹与第五条明纹所对应的薄膜厚度之差是 _____________.7. 用λ=600 nm 的单色光垂直照射牛顿环装置时,从中央向外数第4个(不计中央暗斑)暗环对应的空气膜厚度为________________μm .8. 如果单缝夫琅禾费衍射的第一级暗纹发生在衍射角为30=ϕ的方位上,所用的单色光波长为nm 500=λ,则单缝宽度为 .9. 一束平行光束垂直照射宽度为1.0 mm 的单缝上,在缝后放一焦距为2.0 mm 的汇聚透镜.已知位于透镜焦平面处的中央明纹的宽度为 2.0 mm ,则入射光波长约为 .10. 波长nm 500=λ的单色光垂直照射到mm 25.0=a 的单缝上, 单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明纹一侧第三个暗纹和另一侧第三个暗纹之间的距离为12=d mm, 则凸透镜的焦距f 为 . 11. 一衍射光栅, 狭缝宽为a , 缝间不透明部分宽为b .当波长为600 nm 的光垂直照射时, 在某一衍射角θ 处出现第二级主极大.若换为400 nm 的光垂直入射时, 则在上述衍射角θ 处出现缺级, b 至少是a 的 倍.1图412. 一束光强为I 0的自然光垂直穿过两个偏振片,且两偏振片的偏振化方向成45︒角,若不考虑偏振片的反射和吸收,则穿过两个偏振片后的光强为_________.13. 使一光强为0I 的平面偏振光先后通过两个偏振片1P 和2P .已知1P 和2P 的偏振化方向与原入射光光矢量振动方向的夹角分别是α和︒90,则通过这两个偏振片后的光强I 是_____________.14. 一束由自然光和线偏振光组成的混合光,让它垂直通过一偏振片.若以此入射光束轴旋转偏振片,测得透射光强度的最大值是最小值的7倍;那么入射光束自然光和线偏振光的光强比为_____________.15. 一束自然光通过一偏振片后,射到一折射率为3的玻璃片上,若转动玻璃片在某个位置时反射光消失,这时入射角i 等于_____________.三、计算题1. 白色平行光垂直入射到间距为d =0.25 mm 的双缝上,距D =50 cm 处放置屏幕,分别求第一级和第六级明纹彩色带的宽度.(设白光的波长范围是从400 nm 到760 nm .这里说的“彩色带宽度” 指两个极端波长的同级明纹中心之间的距离.)2. 波长为nm 600=λ的单色光垂直入射到置于空气中的平行薄膜上,已知膜的折射率54.1=n ,求:(1) 反射光最强时膜的最小厚度;(2) 透射光最强时膜的最小厚度.3. 波长λ= 650 nm 的红光垂直照射到劈形液膜上,膜的折射率n = 1.33,液面两侧是同一种介质.观察反射光的干涉条纹.(1) 离开劈形膜棱边的第一条明条纹中心所对应的膜厚度是多少?(2) 若相邻的明条纹间距mm 6=l , 上述第一条明纹中心到劈形膜棱边的距离x 是多少?4. 图5为一牛顿环装置,设平凸透镜中心恰好与平玻璃接触,透镜凸表面的曲率半径是R =400 cm .用单色平行光垂直入射,观察反射光形成的牛顿环,测得第5个明环的半径是0.30 cm .(1) 求入射光的波长;(2) 设图中OA =1.00 cm ,求在半径为OA 的范围内可观察到的明环数目.5. 某种单色平行光垂直地入射在一单缝上, 单缝的宽度a = 0.15 mm .缝后放一个焦距f = 400 mm 的凸透镜,在透镜的焦平面上,测得中央明条纹两侧的两个第三级暗条纹之间的距离为8.0 mm ,求入射光的波长.6. 钠黄光中包含两个相近的波长λ1 = 589.0 nm 和λ2 = 589.6 nm .用平行的钠黄光垂直入射在每毫米有500条缝的光栅上,会聚透镜的焦距f =1.00 m .求在屏幕上形成的第三级光谱中上述两波长λ1和λ2的光谱之间的间隔l ∆.7. 用钠光(nm 3.589=λ)垂直照射到某光栅上,测得第三级光谱的衍射角为60︒. (1) 若换用另一光源测得其第二级光谱的衍射角为30︒,求后一光源发光的波长.(2) 若以白光(400 nm ~760 nm) 照射在该光栅上,求其第二级光谱的张角.第13章 波动光学答案一、选择题1.[B];(2)[B];3[C];4.[B];5.[B];6.[A ];7.[ C ];8.[B ].;9.[C ];10.[ B ].11.[ D ] 12.[B ];13.[C ];14[C ] 。

二、填空题1. 3λ, 1.33 ;2. 0.9 ;3. mm 104.63-⨯;4. 105 ;5.θλn 27 ;6. 1.2 ;7. 5100.1-⨯; 8. 5100.1-⨯m 9. 500nm ;10. 1m ;11. 2 ;12. 40I ;13. )2(sin 4120αI ;14.1: 315.60 。

相关文档
最新文档