结构图等效变换举例
结构图变换举例 (1)
五
举例说明(例2)
例2:系统动态结构图如下图所示,试求 系统传递函数C(s)/R(s)。
H 2 ( s)
R(s )
-
-
G1 ( s )
G2 ( s )
-
G3 ( s ) H 3 ( s)
C (s )
G4 ( s )
H1 ( s)
五
举例说明(例2)
例2:系统动态结构图如下图所示,试求 系统传递函数C(s)/R(s)。
G4 ( s )
C(s)
H3 (s)
H1 ( s)
例2 (解题方法一之步骤5)
内反馈环节等效变换结果
R(s)
1
3
G1 (s)
-
G2 ( s )
-
G3 ( s ) 1 G2 ( s )G3 ( s ) H 2 ( s )
H 3 ( s)
C(s)
G4 (s)
H1 ( s)
例2 (解题方法一之步骤6)
1
-
3
B
C
G1 ( s )
- 2
G2 ( s )
-
G3 ( s )
A
G4 ( s )
C (s )
H 3 ( s)
H1 ( s)
例2 (解题方法一之步骤2)
R(s)
1
3
-
?
G3 ( s ) G4 ( s )
C(s)
H 3 ( s)
G1 ( s )
-
G2 ( s )
2
H1 ( s)
例2 (解题方法一之步骤3)
C (s )
H 3 ( s)
H1 ( s)
例2 (解题方法四)
控制系统的结构图及其等效变换
2.
通路
沿支路箭头方向穿过各相 连支路的路径。
前向通路
从源节点到阱节点的通路上通过任何节点
不多于一次的通路。前向通路上各支路增益之 乘积,称前向通路总增益,一般用pk表示。
回路
起点与终点重合且通过任何节点不多于一次的
闭合通路。回路中所有支路增益之乘积称为回 路增益,用Lk表示。
不接触回路
相互间没有任何公共节点的回路
反馈通路断开。 系统开环传递函数:前向通道传递函数与反馈通道传 递函数的乘积。
B( s ) Gk ( s) G1 ( s)G2 ( s) H ( s) E (s)
(反馈信号B(s)和偏差信号E (s)之间的传递函数)
系统的开环传递函数
GK (s) G1 (s)G2 (s) H (s)
注:开环传递函数并非指开环控制系统的传递函数, 而是指闭环系统断开反馈点后整个环路的传递函数。
例2.9 简化下图,求出系统的传递函数。
解: 上图是具有交叉连接的结构图。为消除交叉,可采 用比较点、引出点互换的方法处理。 (1)将相加点a移至G2之后
(2)再与b点交换
(3)因 G4与G1G2并联, G3与G2H是负反馈环节
(4)上图两环节串联,函数相乘后得系统的传递函数为
注: ①以上为原系统的闭环传递函数,不是开环系统的传递函数, 而是闭环系统简化的结果; ②分母中不能看成原闭环系统的开环传递函数,闭环系统开 环传递函数应根据定义和具体框图定。
闭环系统的传递函数
反馈控制系统的典型结构 :
R( s) E (s) G1(s) B(s)
N (s)
G2(s)
C (s)
H(s)
输入量R(s)、干扰量N(s)同时作用于系统
系统结构图及等效变换、梅森公式
05
结论与展望
BIG DATA EMPOWERS TO CREATE A NEW
ERA
研究结论
• 通过分析和比较不同系统结构图的特点和性能,本文得出了一些重要的结论。首先,等效变换在系统分析和设 计中具有重要的作用,它可以帮助我们简化复杂的系统结构,降低分析和设计的难度。其次,梅森公式是一种 有效的系统性能评估方法,它可以用于计算系统的传递函数和频率响应等关键性能指标。最后,通过实例分析 和仿真验证,本文证明了等效变换和梅森公式在系统分析和设计中的有效性和实用性。
案例一
分析一个简单的RC电路,利用梅 森公式计算其传递函数,并与实 验结果进行对比分析。
案例二
针对一个控制系统,利用梅森公 式分析其稳定性,并给出相应的 控制器设计建议。
案例三
考虑一个复杂的信号流图,利用 梅森公式进行化简,得到简化的 数学模型,便于后续分析和设计。
BIG DATA EMPOWERS TO CREATE A NEW ERA
案例分析
案例一
串联等效变换的应用。在某控制系统中,存在两个串联的控制器,通过串联等效变换,可以将这两个控制器 合并为一个等效控制器,从而简化系统分析。
案例二
并联等效变换的应用。在某电力系统中,存在两个并联的电源,通过并联等效变换,可以将这两个电源合并 为一个等效电源,方便进行系统性能评估。
案例三
反馈等效变换的应用。在某通信系统中,存在一个反馈环节,通过反馈等效变换,可以将该反馈环节进行简 化,使得简化后的系统与原系统在性能上保持一致。
系统结构图及等效变换、
BIG DATA EMPOWERS TO CREATE A NEW
动态结构图及其等效变换
22
N1 +
解:
(2)求C/N1,设R=0,N2=0, 得右图。
C(s) G3(1 G2 ) N1(s) 1 G2 G1G2G3
23
解(3)求C(s)/N2(s),设R=0,N1=0,得下图。
则:
0 N2(s) C(s)
C(s) 1 N2 (s)
24
X(s)
X(s)
R(s)
C(s)
R(s)
C(s)
Y(s)
C(s) R(s) X (s) Y (s)
Y(s)
C(s) R(s) Y (s) X (s)
7. 相邻的比较点和引出点之间可以调换位置,如下图 所示。
17
相邻引出点之间的移动
R(s)
R(s)
R(s)
R(s) C(s)
R(s)
R(s) R(s)
动态结构图及其等效变换
1
§ 2.3 动态结构图及其等效变换
一、动态结构图(方块图) 1.定义
动态结构图是图形化的数学模型,它是一种系 统输入和输出之间因果关系的简略图示方法,表示 了系统输出、输入信号之间的动态传递关系。
2
2. 组成要素 传递方块: 表示输入、输出信号之间的传递关系 C(s)=G(s)E(s),B(s)=H(s)C(s)
(s) )
RI CsU
(s) I(s) c (s) Uc (
s)
1 R
U r
1 Cs
( I
s) (s)
U
c
(
s)
绘制上式各子方程的方框图:
r ( s ) r ( s ) - c ( s ) r ( s ) - c ( s ) I ( s ) I ( s ) c ( s )
控制系统结构图及其等效转换
U (s) R I(s)
0 2
1 c
i dt R i
2
1 1
R I (s)
1 1
1 Cs
I (s )
2
由 (1) 式有
I1(s) + I(s)
+ I (s) 2
对 (2)式变换 1 I1 ( s ) [U i ( s ) U 0 ( s )] R
对(4)式变换 I 2 ( s) R1CsI1 ( s)
G7
解 : 将分支点 A移至B处
G6 G1 G2
-
-
G3 G4 G5
G4
G7 得系统的闭环传递函数为
G1G2 G3G4 (S ) 1 + G1G2G3G4 G7 + G3G4G5 + G2 G3G6
另外亦可把B点后移或者相加点后移
X1(s) G1(s)
X3(s) G2(s)
X2(s)
结论:二环节串联传递函数等于二传函之积。 推广:N环节串联,传递函数等于N个环节传 函之积。
G(s) G1 (s)G2 (s)G n (s)
2、并联连接的传递函数
X3(s) G1(s) + X2(s)
X1(s)
+
G2(s) X4(s)
X 2 (s) X 3 ( s) + X 4 ( s) G(s) G1 ( s) + G2 ( s) X1 (s) X 1 ( s)
+ UI(s) U0(s)
1/R I1(s) I2(s) Cs
R1 I1(s)
对(3)式有
I(s)
R2
U0(s)
Ui(s) U0(s) -
I1(s)
2-4 方块图等效变换
5. 引出点的移动
引出点后移
R(s)
G(s)
C(s) R(s)
R(s)
C(s)
G(s)
?
R(s)
问题: 问题: 要保持原来的信号传递关系不变, 要保持原来的信号传递关系不变, 等于什么。 ?等于什么。
26
引出点后移等效变换图
R(s)
G(s)
C(s) R(s)
R(s)
C(s)
G(s)
R(s) 1/G(s)
R (s) +
B (s)
E (s)
_
C (s)
G (s)
H (s)
前向通道和反馈通道传递函数分别为G ( s )、 H ( s )
C(s) G(s) = R(s) 1 + G(s)H(s)
结论: 具有负反馈结构环节传递函数等于前向通 的传递函数除以1加(若正反馈为减)前向通道与反 馈通道传递函数的乘积。
H2 G1 G2 H1 G3
1 G4
a
G4
b
H3
40
综合点移动
G3 G1
向同类移动
G2 H1
G3 G1 G1
G2 H1
41
G4 G1 H1 G4 G1 H1 H1 G2 G2
作用分解
G3 H3
G3 H3 H3
42
三、系统的传递函数 系统的传递函数
1、开环传递函数 、
R(s) + B(s) H (s)
G(s) Q(s) 1/G(s)
23
综合点之间的移动
X(s) R(s)
±
X(s) C(s) R(s)
± ±
Y(s) ±
C(s)
Y(s)
自动控制原理02结构图及其等效变换
R( s )
G 1 G 2 G3G 4 C (s) 1 G 1 G 2 G3G 4 G 2 G3 H 1 G3G 4 H 2
f)
2.3 控制系统的结构图及等效变换
2.3.4 系统传递函数
典型闭环控制系统
N (s)
R( s )
E ( s)
G1 (s)
结构图。
2.3.2 结构图的建立
例2-7 RLC电路网络的结构图
解: U (s) U (s) U (s) U (s) i R L 0
U R ( s) RI ( s)
U L ( s) LsI ( s)
{
I ( s)
U i ( s) U 0 ( s ) U R ( s ) U L ( s )
C 传输到 ( s)
单位反馈: H ( s) 1 开环传递函数:
G( s) H ( s)
2.3.3 结构图的等效变换和简化
(4)比较点的移动
R1 (s)
G(s)
R2 ( s )
a)
C (s)
R2 ( s )
R1 (s)
G(s)
C (s)
1/ G(s)
b)
R1 (s)
R2 ( s )
a)
G(s)
C (s) G(s) ( s) R( s) 1 G ( s) H ( s )
2.3.3 结构图的等效变换和简化
反馈连接中的术语:
R( s)
E (s)
G (s)
H (s)
C (s)
B( s)
前向通道:信号从 R( 传输到 s) 反馈通道:信号从
的通道 C ( s) 的通道 R( s )
R(s)
# 23传递函数方块图(系统动态结构图)及其等效变换
r (s)
–
e
e ( s)
c ( s)
US(s)
U S (s) KSe (s)
Ua(s) –
(s)
KS
U a (s) Ra I a (s) La SIa (s) Eb (s)
Eb(s)
1 Ra La S
Ia(s)
M m (s) Cm I a (s)
2
Ia(s)
Cm
根据传递函数的定义,每一个方块单元,一 般有以下的运算关系: X0(s) = W(s) Xi(s)
# 2—3 传递函数方块图(系统动态结构图) 及其等效变换 图中:指向方块单元的箭头表示输入量 的象函数Xi(s),离开方块单元的箭头表示 输出量的象函数X0(s),写在方块单元中的 是传递函数G(s)。
Mm(s)
JS m (s) fSm (s) M m (s) M L (s)
Mm(s)
–
1 JS 2 fS
m ( s)
Eb(s)
Eb (s) Kb Sm (s) m ( s)
ML(s)
K bS
1 c ( s ) m ( s ) i
e (s)
m ( s) 1 c ( s)
# 2—5 传递函数方块图(系统动态结构图) 及其等效变换 作业:系统结构方图的绘制 R1 L Xi Uc R2 Ur C
L Ur C R2 Uc
X0
2、系统结构方块图的绘制步骤 (1)列写系统中各元件的运动方程 (2)在零初始条件下,对微分方程进行拉氏变 换 (3)用元件方块图等表示出信号间的关系 (4)根据系统中各信号的传递方向和顺序将各 方块图连接起来,就得到系统的动态结构 图
–
U1(s)
系统的结构图及其等效变换
控制系统的结构图及其等效变换项目内容学习目的掌握结构图的化简方法。
重点熟练掌握结构图化简求取传递函数的方法。
难点典型结构变换、结构图化简方法的灵活应用。
结构图的组成和绘制结构图的等效变换→求系统传递函数一结构图的组成和绘制系统的结构图是表示系统各元件特性、系统结构和信号流向的图示方法。
定义:将方块图中各时间域中的变量用其拉氏变换代替,各方框中元件的名称换成各元件的传递函数,这时方框图就变成了动态结构图,简称结构图,即传递函数的几何表达形式。
组成(1)信号线:带有箭头的直线,箭头表示信号的流向,在直线旁边标有信号的时间函数或象函数。
一条信号线上的信号处处相同。
X(s)(2)引出点:表示信号引出或测量的位置,同一位置引出的信号大小和性质完全相同。
(3)比较点(综合点、相加点):表示对两个以上的信号进行加减运算,加号常省略,减号必须标出。
G(s)X(s)Y(s)(4)方框:表示对信号进行的数学变换,方框内的函数为元件或系统的传递函数。
结构图的绘制R C i (a )i u ou 一阶RC 网络例1画出RC 电路的结构图。
解:利用复阻抗的概念及元件特性可得每一元件的输入量和输出量之间的关系如下:()()()(1)i o U s U s I s R -=()()(2)o I s U s sC =R :C :绘制每一元件的结构图,并把相同变量连接起来,得到系统的结构图。
1/sC U i (s)U o (s)-U o (s)I (s)1/R RC i (a )i u ou 1/sc例2:绘制两级RC 网络的结构图。
r U cU 11sC 21sC 1R 2R 1I 2I 1U111112112222()()()1()[()()]()()()1()()r C C U s U s I s R U s I s I s sC U s U s I s R U s I s sC -⎧=⎪⎪⎪=-⋅⎪⎪⎨-⎪=⎪⎪⎪=⋅⎪⎩r U cU 11sC 21sC 1R 2R 1I 2I 1U 解:利用复阻抗的概念及元件特性可得每一元件的输入量和输出量之间的关系如下:111112112222()()()1()[()()]()()()1()()r C C U s U s I s R U s I s I s sC U s U s I s R U s I s sC -⎧=⎪⎪⎪=-⋅⎪⎪⎨-⎪=⎪⎪⎪=⋅⎪⎩1/R 11/sC 11/R 21/sC 2U C (s)U r (s)U 1(s)I 1(s)I 2(s)--U 1(s)-U C (s)绘制每一元件的结构图,并把相同变量连接起来,得到系统的结构图。
3第二章(举例2)传递函数及结构图变换
K ( i s 1) ( l s 2 l l s 1) s
v
s
e
s
(T j s 1) (Tk s 2 k Tk s 1)
2 2 j 1 k 1
i 1 d
l 1 e
积分环节
惯性环节
振荡环节
延迟环节
环节是根据微分方程划分的,不是具体的物理
装置或元件。
C 2 ( s) G2 ( s)R( s)
2. 并联结构的等效变换
• 等 效 变 换 证 明 推 导
R(s) G1(s) G2(s)
C1(s)
C(s)
C2(s)
C ( s ) [G 1 ( s ) G 2 ( s )] R ( s ) C (s) R(s) G1 ( s ) G 2 ( s )
K ——环节的放大系数 T ——环节的时间常数 ——环节的阻尼比
d x r (t ) dt
2
2
2
dx r ( t ) dt
x r ( t )]
1 两个串联的一阶微分环节
延滞环节 例1:水箱进水管的延滞 传递函数:
G (s) X c (s) X r (s) e
s
运动方程式:
出值。
延迟环节从输入开始之初,在0 ~τ时间内没 有输出,但t=τ之后,输出完全等于输入。
水箱进水管的延滞
系统函数方块图
系统函数方块图是一种数学模型,采用
它将更便于求传递函数,同时能形 象直观地表明输入信号在系统或元 件中的传递过程。
1.
串联结构的等效变换(1)
• 串联方块图
R(s)
G1(s)
传递函数
传递函数的概念与定义
自动控制原理2.4 结构图的等效变换及简化计算
在△中,去掉与第k条前向通 道相接触的回路对应的项后
剩余的部分。
求法: 去掉第k条前向通路后所求的△ 用梅森公式求上例信号流图对应的传函。
南京工业职业技术学院机械工程学院——自动控制原理
梅森公式例1
GG44((ss))
R(s)
注:比较点和引出点之间不能换位。 3. 通过在被变换的支路上乘或除某个传函来保持等效。 4. 根据环节方框的连接方式(串联、并联和反馈)进行简化
计算。
南京工业职业技术学院机械工程学院——自动控制原理
结构图三种连接形式及其计算
串联
G1
G2
G1 G2
n
G(s) Gi (s) i 1
并联 G1 G2
反馈 G1
G5
R –
X1 G1
– G2 X2 –
G3 X3
G4
C
X3
G6
G7
南京工业职业技术学院机械工程学院——自动控制原理
G8 G5
R – G1 X1
X2 – G2
–
X3
G3
G4
C
X3 G6
G7
(2)求传函。用梅逊公式:
1 G1G2G3G4G7 G1G2G3G4G8 G2G3G6 G3G4G5
R(s)
-
G4
A
G1
-
B
G2
H1
G3 H2
C C(s)
P1 G1G2G3 1 1
P2 G1G4 2 1
C(S) P(S) P11 P22
P11 P22
R(S)
1 (L1 L2 L3 L4 L5 )
控制系统的结构图及其等效变换
Y (s)
前移 R1(s) G(s) Y (s)
注:
R2 (s)
R1 ( s )
Y (s)
G(s)
1/G(s) R2 (s)
相加点进入和出去的信号量纲必须相同,否则不能加减。
b引出点(信号由某一点分开)
分支点分出信号,数值相同
R(s) 后移
G(s)
Y (s)
R(s)
R(s) G(s)
Y (s) R(s)
4.比较点(求和点、综合点) 1.用符号“ ”及相应的信号箭头表示 2.箭头前方的“+”或“-”表示加上此信号 或减去此信号
! 注意量纲:相同量纲的物理量
例:二阶RC电气网络
结构图的等效变换和简化
➢系统的结构图通过等效变换和简化后可以方便、快速 地求取闭环系统的传递函数或系统输出量的响应。
➢等效变换和简化的过程对应于消去中间变量求系统传
信号流图的绘制 1. 根据微分方程绘制信号流图 2. 根据方框图绘制信号流图
1. 根据微分方程绘制信号流图
i
A
取Ui(s)、I1(s)、UA(s)、I2(s)、 Uo (s)作为信号流图的节点 Ui(s)、Uo(s)分别为输入及输出节点
2. 根据方框图绘制信号流图
方块图转换为信号流 图
信号流图的等效变换法则
•支路增益——支路传输定量地表明变量从支路一端沿箭头方 向传送到另一端的函数关系。用标在支路旁边的传递函数 “G”表示支路传输。
2.
通路
沿支路箭头方向穿过各相 连支路的路径。
前向通路 从源节点到阱节点的通路上通过任何节点 不多于一次的通路。前向通路上各支路增益之 乘积,称前向通路总增益,一般用pk表示。
信号流图梅森公式
梅逊公式
2-7 结构图等效变换及梅逊公式求传递函数时,需要对微分方程组(或变换方程组)进行消元,最后仅剩下输入、输出两个变量,因此中间变量的传递过程得不到反映。
若采用结构图,它就能形象地表明输入信号在系统或元件中的传递过程。
另外,下面将会看到,利用结构图,也便于求取传递函数。
所以,结构图在控制理论中应用十分广泛。
一、结构图在第2-6节中,我们曾采用消元法求得图2-24所示RC 网络的传递函数。
这里,我们采用结构图的方法求其传递函数。
RC 网络的微分方程组如下:⎪⎩⎪⎨⎧=+=⎰idt C u u Ri u c cr 1对上两式进行拉氏变换,得)()()(s U s RI s U c r +=或[])()()(1s I s U s U Rc r =- (2-54) )(1)(s I Css U r =(2-55)方程(2-54)可用图2-29)(a 表示,方程(2-55)可用图2-29)(b 表示。
将图2-29)(a )(b 按信号传递方向结合起来,网络的输入量置于图示的左端,输出量置于最右端,并将同一变量的信号连在一起,如图2-30)(a 所示,即得RC 网络结构图。
对图2-30)(a 进行所谓“等效变换”就可得出网络传递函数,因此网络结构就更为简单,如图2-30)(b 所示。
关于结构图等效变换的方法将另作介绍。
(1)建立控制系统各元、部件的微分方程。
(2)对各元、部件的微分方程进行拉氏变换,并做出各元、部件的结构图。
(3)按系统中各信号的传递顺序,依次将各元件结构图连接起来,便得到系统的结构图。
下面以图1-7所示随动系统为例。
把组成该系统各元部件的微分方程(2-18)进行拉氏变换,可得方程组(2-56e a ~),其中比较元件 )()()(s s s c r θθθε-=(2-56a ) 电位器 )()(1s K s U εεθ= (2-56b ) 放大器 )()(2s U k s U ε=(2-56c ) 电动机 )()()1(s U K s s T s m m =+εθ(2-56d ) 减速器)(1)(s is c θθ=(2-56e )各元、部件的结构图如图2-31所示。
结构图及等效变换
6
环节的合并
(一)环节的合并:有串联、并联和反馈三种形式。
环节的串联:
X (s) G1(s) …
Y (s) Gn (s)
环节的并联:
G1 ( s )
X (s)
Y (s)
G(s)
Y (s) X (s)
n i 1
Gi (s)
反馈联接:
X (s) E(s) G(s) Y (s)
Gn (s)
Y (s) E(s)G(s)
例211系统结构图如下求传递函数mondayaugust03202018结构图等效变换例子例212mondayaugust03202019闭环系统的传递函数闭环系统的传递函数闭环控制系统也称反馈控制系统的典型结构图如下图所为输入输出信号为系统的偏差为系统的扰动量这是不希望的输入量
第三节 结构图及其等效变换
Tuesday, November 17, 2020
23
小结
结构图的概念和绘制方法; 结构图的等效变换(环节的合并和分支点、 相加点的移动); 闭环系统的传递函数(给定作用和扰动作 用共同下); 特征表达式(特征方程)。
Tuesday, November 17, 2020
H (s)
Y (s) n
G(s) X (s) i1 Gi (s)
Tuesday, November 17, 2020
E(s) X (s) H (s)Y (s),
G(s)
Y (s) X (s)
1
G(s) G(s)H (s)
7
信号相加点的移动
(二)信号相加点和分支点的移动和互换:
如果上述三种连接交叉在一起而无法化简,则要考虑移动某 些信号的相加点和分支点。 ①信号相加点的移动: