研究性课题分期付款中的有关计算例题解析

合集下载

研究性学习课题:数列在分期付款中的应用

研究性学习课题:数列在分期付款中的应用

研究性学习课题:数列在分期付款中的应用──分期付款中还款方式的选择一.教案(例)描述问题提出:当前,随着经济发展改革的深入,在商品市场上,消费者购买住房、汽车等价值较高的商品时,为缓解资金的暂缺,消费者可向银行申请贷款,采取分期付款方式。

为了增强学生对金融市场中的分期付款知识的了解。

我在上星期天给学生预先布置了下面的例题,让学生利用休息时间,进行社会调查,把全班学生分成5组,分别去中国建设银行、中国工商银行、中国银行、招商银行、光大银行5家银行去咨询,要求每一组能拿出一个设计成果,看一看如何帮助我,符合我的承受能力,选择一种分期付款的方式。

今天我们就这一例题,一起来看看研究成果,同时体会数列在分期付款中的应用。

例题:随着社会发展和人们生活水平的提高,我也想改善一下居住的环境。

日前,我欲在某房产公司处购买一套商品房,价值为22万元,首次付款2万元后,其余经15年按月分期付款,月利率为0.42%,而我的家庭月工资为2200元,麻烦同学们去银行了解一下情况,为我作一下参谋,我将如何办理商业性个人住房贷款,每月应付款多少元(精确到1元)?实际付款总额比一次性付款额多付了多少元?二、 研究成果展示学生们已去了各个银行咨询,参考了金融知识和贷款信息,结合运用了我们学过的数学知识,每组都有了一个调查结果,大家达成了一个共识,一致认为:1、每期还款额的研究:现在各大银行的对于一年以上还款方式一般有以下两种:(1)等额本息法:每期还款额(本金和利息)相同。

将各期所付款都折合成结清时的值来考虑问题的。

推导公式:设每月还款额均为x 元,每月还款在180月后的总值:x x x x x +++++++++)0042.01()0042.01()0042.01()0042.01(177178179 贷款200000元在180月后的总值:180)0042.01(200000+ 当贷款全部还清时,两者的总值应该相等,所以 x x x x +++++++)0042.01()0042.01()0042.01(178179 180)0042.01(200000+=整理得:1)0042.01()0042.01(0042.0200000180180-++⨯⨯=x 76.1585=x 1586≈元即每月需还款1586元。

【高二数学】研究性学习课题数列在分期付款中的应用(共5页)

【高二数学】研究性学习课题数列在分期付款中的应用(共5页)

研究性学习课题:数列在分期付款中的应用──分期付款中还款方式的选择一.教案(例)描述问题提出:当前,随着经济发展改革的深入,在商品市场上,消费者购买住房、汽车等价值较高的商品时,为缓解资金的暂缺,消费者可向银行申请贷款,采取分期付款方式。

为了增强学生对金融市场中的分期付款知识的了解。

我在上星期天给学生预先布置了下面的例题,让学生利用休息时间,进行社会调查,把全班学生分成5组,分别去中国建设银行、中国工商银行、中国银行、招商银行、光大银行5家银行去咨询,要求每一组能拿出一个设计成果,看一看如何帮助我,符合我的承受能力,选择一种分期付款的方式。

今天我们就这一例题,一起来看看研究成果,同时体会数列在分期付款中的应用。

例题:随着社会发展和人们生活水平的提高,我也想改善一下居住的环境。

日前,我欲在某房产公司处购买一套商品房,价值为22万元,首次付款2万元后,其余经15年按月分期付款,月利率为0.42%,而我的家庭月工资为2200元,麻烦同学们去银行了解一下情况,为我作一下参谋,我将如何办理商业性个人住房贷款,每月应付款多少元(精确到1元)?实际付款总额比一次性付款额多付了多少元?二、 研究成果展示学生们已去了各个银行咨询,参考了金融知识和贷款信息,结合运用了我们学过的数学知识,每组都有了一个调查结果,大家达成了一个共识,一致认为:1、每期还款额的研究:现在各大银行的对于一年以上还款方式一般有以下两种:(1)等额本息法:每期还款额(本金和利息)相同。

将各期所付款都折合成结清时的值来考虑问题的。

推导公式:设每月还款额均为x 元,每月还款在180月后的总值:x x x x x +++++++++)0042.01()0042.01()0042.01()0042.01(177178179 贷款200000元在180月后的总值:180)0042.01(200000+ 当贷款全部还清时,两者的总值应该相等,所以 x x x x +++++++)0042.01()0042.01()0042.01(178179 180)0042.01(200000+=整理得:1)0042.01()0042.01(0042.0200000180180-++⨯⨯=x 76.1585=x 1586≈元即每月需还款1586元。

高中数学 同步学案 分期付款问题中的有关计算

高中数学 同步学案  分期付款问题中的有关计算

9.4分期付款问题中的有关计算[读教材·填要点]1.单利单利的计算是仅在原有本金上计算利息,对本金所产生的利息不再计算利息,其公式为 利息=本金×利率×存期.若以符号P 代表本金,n 代表存期,r 代表利率,S 代表本金与利息和,则有S =P(1+nr). 2.复利把上期末的本利和作为下一期的本金,在计算时每一期本金的数额是不同的,若以符号P 代表本金,n 代表存期,r 代表利率,S 代表本金与利息和,则有复利的计算公式为S =P(1+r)n.[小问题·大思维]1.单利和复利分别对应什么函数类型?[提示] 单利对应一次函数模型,复利对应指数函数模型. 2.单利和复利分别与等差数列和等比数列中的哪一种数列对应?[提示] 单利和复利分别以等差数列和等比数列为模型,即单利的实质是等差数列,复利的实质是等比数列.等差数列模型(单利问题)用分期付款购买价格为25万元的住房一套,按单利计算如果购买时先付5万元,以后每年付2万元加上欠款利息.签订购房合同后1年付款一次,再过1年又付款一次,直到还完后为止.商定年利率为10%,则第5年该付多少元?购房款全部付清后实际共付多少元?[解] 购买时先付5万元,余款20万元按题意分10次分期还清,每次付款数组成数列{a n },则a 1=2+(25-5)·10%=4(万元);a 2=2+(25-5-2)·10%=3.8(万元); a 3=2+(25-5-2×2)·10%=3.6(万元); …;a n =2+[25-5-(n -1)·2]·10%=⎝ ⎛⎭⎪⎫4-n -15(万元)(n =1,2,…,10).因而数列{a n }是首项为4,公差为-15的等差数列.a 5=4-5-15=3.2(万元).S 10=10×4+10×10-1×⎝ ⎛⎭⎪⎫-152=31(万元).31+5=36(万元),因此第5年该付3.2万元,购房款全部付清后实际共付36万元.按单利分期付款的数学模型是等差数列,解决该类问题的关键是弄清楚: (1)规定多少时间内付清全部款额;(2)在规定的时间内分几期付款,并且规定每期所付款额相同;(3)规定多长时间段结算一次利息,并且在规定时间段内利息的计算公式.1.某人从1月起,每月第一天存入100元,到第12个月最后一天取出全部本金及利息,按照单利计息,若月利率为1.65‰,求到年底的本利和.解:第1月存入的100元到12月底的利息为a 1=100×0.001 65×12, 第2月存入的100元到12月底的利息为a 2=100×0.001 65×11,… 第12月存入的100元到12月底的利息为a 12=100×0.001 65,全部利息和为S 12=a 1+a 2+…+a 12=100×0.001 65×(1+2+…+12)=0.165×78=12.87(元), 按单利计息,到年底所取出的本利和为1 212.87元.等比数列模型(复利问题)某人购买价值为10 000元的彩电,采用分期付款的方法,每期付款数相同,购买后1个月付款一次,过1个月再付一次,如此下去,到第24次付款后全部付清,已知月利率为0.8%,如果每月利息按复利计算。

高一数学研究性课题:数列在分期付款中的应用

高一数学研究性课题:数列在分期付款中的应用
高一数学
第一册(上)
组长:翟璐
指导老师:郭光
课题组长:翟璐 组员:高莉莉 王旭
过程:
2006.1.29 所有组员一起拟定、筛选课题内容定下方案。 2006.1.30 由于第一次拟定的课题难度较大,我们缺乏条件完 成,于是舍弃第一次的课题,重新制定了另一个课题研究方案,并 最终确定下来。 2006.1.31 我们对各组员的任务进行分工,接着立即着手查找 资料——分期付款在实际生活中的应用 2006.2.1 继续查找资料,并对所查找的资料进行筛选、整理。 2006.2.2 拟定研究性学习课件的模型,并着手制作课件,最 后进行校对。 组员分工: 翟璐:查找资料、拟定课题、制作课件 王旭:查找资料、拟定课题、校对课件 高莉莉:查找资料、拟定课题及课件模型
方案 方案 类别 类别 1 1
2 2
3
3


2 每 : 期 每 应 月 付 利 款 息 多 按 少 复 , 利 总 计 共 算 分几次 每期所 付 款 与一次性 , 付款方法 分几次 每期所 付 款 与一次性 应 付款方法 例如:月利率为 0.8%,款额 a元 付 付清 付款额 总额 付款差额 是 付清 付款额 总额 付款差额 款 指 购买后个月就增值为 购买后 4 个月第 11 次付款,再 4 个月第 次付款,再 过1 多 上 3 次 过 44 个月第 22 次付款,再过 44 3 次 过 个月第 次付款,再过 少 月 个月第 次付款。 a(1+0.008)=1.008a(元) 个月第 33次付款。 利 , 息 购买后 个月第 次付款,再 这 购买后 22 个月第 11次付款,再 要 再过1个月又增值为:(经过2个月) 样 6 次 过 个月第 次付款,……购 6 次 过 22 个月第 22 次付款,……购 计 才 买后 12 个月第 6 次付款。 2a(元) 入 买后 12 个月第 6 次付款。 便 购买后 1 1.008a(1+0.008)=1.008 个月第 1 次付款,过 下 于 12 次 购买后 1 个月第 1 次付款,过 1 个月第 2 次付款,……购买 月 比 12 次 1…… 2 次付款,……购买 个月第 本 后 12 个月第 12 次付款。 较 na(元) 金 后 12 0.8%,每月利息按复利计算。 经过n个月就增值为: 规定月利率为 个月第 12 次付款。 1.008 。 。 规定月利率为 0.8%,每月利息按复利计算。

《分期付款中的有关计算》例题解析

《分期付款中的有关计算》例题解析

研究性课题:分期付款中的有关计算·例题解析【例1】 小芳同学若将每月省下的零花钱5元在月末存成月利按复利计算,月利为0.2%,每够一年就将一年的本和利改存为年利按复利计算,年利为6%,问三年后取出本利共多少元(保留到个位)?解析 先分析每一年存款的本利和,小芳同学一年要存款12次,每次存款5元,各次存款及其利息情况如下:第12次存款5元,这时要到期改存,因此这次的存款没有月息;第11次存款5元,过1个月即到期,因此所存款与利息之和为:5+5×0.2%=5×(1+0.2%);第10次存款5元,过2个月到期,因此存款与利息和为5×(1+0.2%)2; ……第1次存款5元,11个月后到期,存款与利息之和为5×(1+0.2%)11. 于是每一年中各月的存款与利息的本利和为A ,A=5+5×(1+0.2%)+5×(1+0.2%)2+…+5×(1+0.2%)11=5(1+1.002+1.0022+…+1.00211)第一年的A 元,改存后两年后到期的本利和为A(1+6%)2;第二年的A 元,改存后一年后到期的本利和为A(1+6%);第三年的A 元,由于全部取出,这一年的存款没有利息.三年后,取出的本利和为:A(1+6%)2+A(1+6%)+A .解:设每存一年的本利和为A ,则 A=5×(1+1.002+1.0022+…+1.00211)三年后取出的本利为y ,则y=A +A(1+6%)+A(1+6%)2=A(1+1.06+1.062)=5×(1+1.002+1.0022+…+1.00211)(1+1.06+1.062)=5(1 1.06 1.06)2×·++110021100212--..≈193(元)答:三年后取出本利共193元.说明 这是应用问题,每月(年)存款到期后的本利和组成一个等比数列.【例2】 某企业年初有资金1000万元,如果该企业经过生产经营能使每年资金平均增长率为50%,但每年年底都要扣除消费基金x 万元,余下基金投入再生产,为实现经过5年资金达到2000万元(扣除消费基金后),那么每年应扣除消费基金多少万元(精确到万元)?解 第一年余下的基金为1000(150%)x =1000x a =1000x 1×+-×-令×-,第二年余下的基金为3232 (1000x)(150%)x =1000a =10002×-·+-×即×32321323213222⎛⎝ ⎫⎭⎪-+⎛⎝ ⎫⎭⎪⎛⎝ ⎫⎭⎪-+⎛⎝ ⎫⎭⎪x x依此类推,得a =1000a =100034××321323232132323232423⎛⎝ ⎫⎭⎪-++⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥⎛⎝ ⎫⎭⎪-++⎛⎝ ⎫⎭⎪+⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥x xa =10005×321323232325234⎛⎝ ⎫⎭⎪-++⎛⎝ ⎫⎭⎪+⎛⎝ ⎫⎭⎪+⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥x 为了经过5年使资金达到2000万元,令a 5=2000于是得关于消费基金x 的方程:1000x =20005234×32132323232⎛⎝ ⎫⎭⎪-++⎛⎝ ⎫⎭⎪+⎛⎝ ⎫⎭⎪+⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥ 解这个方程,得3211323222433225554⎛⎝ ⎫⎭⎪--⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪32x =10002000x =1000·×-×211 16179 3216 21117932x=1000x=1000×∴××x≈424答:每年约扣除消费基金424万元。

研究性课题:数列在分期付款中的应用

研究性课题:数列在分期付款中的应用

例1: 中国建设银行设立了教育助 学贷款,其中规定一年期以上贷款 月均等额还本付息。如果贷款10000 元,两年还清,月利率为0.4575%, 那么每月应还多少钱呢?
注:等额还本付息指的是在贷款期内每期以相等的金额平均偿 还贷款本金和利息。
例1: 中国建设银行设立了教育助学贷款,其中规定一年期以

a r (1 r)m
X= (1 r)m 1
例2:某人欲购买5000元电脑一台,采用分期付款方式 在一年内将款全部付清,商店提供了如下几种付款方 案,以供选择。

方案 分几次 类别 付清
付款方法
每期所付 付款总 与一次性
款额

付款差额
1
3次
购买后4个月第1次付款, 再过4个月第2次付款,再
1775.8 5327
327
过4个月第3次付款,
元 元元
2
6次 购买后2个月第1次付款, 再过2个月第2次付 款,……购买后12个月第
880.8 5285 元元
285 元
6次付款。
3 12次 购买后1个月第1次付款, 438.6 5263 263
再过1个月第2次付

元元
款, ……购买后12个月第
12次付款。
注 规定月利率为0.8%,每月利息按复利计算。
数列在分期付款中的应用
分期付款的含义
分期付款是贷款偿还的一种方式,是指借款人 向银行借款后,按借款合同约定分期向银行偿还借 款本息的一种还款方式。
分期付款的规定
(1)分期付款中,一般规定每期付款额相同。 (2)偿还贷款既要偿还本金,还要支付利息。 各月所付款额到贷款全部付清时也会产生利息。
(3)每期利息按复利计算,即上期利息要计入 下期本金。

高一数学研究性学习课题报告数列在分期付款中的应用

高一数学研究性学习课题报告数列在分期付款中的应用

高一数学研究性学习课题报告数列在分期付款中的应用篇一:研究性学习课题:数列在分期付款中的应用研究性学习课题:数列在分期付款中的应用──分期付款中还款方式的选择一.教案(例)描述问题提出:当前,随着经济发展改革的深入,在商品市场上,消费者购买住房、汽车等价值较高的商品时,为缓解资金的暂缺,消费者可向银行申请贷款,采取分期付款方式。

为了增强学生对金融市场中的分期付款知识的了解。

我在上星期天给学生预先布臵了下面的例题,让学生利用休息时间,进行社会调查,把全班学生分成5组,分别去中国建设银行、中国工商银行、中国银行、招商银行、光大银行5家银行去咨询,要求每一组能拿出一个设计成果,看一看如何帮助我,符合我的承受能力,选择一种分期付款的方式。

今天我们就这一例题,一起来看看研究成果,同时体会数列在分期付款中的应用。

例题:随着社会发展和人们生活水平的提高,我也想改善一下居住的环境。

日前,我欲在某房产公司处购买一套商品房,价值为22万元,首次付款2万元后,其余经15年按月分期付款,月利率为0.42%,而我的家庭月工资为2200元,麻烦同学们去银行了解一下情况,为我作一下参谋,我将如何办理商业性个人住房贷款,每月应付款多少元(精确到1元)?实际付款总额比一次性付款额多付了多少元?二、研究成果展示学生们已去了各个银行咨询,参考了金融知识和贷款信息,结合运用了我们学过的数学知识,每组都有了一个调查结果,大家达成了一个共识,一致认为:1、每期还款额的研究:现在各大银行的对于一年以上还款方式一般有以下两种:(1)等额本息法:每期还款额(本金和利息)相同。

将各期所付款都折合成结清时的值来考虑问题的。

推导公式:设每月还款额均为x元,每月还款在180月后的总值:x(1? 蓬勃范文网:高一数学研究性学习课题报告数列在分期付款中的应用)42)179?x(1?0.0042)178?x(1?0.0042)177???x(1?0.0042)?x 贷款200000元在180月后的总值:200000(1?0.0042)180当贷款全部还清时,两者的总值应该相等,所以x(1?0.0042)179?x(1?0.0042)178???x(1?0.0042)?x?200000(1?0.0042)180200000?0.0042?(1?0.0042)180整理得:x? (1?0.0042)180?1x?1585.76?1586元即每月需还款1586元。

分期付款中的有关计算(抽样方法 第6课时)

分期付款中的有关计算(抽样方法 第6课时)

构建培养综合性人才的新课程(抽样方法第6课时)——重点中学创设“学生数学应用研究基地”的实践和初步成果瞿少华[成果概要]重点中学如何为培养综合性人才打好宽厚的基础,如何构建文理大综合的课程体系,如何激发学生学习数学的兴趣和培养应用意识、能力,如何进行研究性学习和多媒体技术的有效整合,重点中学如何在教育科研上进行示范,针对这些问题,萧山中学近几年进行了创建“学生应用数学研究基地”的实践与研究,取得了许多重要的成果.新课程模式初见端倪.1.创建“学生数学应用研究基地”的教育理念.2.“基地”的运作体系.3.“基地”的主要职能、人员、场地、设施的配套和管理.4.学生数学应用研究的计划制定.5.教师指导学生进行研究的操作模式.6.学生取得的研究成果.7.对发展学生的综合能力和应用能力的作用.1.背景1.1 萧山中学是全省首批一级重点中学,几乎集中了全萧山最优秀的生源(萧山人口115万).未来国家的高科技人才、高级管理人才,许多将在现在的学生中产生,如何落实中央关于以德育为核心,以创新意识培养和实践能力发展为重点的教育改革,如何发挥省一级重点中学在教育教学方面的示范作用,一直是我们研究思考的重要问题,虽然进萧中的学生考分很高,但偏文、偏理现象仍较严重,学习的视野不够宽,文、理思想不能很好地沟通、融合,虽然有文科小综合、理科小综合,但文理大综合思想方法的培养还缺少具体措施,缺乏可借鉴的模式.这是我们创建高中“学生数学应用研究基地”的初衷之一.(以下简称“基地”)1.2 高中数学一直是学生、教师花费大量时间、精力学与教的一门新课程,传统的数学教学优点是有目共睹的.基础扎实,强调熟能生巧,解题能力强.但其不足也是存在的,对学生学习兴趣和应用意识的培养重视不够,苦学较多,乐学较少.如何激发学生对数学的兴趣,用数学的眼光去观察社会、生活,提出问题,发现数学规律,感受数学,破除数学的神秘化,使数学与经济、自然、文化融为一体,使学生初步尝试用数学工具去解决现实中的问题,从观念上、方法上培养学生的综合能力,是我们创建“基地”的初衷之二.1.3 随着国家新课程的广泛实施,研究性学习在各地各校积极展开.数学的研究性学习如何搞,如何构建一个较为规范、全面的课程体系,是我们创建“基地”的初衷之三.2.模式2.1 基地的运作体系2.2 主要职能(1)制定高一、二、三各年级具体研究计划;(2)向学生提供资料、书籍、网址等信息;(3)向学生提供多媒体网络教室(安装几何画板等软件,并能直接进入因特网);(4)组织研究信息(成果)的交流、研讨课;(5)指导教师、学生对结果的评价.2.3 挂牌辟室,确定主要场地(校科学馆六楼多媒体网络教室),落实兼职人员由教科处总协调,高一、二、三数学各备课组长,校学科带头人为兼职指导教师,并请校内外专家、特级教师为顾问.本届高中新生的数学应用研究主要方向及时间安排例说高一学生《函数的实际应用》研究过程、方法.3.1 思想准备教师利用周三的校内学科讲座时间,开设有关讲座,比如:“数学与周边生活”“数学新课程的特点”“高中数学与初中数学学习的不同之处”“谈谈数学建模”“研究性学习的特征和方法”,并利用家长会进行“家长和研究性学习”的讲座.3.2 知识、方法、场地准备(1)学完高一课本第二章函数内容和复合函数的有关知识、方法;(2)学习收集数据的方法(文献、书籍、媒体、网上、调查、访问);(3)学习数据的处理和求拟合函数的方法(重点最小二乘法和Reg软件的使用);(4)结合高一计算机课程,进行几何画板操作和powerpoint操作及网上查询、下载信息的方法学习;(5)在学生机房(教室)安装几何画板软件和Reg软件.3.3 组织准备在教师指导下,学生自愿合作,两班共分为二十个研究小组,确定组长制定研究方案,确定分工,开展研究,允许学生进教师资料室和课件制作室.3.4 课内的集中交流研讨基本模式如下[例1]高一(8)班冯春华小组对萧山瓜沥邮政中心局在街头橱窗展出的该局业务收入情况和其中的数量关系进行分析和预测.瓜沥邮政中心局2000年~2001年业务收入表资料来源:瓜沥邮政中心模型1 由图象一可看出,它基本上向上增长,因此收入可能是随着时间的增长而增长的,设月收入为y,时间为x,可得:y=25.01x+24.49模型2 再仔细观察可看出2000年图象上升趋势较快,2001年图象上升趋势较慢,所以,可用2001年一段来描述:y=14.3x+249.8图1—9模型3 由最小二乘法,可得:y=26.77x+43.13综合以上三种模型,模型2总体拟合效果优于其他模型,因此可以估算出2001年10,11,12月收入最有可能为:564.4,578.7,593.0(万元).[例2]高一(7)班陈国飞小组研究了媒体上刊登的上榜歌曲支持率(得票数)的升降过程,揭示其中的函数关系并对出榜时间的预测.比如:周杰伦《简单爱》在流行音乐排行榜上榜时间:2001年11月3日.第一周至第五周得票数为:752,1511,2123,2359,2100,由描点法画出大致图象二,得以拟合函数表达式:N=-172w2+1390w-500图1—10分析此音乐榜,在得票500票以上歌曲才可进入前十名,预测得票数将在第七周后降至500票以下,即《简单爱》这首歌将在七周后被挤出此音乐排行榜,并进一步得出该排行榜的二次函数ax2+bx+c模型的基本形态.4.成效4.1 感受数学,沟通文理通过研究,学生深切地感受了数学学与社会、周边生活的密切联系,感受了文理是如何沟通的,对函数的概念内涵有了切身的体会和深刻的理解,培养了学生的数学眼光和意识,问题是他们自己找的,自己发现的,是平时的应用题教学效果所无法比拟的,是扎扎实实的素质教育.4.2 激发兴趣,学会研究平时考试成绩好的学生和成绩不太好的学生在应用研究中差别不大,甚至后来居上,这一方面激发了学生的学习热情、兴趣,另一方面使他们初尝了科学的精神、方法、态度,同时说明数学应用研究所体现(培养)的是学生全面素质,不是单一的考试能力.4.3 学会合作,学会交流由于应用研究在小组内展开,与社会诸方面的接触,促使学生学会合作,学会交流,这对他们今后的成长十分有益.那些上台展示研究结果的同学并不是组内成绩最好的学生,平时这样的机会对他们来说并不多.(选录:《数学通报》2003年第3期)。

§3.6研究性课题:分期付款中的有关计算

§3.6研究性课题:分期付款中的有关计算

课题:§3.6研究性课题:分期付款中的有关计算(一)课题教材分析:首先, 本节课是等比数列的前n项和公式在购物方式上的一个应用.此前学生已掌握等比数列的通项公式及其前n项和公式,并学习了教材中P124的阅读材料:有关储蓄的计算(单利计息问题),也就是说学生在知识和应用能力方面都有了一定基础。

其次,《全日制普通高中数学教学大纲(试验修订版)》将研究性课题列为必修内容,是为迎接知识经济的挑战而培养学生创新精神和创新能力的一项开创性工作。

研究性学习注重的是让学生学会学习和研究,关注的是研究过程,其核心是创新意识的培养。

本研究性课题,是所学知识的实际应用,因此对培养学生的应用意识也具有很高的价值.又由于它在本小节中首次出现,学生对如何学习研究性课题比较模糊,所以能否将研究性课题中以实际问题为载体,以学生独立探究为主体的特点突现出来,也影响着今后研究性课题的教学效果.如果先复习提问等比数列知识,是为之后的学习做了铺垫,降低了难度,但一方面框住了学生的思维,另一方面容易使学生(尤其是数学不太好的学生)觉得本节课不过是已有知识的习题课而提不起兴致.另外,我们常说,问题是数学的心脏.而爱因斯坦有句名言:提出问题比解决问题更重要.而培养学生提问题的能力就很有必要在研究课题之前让学生了解课题的产生背景.所以我利用现代网络技术等多媒体教学手段将学生带入问题情境,既自然地创建了轻松愉快的气氛和生动活泼的环境,更重要的是引起学生的认知冲突.(二)素质教育目标:1.知识目标:使学生在理解的基础上掌握等比数列前n项和公式在购物付款方式中的应用;2.能力目标:培养学生搜集、选择、处理信息的能力,发展学生独立探究和解决问题的能力,提高学生的应用意识和创新能力;3.德育目标:使学生抓住社会现象的本质,用科学的、辨证的眼光观察事物,建立科学的世界观;4.情感目标:通过学生之间、师生之间的交流与配合培养学生的合作意识和团队精神;通过独立运用数学知识解决实际问题培养学生勇于克服困难的坚强意志,也使学生体会学习数学知识的重要性,增强他们对数学学习的自信心和对数学的情感.(三)课型课时计划:1.课题类型:新授课;2.教具使用:常规教学;3.课时计划:本课题共安排1课时;(四)教学三点解析:(五)————————————————第 1 页(共6页)————————————————————————————————第 2 页 (共 6页)———————————————— 1. 教学重点:引导学生对例题中的分期付款问题进行独立探究;2. 教学难点:独立解决方案13. 教学疑点:独立解决方案1(六) 教学过程设计一. 温故知新,引入课题幽默故事:一位中国老太太与一位美国老太太在黄泉路上相遇。

从“分期付款有关计算”谈研究性学习

从“分期付款有关计算”谈研究性学习
百元 ) 注 ③ ) (
‘  ̄ 80 8 , ‘ -8 . 元 y -
系图略 ) 。
空气阻力 影响较大 , 故关系 图在 实践 中无法 使用 。 本节课的设计遵循 全员 参与,自主学 习、 验 、 体 撵 究 的原则 , 有理论推 导, 有实践应用 , 教师不包办代替 , 只是从旁 引导 , 让学 生综合 运用所 学知识 来解 决 生活 中的实际同题, 学生极感兴趣, 也从中体会到 了数学研 究的方 法与效果, 对开 发学 生的科 研意识 与探究 精神 有很大 的启迪价值 。
维普资讯
1 6
中学数 学教 学
20 0 2年 第 2期
从“ 期付款有关计算 " 分 谈研究性学 习
湖北省黄石市第七中学 袁季春 ( 邮编 : 50 ) 4 02 3
培养学生创新意识和 实践能 力 已成 为数学 教学 的

方案 3 购买后 L 十月第 1次付款 再每过 1 月 十 付 一次款 , 共分 1 2次付清 。 注 规定 : 月利率 为 0 86 每 月利息按 复利计 ① .9 , 算; ◎每期所付款额相 同。 分析 本问题 的背景为学 生社会生活 中耳闻 目睹 的经济 问题 , 中所涉及 的概念较多 , : 题 如 分期付款 、 利 率、 复利等, 学生通过背景材料进行 观察 、 分析 、 抽象得 出数学概念及规律 , 运用 已有知识 , 将实 际问题 转化 为 数学问题, 建立数学模 型井加 解 决。 解释相 关概 念 : 什 么是 复利 计算 ; ① ②分 期 付款 时, 品售价和每期所 付款额 在货款全 部 付清前 会随 商 着时 间推 移而不断增 值 } ③各期 付款额 连 同最 后 一次 付款 时所 生利息之和 , 于商品售 价及从 购 买到最 后 等

分期付款中的有关计算

分期付款中的有关计算

分期付款中的有关计算课题:分期付款中的有关计算(一)教学目的:1、知识目标:使学生掌握等比数列前n项和公式在购物付款方式中的应用;2、能力目标:培养学生搜集、选择、处理信息的能力,发展学生独立探究和解决问题的能力,提高学生的应用意识和创新能力;3、德育目标:使学生抓住社会现象的本质,用科学的、辨证的眼光观察事物,建立科学的世界观;4、情感目标:通过学生之间、师生之间的交流与配合培养学生的合作意识和团队精神;通过独立运用数学知识解决实际问题培养学生勇于克服困难的坚强意志,也使学生体会学习数学知识的重要性,增强他们对数学学习的自信心和对数学的情感.教学重点:引导学生对例题中的分期付款问题进行独立探究教学难点:独立解决方案授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:本节课是等比数列的前n项和公式在购物方式上的一个应用.此前学生已掌握等比数列的通项公式及其前n项和公式,并学习了教材中的阅读材料:有关储蓄的计算(单利计息问题),也就其次,《全日制普通高中数学教学大纲(试验修订版)》将研究性课题列为必修内容,是为迎,是所学知识的实际应用,因此对培养学生的应用意识也具有很高的价值.又由于它在本小节中首次出现,学生对如何学习研究性课题比较模糊,所以能否将研究性课题中以实际问题为载体,以学生独立探究为主体的特点突现出来,也影响着今后研究性课题的教学效果.问题是数学的心脏.而爱因斯坦有句名言:提出问题比解决问题更重要.而培养学生提问题的能力就很有必要在研究课题之前让学生了解课题的产生背景.所以我利用现代网络技术等多媒体教学手段将学生带入问题情境,既自然地创建了轻松愉快的气氛和生动活泼的环境,更重要的是引起学生的认知冲突.教学过程:一、引入:1..幽默故事:一位中国老太太与一位美国老太太在黄泉路上相遇.美国老太太说,她住了一辈子的宽敞房子,也辛苦了一辈子,昨天刚还清了银行的住房贷款.而中国老太太却叹息地说,她三代同堂一辈子,昨天刚把买房的钱攒足.指出:我国现代都市人的消费观念正在变迁——花明天的钱圆今天的梦对我们已不再陌生;贷款购物,分期付款已深入我们生活.但是面对商家和银行提供的各种分期付款服务,究竟选择什2.基本公式:1.等差数列的前n项和公式:n(a1+an)n(n-1)dSn=, Sn=na1+ 222.等比数列的前n项和公式:a1(1-qn)a-anq 当q≠1时,Sn= ① 或Sn=1 ② 1-q1-q当q=1时,Sn=na1特殊数列求和--常用数列的前n项和:1+2+3+ +n=n(n+1) 21+3+5+ +(2n-1)=n2n(n+1)(2n+1) 6n(n+1)213+23+33+ +n3=[] 23.求和的常用方法:特殊数列求和公式法、拆项法、裂项法、错位法 12+22+32+ +n2=二、问题:某学生的父母欲为其买一台电脑售价为1万元,除一次性付款方式外,商家还提供在1年内将款全部还清的前提下三种分期付款方案(月利率为1%):⑴购买后2个月第1次付款,再过2个月第2次付款…购买后12个月第6次付款;⑵购买后1个月第1次付款, 过1个月第2次付款…购买后12个月第12次付款;⑶购买后4个月第1次付款,再过4个月第2次付款,再过4个月第3你能帮他们参谋选择一下吗?”三解决问题的过程:1.启迪思维,留有余地:问题1:按各种方案付款每次需付款额分别是多少?每次付款额是10000的平均数吗?(显然不是,而会偏高)那么分期付款总额就高于电脑售价,什么引起的呢?(利息)问题2:按各种方案付款最终付款总额分别是多少?(事实上,它等于各次付款额之和,于是,本课题的关键在于按各种方案付款每次需付款额分别是多少?——设为2.搜集、整理信息:(1)分期付款中规定每期所付款额相同;(2)每月利息按复利计算,即上月利息要计入下月本金.例如,由于月利率为1%,款额a元过一个月就增值为a(1+1%)=1.01a(元);再过一个月又增值为1.01a(1+1%)=1.01a(元)3.独立探究方案1可将问题进一步分解为:1. 商品售价增值到多少? 22. 各期所付款额的增值状况如何?3.当贷款全部付清时,电脑售价与各期付款额有什么关系?4.提出解答,并给答辩:由商品价格=付款额,得10000×(1+1%)=x+(1+1%)x+(1+1%)x+(1+1%)x+(1+1%)x+(1+1%)x, 1224681010000⨯1.0112⨯(1.012-1)解得x==1785.86 1.0112-15.创建数学模型:比较方案1结果,经过猜想得:分期付款购买售价为a元的商品,分n次经过m个月还清贷款,m⎡⎤a(1+p)⎢(1+p)n-1⎥⎣⎦每月还款x元,月利率为p,则x= (1+p)m-1m6.验证并使用模型:10000⨯1.0112⨯(1.01-1)方案2中,x==888.49 121.01-112410000⨯1.01⨯(1.01-1)=3607.62 方案3中,x=1.0112-17.结论分析:方案1中,x=1785.86元,付款总额6x=10721.16元;方案2中,x=888.49元,付款总额12x=10661.85元;《考试说明》明确指出:“能阅读、理解、对问题进行陈述的材料,能综合运用所学的数学知复习了等比数列的应用,体现了数学的实际应用价值,尤其是从实际出发来表述问题,课堂气氛异常热烈,更四、小结1.分期付款中的计算涉及的数学知识:等比数列前n项和公式;数学思想:列方程解未知2.“方案2、3→模型→方案3”是由特殊到一般,再由一般到特殊的研究方法; 研究性课题的基本过程:生活实际中的问题→存在的可行方案→启迪思维留有余地→搜集整理信息→独立探究个案→提出解答并给答辩→创建数学模型→验证并使用模型→结论分析3.问题来源于现实,问题处处存在,要善于发现问题并抓住问题本质;而探究问题时往往不会一帆风顺,要勇于战胜困难,磨砺自己意志.4.促进学生知识迁移——五、课后作业:提出一个熟悉的日常生活中的分期付款问题,并探究解决六、板书设计(略)七、课后记:。

研究性学习(数学)分期付款问题

研究性学习(数学)分期付款问题

研究性学习(数学)分期付款问题词条概念分期付款(Pay by Instalments)大多用在一些生产周期长、成本费用高的产品交易上。

如成套设备、大型交通工具、重型机械设备等产品的出口。

分期付款的做法是在进出口合同签订后,进口人先交付一小部分货款作为订金给出口人,其余大部分货款在产品部分或全部生产完毕装船付运后,或在货到安装、试车、投入以及质量保证期满时分期偿付。

购买商品和劳务的一种付款方式。

买卖双方在成交时签订契约,买方对所购买的商品和劳务在一定时期内分期向卖方交付货款。

每次交付货款的日期和金额均事先在契约中写明。

发展历史分期付款方式是在第二次世界大战以后发展起来的。

开始时只局限于一般日用商品或劳务的购买。

后来,随着生产力的迅速发展,工、农业生产的规模日益扩大,所需费用增大,加之银行信用的发展,分期付款的领域扩大到企业购买大型机器设备和原材料上。

伴随着中国金融服务的完善以及人们消费习惯的改变,在国外流行的分期付款消费被引入国内,并迅速得到国内消费者的认可。

采用分期付款方式消费的通常是目前支付能力较差,但有消费需求的年轻人。

其消费的产品通常是笔记本电脑、手机、数码产品等。

分期付款方式通常由银行和分期付款供应商联合提供。

银行为消费者提供相当于所购物品金额的个人消费贷款,消费者用贷款向供应商支付货款,同时供应商为消费者提供担保,承担不可撤消的债务连带责任。

使用分期付款方式消费的年轻人通常被称为“分期族”。

市场含意分期付款实际上是卖方向买方提供的一种贷款,卖方是债权人,买方是债务人。

买方在只支付一小部分货款后就可以获得所需的商品或劳务,但是因为以后的分期付款中包括有利息,所以用分期付款方式购买同一商品或劳务,所支付的金额要比一次性支付的货款多一些。

分期付款的方式一方面可以使卖方完成促销活动,另一方面也给买方提供了便利。

计算方法利用数列知识有分期付款公式: x=a(1+p)^m [(1+p)^m/n -1] /[(1+p)^m -1]其中为a本金, p为月利率, m月份数, n 次数. x为每次付款额.一般的m=n那么付出的利息应为: mx-a例如按揭7万元, 5年.此时a=70000, p= 0.oo8 m=60 n=60 代入得x=?.付利息60×?—70000=........分期付款买房第一次购买商品房首付最低20%,利率享受七折。

研究性课题:分期付款的有关计算

研究性课题:分期付款的有关计算

研究性课题:分期付款的有关计算---数列知识在按揭购房中的实际应用作者:张晓琳崔云航陈禹(牡丹江铁路三中二年六)在探索中创新,在实践中求知。

为了适应创新教育,素质教育的需要,我们积极主动地开展了研究性学习的活动。

培养自学能力,激发对学习的兴趣。

开展研究性课题,需要我们“探索,创新,应用”。

探索,要求我们不仅仅满足于课堂知识,而是希望能够更深更广的了解知识,发现其中的内涵,学懂学透。

我们在活动中,通过社会调查,借助互联网查阅整理了有关的多方面内容。

不但敢于质疑,而且勤于行动。

创新,让我们不拘泥于陈旧的知识,而是寻求更多更新的知识。

素质教育的目的在于培养学生的创造力“创造是人才的本质。

”在探索的过程中,创造出适用的更简捷的思路和方法。

应用,要求我们不只为了考试而学习,而是要“学以致用”。

为此,我们选择了新教材的“研究性课题:分期还款的有关计算”为题,研究数列部分在实际生活中的应用,即“按揭购房”中分期还款的计算。

一.复习引入,介绍课题1、复习有关复利计息知识来源于生活,数学知识也是如此,在我们的日常生活中,存在有大量的数学素材。

例如新教材P.91例2就是一个以复利计算利息的储蓄问题,我们先来重温一下。

(1)按复利计算利息的一种储蓄,本金为a元,每期利率为r,设本利和为y,存期为x,写出本利和y随存期x变化的函数式。

答:x期后的本利和为y=a(1+r)x(2)如果存入本金a元,每月的利率为0.8%,试分别计算1月后,2月后,3个月后, (12)个月后的本利和是多少?解:已知本金为a元,1月后的本利和为a(1+0.8%)2月后的本利和为a(1+0.8%)23月后的本利和为a(1+0.8%)3……12月后的本利和为a(1+0.8%)12数学的应用非常广泛,数学已渗透到现代科学的各个领域、国民经济的各个部门,正如华罗庚教授所说:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。

高一数学课件研究性课题分期付款

高一数学课件研究性课题分期付款

研究性课题:分期付款中的有关计算江门市新会第一中学〔529100〕张泳华[教学目的]:1.要求学生会将一个以分期付款为背景的实际问题转化为数学问题。

2.培养学生的合作意识,探究意识,提高运用已学的数学知识分析问题和解决问题的能力。

[教学重点]:引导学生分析和解决实际问题[教学难点]:将实际问题转化为数学问题。

即数学的建模过程[教学方法]:学生自主探索,教师启发引导[教学手段]:多媒体辅助教学[教学过程]:一.创设问题情境,引入课题任务1:请你作一回“少年包青天〞小张借了一万块给小王,小王承诺6个月后分3次还清,然而两人在还款方案上出现分歧,以下是他们各自的还款方案,试判断两个方案是否公平?方案1:小王认为,自己借了小张10000元,分3次还清,为公平起见就取平均数,也就是说,每次还给小张10000元,约为3333.3元。

3方案2:小张认为,自己借给小王10000元,假设钱存在银行6个月后因增值为1000×〔1+0.008〕6≈10489.7(月利率为0.8%,每月利息按复利计算),为公平起见就取平均数,也就是说,小王每次应该还1000016元,约为3496.57元。

3学生思考、做出选择。

〔这里采用了网上投票的方式,可以直观的得到选择的结果,并判断学生的认识情况〕教师引导分析:分析还款的情形,从而得出这一类问题解决的关键:经6个月后10000元2个月后4个月后6个月后x x x无利息个月利息个月利息如下列图,“公平〞的本质是1000元及其六个月的利息,与分期所还款额连同利息之和相等。

同时,指出贷款购物,分期付款已深入我们生活。

再用电脑展示从互联网通过一些搜索引擎,如以及等搜索的有关分期付款的信息,让学生认识到网络上相关知识的丰富性,同时也意识到所研究的问题源于生活实际〔引题后教师板书〕。

二、新课教学1.给出预备知识,引导学生探索表达公平的最正确方案假设购置一件售价为 10000元的商品,要求在 6个月内将款全部还清,月利率为 0.8%,分3次付款,那么每次付款多少元?〔1〕通过情境 1分析分期付款的情况和规定 在分期付款中,每月的利息均按复利计算; 分期付款中规定每期所付款额相同分期付款时,商品售价和每期所付款额在货款全部付清前会随着时间推移 而不断增值; 各期所付款额连同到最后一次付款所生的利息之和,等于商品售价及从购置到最后一次付款时的利息之和2〕复习有关复利计息按复利计算利息的一种储蓄,本金为存期为x ,本利和y 随存期x 变化的函数式为:元,每期利率为r ,设本利和为y ,x 期后的本利和为 y=a 〔1+r 〕x〔3〕等比数列有关知识a nq定义式:an1通项公式:a na 1q n1前n 项和公式: a 1(1q n )a 1a n q S n1 q1q2.分析、归纳。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

研究性课题:分期付款中的有关计算·例题解析
【例1】 小芳同学若将每月省下的零花钱5元在月末存成月利按复利计算,月利为0.2%,每够一年就将一年的本和利改存为年利按复利计算,年利为6%,问三年后取出本利共多少元(保留到个位)?
解析 先分析每一年存款的本利和,小芳同学一年要存款12次,每次存款5元,各次存款及其利息情况如下:
第12次存款5元,这时要到期改存,因此这次的存款没有月息;
第11次存款5元,过1个月即到期,因此所存款与利息之和为:5+5×0.2%=5×(1+0.2%);
第10次存款5元,过2个月到期,因此存款与利息和为5×(1+0.2%)2; ……
第1次存款5元,11个月后到期,存款与利息之和为5×(1+0.2%)11. 于是每一年中各月的存款与利息的本利和为A ,
A=5+5×(1+0.2%)+5×(1+0.2%)2+…+5×(1+0.2%)11
=5(1+1.002+1.0022+…+1.00211)
第一年的A 元,改存后两年后到期的本利和为A(1+6%)2;
第二年的A 元,改存后一年后到期的本利和为A(1+6%);
第三年的A 元,由于全部取出,这一年的存款没有利息.
三年后,取出的本利和为:
A(1+6%)2+A(1+6%)+A .
解:设每存一年的本利和为A ,
则 A=5×(1+1.002+1.0022+…+1.00211)
三年后取出的本利为y ,
则y=A +A(1+6%)+A(1+6%)2
=A(1+1.06+1.062)
=5×(1+1.002+1.0022+…+1.00211)(1+1.06+1.062)
=5(1 1.06 1.06)2×·++110021100212
--..
≈193(元)
答:三年后取出本利共193元.
说明 这是应用问题,每月(年)存款到期后的本利和组成一个等比数列.
【例2】 某企业年初有资金1000万元,如果该企业经过生产经营能使每年资金平均增长率为50%,但每年年底都要扣除消费基金x 万元,余下基金投入再生产,为实现经过5年资金达到2000万元(扣除消费基金后),那么每年应扣除消费基金多少万元(精确到万元)?
解 第一年余下的基金为
1000(150%)x =1000x a =1000x 1×+-×-令×-,第二年余下的基金为3232 (1000x)(150%)x =1000a =10002×-·+-×即×32
321323213222⎛⎝ ⎫⎭⎪-+⎛⎝ ⎫⎭⎪⎛⎝ ⎫⎭⎪-+⎛⎝ ⎫⎭
⎪x x
依此类推,得
a =1000a =100034××321323232132323232423⎛⎝ ⎫⎭⎪-++⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥⎛⎝ ⎫⎭⎪-++⎛⎝ ⎫⎭⎪+⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥x x
a =10005×321323232325234⎛⎝ ⎫⎭⎪-++⎛⎝ ⎫⎭
⎪+⎛⎝ ⎫⎭⎪+⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥x 为了经过5年使资金达到2000万元,令
a 5=2000
于是得关于消费基金x 的方程:
1000x =20005234×32132323232⎛⎝ ⎫⎭⎪-++⎛⎝ ⎫⎭
⎪+⎛⎝ ⎫⎭⎪+⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥ 解这个方程,得
3211323222433225
554⎛⎝ ⎫⎭⎪--⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪32
x =10002000x =1000·×-×
211 16179 32
16 211179
32
x=1000
x=1000×
∴××
x≈424
答:每年约扣除消费基金424万元。

相关文档
最新文档