工程力学第6章 扭转解析
专升本工程力学第6章 杆件的内力分析.
29
机电工程学院
2018/12/8
6.3.2 剪力和弯矩
【例6.3】求简支梁横截面1-1、2-2、3-3上的剪力和弯矩。
30
机电工程学院
2018/12/8
6.3.2 剪力和弯矩
解 (1)求支座反力。由梁的平衡方程,求得支座反力为
FA=FB=10kN
(2)求横截面1-1上的剪力和弯矩。假想地沿横截面1-1把梁
2018/12/8
6.3 杆件弯曲时的内力分析
6.3.1 平面弯曲的概念 6.3.2 剪力和弯矩
6.3.3 剪力图和弯矩图
26
机电工程学院
2018/12/8
6.3.2 剪力和弯矩
以悬臂梁为例,其上作用有载荷F,由平衡方程可求出固定端
B处的支座反力为FB=F,MB=Fl。
27
机电工程学院
2018/12/8
(3)求横截面2-2上的剪力和弯矩。假想地沿横截面2-2把梁截
成两段,取左段为研究对象,列出平衡方程
F
y
0, FA F1 FS2 0
FS2 FA F1 0
D
M
0, M2 FA (4m) F1 (2m) 0
M 2 FA (4m) F1 (2m) 20kN m
16
机电工程学院
2018/12/8
6.2.2 扭矩与扭矩图
解 (1)计算外力偶矩。作用于各轮上的外力偶矩分别为
PA M eA 9549 4.46kN m n PB M eB 9549 1.91kN m n PC M eC M eD 9549 1.27kN m n
T2 M eA M eB 2.55kN m T3 M eD 1.27kN m
工程力学 第6章扭转
max
M n max Wn
式中:
max — —横截面圆周处的最大 剪应力。
M n max — —横截面上的最大扭矩 。 Wn — —抗扭截面系数 (m m3 ),只与截面形状和大小有 关的几何量。
抗扭截面系数计算公式: Wn
对于直径为D的实心圆截面: Wn
I R
0.2 D 3
A
2 dA
2 4 令: dA I — —极惯性矩( mm ) A
得:
Mn I
剪 应 力 分 布 图
结论:(1)圆轴扭转时其横截面上只有剪应力而无正应力。 (2)圆轴扭转时横截面上任一点的剪应力与该点到 圆心的距离成正比,与半径垂直。
三.圆轴扭转强度计算
3.圆轴扭转的强度条件:
D 3
16
D D 3 对于内外径比为 的空心圆截面: Wn 1 4 0.2 D 3 1 4 d 16
三.圆轴扭转强度计算
4.强度条件的应用
(1)校核轴的扭转强度。
(2)确定圆轴的直径。 (3)确定轴所能传递的功率或转速。
解:(1)求A、B、C点的剪应力
截面上的扭矩: M n M e 4 106 N mm
一.扭转的概念
1.扭转变形 受力特点——两外力偶作用面与杆件轴线垂直。 变形特点——杆件相邻两横截面绕轴线发生相对转动。
2.在工程中,作用在圆轴上的外力偶矩通常根据轴所传递的 功率和轴来的转速来计算。 外力偶矩的计算公式:
N (kW ) m 9549 n(r / min)
式中: m——外力偶矩(牛米) N——轴传递的功率(千瓦) n——轴的转速为(转/分)
工程力学:第六章 扭转
9.55
150 300
4.78 (kN m)
m4
9.55
P4 n
9.55
200 300
6.37
(kN m)
n D
m2 1 m3 2 m1 3 m4
n A 1 B 2 C 3D
②求扭矩(扭矩按正方向假设)
m 0 , T1 m2 0, T1 m2 4.78kN m m 0; T2 m1 m2 0
例 已知:一传动轴转数 n =300r/min,主动轮输入功率
P1=500kW,从动轮输出功率 P2=150kW,P3=150kW, P4=200kW,试绘制扭矩图。
解:①计算外力偶矩
m2
m3
m1
m4
m1
9.55
P1 n
9.55
500 300
15.9(kN m)
A
BC
m2
m3
9.55
P2 n
T2 m2 m3 (4.78 4.78) 9.56kN m
m 0 , T3 m4 0, T3 m4 6.37kN m
③绘制扭矩图 m2
m3
m1
m4
n
A
B
C
D
6.37kN.m
扭矩图
–
–
4.78kN.m
9.56kN.m
T 9.56 kN m, BC段为危险截面。 max
6.3 圆轴扭转时的应力及强度条件
第6章 扭转
6.1 扭转的概念 6.2 圆轴扭转时的内力 6.3 圆轴扭转时的应力及强度条件 6.4 圆轴扭转时的变形及刚度条件
6.1 扭转的概念
汽车传动轴
汽车方向盘
看到图片后大家再仔细想想我们日常生活中还有哪些属于 扭转变形?拧衣服
工程力学第6节 圆轴扭转时的强度条件和刚度条件
318Nm 955Nm
955 1910 955 N m 3-3 截面的扭矩 TCD M D 318 N m
绘出的扭矩图如图所示, 显然BA和AC段扭矩最大。故
Tmax 955 N m
3)按强度条件确定轴径
Tmax 16Tmax max [ ] 3 WP D 3 16 Tmax 3 16 955 D m 47.6 mm 6 [ ] 4510
二、圆轴扭转时的强度条件
材料的扭转 许用应力 圆轴扭转时的 强度条件
[ ]
u
n
max [ ]
max 应发生在最大扭矩 Tmax 的横截 等截面圆轴: 面上周边各点处,所以其强度条件为
等截面圆轴扭转 时的强度条件
max
Tmax [ ] WP
T ) max 的 阶梯轴等变截面圆轴: max 应发生在 ( WP
在最大切应力相同的情况下,空心轴所用 的材料是实心轴的 61.1%,自重也减轻了 38.9%。其 原因是:圆轴扭转时,横截面上应力呈线性分布,越 接近截面中心,应力越小,此处的材料就没有充分发 挥作用。做成空心轴,使得截面中心处的材料安置到 轴的外缘,材料得到了充分利用,而且也减轻了构件 的自重。但空心轴的制造要困难些,故应综合考虑。
对于空心轴,由扭转时的强度条件
Tmax 16 T max [ ] 3 4 WP D2 (1 )
Tmax 16 T max [ ] 3 4 WP D2 (1 )
D2
3
16T 4 [ ](1 ) 161186 m 64.2 mm 6 4 3010 (1 0.7 )
2 2 2 2
3
建筑力学 第6章 扭转
【 150(a例k)所N6-·示3m】、,一M请实2确=心定4圆0该k轴轴N直·的m径许、为可M13应0=0力3m0值mk,[Nτ]·。受m三,个其外转力向偶如M图16=解:本题受扭情况同上题,其轴的扭矩图如图6—5(b)所示。 其应力许可值可由公式6-8计算:
(a)
)
(b
(c)
(d) 图6-5
解:1、用m-m截取轴的左侧一段如图65(b)所示,
由 T1+10=0 有 T1=-10(kN·m);
2、用n-n截取轴的左侧一段如图6-5(c)所 示,
由 T2+10-40=0 有 T2=30(kN·m);
3、将计算的扭矩值画于轴线上,如图65(d)。
6.2 圆轴扭转时的截面应力分布
(a)
(b) 图6-8
解:根据本题条件,可绘出其轴的扭矩图,如图6—8(b)所示。 其最大应力值出现在到横截面外沿的圆周上,其切应力值的计 算可用公式(6-6)解出:
由公式(6-8),有
可见,该轴的强度符合要求。
max
Tmax Wp
30103 (N) 1000(mm) 0.2 1003 (mm)3
4)
,其中, d D
IP的单位长度是四次方,常用mm4。
最大切应力τmax在圆周处
max
T m ax
Ip
T R Ip
令 Wp=IP/R,称为抗扭截面系数,有
max
Mn Wp
直径为D的圆截面的计算公式为
解:本题受扭情况同上题,其轴的扭矩图如图6—5(b)所示。 其轴的外径可通过公式(6-10)计算:
工程力学(静力学和材料力学)第2版课后习题答案 范钦珊主编 第6章 圆轴扭转
习题 6-6 图
τ 套 max =
Mx Wp 2
T2 ≤ 60 × 10 6 ×
∴
Tmax ≤ T2 = 2883 N·m = 2.88 ×10 3 N·m
4
6-7 由同一材料制成的实心和空心圆轴,二者长度和质量均相等。设实心轴半径为 R0,空心圆轴的内、外半径分别为 R1 和 R2,且 R1/R2 =n;二者所承受的外加扭转力偶矩分 别为 Mes 和 Meh。若二者横截面上的最大剪应力相等,试证明:
该轴的扭转强度是安全的。
上一章
返回总目录
下一章
8
3
习题 6-5 图
解:1. τ 1 max =
Mx T T 3 × 10 3 × 16 = = = = 70.7 MPa WP WP π π× 0.06 3 d3 16
A1
2. M r =
∫
ρ ⋅ τdA =
∫
r
0
ρ⋅
2πM x r 4 Mx ρ ⋅ 2πρ d ρ = ⋅ 4 Ip Ip
Mr r4 r4 1 2π 2π 16r 4 15 = = = = 16 × ( ) 4 = = 6.25% 4 4 Mx 16 4I p 60 d d π 4⋅ 32 Mx T = 3. τ 2 max = =75.4MPa Wp 1 4⎞ π d3 ⎛ ⎜1 − ( ) ⎟ 16 ⎝ 2 ⎠
eBook
工程力学
(静力学与材料力学)
习题详细解答
(教师用书) (第 6 章) 范钦珊 唐静静
2006-12-18
1
第 6 章 圆轴扭转
工程力学第6章 扭转
T 2 A0
6.2.2 切应力互等定理
从薄壁圆筒中包括横截 面取出一个单元体
将(d)图投影到铅垂坐标平面,得到一个平面单元
根据力偶平衡理论
y
(dydz )dx ( dxdz)dy
dy
dz
在相互垂直的两个平面 上,切应力必成对出现, 两切应力的数值相等, 方向均垂直于该平面的 x 交线,且同时指向或背 离其交线。
对于各向同性材料,在弹性变形范围内,切变 模量G 、弹性模量E 和泊松比之间有下列关系:
G
E (1 ) 2
6-3 实心圆轴扭转时的应力和强度条件
6.3.1 、 扭转剪应力在横截面上的分布规律
Ⅰ. 横截面上的应力 表面 变形 情况 推断 横截面 的变形 情况 横截面 上应变 应力-应变关系
两互相垂直截面上在其相交处的剪应力 成对存在,且数值相等、符号相反,这称为 剪应力互等定理。
例题 3
试根据切应力互等定理,判断图中所示的各 单元体上的切应力是否正确。
10 kN
30 kN 50 kN
10 kN
20 kN
50 kN 30 kN
20 kN
30 kN
6.2.3 剪切胡克定律(Hooke’s law in shear) Me Me
n
主轴
主动轮 叶片
本章研究杆件发生除扭转变形外,其它变形可忽略的 情况,并且以圆截面(实心圆截面或空心圆截面)杆为主要
研究对象。此外,所研究的问题限于杆在线弹性范围内工
作的情况。
6-1 概述
1. 扭转的概念 4种基本变形(轴向拉压、剪切、扭转、弯曲)之一 特点: 圆截面轴(实心、空心)
工程力学中的扭转力学分析
工程力学中的扭转力学分析扭转力学是工程力学中的一个重要分支,研究物体在受到扭转力作用时产生的变形和应力分布。
在工程实践中,扭转力学的应用非常广泛,特别是在建筑、机械、航空航天等领域。
一、引言扭转力学研究的对象是物体在受到外界扭转力矩作用下的行为。
扭转力学涉及到以下几个关键概念:扭转角、扭转应变、扭转应力等。
二、基本原理与公式推导在扭转力学分析中,我们需要借助一些基本原理和公式来描述扭转的行为。
其中,最基本的原理是胡克定律,它表明物体在弹性阶段的扭转行为与受到的扭转力矩成正比。
公式推导过程如下:(1)胡克定律:θ = T / (G * J)其中,θ表示物体的扭转角,T表示扭转力矩,G表示切变模量,J 表示抗扭转性能指标。
(2)扭转应变:γ = θ * r / L其中,γ表示扭转应变,r表示被扭转物体的半径,L表示物体的长度。
(3)扭转应力:τ = G * γ其中,τ表示扭转应力。
三、典型扭转问题的分析在工程实践中,我们常常遇到一些典型的扭转问题,如轴材料的扭转分析、螺旋桨的扭转分析等。
下面以轴材料的扭转分析为例,介绍典型问题的求解过程:(1)问题描述:一根长度为L,半径为r的均质轴材料,在受到扭转力矩T作用下,求解轴的扭转角和轴的最大扭转应力。
(2)解答过程:首先,根据胡克定律可以得到轴的扭转角:θ = T / (G * J),其中G 为轴材料的切变模量,J为轴的惯性矩。
然后,根据扭转应变公式可以得到轴的扭转应变:γ = θ * r / L。
最后,根据扭转应力公式可以得到轴的扭转应力:τ = G * γ。
四、工程应用示例扭转力学在工程中的应用非常广泛,例如在机械工程中,通过对扭转力学的分析,我们可以设计出更加合理的轴、齿轮等零件;在建筑工程中,我们可以通过扭转力学的分析,预测结构在风荷载下的变形和损伤等。
五、总结扭转力学是工程力学中的重要分支,研究物体在受到扭转力作用下的变形和应力分布。
本文通过引言、基本原理与公式推导、典型扭转问题的分析以及工程应用示例的介绍,对扭转力学的相关内容进行了阐述。
考研复习—工程力学——第6章 扭转
Wt
IP d2
d3
16
0.2d 3
第6章
6.3 扭转时横截面上的应力
6.3.3 极惯性矩Ip与抗扭截面模量Wt
2.圆环形截面
与圆形截面方法相同,如图所示,有
IP 2dA
A
D 2 2 3d
d2
32
D4 d 4
0.1 D4 d 4
第6章
6.3 扭转时横截面上的应力
6.3.3 极惯性矩Ip与抗扭截面模量Wt
第6章
6.2 扭转时横截面上的内力——扭矩
6.2.3 扭矩图
例6-1 传动轴受力如图6-7(a)所示。转速n=300 r/min,主动轮A输
入功率PA=50 kW,从动轮B、C、D的输出功率分别为PB=PC=15 kW,
PD=20 kW。试作出轴的扭矩图,并确定轴的最大扭矩值。
图6-7
第6章
6.2 扭转时横截面上的内力——扭矩
图6-8
第6章
6.3 扭转时横截面上的应力
6.3.1 横截面上的剪应力计算公式
由平面假设可推出如下推论: (1)横截面上无正应力。因为扭转变形时,横截面大小、形状、纵向间距均未 发生变化,说明没有发生线应变。由胡克定律可知,没有线应变,也就没有正应 力。
(2)横截面上有剪应力。因为扭转变形时,相邻横截面间发生相对转动。但 对截面上的点而言,只要不是轴心点,那两截面上的相邻两点,实际发生的是相
第6章
6.4 圆轴扭转强度条件及应用
6.4.3 应用实例
(2)校核轴的强度。由扭矩图可知,最大扭矩在AB段,由于是等截面轴,故
AB段最危险。
max
T
Wt
267 103 0.2 303
工程力学第6单元 圆轴扭转
机械工业出版社
6.2 扭矩和扭矩图
6.2.1 外力偶矩的计算
作用在轴上的外力偶矩,一般在工作过程中并不是已 知的,常常是已知轴所传递的功率和轴的转速,再由下式 求出外力偶矩,即:
Me
9550 P n
式中:Me为轴上的外力偶矩,单位为N.m; P为轴传递的功率,单位为kW;
机械工业出版社
6.2 扭矩和扭矩图
案 例 6-1 传 动 轴 如 图 6-8a 所 示 , 主 动 轮 A 输 入 功 率 PA=120kW,从动轮B、C、D输出功率分别为PB=30kW, PC=40kW , PD=50kW , 轴 的 转 速 n=300r/min 。 试 作 出 该 轴的扭矩图。
改锥拧螺母-力偶实例
钻探机钻杆
机械工业出版社
6.1 圆轴扭转的概念
工程实例的受力及变形分析 工程上传递功率的轴,大多数为圆轴,这些传递功率的 圆轴承受绕轴线转动的外力偶矩作用时,其横截面将产生绕 轴线的相互转动,这种变形称为扭转变形。
方轴扭转的概念
机械工业出版社
6.3 圆轴扭转时横截面上的应力
3.圆轴扭转的切应力 (1)横截面上任一点的切应力
T
IP
式中:T—为横截面上的扭矩; ρ—为所求点到圆心的距离 ; τρ —为该截面对圆心的极惯性矩
机械工业出版社
6.3 圆轴扭转时横截面上的应力
当ρ=R时,圆截面上的切应力最大τmax (2)圆截面上的最大切应力
max
T Wp
式中:T —为横截面上的扭矩;
WP—为圆截面的抗扭截面模量,单位m3 或mm3
机械工业出版社
6.3 圆轴扭转时横截面上的应力
工程力学—扭转变形
第四章 扭转4.1预备知识一、基本概念 1、扭转变形扭转变形是杆件的基本变形之一,扭转变形的受力特点是:杆件受力偶系的作用,这些力偶的作用面都垂直于杆轴。
此时,截面B 相对于截面A 转了一个角度ϕ,称为扭转角。
同时,杆件表面的纵向直线也转了一个角度γ变为螺旋线,γ称为剪切角。
2、外力偶杆件所受外力偶的大小一般不是直接给出时,应经过适当的换算。
若己知轴传递的功率P(kW)和转速n(r/min),则轴所受的外力偶矩)(9549Nm nPT =。
3、扭矩和扭矩图圆轴扭转时,截面上的内力矩称为扭矩,用T 表示。
扭矩的正负号,按右手螺旋法则判定。
如扭矩矢量与截面外向法线一致,为正扭矩,反之为负;求扭矩时仍采用截面法。
扭矩图是扭矩沿轴线变化图形,与轴力图的画法是相似4、纯剪切 切应力互等定理单元体的左右两个侧面上只有切应力而无正应力,此种单元体发生的变形称为纯剪切。
在相互垂直的两个平面上,切应力必然成对存在且数值相等,两者都垂直于两个平面的交线、方向到共同指向或共同背离积这一交线,这就是切应力互等定理。
5、切应变 剪切虎克定律 对于纯剪切的单元体,其变形是相对两侧面发生的微小错动,以γ来度量错动变形程度,即称切应变。
当切应力不超过材料的剪切比例极限时,切应力τ和切应变γ成正比,即τ=G γG 称材料的剪切弹性模量,常用单位是GPa 。
6、圆杆扭转时的应力和强度计算(1) 圆杆扭转时,横截面上的切应力垂直于半径,并沿半径线性分布,距圆心为ρ处的切应力为ρτρpI T =图式中T 为横截面的扭矩,I p 为截面的极惯性矩。
(2) 圆形截面极惯性矩和抗扭截面系数实心圆截面324D I p π=, 163D W p π=(D 为直径) 空心圆截面)1(3244a D I p -=π, )1(1643απ-=D W p (D 为外径,d 为内径,D d /=α)(3)圆杆扭转时横截面上的最大切应力发生在外表面处tW T =max τ 式中W t =I p /R ,称为圆杆抗扭截面系数(或抗抟截面模量)。
第六章 材料力学剪切与扭转
第六章
• • • • 6.1 6.2 6.3 6.4
剪切与扭转
剪切和挤压的实用计算 扭矩的概念 圆轴扭转的应力及强度计算 圆轴扭转时的变形及刚度计算
6.1 剪切和挤压的实用计算
6.1.1
剪切和挤压的概念
1、连接件 在构件连接处起连接作用的部件,称为连接件。例如: 螺栓、铆钉等。连接件虽小,起着传递载荷的作用。 螺栓 P
F /2 F /2 2 d A 4
d
2F
11.97(mm)
选取d=1 2mm。 3)校核销钉的挤压强度为
jy
F 150( MPa) jy Ajy
故选取d= 1 2mm,可以同时满足挤压和剪切强度的要求。
Fs 4 F 2 A d Fbs F bs Abs dh
6.2.3 扭矩和扭矩图
1. 扭矩:构件受扭时,横截面上的内力偶矩,记作“T”。
2. 截面法求扭矩
M
x
0
Me Me
T Me 0 T Me
3. 扭矩的符号规定:
Me
T
x
“T”的转向与截面外法线方向满足右手螺旋规则为正,
反之为负。
右手螺旋法则
右手拇指指向外法线方向为 正(+),反之为 负(-)
P4 25 M 4 9550 9550 1194 ( N .m) n 200
2) 计算各截面上的扭矩(分段应用截面法) 各截面上的扭矩假设为正值。
• • • •
• • •
①沿截面I—I截开,取左侧为研究对象[图 6.11(b)],则根据平衡条件∑m=0,有 T1+M2=0 T1=–M2=–9 5 5N· m ②沿截面Ⅱ一Ⅱ截开,取左侧为研究对象[图 6.11(c)],则根据平衡条件∑m=0,有 T2+M2一M1=0 T2=M1一M2=3 8 2 0—9 5 5=2 8 6 5N· m ③沿截面Ⅲ一Ⅲ截开,取右侧为研究对象[图 6.11(d)],则根据平衡条件∑m=0,有
工程力学(扭转)课件
抗扭强度的计算
抗扭强度的计算公式通常基于剪切应 力的极限值或剪切模量,具体公式取 决于材料的性质和受力条件。
除了理论计算,还可以通过实验测试 来测定材料的抗扭强度。实验方法包 括扭转试验、弯曲试验和压缩试验等 。
对于金属材料,可以根据弹性力学理 论计算抗扭强度。对于复合材料和复 合结构,需要考虑各组分材料的性能 以及它们之间的相互作用。
提高抗扭强度的方法
选择高强度材料
优化结构设计
高强度材料具有更高的抗剪切强度和剪切 模量,可以提高结构的抗扭能力。
合理的结构设计可以有效地提高结构的抗 扭强度。例如,增加截面尺寸、改变截面 形状、增加加强筋等。
采用复合结构
进行适当的热处理和表面处理
复合结构由多种材料组成,可以综合利用 各种材料的优点,提高整体抗扭强度。
适当的热处理和表面处理可以提高材料的 力学性能,从而提高抗扭强度。
05
扭转实验
实验目的
01
02
03
04
掌握扭转变形的特点及 分析方法
了解扭矩与扭矩计量的 基本概念
探究扭转变形的应力分 布规律
分析材料在扭转变形中 的力学性能
实验设备
扭转试样
不同材料的圆棒或 圆管试样
测角仪
用于测量试样的扭 转角度
传递效率
力矩传递过程中能量的损失或效率。
影响因素
传递方式、材料性质、摩擦等因素影响传递效率 。
03
扭转变形
扭转变形的定义
扭转变形
物体在扭矩的作用下发生的形状改变。
扭矩
扭转物体时所施加的力矩,其大小取决于作用力、力臂和力矩方向 。
工程力学课件 扭转
2. 单位长度扭转角 3. 整体的扭转角
dϕ T = dx GI p
γmax
dϕ =
T dx GI p
B B'
ϕ AB = ∫ dϕ
A l
B
Me
Me
T Tl dx = =∫ 0 GI GI p p
ϕ AB
B截面相对于A截面 的扭转角
3. 整体的扭转角
A
ϕ AB
Tl = GI p
Me
γmax
Me
B B'
π D4
4
= 32
π × 304
= 7.95 ×104 mm 4 32
4
4 πD π 30 20 4 4 4 I p2 = (1 − α ) = 1 − = 6.38 × 10 mm 32 32 30
(3)计算切应力 AC 段内
AC τ min =0 AC τ max
ϕ AB
B截面相对于A截面 的扭转角
# 如果在AB区间内
ϕ AB
Ti li =∑ Gi I pi
注意:Ti 应是代数值,有+ -号
" ∑ "是代数和
二、刚度条件
#刚度校核
′ ≤ [ϕ ′] 刚度条件 ϕ max
其中
#设计截面 #计算许可载荷 ( o/m )
′ ϕ max
Tmax 180o = GI p π
9-4 圆轴扭转的应力和强度条件
受扭圆轴横截面上有何应力? 其应力公式如何分析与推导?
静力平衡方程
微剪力对圆心的力矩,称为微力矩 在整个横截面上,所有微力矩之和应等于截面上的扭矩 T
∫
A
ρτ ρ dA = T
工程力学第六章扭转
c
z
d
t
MZ 0
( dydz )dx ( dxdz )dy
17
该定理表明:在单元体相互垂直 的两个平面上,剪应力必然成对出现, 且数值相等,两者都垂直于两平面的 dy
a
´
dx
´
b
c
z
d
交线,其方向则共同指向或共同背离
该交线。 2.纯剪切应力状态
t
单元体上只有切应力,没有正应力的状态称为纯剪切应力状态。
TBC+MB-MA=0 TBC= -2KN.m
TCD- MD =0
TCD= 4KN.m
10
最大扭矩位于CD段,数值为4KN.m , 符号为正
2.扭矩图
注意的问题。 (1)截开面上设正值的扭矩方向。 (2)在采用截面法之前不能将外力简化或平移。
11
§6-2
薄壁圆筒:(壁厚 t
1 r0 ,r0为平均半径) 10
4
§6-1
5
一、外力偶矩的计算
扭矩是根据外力偶矩来计算,对于传动轴,外力偶矩可
通过传递功率和转数来换算。
若传动轴的传递功率为P,每分钟转数为n ,则每分钟 功率作功: W 60 P 力偶作功:
W m 2n
60 P m 2n
P m 9549 (N m) n
其中:P — 功率,千瓦(kW) n — 转速,转/分(r/min)
A0为平均半径所作圆的面积。
15
3.薄壁圆筒扭转时的变形
由上图,取出圆筒受扭时的dx微段
得
dx Rd
式中 R 为薄壁圆筒的平均半径 。
工程力学中的弯曲和扭转问题的解析
工程力学中的弯曲和扭转问题的解析工程力学作为一门研究物体受力和力的效应的学科,涵盖了广泛的领域。
其中,弯曲和扭转问题是工程力学中的重要内容。
本文将就工程力学中的弯曲和扭转问题展开解析。
一、弯曲问题的解析当一个横截面直径较小,受到一个外力作用时,就会出现弯曲现象。
在工程中,我们常常需要计算和分析杆件的弯曲情况,以便设计出稳定且符合实际需求的结构。
弯曲问题的解析可以采用梁理论。
梁理论是一种基于假设的方法,即假设杆件是一维的、线弹性的,并且横截面上的应力是均匀的。
在解析弯曲问题时,首先需要确定外力作用下的弯矩分布。
然后,可以利用梁理论中的方程,例如欧拉-伯努利方程或蒙薩漢方程,来计算杆件受力、应变和位移的分布。
最后,根据梁的受力平衡条件,可以得到横截面上的剪力分布和弯曲变形的方程。
通过这些计算和分析,我们可以得出关于杆件在弯曲条件下的各种特性,例如最大弯矩、最大剪力和挠度等。
二、扭转问题的解析扭转是指杆件受到一个扭矩作用时的变形情况。
扭转问题的解析是工程中另一个重要的内容,尤其是在设计机械结构和柔性轴承时。
扭转问题的解析可以采用圆柱弹性理论。
圆柱弹性理论是一种假设杆件是圆柱形的、同轴的,并且材料满足胡克定律的理论方法。
在解析扭转问题时,首先需要确定杆件受到的扭矩分布。
然后,可以利用圆柱弹性理论中的方程,例如圆柱弹性方程和剪应力方程,来计算杆件受力和位移的分布。
最后,根据杆件的受力平衡条件和位移约束条件,可以得到关于杆件扭转情况的各种特性,例如最大剪应力、转角和扭转刚度等。
三、综合应用弯曲和扭转问题在实际工程中常常同时存在。
例如,柱子在受到向下的压力时会发生弯曲和扭转。
在这种情况下,我们需要将弯曲和扭转问题综合起来进行分析。
综合应用时,可以通过梁理论和圆柱弹性理论相结合的方法来解析问题。
首先,需要确定杆件的受力情况,包括弯矩和扭矩的分布。
然后,可以利用梁理论和圆柱弹性理论中的方程来计算杆件受力、应变和位移的分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例6-1 传动轴如图所示,转速 n = 500转/分钟,主动轮B输入功
率NB= 10KW,A、C为从动轮,输出功率分别为 NA= 4KW ,
NC= 6KW,试计算该轴的扭矩。
先计算外力偶矩
A
B
C
x
mA
9549
NA n
9549 4 500
76.4Nm
mB
9549 NB n
9549 10 500
外力偶矩正负号的规定
离开截面
和所有外力的规定一样, 与坐标轴同向为正,反向为负
指向截面
扭矩的正负可按右手螺旋法则确定:扭矩矢量离开截 面为正,指向截面为负;或者说:让四个手指与扭矩Mt的 转向一致,大拇指伸出的方向与截面的外法线n方向一致 时, Mt为正,反之为负。
T(+)
T(-)
用截面法计算扭矩时,通常先假设扭矩为正,然后根 据计算结果的正负确定扭矩的实际方向。
第6章
(圆轴)扭转
本单元主要内容
# 扭转变形的特点 # 外力偶矩的计算 # 扭矩的计算 # 扭转剪应力的计算
工程中承受切应力的构件
传动传轴动轴
工程中承受切应力的构件
工程中承受切应力的构件
❖ 工程实际中的扭转问题
❖ 扭转构件的受力特点:
❖ 构件两端受到两个在垂直
P
于轴线平面内的力偶作用,
P
a。
因此,外力偶Me每秒钟所作功,即 该轮所传递的功率为
{P}kw
{M
e }Nm
{a }ra d
{t}s
103
{M e}Nm rad 103 s
{M
e }Nm
2π
{n} r m in 60
103
因此,在已知传动轴的转速n(亦即传动轴上每个轮的
转速)和主动轮或从动轮所传递的功率P之后,即可由下式
解:1. 计算作用在各轮上的外力偶矩
M1
(9.55103
500)N 300
m
15.9103
N m
15.9
kN m
M2
M3
(9.55103
150 ) 300
Nm
4.78103
Nm
4.78
kN m
M4
(9.55103
200) 300
Nm
6.37 103
Nm
6.37
kN m
2. 计算各段的扭矩 BC段内: T1 M2 4.78 kN m 注意这个扭矩是假定为负的
CA段内:T2 M 2 M3 9.56 kN m (负) AD段内:T3 M 4 6.37 kN m
3. 作扭矩图
由扭矩图可见,传动轴的最大扭矩Tmax在CA段内,其 值为9.56 kN·m。
思考:如果将从动轮D与C的位置对调,试作该传动轴的扭 矩图。这样的布置是否合理?
4.78
191Nm
mC
9549 NC n
9549 6 500
114.6Nm
计算扭矩:
mA
x
MT1
MX 0
MX 0
MT1 mA 0
MT2
mc
AB段 BC段
MT1设为正的 MT2设为正的
MT1 mA 76.4Nm
MT 2 114 .6Nm
4、扭矩图 将扭转轴的扭矩沿截面的分布用图形表示
例题6-2 一传动轴如图,转速 n 300 r min;主动轮输 入的功率P1= 500 kW,三个从动轮输出的功率分别为:P2= 150 kW,P3= 150 kW,P4= 200 kW。试作轴的扭矩图。
计算作用于每一轮上的外力偶矩:
{M e}Nm
{P}kw 103 2π{n} r
60
9549
{P}kw {n} r
m in
m in
主动轮上的外力偶其转向与传动轴的转动方向相同, 而从动轮上的外力偶则转向与传动轴的转动方向相反。
外力偶矩的计算
输入功率:P(kW)
m
转速:n (转/分)
1分钟输入功: 1 薄壁圆筒扭转时横截面上的剪应力
6.2.1 薄壁圆筒扭转时的应力和变形
薄壁圆筒——通常指 r0 的圆筒
10
Me
m
Me
r0O
m
l
Me
m
T
m 当其两端面上作用有外力偶矩时,任一横截面上的内力
偶矩——扭矩(torque) T M e
薄壁圆筒的扭转
观察一个实验
将一薄壁圆筒表面用纵向平行 线和圆周线划分
1273.2N
m
1、扭矩的概念
扭转变形的杆往往称之为扭转轴
扭转轴的内力称为扭矩
2、扭矩利用截面法、并建立平衡方程得到
m
m
x
m
MT
MX 0 MT m 0
MT m
3、扭矩正负号的规定
确定扭矩方向的右手法则:
4个手指沿扭矩转动的方向,大拇指即为扭矩的方向
扭矩正负号: 离开截面为正 指向截面为负
Me 从动轮
n
主轴
主动轮
叶片
本章研究杆件发生除扭转变形外,其它变形可忽略的 情况,并且以圆截面(实心圆截面或空心圆截面)杆为主要 研究对象。此外,所研究的问题限于杆在线弹性范围内工 作的情况。
6-1 概述
1. 扭转的概念 4种基本变形(轴向拉压、剪切、扭转、弯曲)之一
特点:
圆截面轴(实心、空心)
两端施以大小相等方向相反 一对力偶矩
❖ 这时任意两截面间有相对的角位移,这种角位移称为扭转角。
➢扭转时的内力称为扭矩,截面上的扭矩与作 用在轴上的外力偶矩组成平衡力系。 ➢扭矩求解仍然使用截面法
扭转切应力由扭矩产生
扭矩正负规定:右手法则
6-2 扭矩的计算及扭矩图
Ⅰ. 传动轴的外力偶矩
当传动轴稳定转动时,作用于某一轮上的外力偶在t 秒钟内所作功等于外力偶之矩Me乘以轮在t秒钟内的转角
两力偶大小相等,转向相反。
❖
T
T
受力特点: 圆截面直杆在与杆的轴线垂直平面内的外力 偶Me作用下发生扭转。
Me
Me
薄壁杆件也可以
由其它外力引起
扭转。
变形特点: Ⅰ. 相邻横截面绕杆的轴线相对转动; Ⅱ. 杆表面的纵向线变成螺旋线; Ⅲ. 实际构件在工作时除发生扭转变形外, 还伴随有弯曲或拉、压等变形。
W W'
W 60N1000 60000 N
W m m 2n1 2nm
m 9549 P Nm 单位
n
若已知: n=300 r/min
30KW 40KW
70KW
1
2
3
M1
M2
M3
M1
9549
P n
9549 70 300
2228.1N
m
30
M2
9549 300
954.9N
m
M3
9549
40 300
几何——直杆(轴) 非圆截面轴
外力——仅有轴横截面内的外力偶
内力——横截面上只有扭矩
变形——横截面绕轴线转动,任意两横截面产 生相对扭转角
扭转变形的特点
Mn A'
g
A
Mn
B
x
j
B'
圆截面杆受到一对大小相等、方向相反的力偶矩作用 力偶矩方向沿圆杆的轴线 横截面仍为平面,形状不变,只是绕轴线发生相对转动