2017-2018年山东省日照市莒县八年级上学期期中数学试卷及参考答案

合集下载

山东省日照市莒县八年级数学上学期期中试题

山东省日照市莒县八年级数学上学期期中试题

2016—2017学年度上学期期中质量检测八年级数学试题(时间:100分钟 分值:120分)9一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请将正确选项代号填入下表.第1-8小题选对每小题得3分,第9-12小题选对每小题得4分,选错、不选或选出的答案超过一个均记零分.)1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是 ( )A. B.C.D.2.下列运算正确的是( )A.x 2+x 2=x 4B. (a-b)2=a 2-b 2C.(-a 2)3=-a 6D.3a 2·2a 3=6a 63.在ma y xxyxx 1,3,3,21,21,12+++π中,分式的个数是( ) A .2 B .3 C .4 D .5 4.已知等腰三角形的一个内角为70°,则另两个内角的度数是( ) A . 55°,55°B . 70°,40°C . 55°,55°或70°,40°D . 以上都不对5.若分式1-x 1-x 2的值为0,则x 的值为( )A. -1B. 1C. ±1D. 06.如果x 2+10x+__= 2(x 5)+,横线处填( )A.5B.10C.25D.±10学校: 八年级 班 姓名: 考号:……………………………………………………………………………………………………7.若x 2+ax +b =(x +1)(x ﹣3)则a ,b 的值分别是( ) A .a =2,b =3 B .a =﹣2,b =﹣3 C .a =﹣2,b =3 D .a =2,b =﹣38.在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b),再沿虚线剪开,如图①,然后拼成一个梯形,如图②,根据这两个图形的面积关系,表明下列式子成立的是( )A .a 2-b 2=(a +b)(a -b)B .(a +b)2=a 2+2ab +b 2C .(a -b)2=a 2-2ab +b 2D .a 2-b 2=(a -b)29.分式中的x 、y 同时扩大2倍,则分式值( )A. 不变B. 是原来的2倍C. 是原来的4倍D.是原来的10.已知102103m n ==,,则3210m n +=( ) A .17 B .72 C .12 D .36 11.观察下列各式及其展开式:222()2a b a ab b +=++; 33223()33a b a a b ab b +=+++; 4432234()464a b a a b a b ab b +=++++;554322345()510105a b a a b a b a b ab b +=+++++;…请你猜想10()a b +的展开式第三项的系数是( )A .36B .45C .55D .6612.在平面直角坐标系xOy 中,已知点A (2,﹣2),在坐标轴上确定点P ,使△AOP 为等腰三角形,则符合条件的有( )个.A .5B .6C .7D .8图①图②二、填空题(本大题共4小题;每小题4分,共16分.把答案写在题中横线上)13.把一张纸各按图中那样折叠后,若得到∠AOB ′=70°, 则∠BOG= .14.等腰三角形的周长是25 cm,一腰上的中线将周长分为3∶2两部分,则此三角形的底边长为__ ___ .15. 已知a 2﹣a ﹣1=0,则a 3﹣a 2﹣a+2016=.16.如图,已知点B .C .D 在同一条直线上,△ABC 和△CDE 都是等边三角形.BE 交AC 于F ,AD 交CE 于H.①△BCE ≌△ACD;②CF=CH;③△CFH 为等边三角形;④FH ∥BD ;⑤AD 与BE 的夹角为60°,以上结论正确的是 .三、解答题(本大题共6小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤)17. 计算:(本小题满分8分,每题4分)(1)(2×105)÷(8×10-5) (2)))(()(2y x y x y x -+-+EDCAHF18. (本小题满分10分,每题5分)(1)已知x+y=15,x 2+y 2=113,求x 2-xy +y 2的值。

2017—2018学年度八年级数学上学期期中试卷包括答案

2017—2018学年度八年级数学上学期期中试卷包括答案

2017 — 2018 学年度八年级数学上学期期中试卷考试时间:120 分钟满分: 150 分题号一二三总分得分一、选择题。

(每题 4 分,共 40 分。

)1、有四条线段,长分别是 3 厘米, 5 厘米, 7 厘米,9 厘米,假如用这些线段构成三角形,能够构成不一样的三角形的个数为()A. 5B. 4C. 3D.22、如图,小林从P 点向西直走12m 后,向左转,转动的角度为α,再走12m,这样重复,P,则α =()小林共走了108m回到点A. 40 o B .50 o C . 80 o D.不存在3.判断:①三角形的三个内角中最多有一个钝角,②三角形的三个内角中起码有两个锐角,③有两个内角为 50°和 20°的三角形必定是钝角三角形,④直角三角形中两锐角的和为90°,此中判断正确的有().A.1 个个个个4、若一个多边形的内角和为1080°,则这个多边形的边数是()A. 6B. 7C. 8D. 95、如图,某同学把一块三角形的玻璃打坏成三片,此刻他要到玻璃店去配一块完整同样形状的玻璃.那么最省事的方法是带()A.带①去B.带②去C.带③去D.带①②去2 题图 5 题图 6 题图6、如图, a、 b、 c 分别表示△ ABC的三边长,则下边与△ABC必定全等的三角形是()A.B.C.D.ABM≌△ CDN的是 ().7、如图,已知MB=ND,∠MBA=∠NDC,以下条件中不可以判断△A.∠ M=∠N B.AM∥CN C . AB=CD D. AM=CN7 题图8 题8、如图,已知 C、D分别在 OA、OB上,而且 OA=OB,OC=OD,图AD和 BC订交于 E,则图中全等三角形的对数是( ).A. 3B. 4C. 5D. 69、如图 12.1-10 ,△ ABC≌△ FED,则以下结论错误的选项是()A. EC=BDB.EF∥ABC. DF=BDD.AC∥FD10、如图,在△ ABC 中, CD是 AB边上的高,BE均分∠ ABC,交 CD于点 E, BC= 5, DE=2,则△ BCE的面积等于 ( )A. 10B. 7C. 5D. 49 题图10 题图13 题图二、填空题。

2017-2018学年新人教版八年级上期中数学试卷及答案

2017-2018学年新人教版八年级上期中数学试卷及答案

2017-2018学年新人教版八年级上期中数学试卷及答案2017-2018学年新人教版八年级(上)期中数学试卷时间:120分钟分值:100分一、选择题:本大题共10小题,每小题3分,共30分。

将答案填在表格内。

1.在下列各电视台的台标图案中,是轴对称图形的是()A.B.C.D.2.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cmB.3cm,3cm,6cmC.5cm,8cm,2cmD.4cm,5cm,6cm3.已知直角三角形中30°角所对的直角边为2cm,则斜边的长为()A.2cmB.4cmC.6cmD.8cm4.如图所示,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A.40°B.50°C.45°D.60°5.如图,把长方形ABCD沿EF对折后使两部分重合,若∠AEF=110°,则∠1=()A.30B.35C.40°D.50°6.一个三角形三个内角之比为1:3:5,则最小的角的度数为()A.20°B.30°C.40°D.60°7.下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形8.正n边形的内角和等于1080°,则n的值为()A.7B.8C.9D.109.AC=A′C′,在△ABC与△A′B′C′中,已知∠A=∠A′,下列说法错误的是()A.若添加条件AB=A′B′,则△ABC与△A′B′C′全等B.若添加条件∠C=∠C′,则△ABC与△A′B′C′全等C.若添加条件∠B=∠B′,则△ABC与△A′B′C′全等D.若添加条件BC=B′C′,则△ABC与△A′B′C′全等10.如图,∠A=15°,AB=BC=CD=DE=EF,则∠DEF等于()A.90°B.75°C.70°D.60°二、填空题:本大题共8小题,每小题2分,共16分。

2018年山东省日照市莒县八年级上学期期中数学试卷与解析答案

2018年山东省日照市莒县八年级上学期期中数学试卷与解析答案

2017-2018学年山东省日照市莒县八年级(上)期中数学试卷一、选择题(共12题,其中1-8题每题3分,9-12题每题4分)1.(3分)下列“QQ表情”中属于轴对称图形的是()A. B.C.D.2.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点A,点C分别在直线a,b上,且a∥b.若∠1=60°,则∠2的度数为()A.75°B.105°C.135° D.155°3.(3分)下列计算正确的是()A.a2+a3=a5 B.a2•a3=a6 C.(a2)3=a5D.a5÷a2=a34.(3分)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD 的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD5.(3分)如果x2+()x+25是完全平方式,横线处填()A.5 B.10 C.±5 D.±106.(3分)长方形的面积为4a2﹣6ab+2a,若它的一边长为2a,则它的周长为()A.4a﹣3b B.8a﹣6b C.4a﹣3b+1 D.8a﹣6b+27.(3分)下列因式分解不正确的是()A.x2﹣6x+9=(x﹣3)2B.x2﹣y2=(x﹣y)2C.x2﹣5x+6=(x﹣2)(x﹣3)D.6x2+2x=2x(3x+1)8.(3分)在边长为a的正方形中挖去一个边长为b的小正方形(a>b),再沿虚线剪开,如图(1),然后拼成一个梯形,如图(2),根据这两个图形的面积关系,表明下列式子成立的是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a﹣b)29.(4分)已知10m=2,10n=3,则103m+2n=()A.17 B.72 C.12 D.3610.(4分)如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下三个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°.其中结论正确的个数是()A.1 B.2 C.3 D.011.(4分)若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c就是完全对称式.下列三个代数式:①(a﹣b)2;②ab+bc+ca;③a2b+b2c+c2a.其中是完全对称式的是()A.①②③B.①③C.②③D.①②12.(4分)在平面直角坐标系xOy中,已知点A(2,﹣2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有()个.A.5 B.4 C.3 D.2二、填空题(每小题4分,共16分)13.(4分)因式分解:2a2﹣8=.14.(4分)等腰三角形的周长是25cm,一腰上的中线将周长分为1:2两部分,则此三角形的底边长为.15.(4分)已知a2﹣a﹣1=0,则a2﹣a+2017=.16.(4分)如图,已知∠MON=30°,点A1、A2、A3,…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A2016B2016A2017的边长为.三、解答题(本大题共6小题,满分64分)17.(8分)(1)(﹣2a2)3+2a2•a4;(2)(x+y)2﹣(x+y)(x﹣y)18.(10分)(1)已知x+y=15,x2+y2=113,求x2﹣3xy+y2的值;(2)先化简,再求值:(2x﹣1)2﹣(3x+1)(3x﹣1)+5x(x﹣1),x=﹣.19.(10分)在平面直角坐标系中,A(1,2)、B(3,1)、C(﹣2,﹣1).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)写出△ABC关于x轴对称△A2B2C2的各项点坐标A2,B2,C2;(3)求△ABC的面积.20.(12分)如图,在△ABC中,∠ABC=90°,AB=BC,BD⊥AC于点D;CE平分∠ACB,交AB于点E,交BD于点F.(1)求证:△BEF是等腰三角形;(2)求证:BD=(BC+BF).21.(10分)下面是某同学对多项式(x2﹣4x﹣3)(x2﹣4x+1)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y﹣3)(y+1)+4(第一步)=y2﹣2y+1 (第二步)=(y﹣1)2(第三步)=(x2﹣4x﹣1)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的.A.提取公因式法B.平方差公式法C.完全平方公式法(2)请你模仿以上方法尝试对多项式(x2+2x)(x2+2x+2)+1进行因式分解.22.(14分)(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD 绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.2017-2018学年山东省日照市莒县八年级(上)期中数学试卷参考答案与试题解析一、选择题(共12题,其中1-8题每题3分,9-12题每题4分)1.(3分)下列“QQ表情”中属于轴对称图形的是()A. B.C.D.【解答】解:A、B、D都不是轴对称图形,C关于直线对称.故选:C.2.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点A,点C分别在直线a,b上,且a∥b.若∠1=60°,则∠2的度数为()A.75°B.105°C.135° D.155°【解答】解:∵在Rt△ABC中,∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∴∠3=180°﹣60°﹣45°=75°,∵a∥b,∴∠2=180°﹣∠3=105°,故选:B.3.(3分)下列计算正确的是()A.a2+a3=a5 B.a2•a3=a6 C.(a2)3=a5D.a5÷a2=a3【解答】解:A、不是同类项不能合并,故A错误;B、同底数幂的乘法底数不变指数相加,故B错误;C、幂的乘方底数不变指数相乘,故C错误;D、同底数幂的除法底数不变指数相减,故D正确;故选:D.4.(3分)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD 的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD【解答】解:由题意,得∠ABC=∠BAD,AB=BA,A、∠ABC=∠BAD,AB=BA,AC=BD,(SSA)三角形不全等,故A错误;B、在△ABC与△BAD中,,△ABC≌△BAD(ASA),故B正确;C、在△ABC与△BAD中,,△ABC≌△BAD(AAS),故C正确;D、在△ABC与△BAD中,,△ABC≌△BAD(SAS),故D正确;故选:A.5.(3分)如果x2+()x+25是完全平方式,横线处填()A.5 B.10 C.±5 D.±10【解答】解:∵x2+()x+25是完全平方式,∴括号里应填±10,故选:D.6.(3分)长方形的面积为4a2﹣6ab+2a,若它的一边长为2a,则它的周长为()A.4a﹣3b B.8a﹣6b C.4a﹣3b+1 D.8a﹣6b+2【解答】解:另一边长是:(4a2﹣6ab+2a)÷2a=2a﹣3b+1,则周长是:2[(2a﹣3b+1)+2a]=8a﹣6b+2.故选:D.7.(3分)下列因式分解不正确的是()A.x2﹣6x+9=(x﹣3)2B.x2﹣y2=(x﹣y)2C.x2﹣5x+6=(x﹣2)(x﹣3)D.6x2+2x=2x(3x+1)【解答】解:A、x2﹣6x+9=(x﹣3)2,故本选项不符合题意;B、x2﹣2xy+y2=(x﹣y)2,故本选项符合题意,C、x2﹣5x+6=(x﹣2)(x﹣3),故本选项不符合题意;D、6x2+2x=2x(3x+1),故本选项不符合题意;故选:B.8.(3分)在边长为a的正方形中挖去一个边长为b的小正方形(a>b),再沿虚线剪开,如图(1),然后拼成一个梯形,如图(2),根据这两个图形的面积关系,表明下列式子成立的是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a﹣b)2【解答】解:由题可得:a2﹣b2=(a+b)(a﹣b).故选:A.9.(4分)已知10m=2,10n=3,则103m+2n=()A.17 B.72 C.12 D.36【解答】解:由题意可知:103m+2n=103m×102n=(10m)3×(10n)2=23×32=8×9=72故选:B.10.(4分)如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下三个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°.其中结论正确的个数是()A.1 B.2 C.3 D.0【解答】解:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,∵在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,本选项正确;②∵△BAD≌△CAE,∴∠ABD=∠ACE,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD⊥CE,本选项正确;③∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵∠ABD=∠ACE∴∠ACE+∠DBC=45°,本选项正确;综上所述,正确的结论有3个.故选:C.11.(4分)若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c就是完全对称式.下列三个代数式:①(a﹣b)2;②ab+bc+ca;③a2b+b2c+c2a.其中是完全对称式的是()A.①②③B.①③C.②③D.①②【解答】解:根据信息中的内容知,只要任意两个字母交换,代数式不变,就是完全对称式,则:①(a﹣b)2=(b﹣a)2;是完全对对称式.故此选项正确.②将代数式ab+bc+ca中的任意两个字母交换,代数式不变,故ab+bc+ca是完全对称式,ab+bc+ca中ab对调后ba+ac+cb,bc对调后ac+cb+ba,ac对调后cb+ba+ac,都与原式一样,故此选项正确;③a2b+b2c+c2a 若只ab对调后b2a+a2c+c2b 与原式不同,只在特殊情况下(ab 相同时)才会与原式的值一样∴将a与b交换,a2b+b2c+c2a变为ab2+a2c+bc2.故a2b+b2c+c2a不是完全对称式.故此选项错误,所以①②是③不是故选:D.12.(4分)在平面直角坐标系xOy中,已知点A(2,﹣2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有()个.A.5 B.4 C.3 D.2【解答】解:分情况进行讨论:当OA为等腰三角形的腰时,以O为圆心OA为半径的圆弧与y轴有两个交点,以A为圆心AO为半径的圆弧与y轴有一个交点;当OA为等腰三角形的底时,作线段OA的垂直平分线,与y轴有一个交点.∴符合条件的点一共4个.故选:B.二、填空题(每小题4分,共16分)13.(4分)因式分解:2a2﹣8=2(a+2)(a﹣2).【解答】解:2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).14.(4分)等腰三角形的周长是25cm,一腰上的中线将周长分为1:2两部分,则此三角形的底边长为cm.【解答】解:∵等腰三角形的周长是25cm,一腰上的中线将周长分为1:2两部分,∴两部分分别为:cm和cm,∴可知分为两种情况①AB+AD=cm,∴AB=,∴BC=;不能组成三角形;②AB+AD=cm,∴AB=cm.∴BC=cm,故这个三角形的底边长为cm.故答案为:cm.15.(4分)已知a2﹣a﹣1=0,则a2﹣a+2017=2018.【解答】解:∵a2﹣a﹣1=0,∴a2﹣a=1,则原式=1+2017=2018,故答案为:201816.(4分)如图,已知∠MON=30°,点A1、A2、A3,…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A2016B2016A2017的边长为22015.【解答】解:∵△A1B1A2为等边三角形,∴∠B1A1A2=60°,A1B1=A1A2,而∠O=30°,∴∠OB1A1=∠B1A1A2﹣∠O=60°﹣30°=30°,∴A1B1=OA1=1,∴OA2=OA1+A1A2=1+1=2,同理可得A2B2=OA2=2,A3B3=OA3=2+2=22,A4B4=OA4=2(2+2)=23,…∴△A2016B2016A2017的边长=22015.故答案为22015.三、解答题(本大题共6小题,满分64分)17.(8分)(1)(﹣2a2)3+2a2•a4;(2)(x+y)2﹣(x+y)(x﹣y)【解答】解:(1)(﹣2a2)3+2a2•a4=(﹣2)3(a2)3+2a6=﹣8a6+2a6=﹣6 a6;(2)(x+y)2﹣(x+y)(x﹣y)=x2+2xy+y2﹣(x2﹣y2)=x2+2xy+y2﹣x2+y2=2xy+2y2.18.(10分)(1)已知x+y=15,x2+y2=113,求x2﹣3xy+y2的值;(2)先化简,再求值:(2x﹣1)2﹣(3x+1)(3x﹣1)+5x(x﹣1),x=﹣.【解答】解:(1)∵x+y=15,两边平方得x2+2xy+y2=225,由于x2+y2=113,∴2xy=112,所以xy=56.∴x2﹣3xy+y2=(x2+y2)﹣3xy=113﹣3×56=﹣55.(2)原式=4x2﹣4x+1﹣(9x2﹣1)+5x2﹣5x=4x2﹣4x+1﹣9x2+1+5x2﹣5x=﹣9x+2;当x=﹣时,原式=1+2=3.19.(10分)在平面直角坐标系中,A(1,2)、B(3,1)、C(﹣2,﹣1).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)写出△ABC关于x轴对称△A2B2C2的各项点坐标A2(1,﹣2),B2(3,﹣1),C2(﹣2,1);(3)求△ABC的面积.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)A2(1,﹣2),B2(3,﹣1),C2(﹣2,1);故答案为:(1,﹣2),(3,﹣1),(﹣2,1);(3)△ABC的面积为:3×5﹣×3×3﹣×1×2﹣×2×5=.20.(12分)如图,在△ABC中,∠ABC=90°,AB=BC,BD⊥AC于点D;CE平分∠ACB,交AB于点E,交BD于点F.(1)求证:△BEF是等腰三角形;(2)求证:BD=(BC+BF).【解答】证明:(1)在△ABC中,AB=BC,BD⊥AC于点D,∴∠ABD=∠CBD,AD=CD,∵∠ABC=90°,∴∠ACB=45°,∵CE平分∠ACB,∴∠ECB=∠ACE=22.5°,∴∠BEF=∠CFD=∠BFE=67.5°,∴BE=BF,∴△BEF是等腰三角形;(2)如图,延长AB至M,使得BM=AB,连接CM,∵D是AC的中点,∴BD∥MC,BD=MC,∴∠BFE=∠MCE,由(1)得,∠BEF=∠BFE,BE=BF,∴∠BFE=∠MCE,∴ME=MC,∴BD=MC=ME=(MB+BE)=(BC+BF).21.(10分)下面是某同学对多项式(x2﹣4x﹣3)(x2﹣4x+1)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y﹣3)(y+1)+4(第一步)=y2﹣2y+1 (第二步)=(y﹣1)2(第三步)=(x2﹣4x﹣1)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的C.A.提取公因式法B.平方差公式法C.完全平方公式法(2)请你模仿以上方法尝试对多项式(x2+2x)(x2+2x+2)+1进行因式分解.【解答】解:(1)该同学第二步到第三步运用了因式分解的完全平方公式法,故选:C.(2)设x2+2x=y,原式=y2+2y+1,=(y+1)2,则(x2+2x)(x2+2x+2)+1=(x2+2x+1)2=[(x+1)2]2=(x+1)4.22.(14分)(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD 绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是2<AD<8;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.【解答】(1)解:延长AD至E,使DE=AD,连接BE,如图①所示:∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDA中,,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三边关系得:AB﹣BE<AE<AB+BE,∴10﹣6<AE<10+6,即4<AE<16,∴2<AD<8;故答案为:2<AD<8;(2)证明:延长FD至点M,使DM=DF,连接BM、EM,如图②所示:同(1)得:△BMD≌△CFD(SAS),∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三边关系得:BE+BM>EM,∴BE+CF>EF;(3)解:BE+DF=EF;理由如下:延长AB至点N,使BN=DF,连接CN,如图3所示:∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,∴∠NBC=∠D,在△NBC和△FDC中,,∴△NBC≌△FDC(SAS),∴CN=CF,∠NCB=∠FCD,∵∠BCD=140°,∠ECF=70°,∴∠BCE+∠FCD=70°,∴∠ECN=70°=∠ECF,在△NCE和△FCE中,,∴△NCE≌△FCE(SAS),∴EN=EF,∵BE+BN=EN,∴BE+DF=EF.赠送初中数学几何模型【模型二】半角型:图形特征:AB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DFE-a1.2在正方形ABCD 中,点E 、F 分别在BC、CD 上,且EF =BE +DF ,求证:∠FAE =45°E-aaBE挖掘图形特征:x-aa-a运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)求证:EF =FM(2)当AE =1时,求EF 的长.E2.如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°.以D 为顶点第21页(共22页)3.如图,梯形ABCD 中,AD ∥BC ,∠C =90°,BC =CD =2AD =4,E 为线段CD 上一点,∠ABE =45°.(1)求线段AB 的长;(2)动点P从B 出发,沿射线..BE 运动,速度为1单位/秒,设运动时间为t ,则t 为何值时,△ABP 为等腰三角形; (3)求AE -CE 的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.F第22页(共22页)。

最新2017-2018年八年级上期中数学试卷含解析

最新2017-2018年八年级上期中数学试卷含解析

八年级(上)期中数学试卷一、精心选一选(每题3分,共15分)1.(﹣2)3的值为()A.﹣6 B.6 C.﹣8 D.82.单项式﹣4πr2的系数是()A.4 B.﹣4 C.4πD.﹣4π3.下列运算正确的是()A.a4•a5=a20B.x8÷x2=x4C.(a3)2=a9D.(3a2)2=9a44.下列运算中结果正确的是()A.3a+2b=5ab B.﹣4xy+2xy=﹣2xyC.3y2﹣2y2=1 D.3x2+2x=5x35.一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的长度为y(cm)与燃烧时间x(小时)的函数关系用图象表示为下图中的()A.B.C.D.二、仔细填一填(每小题2分,共20分)6.两个单项式a5b2m与﹣a n b4是同类项,则m=,n=.7.2a+3(b﹣c)=,a3•a4÷a5=.8.﹣(2x2y3)2=;4x2﹣(﹣2xy)=.9.因式分解:a2﹣3a=.10.计算﹣6x(x﹣3y)=;(x﹣1)(x+1)﹣x2=.11.函数的自变量x的取值范围是.12.弹簧原长3cm,每加重1kg弹簧伸长0.5cm,写出弹簧长度L(m)与载重m (kg)的函数关系式为.当载重2kg时,弹簧长度为cm.13.如果正比例函数的图象经过点(1,2),那么这个正比例函数的解析式为.14.如图,直线y=5x+10与x轴、y轴交于点A,B,则△AOB的面积为.15.观察下列各式1×3=3=22﹣1,3×5=15=42﹣1,5×7=35=62﹣1,11×13=143=122﹣1…把你猜想到的规律用只含一个字母的等式表示出来.三、耐心算一算.16.计算下列各题(1)2(x﹣3x2+1)﹣3(2x2﹣2)(2)(﹣a2)3+(﹣a3)2﹣a2•a4(3)(x+3)2﹣(x+2)(x﹣1)(4)(﹣8x3y2+12x2y﹣4x2)÷(﹣2x)2(5)用简便方法计算:2008×2006﹣20072.17.分解因式(1)25m2﹣n2(2)ax2﹣2axy+ay2(3)x3﹣9x.18.先化简(2x﹣1)2﹣(3x+1)(3x﹣1)+5(x﹣1),再选取一个你喜欢的数代入求值.四、函数图象的认识.(1小题6分,2小题8分,共14分)19.“龟兔赛跑”是同学们熟悉的寓言故事,图中表示路程S(米)与时间t(分)之间的关系,那么可以知道:(1)赛跑中,免子共睡了分钟(2)乌龟在这次赛跑中的平均速度为米/分.(3)比先达到终点,你有何感想.20.如图所示的图象反映的过程是:小强星期天从家跑步去体育场,在那里锻炼了一会儿后又走到文具店去买笔,然后步行回家,其中x表示时间,y表示小强离家的距离,根据图象回答下列问题.(1)体育场离小强家有多远?小强从家到体育场用了多长时间?(2)体育场距文具店多远?(3)小强在文具店逗留了多长时间?(4)小强从文具店回家的平均速度是多少?五、(共10分)21.当m为何值时函数y=(m+2)是正比例函数.22.已知直线y=(3m﹣1)x+m﹣1,当m为何值时(1)与y轴相交于(0,3)(2)与x轴相交于(2,0)(3)图象经过一、三、四象限?六、解答题(共1小题,满分6分)23.一汽车的速度是每小时60千米,一次加满油可加40升,每小时耗油5升,t小时后行程S千米.(1)写出一次加满油后所行路程S与时间t的函数关系式.(2)求出自变量的取值范围.(3)画出这个函数的图象.七、(1小题4分,2小题7分,共11分)24.已知直线y=kx﹣6与直线y=﹣2x都经过点(m,﹣4),则点P(﹣2,4)是否在直线y=kx﹣6上?25.一次函数的图象经过点A(﹣6,4)B(3,0)(1)求这个函数的解析式.(2)画出这个函数的图象.(3)若该直线经过点(9,m),求m的值.(4)求△AOB的面积.八、阅读下面材料再填空.26.x2+(p+q)x+pq型式子的因式分解∵x2+(p+q)x+pq=x2+px+qx+pq=(x2+px)+(qx+pq)(加法结合律)=x(x+p)+q(x+p)=(x+p)(x+q)∴我们得到x2+(p+q)x+pq=(x+p)(x+q)①利用①式可以将某些二次项系数为1的二次三项式分解因式.例把x2+3x+2分解因式分析:x2+3x+2中的二次项系数为1,常数项2=1×2,一次项系数3=1+2,这是一个x2+(p+q)x+pq型式子.∴解:x2+3x+2=(x+1)(x+2)请仿照上面的方法将下列多项式分解因式:①x2+7x+10=;②x2﹣2y﹣8=.八年级(上)期中数学试卷参考答案与试题解析一、精心选一选(每题3分,共15分)1.(﹣2)3的值为()A.﹣6 B.6 C.﹣8 D.8【考点】有理数的乘方.【分析】根据有理数乘方的法则计算:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.【解答】解:(﹣2)3=﹣8,故选C.2.单项式﹣4πr2的系数是()A.4 B.﹣4 C.4πD.﹣4π【考点】单项式.【分析】根据单项式系数的定义来选择,单项式中数字因数叫做单项式的系数.【解答】解:由单项式系数的定义,单项式﹣4πr2的系数是﹣4π.故选D.3.下列运算正确的是()A.a4•a5=a20B.x8÷x2=x4C.(a3)2=a9D.(3a2)2=9a4【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】直接利用同底数幂的乘除法运算法则以及结合积的乘方运算法则计算得出答案.【解答】解:A、a4•a5=a9,故此选项计算错误,不合题意;B、x8÷x2=x6,故此选项计算错误,不合题意;C、(a3)2=a6,故此选项计算错误,不合题意;D、(3a2)2=9a4,正确,符合题意.故选:D.4.下列运算中结果正确的是()A.3a+2b=5ab B.﹣4xy+2xy=﹣2xyC.3y2﹣2y2=1 D.3x2+2x=5x3【考点】合并同类项.【分析】直接利用合并同类项法则分别判断得出答案.【解答】解:A、3a+2b,无法合并,故此选项错误;B、﹣4xy+2xy=﹣2xy,正确;C 、3y 2﹣2y 2=y 2,故此选项错误;D 、3x 2+2x ,无法合并,故此选项错误;故选:B .5.一根蜡烛长20cm ,点燃后每小时燃烧5cm ,燃烧时剩下的长度为y (cm )与燃烧时间x (小时)的函数关系用图象表示为下图中的( )A .B .C .D .【考点】一次函数的应用;一次函数的图象.【分析】根据实际情况即可解答.【解答】解:蜡烛剩下的长度随时间增长而缩短,根据实际意义不可能是D ,更不可能是A 、C .故选B .二、仔细填一填(每小题2分,共20分)6.两个单项式a 5b 2m 与﹣a n b 4是同类项,则m= 2 ,n= 5 .【考点】同类项.【分析】根据同类项的定义直接可得到m、n的值.【解答】解:∵单项式a5b2m与﹣a n b4是同类项,∴2m=4,n=5.即m=2,n=5.故答案为:2;5.7.2a+3(b﹣c)=2a+3b﹣3c,a3•a4÷a5=a7.【考点】同底数幂的除法;同底数幂的乘法.【分析】直接利用同底数幂的乘除法运算法则以及结合去括号法则计算得出答案.【解答】解:2a+3(b﹣c)=2a+3b﹣3c,a3•a4÷a5=a12÷a5=a7.故答案为:2a+3b﹣3c,a7.8.﹣(2x2y3)2=﹣4x4y6;4x2﹣(﹣2xy)=4x2+2xy.【考点】幂的乘方与积的乘方.【分析】直接利用积的乘方运算法则求出答案.【解答】解:﹣(2x2y3)2=﹣4x4y6;4x2﹣(﹣2xy)=4x2+2xy.故答案为:﹣4x4y6;4x2+2xy.9.因式分解:a2﹣3a=a(a﹣3).【考点】因式分解﹣提公因式法.【分析】直接把公因式a提出来即可.【解答】解:a2﹣3a=a(a﹣3).故答案为:a(a﹣3).10.计算﹣6x(x﹣3y)=﹣6x2+18xy;(x﹣1)(x+1)﹣x2=﹣1.【考点】平方差公式;单项式乘多项式.【分析】根据单项式乘以多项式法则求出即可;根据平方差公式展开,再合并同类项即可.【解答】解:﹣6x(x﹣3y)=﹣6x2+18xy,(x﹣1)(x+1)﹣x2=x2﹣1﹣x2=﹣1,故答案为:﹣6x2+18xy,﹣1.11.函数的自变量x的取值范围是x≥2.【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,x﹣2≥0,解得x≥2.故答案为:x≥2.12.弹簧原长3cm,每加重1kg弹簧伸长0.5cm,写出弹簧长度L(m)与载重m (kg)的函数关系式为L=3+0.5m.当载重2kg时,弹簧长度为4cm.【考点】函数关系式.【分析】根据题意列出函数关系式,然后将m=2代入函数关系式即可求出弹簧长度.【解答】解:由题意可知:L=3+0.5m当m=2时,L=4,故答案为:L=3+0.5m;413.如果正比例函数的图象经过点(1,2),那么这个正比例函数的解析式为y=2x.【考点】待定系数法求正比例函数解析式.【分析】运用待定系数法求解析式.【解答】解:设此直线的解析式是y=kx,把(1,2)代入得:k=2,即直线的解析式是:y=2x.14.如图,直线y=5x+10与x轴、y轴交于点A,B,则△AOB的面积为10.【考点】一次函数图象上点的坐标特征.【分析】根据直线y=x+3的解析式可求出A、B两点的坐标,从而求得OA、OB 的长,然后根据三角形面积公式即可求得△AOB的面积.【解答】解:∵直线y=5x+10交x轴于点A,交y轴于点B,∴令y=0,则x=﹣2;令x=0,则y=10;∴A(﹣2,0),B(0,10),∴OA=2,OB=10,∴△AOB的面积=×2×10=10.故答案为10.15.观察下列各式1×3=3=22﹣1,3×5=15=42﹣1,5×7=35=62﹣1,11×13=143=122﹣1…把你猜想到的规律用只含一个字母的等式表示出来(n﹣1)(n+1)=n2﹣1(n≥2,且是正整数).【考点】规律型:数字的变化类.【分析】根据给出的格式可得出:两个相邻的奇数相乘等于这两个奇数中间的偶数的平方减去1,根据此列出等式表示即可.【解答】解:∵1×3=3=22﹣1,3×5=15=42﹣1,5×7=35=62﹣1,11×13=143=122﹣1…,∴规律为:(n﹣1)(n+1)=n2﹣1(n≥2,且是正整数).故答案为:(n﹣1)(n+1)=n2﹣1(n≥2,且是正整数).三、耐心算一算.16.计算下列各题(1)2(x﹣3x2+1)﹣3(2x2﹣2)(2)(﹣a2)3+(﹣a3)2﹣a2•a4(3)(x+3)2﹣(x+2)(x﹣1)(4)(﹣8x3y2+12x2y﹣4x2)÷(﹣2x)2(5)用简便方法计算:2008×2006﹣20072.【考点】整式的混合运算.【分析】(1)原式去括号合并即可得到结果;(2)原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果;(3)原式利用完全平方公式,以及多项式乘以多项式法则计算,去括号合并即可得到结果;(4)原式利用积的乘方运算法则变形,再利用多项式除以单项式法则计算即可得到结果;(5)原式变形后,利用平方差公式计算即可得到结果.【解答】解:(1)原式=2x﹣6x2+2﹣6x2+6=﹣12x2+2x+8;(2)原式=﹣a6+a6﹣a6=﹣a6;(3)原式=x2+6x+9﹣x2﹣x+2=5x+11;(4)原式=(﹣8x3y2+12x2y﹣4x2)÷4x2=﹣2xy2+3y﹣1;(5)原式=×﹣20072=20072﹣1﹣20072=﹣1.17.分解因式(1)25m2﹣n2(2)ax2﹣2axy+ay2(3)x3﹣9x.【考点】提公因式法与公式法的综合运用.【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可;(3)原式提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=(5m+n)(5m﹣n);(2)原式=a(x2﹣2xy+y2)=a(x﹣y)2;(3)原式=x(x2﹣9)=x(x+3)(x﹣3).18.先化简(2x﹣1)2﹣(3x+1)(3x﹣1)+5(x﹣1),再选取一个你喜欢的数代入求值.【考点】整式的混合运算—化简求值.【分析】原式利用完全平方公式,平方差公式计算,去括号合并得到最简结果,把x=0代入计算即可求出值.【解答】解:原式=4x2﹣4x+1﹣9x2+1+5x﹣5=﹣5x2+x﹣3,当x=0时,原式=﹣3.四、函数图象的认识.(1小题6分,2小题8分,共14分)19.“龟兔赛跑”是同学们熟悉的寓言故事,图中表示路程S(米)与时间t(分)之间的关系,那么可以知道:(1)赛跑中,免子共睡了40分钟(2)乌龟在这次赛跑中的平均速度为10米/分.(3)乌龟比免子先达到终点,你有何感想做事不能骄傲.【考点】函数的图象.【分析】(1)时间在增多,路程没有变化时,说明兔子在睡觉,时间为50﹣10;(2)平均速度=总路程÷总时间;(3)根据图象即可得到结论.【解答】解:(1)50﹣10=40分钟;故答案为:40;(2)500÷50=10米/分钟.故答案为:10.(3)乌龟比免子先达到终点,你有何感想:做事不能骄傲.故答案为:乌龟,免子,做事不能骄傲.20.如图所示的图象反映的过程是:小强星期天从家跑步去体育场,在那里锻炼了一会儿后又走到文具店去买笔,然后步行回家,其中x表示时间,y表示小强离家的距离,根据图象回答下列问题.(1)体育场离小强家有多远?小强从家到体育场用了多长时间?(2)体育场距文具店多远?(3)小强在文具店逗留了多长时间?(4)小强从文具店回家的平均速度是多少?【考点】函数的图象.【分析】(1)根据观察函数图象的纵坐标,可得距离,观察函数图象的横坐标,可得时间;(2)根据观察函数图象的横坐标,可得体育场与文具店的距离;(3)观察函数图象的横坐标,可得在文具店停留的时间;【解答】解:(1)由纵坐标看出体育场离陈欢家2.5千米,由横坐标看出小刚在体育场锻炼了15分钟;(2)由纵坐标看出体育场离文具店3.5﹣2.5=1(千米);(3)由横坐标看出小刚在文具店停留55﹣35=20(分);(4)小强从文具店回家的平均速度是3.5÷=(千米/分).五、(共10分)21.当m为何值时函数y=(m+2)是正比例函数.【考点】正比例函数的定义.【分析】直接利用正比例函数的定义分析得出即可.【解答】解:根据题意,得:,由①,得:m=2或m=﹣2,由②,得:m≠﹣2,∴m=2,即当m=2时函数y=(m+2)是正比例函数.22.已知直线y=(3m﹣1)x+m﹣1,当m为何值时(1)与y轴相交于(0,3)(2)与x轴相交于(2,0)(3)图象经过一、三、四象限?【考点】一次函数图象与系数的关系.【分析】(1)把(0,3)代入直线解析式,求出m的值即可;(2)(2,0)代入直线解析式,求出m的值即可;(3)根据函数的图象的位置列出关于m的不等式,求出m的取值范围即可.【解答】解:(1)∵直线与y轴相交于点(0,3),∴m﹣1=3,解得m=4;(2)∵直线x轴相交于点(2,0),∴2(3m﹣1)+m﹣1=0,解得m=;(3)∵直线y=(3m﹣1)x+m﹣1图象经过一、三、四象限,∴,解得:<m<1.六、解答题(共1小题,满分6分)23.一汽车的速度是每小时60千米,一次加满油可加40升,每小时耗油5升,t小时后行程S千米.(1)写出一次加满油后所行路程S与时间t的函数关系式.(2)求出自变量的取值范围.(3)画出这个函数的图象.【考点】一次函数的应用.【分析】(1)根据题意可以得到一次加满油后所行路程S与时间t的函数关系式;(2)根据一次加满油可加40升,每小时耗油5升,可以得到t的取值范围;(3)根据(1)中的函数解析式和(2)中自变量的取值范围,可以画出相应的函数图象.【解答】解:(1)由题意可得,路程S与时间t的函数关系式为:S=60t;(2)∵一次加满油可加40升,每小时耗油5升,∴5t≤40,得t≤8,∴自变量的取值范围是:0≤t≤8;(3)当t=0时,S=0;当t=1时,S=60,故这个函数的图象如右图所示.七、(1小题4分,2小题7分,共11分)24.已知直线y=kx﹣6与直线y=﹣2x都经过点(m,﹣4),则点P(﹣2,4)是否在直线y=kx﹣6上?【考点】两条直线相交或平行问题.【分析】直接利用图象上点的坐标性质得出m的值,进而得出k的值,进而判断点P(﹣2,4)是否在直线y=kx﹣6上.【解答】解:∵直线y=kx﹣6与直线y=﹣2x都经过点(m,﹣4),∴﹣4=﹣2m,解得:m=2,故﹣4=2k﹣6,解得:k=1,故y=x﹣6,当x=﹣2时,y=﹣2﹣6=﹣8,故点P(﹣2,4)不在直线y=kx﹣6上.25.一次函数的图象经过点A(﹣6,4)B(3,0)(1)求这个函数的解析式.(2)画出这个函数的图象.(3)若该直线经过点(9,m),求m的值.(4)求△AOB的面积.【考点】待定系数法求一次函数解析式;一次函数的图象;一次函数图象上点的坐标特征.【分析】(1)利用待定系数法把点A(﹣6,4)B(3,0)代入y=kx+b,可得关于k、b的方程组,再解出方程组可得k、b的值,进而得到函数解析式;(2)根据题意作出图象即可;(3)把(9,m)代入y=2x﹣2,即可求得m的值;(4)根据三角形的面积公式即可得到结论.【解答】解:(1)设一次函数为:y=kx+b,∵一次函数的图象经过点A(﹣6,4)B(3,0),∴,解得:∴这个一次函数的表达式为y=﹣x+;(2)图象如图所示,(3)把(9,m)代入y=﹣x+,得m=﹣;=×3×4=6.(4)S△AOB八、阅读下面材料再填空.26.x2+(p+q)x+pq型式子的因式分解∵x2+(p+q)x+pq=x2+px+qx+pq=(x2+px)+(qx+pq)(加法结合律)=x(x+p)+q(x+p)=(x+p)(x+q)∴我们得到x2+(p+q)x+pq=(x+p)(x+q)①利用①式可以将某些二次项系数为1的二次三项式分解因式.例把x2+3x+2分解因式分析:x2+3x+2中的二次项系数为1,常数项2=1×2,一次项系数3=1+2,这是一个x2+(p+q)x+pq型式子.∴解:x2+3x+2=(x+1)(x+2)请仿照上面的方法将下列多项式分解因式:①x2+7x+10=(x+2)(x+5);②x2﹣2y﹣8=(y﹣4)(y+2).【考点】因式分解﹣十字相乘法等.【分析】根据x2+(p+q)x+pq=(x+p)(x+q)容易得出答案.【解答】解:①x2+7x+10=(x+2)(x+5);故答案为:(x+2)(x+5);②x2﹣2y﹣8=(y﹣4)(y+2);故答案为:(y﹣4)(y+2).2017年5月13日。

2017-2018学年八年级数学上学期期中考试原(含答案)

2017-2018学年八年级数学上学期期中考试原(含答案)

2017-2018学年上学期期中原创卷A卷八年级数学(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:人教版第11~13章。

第Ⅰ卷一、选择题(本大题共15小题,每小题3分,共45分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知三角形的两边长分别为4 cm和9 cm,则下列长度的四条线段中能作为三角形的第三边的是A.13 cm B.6 cm C.5 cm D.4 cm2.中国汽车工业经过100 多年的发展,已成为世界上规模大和重要的产业之一,下面是我国部分汽车标志图形,其中不是轴对称图形是A B C D△的高的是3.下面四个图形中,线段BE是ABCA.B.C.D.4.如果正多边形的一个内角是140°,则这个多边形是A.正十边形B.正九边形C.正八边形D.正七边形5.下列说法不正确的是A.三角形的一个外角等于两个内角的和B.三角形具有稳定性C .四边形的内角和与外角和相等D .角是轴对称图形6.如图,ABC BAD △≌△,点A 和点B ,点C 和点D 是对应点.如果AB =6厘米,BD =5厘米,AD =4厘米,那么BC 的长是 A .6 cmB .5 cmC .4 cmD .不能确定7.如图,ABC △中,AB AC =,点D 在AC 边上,且BD BC AD ==,则A ∠的度数为 A .36°B .45°C .54°D .72°8.如图,在ABC △中,∠BAC =56°,∠ABC =74°,BP 、CP 分别平分∠ABC 和∠ACB ,则∠BPC =A .102°B .112°C .115°D .118°9.如图,在ABC △中, AB AC =, 36A ∠=︒, BD 、CE 分别是ABC ∠、BCD ∠的角平分线,则图中的等腰三角形有 A .5个B .4个C .3个D .2个10.在ABC △和A B C '''△中,下面能得到ABC A B C '''△≌△的条件是A .AB A B AC AC B B =''=''∠=∠',, B . AB A B BC B C A A =''=''∠=∠',, C .AC AC BC B C C C =''=''∠=∠',,D .AC AC BC B C B B =''=''∠=∠',,11.如图,BD 是∠ABC 的平分线,DE ⊥AB 于E ,AB =36 cm,BC =24 cm, 2120cm ABC S =△,DE 长是A .4 cmB . 4.8 cmC . 5 cmD .无法确定12.使两个直角三角形全等的条件是A .一个锐角对应相等B .两个锐角对应相等C .一条边对应相等D .斜边及一条直角边对应相等 13.如图,已知40AOB ∠=︒,在AOB ∠的两边OA OB 、上分别存在点Q 、点P ,过点Q 作直线QR OB ∥,当OP QP =时,∠PQR 的度数是 A .60°B .80°C .100°D .120°14.如图,ABC △的面积为10 cm 2,AP 垂直∠B 的平分线BP 于点P ,则PBC △的面积为A .4 cm 2B .5 cm 2C .6 cm 2D .7 cm 215.如图,已知点B 、C 、D 在同一条直线上,ABC △和CDE △都是等边三角形.BE 交AC 于F ,AD 交CE 于G .则下列结论中错误的是A .AD =BEB .BE ⊥AC C . CFG △为等边三角形D . FG ∥BC第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)16.如图,ABC △中,∠B =45°,∠C =72°,则∠1的度数为__________.17.一个四边形,截一刀后得到的新多边形的内角和为__________. 18.若等腰三角形的一个角为80︒,则顶角为__________.19.已知点A (2a +3b ,−2)和A '(−1,3a +b )关于y 轴对称,则a +b 的值为__________.20.如图,ABC △中,90C ∠=︒,60BAC ∠=︒,AD 是角平分线,若8BD =,则CD 等于__________.21.如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C .若P 是BC 边上一动点,则DP 长的最小值为__________.三、解答题(本大题共7小题,共57分.解答应写出文字说明、证明过程或演算步骤)22.(本小题满分7分)如果a 、b 、c 是ABC △的三边,满足(b ﹣3)2+|c ﹣4|=0,a 为奇数,求ABC △的周长.23.(本小题满分7分)如图,,100,75AB CD A C ∠=︒∠=︒∥,∠1∶∠2=5∶7,求∠B 的度数.24.(本题满分8分)已知:如图,在ABC △中, D 为BC 上的一点, AD 平分EDC ∠,且E B ∠=∠, DE DC =.求证: AB AC =.25.(本小题满分8分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与直线l 成轴对称的A B C '''△; (2)线段CC ′被直线l ; (3)ABC △的面积为 ;(4)在直线l 上找一点P ,使PB+PC 的长最短.26.(本小题满分9分)如图,已知在四边形ABCD 中,点E 在AD 上,∠BCE =∠ACD =90°,∠BAC =∠D ,BC =CE .(1)求证:AC =CD ;(2)若AC =AE ,求∠DEC 的度数.27.(本小题满分9分)如图,在Rt ABC △中,∠A =90°,AB=AC=4 cm ,若O 是BC 的中点,动点M 在AB 上移动,动点N在AC上移动,且AN=BM .(1)证明:OM = ON;(2)在点M,N运动的过程中,四边形AMON的面积是否发生变化,若发生变化,请说明理由;若不变,请你求出四边形AMON的面积.△边AB上一动点(不与A,B重合)分别过点A,B向直线CD作垂28.(本小题满分9分)已知点D是ABC线,垂足分别为E,F,O为边AB的中点.(1)如图1,当点D与点O重合时,AE与BF的位置关系是____________,OE与OF的数量关系是__________;(2)如图2,当点D在线段AB上不与点O重合时,试判断OE与OF的数量关系,并给予证明;(3)如图3,当点D在线段BA的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路.(备注:直角三角形中,斜边上的中线等于斜边的一半)2017-2018学年上学期期中原创卷A卷八年级数学答案一、选择题(本大题共15小题,每小题3分,共45分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知三角形的两边长分别为4 cm和9 cm,则下列长度的四条线段中能作为三角形的第三边的是A.13 cm B.6 cm C.5 cm D.4 cm【答案】B2.中国汽车工业经过100 多年的发展,已成为世界上规模大和重要的产业之一,下面是我国部分汽车标志图形,其中不是轴对称图形是A B C D【答案】C△的高的是3.下面四个图形中,线段BE是ABCA.B.C.D.【答案】D4.如果正多边形的一个内角是140°,则这个多边形是A.正十边形B.正九边形C.正八边形D.正七边形【答案】B5.下列说法不正确的是A.三角形的一个外角等于两个内角的和B.三角形具有稳定性C.四边形的内角和与外角和相等D.角是轴对称图形【答案】A△≌△,点A和点B,点C和点D是对应点.如果AB=6厘米,BD=5厘米,AD=4厘米,6.如图,ABC BAD那么BC的长是A.6 cm B.5 cm C.4 cm D.不能确定【答案】B解:∵△ABC≌△BAD,对应为点A对点B,点C对点D,∴AC=BD∵BD=5cm(已知)∴AC=5cm故选B.7.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A为A.36° B.45° C.54° D.72°【答案】A∵BD=BC=AD,AC=AB,∴∠A=∠ABD,∠C=∠ABC=∠CDB,设∠A=x°,则∠ABD=∠A=x°,∴∠C=∠ABC=∠CDB=∠A+∠ABD=2x°∵∠A+∠C+∠ABC=180°∴x+2x+2x= 180,∴x=36,∴∠A=36° .故选B .△中,∠BAC=56°,∠ABC=74°,BP、CP分别平分∠ABC和∠ACB,则∠BPC= 8.如图,在ABCA.102°B.112°C.115°D.118°【答案】D∵∠BAC=56°,∠A+∠ABC+∠ACB= 180°,∴∠ABC+∠ACB2=62°∵BP 、CP 分别平分∠ABC 和∠ACB , ∴∠BPC +∠ABC+∠ACB2= 180°∴∠BPC=118° .9.如图,在ABC △中, AB AC =, 36A ∠=︒, BD 、CE 分别是ABC ∠、BCD ∠的角平分线,则图中的等腰三角形有 A .5个B .4个C .3个D .2个【答案】A10.在ABC △和A B C '''△中,下面能得到ABC A B C '''△≌△的条件是A .AB A B AC AC B B =''=''∠=∠',, B . AB A B BC B C A A =''=''∠=∠',, C .AC AC BC B C C C =''=''∠=∠',,D .AC AC BC B C B B =''=''∠=∠',, 【答案】C11.如图,BD 是∠ABC 的平分线,DE ⊥AB 于E ,AB =36cm ,BC =24cm ,2120cm ABC S =△,DE 长是( )A .4 cmB . 4.8 cmC . 5 cmD .无法确定【答案】A12.使两个直角三角形全等的条件是( )A .一个锐角对应相等B .两个锐角对应相等C .一条边对应相等D .斜边及一条直角边对应相等 【答案】D13.如图,已知∠AOB=40°,在∠AOB 的两边OA 、OB 上分别存在点Q 、点P ,过点Q 作直线QR ∥OB ,当OP=QP 时,∠PQR ∠的度数是( ) A .60°B .80°C .100°D .120°【答案】C14.如图,ABC △的面积为10 cm 2,AP 垂直∠B 的平分线BP 于点P ,则PBC △的面积为A .4 cm 2B .5 cm 2C .6 cm 2D .7 cm 2【答案】B15.如图,已知点B 、C 、D 在同一条直线上,ABC △和CDE △都是等边三角形.BE 交AC 于F ,AD 交CE 于G .则下列结论中错误的是A .AD =BEB .BE ⊥AC C . CFG △为等边三角形D . FG ∥BC【答案】B第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)16.如图,ABC △中,∠B =45°,∠C =72°,则∠1的度数为__________.【答案】117°解:∵∠1是OABC 的外角,且∠B=45°,∠C=72° ∴∠1=∠A+∠B=45°+72°=117° . 故答案为: 117°17.一个四边形,截一刀后得到的新多边形的内角和为__________.【答案】180°或360°或540°解:∵一个四边形截一刀后得到的多边形可能是三角形,可能是四边形,也可能是五边形,∴内角和为180°或360°或540°故答案为:180°或360°或540°18.若等腰三角形的一个角为80 ,则顶角为__________.【答案】80°或20°解:(1 )当80°的角是顶角时,顶角是80°;(2 )当80°的角是底角时,顶角的度数是:180°-80°- 80°= 100°- 80°=20°综上,可得等腰三角形的顶角是20°或80°故选:C.19.已知点A(2a+3b,−2)和A'(−1,3a+b)关于y轴对称,则a+b的值为__________.【答案】0解:∵点A( 2a+3b,−2 )和点A′ (−1 ,3a+b )关于y轴对称∴2a+3b=1,3a+b=−2∴2 ( 2a+3b ) +3a+b=1×2+ (−2 ) =0∴a+b=020.如图,△ABC中,∠C =90°,∠BAC=60°,AD是角平分线,若BD=8,则CD等于__________.【答案】4解:∵∠C=90°,∠BAC=60°∴∠B=30°∵AD是角平分线∴∠DAB=∠CAD=∠B=30°∴AD=BD=8∴CD=12AB=4 故答案为:421.如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C .若P 是BC 边上一动点,则DP 长的最小值为__________.【答案】4解:根据垂线段最短,当DP ⊥BC 的时候, DP 的长度最小,∵BD ⊥CD ,即∠BDC=90°,又∠A=90°∴∠A=∠BDC ,又∠ADB=∠C∴∠ABD=∠CBD ,又DA ⊥BA , DP ⊥BC∴AD=DP ,又AD=4∴DP=4故答案为: 4三、解答题(本大题共7小题,共57分.解答应写出文字说明、证明过程或演算步骤)22.(本小题满分7分)如果a 、b 、c 是△ABC 的三边,满足(b ﹣3)2+|c ﹣4|=0,a 为奇数,求ABC △的周长.【答案】解: ∵ (b −3)2≥0,|c −4|≥0且(b −3)2 +|c −4|=0 ,∴(b −3)2=0,|c −4|=0,∴b =3 , c =4∵4−3<a <4+3且a 为奇数,∴a =3或5当a =3时,△ABC 的周长是3+4+3=10当a =5时,△ABC 的周长是3+4+5=1223.(本小题满分7分)如图,,100,75AB CD A C ∠=︒∠=︒∥,∠1∶∠2=5∶7,求∠B 的度数.【答案】解:设∠1=5x °,∠2=7x °,在△ABE 中,∠B =180°−∠A −∠2=180°−100°−7x °=80°−7x °在△CDE 中,∠CDE =180°−∠C −∠1−∠2=180°−75°−5x °−7x °=105°− 12x °, ∵AB//CD ,∴∠B=∠CDE ,∴80°−7x°=105°− 12x°解得:x =5,∴∠B =80°−7x °=45°24.(本题满分8分)已知:如图,在△ABC 中, D 为BC 上的一点, AD 平分∠EDC ,且E B ∠=∠, DE DC =.求证: AB AC =.【答案】证明:∵AD 平分∠EDC∴∠ADE=∠ADC ,在△AED 和△ACD 中{DE =DC∠ADE =∠ADC AD =AD∴△AED ≌△ACD ( SAS )∴∠C=∠E又∵∠E=∠B∴∠C=∠B∴AB=AC25.(本小题满分8分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与直线l 成轴对称的A B C '''△;(2)线段CC ′被直线l ;(3)ABC △的面积为 ;(4)在直线l 上找一点P ,使PB+PC 的长最短.【答案】( 1 )无(2)垂直平分(3) 3(4)无26.(本小题满分9分)如图,已知在四边形ABCD 中,点E 在AD 上,∠BCE =∠ACD =90°,∠BAC =∠D ,BC =CE .(1)求证:AC =CD ;(2)若AC =AE ,求∠DEC 的度数.【答案】解: ∵∠BCE=∠ACD=90°∴∠3+∠4=∠4+∠5∴∠3=∠5在△ABC 和△DEC 中,{∠l =∠D∠3=∠5BC =CE∴△ABC ≌△DEC ( AAS ),∴AC=CD ;(2 ) ∵∠ACD=90°,AC=CD ,∴∠2=∠D=45°∵AE=AC∴∠4=∠6=67.5°∴∠DEC=180°-∠6=112.5°.27.(本小题满分9分)如图,在Rt ABC△中,∠A=90°,AB=AC=4 cm,若O是BC的中点,动点M在AB上移动,动点N在AC上移动,且AN=BM .(1)证明:OM = ON;(2)在点M,N运动的过程中,四边形AMON的面积是否发生变化,若发生变化,请说明理由;若不变,请你求出四边形AMON的面积.【答案】解:(1)连接OA∵∠A=90°,AB=AC又∵O是BC的中点∴OA=OB=OC,(直角三角形中,斜边上的中线是斜边的一半)∴∠CAO=∠BAO=45°在△ONA和△OMB中{OA=OB∠CAO=∠BAO AN=BM∴△ONA≌△OMB ( SAS)∴OM=ON ( 全等三角形的对应边相等)(2)不变,理由如下:由上知△ONA≌△OMB∴S△ONA=S△OMB∴S四边形ANOM=S△ONA+S△OMA=S△OMB+S△OMA=S△OAB∴S四边形ANOM=S△OAB=12S△ABC=4(cm2)28.(本小题满分9分)已知点D 是ABC △边AB 上一动点(不与A ,B 重合)分别过点A ,B 向直线CD 作垂线,垂足分别为E ,F ,O 为边AB 的中点.(1)如图1,当点D 与点O 重合时,AE 与BF 的位置关系是____________,OE 与OF 的数量关系是__________;(2)如图2,当点D 在线段AB 上不与点O 重合时,试判断OE 与OF 的数量关系,并给予证明;(3)如图3,当点D 在线段BA 的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路. (备注:直角三角形中,斜边上的中线等于斜边的一半)【答案】解:(1)如图1,当点D 与点O 重合时,AE 与BF 的位置关系是AE//BF , OE 与OF 的数量关系是OE=OF ,理由是:∵O 为AB 的中点∴AQ=BO∵AE ⊥CO, BF ⊥CO∴AE//BF ,∠AEO=∠BFO=90°在△AEO 和△BFO 中{∠AOE =∠BOF∠AEO =∠BFO AO =BO∴△AEO ≌△BFO ,∴OE=OF ,故答案:AE//BF ;OE=OF(2)OE=OF证明:延长EO 交BF 于M∵由(1)知:AE//BF∴∠AEO=∠BMO在△AEO 和△BMO 中{∠AOE =∠BOM∠AEO =∠BMO AO =BO∴△AEO ≌△BMO∴EO=MO∵∠BFE=90°∴OE=OF(3)当点D在线段BA(或AB)的延长线上时,此时(2)中的结论成立,证明:延长EO交FB于M,∵由(1)知:AE//BF∴∠AEO=∠BMO在△AEO和△BMO中{∠AOE=∠BOM∠AEO=∠BMOAO=BO∴△AEO≌△BMO∴EO=DO∵∠BFE=90°∴OE=OF。

山东省烟台市2017-2018年初二数学第一学期期中考试试题及答案

山东省烟台市2017-2018年初二数学第一学期期中考试试题及答案

山东省烟台市2017-2018年初二数学第一学期期中考试试题及答案(120分钟120分)一、 选择题(3′×12=36′)1、在23310227,3.1415926,0.123123123,,4,,25,,32π⋅⋅⋅0.1010010001⋅⋅⋅(相邻两个“1”之间依次多一个“0”)中,无理数的个数为( )A .2个B .3个C .4个D .5个2、下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( ) A . B . C . D .3、下列说法正确的是( )A. 角是轴对称图形,它的平分线就是它的对称轴;B. 等腰三角形的内角平分线,中线和高三线合一;C. 直角三角形不是轴对称图形;D. 等边三角形有三条对称轴.4、已知a ,b ,c 是ΔABC 的三条边长,化简a b c c a b +----的结果为( )A. 2a +2b-cB. 2a +2bC. 2cD. 05、已知,如图,B 、C 、E 三点在同一条直线上,AC=CD ,∠B=∠E=90°,AB=CE ,则不正确的结论是( )A .∠A 与∠D 互为余角B .∠A=∠DCEC .△ABC ≌△CED D .∠ACB=∠DCE 6、若一个三角形的两边长分别为5和8,则第三边长可能是( )A. 14B. 10C. 3D. 27、已知正数m 满足m <38<m +1,则m 的值为( )A. 4B. 5C. 6D. 78、如图,在△PAB 中,PA=PB ,M ,N ,K 分别是PA ,PB ,AB 上的点,且AM=BK ,BN=AK ,若∠MKN=42°,则∠P 的度数为( )A .44°B .66°C .96°D .92°9、如图,已知点A 、D 、C 、F 在同一直线上,AB=DE ,BE=CF ,添加下列条件后,仍不能判断△ABC ≌△DEF 的是( )A .BC=EFB .∠B=∠DEF C. AB ∥DE D .∠BCA=∠F10、如图,△ABC 与△A′B′C′关于直线l 对称,则∠B 的度数为( )A. 100°B. 90°C. 50°D. 30°11、如图,△ABC 和△DCB 中,∠A=∠D=72°,∠ACB=∠DBC=36°,则图中等腰三角形的个数是( )A . 7cmB . 10cmC . 12cm D. 22cm12、如图,若用我们数学课本上采用的科学计算器进行计算,其按键顺序如下:则输出结果因为( )A. 12B. 132C. 172D. 252二、填空题(3分×6=18)13、一个正数x 的两个平方根分别是2a -3和a -9,则x = ;14、如图所示,两个三角形全等,其中已知某些边的长度和某些角的度数,则x = ;15、如图,在△ABC 中,∠B=∠ACB ,∠BAC 和∠ACB 的角平分线交于D 点,∠ADC=100°,则∠CAB= ;16、在△ABC 中,∠A:∠B:∠C=2:3:4,则∠A 的度数为 ;17、若m 是16的算术平方根,则m +3= .18、如图,∠BAC=110°,若A ,B 关于直线MP 对称,A ,C 关于直线NQ 对称,则∠PAQ 的度数是 .三、解答题(66分)19、(9分)()()()223112822-+-+-+(2)()2352227----- (3)33271893111864256⋅---20、(5分)阅读下面的文字,解答问题.大家知道2是无理数,而无理数是无限不循环小数.因此,2的小数部分我们不可能全部地写出来,但是由于1<2<2,所以2的整数部分为1,将2减去其整数部分1,差就是小数部分,根据以上的内容,解答下面的问题:(1)5的整数部分是_______,小数部分是______;(2)2+6的小数部分为a,5-6小数部分是b,求a+b的值21、(6分)如图,已知∠ABC=90°,D是AB延长线上的点,AD=BC,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,求证:FD⊥CD.22、(8分)如图,在△ABC中,AD平分∠BAC,CD⊥AD于点D,∠DCB=∠B,若AC=10,AB=25,求CD之长.23、(8分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.24、(8分)如图,在Rt△ABC中,∠C=90°,AC=10cm,BC=5cm.一条线段PQ=AB,P、Q两点分别在AC上和过A点且垂直于AC的射线AQ上运动,问P点运动到AC上什么位置时由P、Q、A三点构成的三角形与△ABC全等?并说明理由.25、(12分)如图,已知O点是∠APB内的一点,M,N分别是点O关于PA、PB的对称点,连接MN,与PA、PB分别相交于点E、F,已知MN=6cm.(1)求△OEF的周长;(2)连接PM、PN,若∠APB=α,求∠MPN(用含α的代数式表示);(3)当∠α=30°时,试判定△PMN的形状,并说明理由.26、(10分)如图,Pt△ABC中,直角边AC=7cm,BC=3cm,CD为斜边AB上的高,点E从点B出发沿直线BC以2cm/s的速度移动,过点E作BC的垂线交直线CD于点F.(1)求证:∠A=∠BCD;(2)点E运动多长时间,CF=AB?并说明理由.2017-2018学年度初二数学答案一、选择题(每小题3分,共36分)CBDDD BCCDA DC二、填空题(每小题3分,共18分)13.25 14.60 15.140° 16.40° 17.5 18.40°三、解答题:19.解:⑴原式=22221+-+---------- 2分 =212 -------------------3分(2)原式=3225++-----------5分=26+ ----------6分(3)原式=16154523-⎪⎭⎫⎝⎛-⨯----------8分=1645------------9分20.解:(1)2 5-2(2)26462-=-+=a ,63265-=--=b , ------------3分∴6326-+-=+b a =1 -----5分21.证明:∵AF ⊥AD ,∠ABC=90°,∴∠FAD=∠DBC=90°,在△FAD 与△DBC 中,⎪⎩⎪⎨⎧=∠=∠=BDAF DBC FAD BCAD ,∴△FAD ≌△DBC (SAS );--------3分∴∠FDA=∠DCB ,∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°, ----------------------4分∴∠FDC=90°,∴DF ⊥CD . ---------------6分-22.解:如图,延长CD 交AB 于点E .∵AD 平分∠BAC ,∴∠1=∠2.-∵CD ⊥AD ,∴∠ADE=∠ADC=90°.∵在△ADE 与△ADC 中,∠1=∠2AD=AD∠ADC=∠ADE∴△ADE ≌△ADC∴DE=DC .AE=AC=10,又AB=25∴BE=15∵∠DCB=∠B ,∴BE=CE=2DC=15. ---------------6分∴DC=7.5.---------------8分23.解:(1)证明:∵AE 和BD 相交于点O ,∴∠AOD=∠BOE .在△AOD 和△BOE 中, ∠A=∠B ,∴∠BEO=∠2. ----------------------------1分又∵∠1=∠2, ∴∠1=∠BEO ,∴∠AEC=∠BED . --------------------2分在△AEC 和△BED 中, ∴△AEC ≌△BED (ASA )------------ 4分 (2)在△EDC 中,∵EC=ED ,∠1=42°, ∴∠C=∠EDC=69°,--------6分∵△AEC ≌△BED , ∴EC=ED ,∴∠BDE=∠C=69°. -------8分24.解:根据三角形全等的判定方法可知:①当P 运动到AP=BC 时,∵∠C=∠QAP=90°,在R t △ABC 与R t △QPA 中,⎩⎨⎧==AB PQ BC AP , ∴R t △ABC ≌R t △QPA , 即AP=BC=5cm ; --------4分②当P 运动到与C 点重合时,AP=AC ,在R t △ABC 与R t △QPA 中,⎩⎨⎧==AB PQ AC AP , ∴R t △QAP ≌R t △BCA , 即AP=AC=10cm ,∴当点P 与点C 重合时,△ABC 才能和△APQ 全等综上所述,当点P 位于AC 的中点处或当点P 与点C 重合时, △ABC 才能和△APQ 全等. ------8分25.解:(1)∵M ,N 分别是点O 关于PA 、PB 的对称点,∴EM=EO ,FN=FO , -----------------2分∴△OEF 的周长=OE+OF+EF=ME+EF+FN=MN=6cm ;---------4分 (2)连接OP ,∵M ,N 分别是点O 关于PA 、PB 的对称点,∴∠MPA=∠OPA ,∠NPB=∠OPB ,------------6分∴∠MPN=2∠APB=2ɑ; --------------------------8分(3)∵∠ɑ=30°,∴∠MPN=60°, ---------------------9分∵M ,N 分别是点O 关于PA 、PB 的对称点,∴PM=PO ,PN=PO ,∴PM=PN ,------------11分又∠MPN=60°,∴△PMN 是等边三角 形.------------12分26.解:(1)∵∠A+∠ACD=90°,∠BCD+∠ACD=90°,∴∠A=∠BCD-----2分(2)〈1〉如图,当点E 在射线BC 上移动时,若E 移动5s ,则BE=2×5=10cm , ∴CE=BE-BC=10-3=7cm .∴CE=AC ,∵∠ECF=∠BCD ,∠A=∠BCD∴∠A=∠ECF在△CFE 与△ABC 中,∠A=∠ECF ,CE=AC ,∠ACB=∠CEF∴△CEF ≌△ABC ,∴CF=AB , ------------------5分〈2〉当点E 在射线CB 上移动时,若E 移动2s ,则BE′=2×2=4cm ,∴CE′=BE′+BC=4+3=7cm ,∴CE′=AC ,在EF C ''∆与△ABC 中, ∠A=∠E′CF′,CE′=AC ,∠ACB=∠CE′F′∴△CF′E′≌△ABC , ∴CF′=AB ,总之,当点E 在射线BC 上移动5s ,或2s 时,CF′=AB .----------10分。

2017-2018学年度第一学期期中八年级数学试卷及答案

2017-2018学年度第一学期期中八年级数学试卷及答案

2017-2018学年度第一学期八年级期中考试数学试题参考答案(人教版)1-6 A A B B C D 7-12 C D B A C B 13-14 A B15.(2,4)16.30. 17.SSS 18.140°;719.解:∵∠2是△ADB的一个外角,∴∠2=∠1+∠B,∵∠1=∠B,∴∠2=2∠1,∵∠2=∠C,∴∠C=2∠1,∴∠BAC=180°-3∠1∵∠BAC=63°,∴∠1=39°,∴∠CAD=24°.20.解:(1)点A1(-2,1.5)变换为(5,1.5),A1(-2,1.5)不是不动点;A2(1.5,0)变换为(1.5,0),A2(1.5,0)是不动点;(2)A1(a,-3)变换为(3-a,-3),由不动点,得a=3-a.解得a=1.5.21.解:上面证明过程不正确;错在第一步.正确过程如下:在△BEC中,∵BE=CE∴∠EBC=∠ECB又∵∠ABE=∠ACE∴∠ABC=∠ACB∴AB=AC.在△AEB和△AEC中,AE=AE,BE=CE,AB=AC,∴△AEB≌△AEC(SSS)∴∠BAE=∠CAE.22.解:设这个外角的度数是x°,则(5-2)×180-(180-x)+x=600,解得x=120.故这个外角的度数是120°.23.解:如图1所示:从A到B的路径AMNB最短;【思考】如图2所示:从A到B的路径AMENFB最短;【进一步的思考】如图3所示:从A到B的路径AMNGHFEB最短;【拓展】如图3所示:从A到B的路径AMNEFB最短.24.(1)证明:如图1中,在l上截取F A=DB,连接CD、CF.∵△ABC为等腰直角三角形,∠ACB=90°,BD⊥l,∴AC=BC,∠BDA=90°,∴∠CBD+∠CAD=360°-∠BDA-∠ACB=180°,∵∠CAF+∠CAD=180°,∴∠CBD=∠CAF,∴△CBD≌△CAF(SAS),∴CD=CF,∵CE⊥l,∴DE=EF=12DF=12(DA+F A)=12(DA+DB),∴DA+DB=2DE,图2中有结论:DA-DB=2DE,图3中有结论:DB-DA=2DE.25. 解:(1)设点M、N运动x秒后,M、N两点重合,x×1+12=2x,解得:x=12;(2)设点M、N运动t秒后,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB-BN=12-2t,∵三角形△AMN是等边三角形,∴t=12-2t,解得t=4,∴点M、N运动4秒后,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,∴△ACM≌△ABN,∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∵CM=y-12,NB=36-2y,∴y-12=36-2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M、N运动的时间为16秒.。

17—18学年八年级(五四学制)上学期期中考试数学试题(附答案)

17—18学年八年级(五四学制)上学期期中考试数学试题(附答案)

2017-2018上学期期中初三学年数学试题一、选择题(每题3分,共36分)1、下列图案是轴对称图形.....的有( )A .1个B .2个C .3个D .4个2、点M (1,2)关于x轴对称的点的坐标是( )A 、(﹣1,2) B.、(1,-2) C 、(2,-1) D 、(-1,-2)3、.等腰三角形的两边长分别是5cm 和7cm ,则它的周长是( )A 、17cmB 、 17cm 或19cmC 、19cmD 、以上都不对4、如图, ABC 中BD 、CD 平分∠ABC 、∠ACB ,过D 作直线平行于BC ,交AB 、AC 于E 、F ,当∠A 的位置及大小变化时,线段EF 和BE+CF 的大小关系( )A. EF>BE+CFB. EF=BE+CFC. EF<BE+CFD. 不能确定5、下列图形中对称轴最多的是( )A .等腰三角形B .正方形C .圆D .线段6、如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是( )A .带①去B .带②去C .带③去D .①②③都带去7.若n 边形恰好有n 条对角线,则n 为( )边形.A.4B.5C.6D.78.如图,A ,B ,C ,D ,E ,F 是平面上的6个点,则∠A +∠B +∠C +∠D +∠E +∠F 的度数是( )第6题图①②③第4题图A.180°B.360°C.540°D.720° 9.等腰三角形的一个角是50︒,则它的底角是( ) A. 50︒ B. 50︒或65︒ C. 50︒或80︒. D 、65︒10.如图,点D 、E 分别在AC 、AB 上,已知AB =AC ,添加下列条件,不能说明△ABD ≌△ACE的是( )A.∠B =∠CB.AD =AEC.∠BDC =∠CEBD.BD =CE 11.下列长度的各组线段中,能组成三角形的是 ( )A .4,5,6B .6,8,15C .5,7,12D .3,9,13 12.下列说法中,正确的个数为( )①角是轴对称图形,对称轴是角的平分线;②等腰三角形至少有1条对称轴,至多有3条对称轴;③关于某条直线对称的两个三角形一定是全等三角形;④两图形关于某条直 线对称,对称点一定在直线的两旁. A.1B.2C.3D.4二、填空题(每小题3分,共33分) 13.在△ABC 中,∠A=21∠B=31∠C,则∠B= . 14.一个外角和与内角和相等的多边形是 .15.如图,在Rt △ABC 中,∠A =30°,BC =5, 则AB = .16.如图,在△ABC 中,∠C =90°,AD 平分∠BAC ,若BC =5cm ,BD =3cm , 则点D 到AB 的距离为____cm 。

山东省日照市八年级上学期数学期中考试试卷

山东省日照市八年级上学期数学期中考试试卷

山东省日照市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2018八下·嘉定期末) 如果平行四边形两条对角线的长度分别为,那么边的长度可能是()A .B .C .D .2. (2分) (2018八上·南召期中) 计算(-a)2·a3结果是()A . a6B . a5C . -a6D . -a53. (2分)(2017·武汉) 点A(﹣3,2)关于y轴对称的点的坐标为()A . (3,﹣2)B . (3,2)C . (﹣3,﹣2)D . (2,﹣3)4. (2分)三角形的三个内角()A . 至少有两个锐角B . 至少有一个直角C . 至多有两个钝角D . 至少有一个钝角5. (2分)已知△ABC中,AB=AC,AB的垂直平分线交AC于D,△ABC和△DBC的周长分别是70cm和48cm,则△ABC的腰和底边长分别为()A . 24cm和22cmB . 26cm和18cmC . 22cm和26cmD . 23cm和24cm6. (2分) (2019七下·简阳期中) 下列各式中,计算结果正确是()A .B .C .D .7. (2分)如图,AB=AC,BD=BC,若∠A=40°,则∠ABD的度数是()A . 20°B . 30°C . 35°D . 40°8. (2分) (2017八下·吉安期末) 等腰三角形的底角是70°,则顶角为()A . 40°B . 70°C . 55°D . 45°9. (2分)已知:如图所示,E为正方形ABCD外一点,AE=AD,∠ADE=75°,则∠AEB=()A . 60°B . 45°C . 30°D . 55°10. (2分)如图,Rt△ABC中,BC=2,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC 于E1 ,连结BE1交CD1于D2;过D2作D2E2⊥AC于E2 ,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3 ,…,如此继续,可以依次得到点E4、E5、…、E2013 ,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013 .则S2013的大小为()A .B .C .D .二、填空题 (共8题;共8分)11. (1分) (2017八上·宁河月考) 正多边形的一个外角等于30°,则这个多边形的边数是________.12. (1分) (2019八上·江阴开学考) 若则 ________.13. (1分)如果关于x的多项式x+2与x2+mx+1的乘积中不含一次项,则m=________.14. (1分) (2019八上·盘龙镇月考) 若4次3项式m4+4m2+A是一个完全平方式,则A=________.15. (1分)(2020·金牛模拟) 如图,BC是圆O的直径,D,E是上两点,连接BD,CE并延长交于点A,连接OD,OE,如果∠A=65°,那么∠DOE的度数为________.16. (1分) (2018八上·洪山期中) 定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线,在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,请写出∠C所有可能的度数________.17. (1分)已知a,b,c是一个三角形的三边长,则|a﹣b﹣c|+|b﹣a﹣c|=________.18. (1分) (2019八上·徐州月考) 如图,中,,,点为中点,且,的平分线与的垂直平分线交于点,将沿(在上,在上)折叠,点与点恰好重合,则为________度.三、解答题 (共8题;共81分)19. (20分)计算:(1)﹣()﹣1+20140;(2)(x+1)2﹣(x+2)(x﹣2).20. (6分) (2016八上·柳江期中) 如图,写出△ABC的各顶点坐标,并画出△ABC关于y轴对称的△A1B1C1 ,写出△ABC关于X轴对称的△A2B2C2的各点坐标.21. (10分)(2020·漳平模拟) 已知:在中,.(1)求作:的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若的外接圆的圆心到边的距离为4,,则 ________.22. (5分)如图,点B在射线AE上,∠CAE=∠DAE,∠CBE=∠DBE.求证:AC=AD.23. (10分)(2017·顺德模拟) 如图,在△ABC中,AB=AC=10,BC=12,矩形DEFG的顶点位于△ABC的边上,设EF=x,S四边形DEFG=y.(1)填空:自变量x的取值范围是________;(2)求出y与x的函数表达式;(3)请描述y随x的变化而变化的情况.24. (10分)先化简,再求值:(x-4)(x-2)-(x-1)(x+3),其中x=- .25. (10分)在△ABC中,AB=AC,∠BAC=2∠DAE=2α.(1)如图1,若点D关于直线AE的对称点为F,求证:△ADF∽△ABC;(2)如图2,在(1)的条件下,若α=45°,求证:DE2=BD2+CE2;(3)如图3,若α=45°,点E在BC的延长线上,则等式DE2=BD2+CE2还能成立吗?请说明理由.26. (10分) (2019八上·道外期末) 已知在中,,CA=CB,点D是AB的中点.直线M经过点C,与边AB交于点E.(1)如图1,过点作直线的垂线,垂足为点,交于点,求证:;(2)如图2,过点作直线的垂线,垂足为点,交的延长线于点,求证:;(3)如图3,点在直线上,,,当时,求的面积.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共81分)19-1、19-2、20-1、21-1、答案:略21-2、22-1、答案:略23-1、23-2、23-3、24-1、答案:略25-1、答案:略25-2、25-3、答案:略26-1、26-2、26-3、第11 页共11 页。

2017-2018学年鲁教版数学八年级第一学期期中测试题及答案

2017-2018学年鲁教版数学八年级第一学期期中测试题及答案

2017--2018学年度第一学期期中质量检测八年级数学试题注意事项1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中选择题60分,非选择题60分,满分120分,考试时间120分钟;2.选择题选出答案后,用2B 铅笔把答题卡上对应题目的正确答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,答案写在试卷上无效;3.数学考试不允许使用计算器,考试结束后,请将答题纸和答题卡一并交回。

第Ⅰ卷(选择题 共60分)一、选择题(本大题共20个小题,每小题3分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求。

)1.下列各式从左到右的变形中,是因式分解的是( ) A.()()2339a a a +-=- B.()()22a b a b a b -=+-C.()24545a a a a --=--D.23232m m m m m ⎛⎫--=-- ⎪⎝⎭2.无论x 取什么数时,总是有意义的分式是( )A.122+x x B.12+x x C.133+x x D.25x x -3.若2231a (91ma a -=++,则m 的值为( )A. 2B.3C.32-D.324.若已知分式96122+---x x x 的值为0,则x -2的值为 ( )A.91或-1 B.91或1 C.-1 D.15.下列各式是完全平方式的是( )A.412+-x x B.241x + C.22b ab a ++ D.122-+x x6.下列运动属于旋转的是( )A.滚动过程中篮球的滚动B.钟表的钟摆的摆动C.气球升空的运动D.一个图形沿某直线对折过程7.如图,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D ′处,那么A D ′为( )A.10B.8C.7D.128.如图将△ABC 绕着点C 按顺时针旋转20°,B 点落在B ′的位置,A 点落在A ′的位置,若AC ⊥A ′B ′,则∠BAC 的度数是( ) A.50° B.60° C.70° D.80°9.分式方程31329122+=---x x x 的解为( ) A.3 B.-3 C.无解 D.3或-310.如图是某公园里一处矩形风景欣赏区ABCD ,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那小明沿着小路的中间,从出口A 到出口B 所走的路线(图中虚线)长为( ) A.100米 B.99米 C.98米 D.74米11.如图,正方形OABC 绕着点O 逆时针旋转40°得到正方形ODEF ,连接AF ,则∠OFA 的度数是( )A.15°B.20°C.25°D.30°12.A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则(第8题)′BACA ′(第10题)可列方程为( ) A . B.C .D .13.在同一段路上,某人上坡速度为a ,下坡速度为b ,则该人来回一趟的平均速度是 ( )A.aB.bC.2b a + D.ba 2ab+14.把多项式)2()2(2a m a m -+-分解因式等于( ) A.))(2(2m m a +- B.))(2(2m m a --C.m(a-2)(m-1)D.m(a-2)(m+1)15.若关于x 的方程222-=-+x m x x 有增根,则m 的值与增根x 的值分别是( )A.m=-4,x=2B.m=4,x=2C.m=-4,x=-2D.m=4,x=-216.下列分式是最简分式的是( )A.x x x --21 B.11+-x x C.112--x x D.x 4417.下列等式成立的是( )A.b a b a +=+321 B.b a b a +=+122 C.ba ab ab ab -=-2 D.b a ab a a +-=+-18.某校八年级(1)班全体学生2016年体育测试考试成绩统计如下:成绩(分) 35 39 42 44 45 48 50 人数2566876根据上表中的信息判断,下列结论中错误的是( ) A.该班一共有40名同学;B.该班学生这次考试成绩的众数是45分;C.该班学生这次考试成绩的中位数是45分;D.该班学生这次考试成绩的平均数是45分. 19.下列不是表示数据离散程度的量是( ) A.方差 B.极差 C.平均数 D.标准差20.如图,△ABC 沿着由点B 到点E 的方向,平移到△DEF ,已知BC =5.EC =3,那么平移的距离为( ) A.2B.3C.5D.7第Ⅱ卷(非选择题 共60分)题号 二 三 总分25 26 27 28 29 得分注意事项: 1.第Ⅱ卷共4页,用蓝黑钢笔或圆珠笔直接答在答题纸上;2.答卷前将密封线内的项目填写清楚。

初中数学山东省日照市莒县八年级上期中数学考试卷含答案解析 .docx

初中数学山东省日照市莒县八年级上期中数学考试卷含答案解析 .docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A. B. C.D.试题2:下列运算正确的是()A.x2+x2=x4 B.(a﹣b)2=a2﹣b2 C.(﹣a2)3=﹣a6 D.3a2•2a3=6a6试题3:在中,分式的个数是()A.2 B.3 C.4 D.5试题4:已知等腰三角形的一个内角为70°,则另两个内角的度数是()A.55°,55° B.70°,40°C.55°,55°或70°,40° D.以上都不对试题5:若分式的值为零,则x的值是()A.±1 B.1 C.﹣1 D.0试题6:如果x2+10x+__=(x+5)2,横线处填()A.5 B.10 C.25 D.±10试题7:把多项式x2+ax+b分解因式,得(x+1)(x﹣3)则a,b的值分别是()A.a=2,b=3 B.a=﹣2,b=﹣3 C.a=﹣2,b=3 D.a=2,b=﹣3试题8:在边长为a的正方形中挖去一个边长为b的小正方形(a>b),再沿虚线剪开,如图(1),然后拼成一个梯形,如图(2),根据这两个图形的面积关系,表明下列式子成立的是()A.a2﹣b2=(a+b)(a﹣b) B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2 D.a2﹣b2=(a﹣b)2试题9:分式中的x,y同时扩大2倍,则分式的值()A.不变 B.是原来的2倍 C.是原来的4倍 D.是原来的试题10:已知10m=2,10n=3,则103m+2n=()A.17 B.72 C.12 D.36试题11:观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)10的展开式第三项的系数是()A.36 B.45 C.55 D.66试题12:在平面直角坐标系xOy中,已知点A(2,﹣2),在坐标轴上确定点P,使△AOP为等腰三角形,则符合条件的有()个.A.5 B.6 C.7 D.8试题13:把一张纸各按图中那样折叠后,若得到∠AOB′=70°,则∠BOG= .试题14:等腰三角形的周长是25cm,一腰上的中线将周长分为3:2两部分,则此三角形的底边长为cm或cm.试题15:已知a2﹣a﹣1=0,则a3﹣a2﹣a+2016= .试题16:如图,已知点B.C.D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F,AD交CE于H.①△BCE≌△ACD;②CF=CH;③△CFH为等边三角形;④FH∥BD;⑤AD与BE的夹角为60°,以上结论正确的是.试题17:(2×105)÷(8×10﹣5)试题18:(x+y)2﹣(x+y)(x﹣y)试题19:(1)已知x+y=15,x2+y2=113,求x2﹣xy+y2的值.试题20:先化简,再求值:÷+1,在0,1,2,三个数中选一个合适的,代入求值.试题21:平面直角坐标系中,△ABC的三个顶点坐标分别为A(0,4),B(3,4),C(4,﹣1).(1)试在平面直角坐标系中,画出△ABC;(2)若△A1B1C1与△ABC关于x轴对称,写出A1、B1、C1的坐标;(3)在x轴上找到一点P,使点P到点A、B两点的距离和最小;(4)求△ABC的面积.试题22:如图,AB=AC,CD⊥AB于点D,BE⊥AC于点E,BE与CD相交于点O.(1)求证:AD=AE;(2)试猜想:OA与BC的位置关系,并加以证明.试题23:下面是某同学对多项式(x2﹣4x﹣3)(x2﹣4x+1)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y﹣3)(y+1)+4(第一步)=y2﹣2y+1 (第二步)=(y﹣1)2(第三步)=(x2﹣4x﹣1)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的.A.提取公因式法 B.平方差公式法C.完全平方公式法(2)请你模仿以上方法尝试对多项式(x2+2x)(x2+2x+2)+1进行因式分解.试题24:如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)证明:在运动过程中,点D是线段PQ的中点;(3)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.试题1答案:D【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.试题2答案:C【考点】完全平方公式;合并同类项;幂的乘方与积的乘方;单项式乘单项式.【分析】根据同类项、完全平方公式、幂的乘方和单项式的乘法计算即可.【解答】解:A、x2+x2=2x2,错误;B、(a﹣b)2=a2﹣2ab+b2,错误;C、(﹣a2)3=﹣a6,正确;D、3a2•2a3=6a5,错误;故选C.【点评】此题考查同类项、完全平方公式、幂的乘方和单项式的乘法,关键是根据法则进行计算.试题3答案:B【考点】分式的定义.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:在中,分式有,∴分式的个数是3个.故选:B.【点评】本题主要考查分式的定义,注意π不是字母,是常数,所以象不是分式,是整式.试题4答案:C【考点】等腰三角形的性质.【分析】分别把70°看做等腰三角形的顶角和底角,分两种情况考虑,利用三角形内角和是180度计算即可.【解答】解:当70°为顶角时,另外两个角是底角,它们的度数是相等的,为(180°﹣70°)÷2=55°,当70°为底角时,另外一个底角也是70°,顶角是180°﹣140°=40°.故选C.【点评】主要考查了等腰三角形的性质.要注意分两种情况考虑,不要漏掉一种情况.试题5答案:C【考点】分式的值为零的条件.【分析】先根据分式的值为0的条件列出关于x的不等式组,求出x的值即可.【解答】解:∵分式的值为零,∴,解得x=﹣1.故选C.【点评】本题考查的是分式的值为0的条件,即分式的分子为0,分母不为0.试题6答案:C【考点】配方法的应用.【分析】先设需要填的那个数为A,将等号右边根据整式乘法运用完全平方公式展开,再求一个关于A的方程就可以了.【解答】解:设需要填空的数为A,则原式为:x2+10x+A=(x+5)2.∴x2+10x+A=x2+10x+25,∴A=25.故选:C.【点评】本题考查了配方法的运用及运用方程的解法求出等式中的未知数的方法.解答本题设未知数列方程解比较简单.试题7答案:B【考点】因式分解的应用.【分析】运用多项式乘以多项式的法则求出(x+1)(x﹣3)的值,对比系数可以得到a,b的值.【解答】解:∵(x+1)(x﹣3)=x•x﹣x•3+1•x﹣1×3=x2﹣3x+x﹣3=x2﹣2x﹣3∴x2+ax+b=x2﹣2x﹣3∴a=﹣2,b=﹣3.故选:B.【点评】本题考查了多项式的乘法,解题的关键是熟练运用运算法则.试题8答案:A【考点】平方差公式的几何背景.【分析】(1)中的面积=a2﹣b2,(2)中梯形的面积=(2a+2b)(a﹣b)÷2=(a+b)(a﹣b),两图形阴影面积相等,据此即可解答.【解答】解:由题可得:a2﹣b2=(a+b)(a﹣b).故选A.【点评】本题主要考查了平方差公式的几何表示,表示出图形阴影部分面积是解题的关键.试题9答案:B【考点】分式的基本性质.【分析】根据分式的基本性质得到x,y同时扩大2倍时,分子扩大4倍,分母扩大2倍,则分式的值是原来的2倍.【解答】解:∵分式中的x,y同时扩大2倍,∴分子扩大4倍,分母扩大2倍,∴分式的值是原来的2倍.故选B.【点评】本题考查了分式的基本性质:分式的分子分母都乘以(或除以)一个不为0数(或式),分式的值不变.试题10答案:B【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】利用幂的乘法和乘方公式即可求出答案.【解答】解:由题意可知:103m+2n=103m×102n=(10m)3×(10n)2=23×32=8×9=72故选(B)【点评】本题考查幂的运算公式,涉及整体的思想.试题11答案:B【考点】完全平方公式.【分析】归纳总结得到展开式中第三项系数即可.【解答】解:解:(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+4a3b+6a2b2+4ab3+b4;(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6;(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7;第8个式子系数分别为:1,8,28,56,70,56,28,8,1;第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1,则(a+b)10的展开式第三项的系数为45.故选B.【点评】此题考查了完全平方公式,熟练掌握公式是解本题的关键.试题12答案:D【考点】等腰三角形的判定;坐标与图形性质.【分析】等腰三角形要判断腰长的情况,本题可先设P点的坐标,根据OA是底边、腰几种情况下手进行讨论即可得出答案.【解答】解:已知△AOP的边OA,这条边可能是底边也可能是腰当OA是底边时,点P是OA的垂直平分线与x轴,y轴的交点,这两个点的坐标是(2,0)和(0,﹣2)满足条件的有两点;当OA是腰时,当O是顶角顶点时,以O为圆心,以OA为半径作圆,与两坐标轴的交点坐标是(0,2),(0,﹣2),(2,0),(﹣2,0);当A是顶角顶点时,以A为圆心,以AO为半径作圆,与两坐标轴的交点坐标有除原点以外有两个交点,因而使△AOP为等腰三角形,则符合条件的点P有8个.故选D【点评】本题考查了等腰三角形的判定;分情况进行讨论,能够把各种情况能够讨论全是解决本题的关键.试题13答案:55°.【考点】翻折变换(折叠问题).【分析】根据折叠得::∠BOG=∠B′OG,再由平角的定义可和结论.【解答】解:由折叠得:∠BOG=∠B′OG,∵∠AOB′=70°,∴∠BOB′=180°﹣70°=110°,∴∠BOG=110°÷2=55°,故答案为:55度【点评】本题考查了折叠的性质,折叠前后的边相等,角相等,利用平角进行计算即可.试题14答案:5【考点】等腰三角形的性质.【分析】本题可分别设出等腰三角形的腰和底的长,然后根据一腰上的中线所分三角形两部分的周长来联立方程组,进而可求得等腰三角形的底边长.注意此题一定要分为两种情况讨论,最后还要看所求的结果是否满足三角形的三边关系.【解答】解:设该三角形的腰长是xcm,底边长是ycm.根据题意,得:或,解得或.经检验,都符合三角形的三边关系.因此三角形的底边长为cm或5cm.故填为或5.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确3:2两部分是哪一部分含有底边,所以一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.试题15答案:2016 .【考点】因式分解的应用;代数式求值.【分析】在代数式a3﹣a2﹣a+2016中提取出a,再将a2﹣a﹣1=0代入其中即可得出结论.【解答】解:∵a2﹣a﹣1=0,∴a3﹣a2﹣a+2016=a(a2﹣a﹣1)+2016=0+2016=2016.故答案为:2016.【点评】本题考查了代数式求值,提出公因数a再代入数值即可得出结论.试题16答案:①②③④⑤.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【分析】①利用等边三角形的性质得出条件,可证明:△BCE≌△ACD;②利用△BCE≌△ACD得出∠CBF=∠CAH,再运用平角定义得出∠BCF=∠ACH进而得出△BCF≌△ACH因此CF=CH;③由CF=CH和∠ACH=60°根据“有一个角是60°的三角形是等边三角形可得△CFH是等边三角形;④∠DCH=∠CHF=60°,可得FH∥BD;⑤设AD,BE相较于点O,根据三角形内角和定理可得∠CAD+∠CDA=60°,而∠CAD=∠CBE,则∠CBE+∠CDA=60°,然后再利用三角形内角和定理即可得到∠BOD=120°,进而可得AD与BE的夹角为60°.【解答】证明:(1)∵△ABC和△CDE都是等边三角形,∴∠BCA=∠DCE=60°,BC=AC=AB,EC=CD=ED,∴∠BCE=∠ACD,在△BCE和△ACD中,,∴△BCE≌△ACD(SAS);(2)∵△BCE≌△ACD,∴∠CBF=∠CAH.∵∠ACB=∠DCE=60°,∴∠ACH=60°.∴∠BCF=∠ACH,在△BCF和△ACH中,,∴△BCF≌△ACH(ASA),∴CF=CH;(3)∵CF=CH,∠ACH=60°,∴△CFH是等边三角形;(4)∵△CHF为等边三角形∴∠FHC=60°,∵∠HCD=60°,∴FH∥BD.∴AD=BE;(5)∵∠CAD+∠CDA=60°,而∠CAD=∠CBE,∴∠CBE+∠CDA=60°,∴∠BOD=120°,∴∠AOB=60°,即AD与BE的夹角为60°,故答案为:①②③④⑤.【点评】本题考查了三角形全等的判定和性质及等边三角形的性质;普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS.同时还要结合等边三角形的性质,创造条件证明三角形全等是正确解答本题的关键.试题17答案:原式=2.5×109;试题18答案:原式=x2+2xy+y2﹣x2+y2=2xy+2y2.试题19答案:∵x+y=15,x2+y2=113,∴(x+y)2=225,即x2+y2+2xy=225,∴2xy=225﹣113=112,∴xy=56,∴x2﹣xy+y2=113﹣56=57;试题20答案:原式=•+1=+1=,当x=1时,原式=.试题21答案:【考点】轴对称-最短路线问题;作图-轴对称变换.【分析】(1)根据题意作出图形即可;(2)根据关于x轴对称的点的特点即可得到结果;(3)连接A1B交x轴于P即可得到结论;(4)根据三角形的面积公式即可得到结论.【解答】解:(1)如图所示△ABC即为所求;(2)A1(0,﹣4),B1(3,﹣4),C1(4,1);(3)连接A1B交x轴于P,点P即为所求;(4)S△ABC=×3×5=.【点评】本题考查了轴对称﹣最短路线问题,作图﹣轴对称变换,正确的作出图形是解题的关键.试题22答案:【考点】全等三角形的判定与性质.【分析】(1)根据AAS推出△ACD≌△ABE,根据全等三角形的性质得出即可;(2)证Rt△ADO≌Rt△AEO,推出∠DAO=∠EAO,根据等腰三角形的性质推出即可.【解答】(1)证明:∵CD⊥AB,BE⊥AC,∴∠ADC=∠AEB=90°,△ACD和△ABE中,∵∴△ACD≌△ABE(AAS),∴AD=AE.(2)猜想:OA⊥BC.证明:连接OA、BC,∵CD⊥AB,BE⊥AC,∴∠ADC=∠AEB=90°.在Rt△ADO和Rt△AEO中,∵∴Rt△ADO≌Rt△AEO(HL).∴∠DAO=∠EAO,又∵AB=AC,∴OA⊥BC.【点评】本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,主要考查学生的推理能力.试题23答案:【考点】因式分解的应用.【分析】利用换元法、完全平方公式进行因式分解即可.【解答】解:(1)该同学第二步到第三步运用了因式分解的完全平方公式法,故选:C.(2)设x2+2x=y,原式=y2+2y+1,=(y+1)2,则(x2+2x)(x2+2x+2)+1=(x2+2x+1)2=[(x+1)2]2=(x+1)4.【点评】本题考查的是因式分解的应用,掌握换元思想、灵活运用完全平方公式是解题的关键.试题24答案:【考点】三角形综合题.【分析】(1)先判断出∠QPC是直角,再利用含30°的直角三角形的性质得出QC=2PC,建立方程求解决即可;(2)先作出PF∥BC得出∠PFA=∠FPA=∠A=60°,进而判断出△DQB≌△DPF得出DQ=DP即可得出结论;(3)利用等边三角形的性质得出EF=AF,借助DF=DB,即可得出DF=BF,最后用等量代换即可.【解答】(1)解:设AP=x,则BQ=x,∵∠BQD=30°,∠C=60°,∴∠QPC=90°,∴QC=2PC,即x+6=2(6﹣x),解得x=2,即AP=2.(2)证明:如图,过P点作PF∥BC,交AB于F,∵PF∥BC,∴∠PFA=∠FPA=∠A=60°,∴PF=AP=AF,∴PF=BQ,又∵∠BDQ=∠PDF,∠DBQ=∠DFP,∴△DQB≌△DPF,∴DQ=DP即D为PQ中点,(3)运动过程中线段ED的长不发生变化,是定值为3,理由:∵PF=AP=AF,PE⊥AF,∴,又∵△DQB≌△DPF,∴,∴.【点评】此题是三角形综合题,主要考查了含30°的直角三角形的性质,等边三角形的性质,全等三角形的判定和性质,判断出△DQB≌△DPF是解本题的关键,作出辅助线是解本题的难点,是一道比较简单的中考常考题.。

2017-2018学年第一学期期中考试八年级数学试题及答案

2017-2018学年第一学期期中考试八年级数学试题及答案

2017-2018学年第一学期八年级 数学(上) 参考答案及评分标准一、选择题(本大题共16个小题,每小题2分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)二、填空题(本大题共4个小题,每小题3分,共12分,把答案写在题中横线上)17.> 18.3 19.2 20.8三、解答题(本大题共6个小题,共56分.解答应写出相应的文字说明或解题步骤)21.(1)解:原式=yx 2- ……………(4分) 21.(2)解:原式=2)1()1()111(a a a a a a +-∙++-+ ……………(2分) =2)1()1(11a a a +-∙+- =21-a ……………(4分) 21.(3)解:据题意得:x ﹣2=22=4,∴ x =6, ……………(1分)2y ﹣11=(﹣3)3=﹣27,∴ y =﹣8, ……………(2分)则x 2+y 2=62+(﹣8)2=36+64=100, ………………(3分)∴ x 2+y 2的平方根为±10. …………………(4分)22.解:(1)二, …………………(2分)a-24; …………………(4分) (2)由题意得,aa a -++222=2, 即a-24=2, …………………(5分) 解得:a =0, …………………(7分)经检验,a =0是原方程的解,∴ 当a =0时,原代数式的值等于2. …………………(8分)23.如图1,作出∠B =∠β得3分;作出边BC =a 得2分;作出边AC =b 和A ′C =b 共得3分,少一种情况扣1分.24.(1)命题一,命题二; …………………(4分) (2)命题一: 条件是①AB=AC ,②AD=AE ,③∠1=∠2,结论是④BD=CE .证明:∵∠1=∠2∴∠BAD=∠CAE ,又AB=AC ,AD=AE ,∴△ABD ≌△ACE (SAS ) …………………(8分)∴BD=CE .…………………(9分)或:命题二:条件是①AB=AC ,②AD=AE ,④BD=CE ,结论是③∠1=∠2.证明:∵AB=AC ,AD=AE ,BD=CE ,∴△ABD ≌△ACE (SSS ),…………………(8分)∴∠BAD=∠CAE ,∴∠1=∠2.…………………(9分)25.解:(1)设第一次购进衬衫x 件. 根据题意得:48000217600=-xx .…………………(4分) 解得:x =200.…………………(6分)经检验:x =200是原方程的解.答:该服装店第一次购进衬衫一共200件.…………………(7分)(2)盈利;…………………(8分)盈利=58×(200+400)﹣(17600+8000)=9200(元)…………………(9分) 答:该服装店这笔生意一共盈利9200元.26.(1)△ABE ≌△ACE ,△ADF ≌△CDB ………………(2分)(2)CEAF =2 …………………(3分) 证明:如图2,∵AE 平分∠DAC ,图2 A′ β b图1 A C B ba∴∠CAE =∠BAE ,∵AE ⊥CE ,∴∠AEC =∠AEB =90°,在△AEC 和△AEB 中,⎪⎩⎪⎨⎧∠=∠=∠=∠BAECAE AE AE AEBAEC∴△AEC ≌△AEB (ASA ),∴CE =BE ,即CB =2CE ,…………………(5分)∵∠ADC =90°,∴∠ADF=∠CDB =90°,∴∠B +∠DCB =90°,∵∠B +∠DAF =90°,∴∠DAF =∠DCB ,在△ADF 和△CDB 中,⎪⎩⎪⎨⎧∠=∠=∠︒=∠=∠DCBDAF CD AD CDB ADF 90,∴△ADF ≌△CDB (ASA ),∴AF =CB =2CE ,即CE AF=2. …………………(7分)(3)等于; ……………(8分)辅助线如图3, …………………(9分)作法:过点P 作PG ⊥DC 交CE 的延长线于点G ,交DC 于点B . ………………(10分) 或:过点P 作PG ∥AD 交CE 的延长线于点G ,交DC 于点B . 或:延长CE 到点G ,使CE =GE ,连接PG 交DC 于点B . (说明:其它作法正确均给分)D CE 图3 G。

2017-2018新人教版八年级上期中试卷及答案

2017-2018新人教版八年级上期中试卷及答案

ABCDA B D C M N2017-2018学年度上期期中教学质量检测 八年级数学试题(本试卷120分 考试时间100分钟)一、选择题(每小题3分,满分24分)下列各小题均有四个答案,其中只有一个是正确的1.下列平面图形中,不是轴对称图形的是 ( )2.以下列各组线段为边,能组成三角形的是( )A. 2 cm ,3 cm ,5 cmB. 3 cm ,3 cm ,6 cmC. 5 cm ,8 cm ,2 cmD. 4 cm ,5 cm ,6 cm 3.已知等腰三角形的两边长分别为3和6,则它的周长等于( ) A. 12 B. 12或15 C. 15 D. 15或184.如图,已知MB=ND,∠MBA=∠NDC ,下列条件中不能判定△ABM ≌△CDN 的是( )A.∠M=∠NB.AM=CNC.AB=CDD.AM ∥CN 5.一个多边形的内角和等于1080°,这个多边形的边数是( ) A .9 B .8 C .7 D .6 6.下列说法中,错误的是 ( )A.一个三角形的三个内角中,至少有一个角不大于600B.有一个外角是锐角的三角形是钝角三角形C.锐角三角形中,两个角的和小于直角D.直角三角形中有一个外角等于和它相邻的内角7. AD 是△ABC 的角平分线,过点D 作DE ⊥AB 于E ,DF ⊥AC 于F•,则下列结论不一定正确的是( )A .DE=DFB .BD=CDC .AE=AFD .∠ADE=∠ADF8.如图,把长方形纸片ABCD 纸沿对角线折叠,设重叠部分为△EBD ,那么, 有下列说法: ①△EBD 是等腰三角形,EB=ED ②折叠后∠ABE 和∠CBD 一定座号:________A B CD相等 ③折叠后得到的图形是轴对称图形 ④△EBA 和△EDC 一定是全等三角形 其中正确的有( )A.1个B.2个C.3个D.4个二、填空题(共7小题,每小题3分,满分21分)9.在△ABC 中,∠A ∶∠B ∶∠C =2∶3∶4,则∠A =________,∠C =________ 10.正十边形的每一个内角的度数等于______,每一个外角的度数等于_______. 11. 在△ABC 中,∠C=90°,BC=16cm ,∠BAC 的平分线交BC 于D ,且BD ︰DC=5︰3,则D 到AB 的距离为_____________.12. 如图,∠A=36°,∠DBC=36°,∠C=72°,则图中等腰三角形有_____ 个。

山东省日照市八年级上学期数学期中试卷

山东省日照市八年级上学期数学期中试卷

山东省日照市八年级上学期数学期中试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2017八下·西华期末) 已知平行四边形一边长为14,则下列各组数据能分别作它的两条对角线长的是()A . 10与16B . 20与8C . 20与26D . 10与402. (2分) (2020八上·大洼期末) 已知一个多边形的内角和是外角和的3倍,则这个多边形是()A . 五边形B . 六边形C . 七边形D . 八边形3. (2分)(2020·北京模拟) 如图,在中,,,直线,顶点在直线上,直线交于点,交与点,若,则的度数是()A . 30°B . 35°C . 40°D . 45°4. (2分)如图,已知直线a,b被直线c所截,a∥b,∠1=60°,则∠2的度数为()A . 30°B . 60°C . 120°D . 150°5. (2分)(2018·防城港模拟) 如图,⊙O的半径为1,△ABC是⊙O的内接三角形,连接OB,OC,若∠BAC 与∠BOC互补,则弦BC的长为()A .B . 2C . 3D . 1.56. (2分)如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=35°,则∠C的度数为()A . 35°B . 45°C . 55°D . 60°7. (2分) (2019八上·保山月考) 在△ABC中,,则△ABC是()A . 钝角三角形B . 直角三角形C . 锐角三角形D . 无法确定8. (2分) (2016九上·新疆期中) 如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC 交AB于M,交AC于N,若BM+CN=9,则线段MN的长为()A . 6B . 7C . 8D . 99. (2分) (2018八上·临河期中) 如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P 到边OA的距离是()A . 2B . 3C . 4D . 510. (2分)下列说法中,正确的是()A . 全等三角形是关于某直线对称的B . 关于某直线对称的两个三角形是全等三角形C . 两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧D . 有一条公共边的两个全等三角形关于公共边所在的直线对称11. (2分)若点A(3,-4)与点B(-3,a)关于y轴对称,则a的值为()A . 3B . -3C . 4D . -412. (2分) (2018八上·梁子湖期末) 如果多边形的内角和是外角和的k倍,那么这个多边形的边数是A . kB .C .D .二、填空题 (共6题;共6分)13. (1分)如图,在2×2网格中放置了三枚棋子,在其他格点处再放置1枚棋子,使图形中的四枚棋子成为轴对称图形的概率是________.14. (1分)(2018·驻马店模拟) 如图,在四边形ABCD中,连接AC,BD,AC和BD相交于点E.若AD∥BC,BD⊥AD,2DE=BE, AD=BD,则∠BAC+∠BCA的度数为________.15. (1分)(2018·成都) 如图,在矩形中,按以下步骤作图:①分别以点和为圆心,以大于的长为半径作弧,两弧相交于点和;②作直线交于点 .若,,则矩形的对角线的长为________.16. (1分)(2020·奉化模拟) 如图,在△ABC中,∠C=60°,将边AB绕点A顺时针旋转α(0°<α<90°)得到AD,边AC绕点A逆时针旋转β(0°<β<90°)得到AE,连结DE。

7—18学年上学期八年级期中考试数学试题(附答案) (1)

7—18学年上学期八年级期中考试数学试题(附答案) (1)

2017~2018学年度第一学期期中考试八年级数学试卷时间:120分钟分值:150分一、选择题(本大题共有6小题,每小题3分,共18分。

在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在表格相应的位置)1.如图,下列图案是几家银行的标志,其中是轴对称图形的有A.1个B.2个C.3个D.4个2.如图,△ABC≌△DCB,点A、B的对应顶点分别为点D、C,如果AB=7 cm,BC=12 cm,AC=9 cm,那么CD的长是A.7 cm B.9 cm C.12 cm D.无法确定3.9的算术平方根是A.B.C.3 D.±34. 在直角三角形ABC中,斜边AB=2,则AB²+BC²+AC²=A.2B.4C.6D.85.已知等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为A.12 B.15 C.9 D.12或156.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图(1)是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图(2)是由图(1)放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D、E、F、G、H、I都在矩形KLMJ的边上,则矩形的边LM的长为第2题图第6题图A .10B .11C .110D .121二、填空题(本大题共有10小题,每小题3分,共30分。

不需写出解答过程,请将正确答案填写在相应的位置)7. ;8. ;9. ;10. ;11. ;12. ;13. ;14. ;15. ;16. 。

7.﹣8的立方根是 ▲ .8.在△ABC 中,∠C =90°,BC =4,AC =3,则AB =___▲__;9.如图,点B ,E ,C ,F 在一条直线上,AB ∥DE ,BE =CF ,请添加一个条件___ ▲____,使△ABC ≌△DFF .10.分别以下列四组数为一个三角形的边长:①6,8,10; ②5,12,13; ③8,15,17;④4,5,6,其中能构成直角三角形的有 ▲ .(填序号)11.如图,△ABC 中,∠C=90°,AD 平分∠BAC ,AB=6,CD=2,则△ABD 的面积是__▲__.12.如图,在△ABC 中,AB=AC=10cm ,AB 的垂直平分线交AC 于点D ,且△BCD 的周长为16cm ,则BC=_________cm .13.如图所示,已知等边△ABC 中,BD=CE ,AD 与BE 相交于点P ,则∠APE 是 ▲ 度.14.如图,在△ABC 中,AD ⊥BC ,BE ⊥AC ,垂足分别为点D ,E ,AD 与BE 相交于点F ,若BF =AC ,则∠ABC =____▲___.15.如图,△ABC 中,AB=AC ,AD=DE ,∠BAD=25°,∠EDC=20°,则∠DAE 的度数为 ▲ °.16.动手操作:在长方形纸片ABCD 中,AB=6,AD=10.如图所示,折叠纸片,使点A 落在BC 边上的A ′处,折痕为PQ ,当点A ′在BC 边上移动时,折痕的端点P 、Q也随第13题图第11题图 第12题图第9题图第15题图第16题图第14题图之移动.若限定点P、Q分别在AB、AD边上移动,则点A′在BC边上可移动的最大距离为▲.三、解答题(本大题有11小题,共102分.)17.(本题8分)如图,在△ABC中,∠C=90°.(1) 用圆规和直尺在边AC上作点P,使点P到A,B的距离相等;(保留作图痕迹,不写作法和证明)(2) 当满足(1)的点P到AB,BC的距离相等时,求∠A的度数.18.(本题8分)计算下列各题.(12;(2)﹣+.19.(本题8分)如图,已知△ABC≌△DEF,∠A=80°,∠B=60°,AB=9,EH=2.(1)求∠F的度数;(2)求DH的长.20.(本题8分)如图,在△ABC中,已知∠A=90°,D是BC的中点,且DE⊥BC,垂足为点D,交AB于点E.求证:BE2-EA2=AC2.21.(本题8分)如图,在△ABC中,AD平分∠BAC,E是CA延长线上的一点,EG∥AD,交AB于点F.求证:AE=AF.22. (本题8分)(1)已知2b+1的平方根为±3,3a+2b﹣1的算术平方根为4,求a+6b的立方根(2)已知a=5,b2=423.(本题8分)如图是用硬纸板做成的四个全等的直角三角形,两直角边长分别是a,b,斜边长为c和一个边长为c的正方形,请你将它们拼成一个能证明勾股定理的图形.(1)画出拼成的这个图形的示意图.(2)证明勾股定理.24.(本题10分)如图,在△ABC中,AB=AC,点D,E,F分别在边AB,BC,AC上,且BD=CE,BE=CF.点G为DF的中点,求证:EG⊥DF.25.(本题10分)如图,在△ABC中,∠ACB=90°,AC=BC,AE是边BC上的中线,过点C作CF⊥AE,垂足为点F,过点B作BD⊥BC交CF的延长线于点D.(1)求证:AE=CD;(2)若AC=14cm,求BD的长.26.(本题12分)如图,在等腰直角三角形ABC 中,∠ABC =90°,D 为边AC 的中点,过点D 作DE ⊥DF ,交AB 于点E ,交BC 于点F .若AE =8,FC =6, (1)求证:△BED ≌△CFD (2)求EF 的长.27.(本题14分)如图①中的两张三角形胶片ABC △和DEF △且△ABC ≌△DEF 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年山东省日照市莒县八年级(上)期中数学试卷一、选择题(共12题,其中1-8题每题3分,9-12题每题4分)1.(3分)下列“QQ表情”中属于轴对称图形的是()A. B.C.D.2.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点A,点C分别在直线a,b上,且a∥b.若∠1=60°,则∠2的度数为()A.75°B.105°C.135° D.155°3.(3分)下列计算正确的是()A.a2+a3=a5 B.a2•a3=a6 C.(a2)3=a5D.a5÷a2=a34.(3分)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD 的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD5.(3分)如果x2+()x+25是完全平方式,横线处填()A.5 B.10 C.±5 D.±106.(3分)长方形的面积为4a2﹣6ab+2a,若它的一边长为2a,则它的周长为()A.4a﹣3b B.8a﹣6b C.4a﹣3b+1 D.8a﹣6b+27.(3分)下列因式分解不正确的是()A.x2﹣6x+9=(x﹣3)2B.x2﹣y2=(x﹣y)2C.x2﹣5x+6=(x﹣2)(x﹣3)D.6x2+2x=2x(3x+1)8.(3分)在边长为a的正方形中挖去一个边长为b的小正方形(a>b),再沿虚线剪开,如图(1),然后拼成一个梯形,如图(2),根据这两个图形的面积关系,表明下列式子成立的是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a﹣b)29.(4分)已知10m=2,10n=3,则103m+2n=()A.17 B.72 C.12 D.3610.(4分)如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下三个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°.其中结论正确的个数是()A.1 B.2 C.3 D.011.(4分)若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c就是完全对称式.下列三个代数式:①(a﹣b)2;②ab+bc+ca;③a2b+b2c+c2a.其中是完全对称式的是()A.①②③B.①③C.②③D.①②12.(4分)在平面直角坐标系xOy中,已知点A(2,﹣2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有()个.A.5 B.4 C.3 D.2二、填空题(每小题4分,共16分)13.(4分)因式分解:2a2﹣8=.14.(4分)等腰三角形的周长是25cm,一腰上的中线将周长分为1:2两部分,则此三角形的底边长为.15.(4分)已知a2﹣a﹣1=0,则a2﹣a+2017=.16.(4分)如图,已知∠MON=30°,点A1、A2、A3,…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A2016B2016A2017的边长为.三、解答题(本大题共6小题,满分64分)17.(8分)(1)(﹣2a2)3+2a2•a4;(2)(x+y)2﹣(x+y)(x﹣y)18.(10分)(1)已知x+y=15,x2+y2=113,求x2﹣3xy+y2的值;(2)先化简,再求值:(2x﹣1)2﹣(3x+1)(3x﹣1)+5x(x﹣1),x=﹣.19.(10分)在平面直角坐标系中,A(1,2)、B(3,1)、C(﹣2,﹣1).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)写出△ABC关于x轴对称△A2B2C2的各项点坐标A2,B2,C2;(3)求△ABC的面积.20.(12分)如图,在△ABC中,∠ABC=90°,AB=BC,BD⊥AC于点D;CE平分∠ACB,交AB于点E,交BD于点F.(1)求证:△BEF是等腰三角形;(2)求证:BD=(BC+BF).21.(10分)下面是某同学对多项式(x2﹣4x﹣3)(x2﹣4x+1)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y﹣3)(y+1)+4(第一步)=y2﹣2y+1 (第二步)=(y﹣1)2(第三步)=(x2﹣4x﹣1)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的.A.提取公因式法B.平方差公式法C.完全平方公式法(2)请你模仿以上方法尝试对多项式(x2+2x)(x2+2x+2)+1进行因式分解.22.(14分)(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD 绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.2017-2018学年山东省日照市莒县八年级(上)期中数学试卷参考答案与试题解析一、选择题(共12题,其中1-8题每题3分,9-12题每题4分)1.(3分)下列“QQ表情”中属于轴对称图形的是()A. B.C.D.【解答】解:A、B、D都不是轴对称图形,C关于直线对称.故选:C.2.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点A,点C分别在直线a,b上,且a∥b.若∠1=60°,则∠2的度数为()A.75°B.105°C.135° D.155°【解答】解:∵在Rt△ABC中,∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∴∠3=180°﹣60°﹣45°=75°,∵a∥b,∴∠2=180°﹣∠3=105°,故选:B.3.(3分)下列计算正确的是()A.a2+a3=a5 B.a2•a3=a6 C.(a2)3=a5D.a5÷a2=a3【解答】解:A、不是同类项不能合并,故A错误;B、同底数幂的乘法底数不变指数相加,故B错误;C、幂的乘方底数不变指数相乘,故C错误;D、同底数幂的除法底数不变指数相减,故D正确;故选:D.4.(3分)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD 的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD【解答】解:由题意,得∠ABC=∠BAD,AB=BA,A、∠ABC=∠BAD,AB=BA,AC=BD,(SSA)三角形不全等,故A错误;B、在△ABC与△BAD中,,△ABC≌△BAD(ASA),故B正确;C、在△ABC与△BAD中,,△ABC≌△BAD(AAS),故C正确;D、在△ABC与△BAD中,,△ABC≌△BAD(SAS),故D正确;故选:A.5.(3分)如果x2+()x+25是完全平方式,横线处填()A.5 B.10 C.±5 D.±10【解答】解:∵x2+()x+25是完全平方式,∴括号里应填±10,故选:D.6.(3分)长方形的面积为4a2﹣6ab+2a,若它的一边长为2a,则它的周长为()A.4a﹣3b B.8a﹣6b C.4a﹣3b+1 D.8a﹣6b+2【解答】解:另一边长是:(4a2﹣6ab+2a)÷2a=2a﹣3b+1,则周长是:2[(2a﹣3b+1)+2a]=8a﹣6b+2.故选:D.7.(3分)下列因式分解不正确的是()A.x2﹣6x+9=(x﹣3)2B.x2﹣y2=(x﹣y)2C.x2﹣5x+6=(x﹣2)(x﹣3)D.6x2+2x=2x(3x+1)【解答】解:A、x2﹣6x+9=(x﹣3)2,故本选项不符合题意;B、x2﹣2xy+y2=(x﹣y)2,故本选项符合题意,C、x2﹣5x+6=(x﹣2)(x﹣3),故本选项不符合题意;D、6x2+2x=2x(3x+1),故本选项不符合题意;故选:B.8.(3分)在边长为a的正方形中挖去一个边长为b的小正方形(a>b),再沿虚线剪开,如图(1),然后拼成一个梯形,如图(2),根据这两个图形的面积关系,表明下列式子成立的是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a﹣b)2【解答】解:由题可得:a2﹣b2=(a+b)(a﹣b).故选:A.9.(4分)已知10m=2,10n=3,则103m+2n=()A.17 B.72 C.12 D.36【解答】解:由题意可知:103m+2n=103m×102n=(10m)3×(10n)2=23×32=8×9=72故选:B.10.(4分)如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下三个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°.其中结论正确的个数是()A.1 B.2 C.3 D.0【解答】解:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,∵在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,本选项正确;②∵△BAD≌△CAE,∴∠ABD=∠ACE,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD⊥CE,本选项正确;③∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵∠ABD=∠ACE∴∠ACE+∠DBC=45°,本选项正确;综上所述,正确的结论有3个.故选:C.11.(4分)若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c就是完全对称式.下列三个代数式:①(a﹣b)2;②ab+bc+ca;③a2b+b2c+c2a.其中是完全对称式的是()A.①②③B.①③C.②③D.①②【解答】解:根据信息中的内容知,只要任意两个字母交换,代数式不变,就是完全对称式,则:①(a﹣b)2=(b﹣a)2;是完全对对称式.故此选项正确.②将代数式ab+bc+ca中的任意两个字母交换,代数式不变,故ab+bc+ca是完全对称式,ab+bc+ca中ab对调后ba+ac+cb,bc对调后ac+cb+ba,ac对调后cb+ba+ac,都与原式一样,故此选项正确;③a2b+b2c+c2a 若只ab对调后b2a+a2c+c2b 与原式不同,只在特殊情况下(ab 相同时)才会与原式的值一样∴将a与b交换,a2b+b2c+c2a变为ab2+a2c+bc2.故a2b+b2c+c2a不是完全对称式.故此选项错误,所以①②是③不是故选:D.12.(4分)在平面直角坐标系xOy中,已知点A(2,﹣2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有()个.A.5 B.4 C.3 D.2【解答】解:分情况进行讨论:当OA为等腰三角形的腰时,以O为圆心OA为半径的圆弧与y轴有两个交点,以A为圆心AO为半径的圆弧与y轴有一个交点;当OA为等腰三角形的底时,作线段OA的垂直平分线,与y轴有一个交点.∴符合条件的点一共4个.故选:B.二、填空题(每小题4分,共16分)13.(4分)因式分解:2a2﹣8=2(a+2)(a﹣2).【解答】解:2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).14.(4分)等腰三角形的周长是25cm,一腰上的中线将周长分为1:2两部分,则此三角形的底边长为cm.【解答】解:∵等腰三角形的周长是25cm,一腰上的中线将周长分为1:2两部分,∴两部分分别为:cm和cm,∴可知分为两种情况①AB+AD=cm,∴AB=,∴BC=;不能组成三角形;②AB+AD=cm,∴AB=cm.∴BC=cm,故这个三角形的底边长为cm.故答案为:cm.15.(4分)已知a2﹣a﹣1=0,则a2﹣a+2017=2018.【解答】解:∵a2﹣a﹣1=0,∴a2﹣a=1,则原式=1+2017=2018,故答案为:201816.(4分)如图,已知∠MON=30°,点A1、A2、A3,…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A2016B2016A2017的边长为22015.【解答】解:∵△A1B1A2为等边三角形,∴∠B1A1A2=60°,A1B1=A1A2,而∠O=30°,∴∠OB1A1=∠B1A1A2﹣∠O=60°﹣30°=30°,∴A1B1=OA1=1,∴OA2=OA1+A1A2=1+1=2,同理可得A2B2=OA2=2,A3B3=OA3=2+2=22,A4B4=OA4=2(2+2)=23,…∴△A2016B2016A2017的边长=22015.故答案为22015.三、解答题(本大题共6小题,满分64分)17.(8分)(1)(﹣2a2)3+2a2•a4;(2)(x+y)2﹣(x+y)(x﹣y)【解答】解:(1)(﹣2a2)3+2a2•a4=(﹣2)3(a2)3+2a6=﹣8a6+2a6=﹣6 a6;(2)(x+y)2﹣(x+y)(x﹣y)=x2+2xy+y2﹣(x2﹣y2)=x2+2xy+y2﹣x2+y2=2xy+2y2.18.(10分)(1)已知x+y=15,x2+y2=113,求x2﹣3xy+y2的值;(2)先化简,再求值:(2x﹣1)2﹣(3x+1)(3x﹣1)+5x(x﹣1),x=﹣.【解答】解:(1)∵x+y=15,两边平方得x2+2xy+y2=225,由于x2+y2=113,∴2xy=112,所以xy=56.∴x2﹣3xy+y2=(x2+y2)﹣3xy=113﹣3×56=﹣55.(2)原式=4x2﹣4x+1﹣(9x2﹣1)+5x2﹣5x=4x2﹣4x+1﹣9x2+1+5x2﹣5x=﹣9x+2;当x=﹣时,原式=1+2=3.19.(10分)在平面直角坐标系中,A(1,2)、B(3,1)、C(﹣2,﹣1).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)写出△ABC关于x轴对称△A2B2C2的各项点坐标A2(1,﹣2),B2(3,﹣1),C2(﹣2,1);(3)求△ABC的面积.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)A2(1,﹣2),B2(3,﹣1),C2(﹣2,1);故答案为:(1,﹣2),(3,﹣1),(﹣2,1);(3)△ABC的面积为:3×5﹣×3×3﹣×1×2﹣×2×5=.20.(12分)如图,在△ABC中,∠ABC=90°,AB=BC,BD⊥AC于点D;CE平分∠ACB,交AB于点E,交BD于点F.(1)求证:△BEF是等腰三角形;(2)求证:BD=(BC+BF).【解答】证明:(1)在△ABC中,AB=BC,BD⊥AC于点D,∴∠ABD=∠CBD,AD=CD,∵∠ABC=90°,∴∠ACB=45°,∵CE平分∠ACB,∴∠ECB=∠ACE=22.5°,∴∠BEF=∠CFD=∠BFE=67.5°,∴BE=BF,∴△BEF是等腰三角形;(2)如图,延长AB至M,使得BM=AB,连接CM,∵D是AC的中点,∴BD∥MC,BD=MC,∴∠BFE=∠MCE,由(1)得,∠BEF=∠BFE,BE=BF,∴∠BFE=∠MCE,∴ME=MC,∴BD=MC=ME=(MB+BE)=(BC+BF).21.(10分)下面是某同学对多项式(x2﹣4x﹣3)(x2﹣4x+1)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y﹣3)(y+1)+4(第一步)=y2﹣2y+1 (第二步)=(y﹣1)2(第三步)=(x2﹣4x﹣1)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的C.A.提取公因式法B.平方差公式法C.完全平方公式法(2)请你模仿以上方法尝试对多项式(x2+2x)(x2+2x+2)+1进行因式分解.【解答】解:(1)该同学第二步到第三步运用了因式分解的完全平方公式法,故选:C.(2)设x2+2x=y,原式=y2+2y+1,=(y+1)2,则(x2+2x)(x2+2x+2)+1=(x2+2x+1)2=[(x+1)2]2=(x+1)4.22.(14分)(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD 绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是2<AD<8;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.【解答】(1)解:延长AD至E,使DE=AD,连接BE,如图①所示:∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDA中,,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三边关系得:AB﹣BE<AE<AB+BE,∴10﹣6<AE<10+6,即4<AE<16,∴2<AD<8;故答案为:2<AD<8;(2)证明:延长FD至点M,使DM=DF,连接BM、EM,如图②所示:同(1)得:△BMD≌△CFD(SAS),∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三边关系得:BE+BM>EM,∴BE+CF>EF;(3)解:BE+DF=EF;理由如下:延长AB至点N,使BN=DF,连接CN,如图3所示:∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,∴∠NBC=∠D,在△NBC和△FDC中,,∴△NBC≌△FDC(SAS),∴CN=CF,∠NCB=∠FCD,∵∠BCD=140°,∠ECF=70°,∴∠BCE+∠FCD=70°,∴∠ECN=70°=∠ECF,在△NCE和△FCE中,,∴△NCE≌△FCE(SAS),∴EN=EF,∵BE+BN=EN,∴BE+DF=EF.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。

相关文档
最新文档