圆的基本性质ppt(1) 下载
合集下载
圆的基本性质课件
圆与直线的位置关系
判定直线与圆的位置关系:直线与圆有三种可能的位置关系,相离(直线与 圆没有交点),相切(直线与圆有一个切点),相交(直线与圆有两个交 点)。
圆与圆的位置关系
判定两个圆的位置关系:两个圆之间有四种可能的位置关系,相离(两个圆 没有交点),外切(两个圆相切于外面的一点),相交(两个圆相交于两个 不重合的交点),内切(一个圆位于另一个圆的内部且相切于内面)。
切线和弧长
切线是与圆相切且只有一个交点的直线。 弧长是弧上的一段弧的长度,它与整个周长之间的关系为弧长 = 圆心角度数 / 360° × 周长。
圆的判定定理
判定两个圆是否相交:两个圆的半径之和大于它们的圆心之间的距离即可。 判定一点与圆的位置关系:如果点到圆心的距离小于半径,则该点在圆的内部;如果点到圆心的距离等于半径, 则该点在圆上;如果点到圆心的距离大于半径,则该点在圆的外部。
圆的基本性质
欢迎来到本次PPT课件,我们将介绍圆的基本性质。让我们一起探索圆的定 义、周长和面积公式,圆心角和圆周角,切线和弧长,圆的判定定理,以及 圆与直线、圆与圆的位置关系。
圆的定义和元素
圆由一组等距离于圆心的点组成,圆心为圆的中心点。 元素有半径(圆心到圆上任一点的距离)和直径(通过圆心而且两端落在圆上的线段)。
圆的周长和面积公式
圆的周长是圆上的一段弧的长度,它与圆的直径之间的关系为周长 = 直径 ×半径之间的关系为面积 = 半径²× π。
圆心角和圆周角
圆心角是以圆心为顶点的角,它的度数等于对应的弧所夹的角度。 圆周角是以圆上两点和圆心为顶点的角,它的度数等于对应的弧所夹的角度。
浙教版数学九年级上册3.1 圆的基本性质课件(共26张PPT)
3、以O为圆心,OB为半径
作圆。
所以⊙O就是所求作的
圆。
现在你知道了怎样要 将一个如图所示的破损的 圆盘复原了吗?
方法: 寻求圆弧所在圆的圆心,
在圆弧上任取三点,作其 连线段的垂直平分线,其 交点即为圆心.
已知△ABC,用直尺和圆 规作出过点A、B、C的圆
A
O C
B
经过三角形各个顶点的圆 叫做三角形的外接圆,外接圆 的圆心叫做三角形的外心,这 个三角形叫做圆的内接三角形。
A
如图:⊙O是△ABC的
外接圆, △ABC是⊙O
的内接三角形,点O是
O C △ABC的外心
B
外心是△ABC三条
边的垂直平分线的交点
如图,请找出图中圆的圆 心,并写出你找圆心的方法?
A
O C
B
画出过以下三角形的顶点的圆
A
O ●
B
C
(图一)
A
O ●
┐
B
C
(图二)
A O ●
BC (图三)
1、比较这三个三角形外心的位置, 你有何发现?
练一练
1.下列命题不正确的是 A.过一点有无数个圆. B.过两点有无数个圆. C.弦是圆的一部分. D.过同一直线上三点不能画 圆. 2.三角形的外心具有的性质是 A.到三边的距离相等. B.到三个顶点的距离相等. C.外心在三角形外. D.外心在三角形内.
某市要建一个圆形公园,要求公园刚好把动 物园A,植物园B和人工湖C包括在内,又要使 这个圆形的面积最小,请你给出这个公园的施 工图.(A、B、C不在同一直线上)
问题: 车间工人要将一个
如图所示的破损的圆盘复 原,你有办法吗?
1、过一点可以作几条直线? 2、过几点可确定一条直线?
课件242圆的基本性质第1课时.ppt
E D
B OC
A
A
1.如图,半径有:__O_A_、__O_B_、__O_C___
若∠AOB=60°,
B
则△AOB是等__边___三角形.
O●
2.如图,弦有:___A_B_、__B_C__A_C___
C
在圆中有长度不等的弦,
直径是圆中最长的弦。
1.如图,弧有:___A⌒_B___B⌒_C______
解:
23÷2÷20=0.575cm
答: 这棵红衫树的半径每年增 加0.575cm
练一练
如图,一根
5m 长 的 绳 子 ,
一端栓在柱子
上,另一端栓着
一只羊,请画出
5
羊的活动区域.
5m 4m o
5m 4m o
正确答案
想一想 一、判断下列说法的正误:
(1)弦是直径;( )
(2)半圆是弧; (
)
(3)过圆心的线段是直径; ( )
绕它固定的一个端点O旋转一周,另一 个端点A所形成的图形叫做圆.
静态:圆心为O、半径为r的圆可以看
成是所有到定点O的距离等于定长r 的
点组成的图形.
把车轮做成圆形,车轮上各点到车轮中心 (圆心)的距离都等于车轮的半径,当车轮 在平面上滚动时,车轮中心与平面的距离保 持不变,因此,当车辆在平坦的路上行驶时, 坐车的人会感觉到非常平稳,这也是车轮都 做成圆形的数学道理.
与圆有关的概念
弦 连接圆上任意两点的线段(如图
AC)叫做弦,
经过圆心的弦(如图中的AB)叫做直径.
要举例证明。
B
O·
A
C
弧
圆上任意两点间的部分叫做圆弧,简称
弧.以A、B为端点的弧记作 ⌒ AB ,读作“圆 弧AB”或“弧AB”.
B OC
A
A
1.如图,半径有:__O_A_、__O_B_、__O_C___
若∠AOB=60°,
B
则△AOB是等__边___三角形.
O●
2.如图,弦有:___A_B_、__B_C__A_C___
C
在圆中有长度不等的弦,
直径是圆中最长的弦。
1.如图,弧有:___A⌒_B___B⌒_C______
解:
23÷2÷20=0.575cm
答: 这棵红衫树的半径每年增 加0.575cm
练一练
如图,一根
5m 长 的 绳 子 ,
一端栓在柱子
上,另一端栓着
一只羊,请画出
5
羊的活动区域.
5m 4m o
5m 4m o
正确答案
想一想 一、判断下列说法的正误:
(1)弦是直径;( )
(2)半圆是弧; (
)
(3)过圆心的线段是直径; ( )
绕它固定的一个端点O旋转一周,另一 个端点A所形成的图形叫做圆.
静态:圆心为O、半径为r的圆可以看
成是所有到定点O的距离等于定长r 的
点组成的图形.
把车轮做成圆形,车轮上各点到车轮中心 (圆心)的距离都等于车轮的半径,当车轮 在平面上滚动时,车轮中心与平面的距离保 持不变,因此,当车辆在平坦的路上行驶时, 坐车的人会感觉到非常平稳,这也是车轮都 做成圆形的数学道理.
与圆有关的概念
弦 连接圆上任意两点的线段(如图
AC)叫做弦,
经过圆心的弦(如图中的AB)叫做直径.
要举例证明。
B
O·
A
C
弧
圆上任意两点间的部分叫做圆弧,简称
弧.以A、B为端点的弧记作 ⌒ AB ,读作“圆 弧AB”或“弧AB”.
第1部分第6章第1节圆的基本性质PPT课件
圆周角定理及其推论(必考) 4.(2019 安徽,13,5 分)如图,△ABC 内接于⊙O,∠CAB=30 °,∠CBA=45°,CD⊥AB 于点 D.若⊙O 的半径为 2,则 CD 的长 为 2.
【解析】本题考查圆周角定理和三角函数等,体现了逻辑推理和 数学运算的核心素养.如图,连接 OB,OC,则∠BOC=2∠A=60°. 又∵OB=OC,∴△BOC 是等边三角形,∴BC=OB=2.又∵∠CDB =90°,∠CBD=45°,CD=BC·sin45°=2× 22= 2.
弦心距,另一条直线是弦的一半.如图,设圆的半径为 r、弦长为 a、 弦心距为 d,弓形高为 h,则a22+d2=r2,h=r-d,这两个等式是关于 四个量 r,a,d,h 的一个方程组,只要已知其中任意两个量即可求出 其余两个量.
(2019·保定一模)小帅家的新房子刚装修完,便遇到罕见 的大雨,于是他向爸爸提议给窗户安上遮雨罩.如图 1 所示的是他了 解的一款遮雨罩,它的侧面如图 2 所示,其中顶部圆弧 AB 的圆心 O1 在竖直边缘 AD 上,另一条圆弧 BC 的圆心 O2 在水平边缘 DC 的延长 线上,其圆心角为 90°,BE⊥AD 于点 E,则根据所标示的尺寸(单位: cm)可求出弧 AB 所在圆的半径 AO1 的长度为 61 cm.
2.圆内接四边形的任意一个角的外角等于它的⑳____内__对__角____, 如图,∠DCE=∠A.
利用垂径定理解决问题 圆中与弦有关的计算可通过连接半径和圆心到 弦中点的垂线段,把问题转化为解直角三角形的问 题来解决,垂径定理和勾股定理“形影不离”,常 结合起来使用.一般地,求解时将已知条件集中在 一个直角三角形中,这个直角三角形的斜边是圆的半径,一条直角边是
1.垂径定理:垂直于弦的直径⑦_平__分___这条弦,并且平分弦所对 的两条弧.
人教版数学九年级上册第24课时 圆的基本性质(ppt版)-课件
【温馨提示】1.应用定理时一定注意“在同圆或等圆中” 同时要注意一条弦对着两条弧. 2.弦心距、半径、弦的一半构成的直角三角形,常用 于求未知线段或角,为构造这个直角三角形,常连接半 径或作弦心距,利用勾股定理求未知线段长.
提分必练
2.如图,在⊙O中,若点C是的中点,∠A=50°,则
∠BOC=( A )
提分必练
4.如图,⊙O是△ABC的外接圆,若∠ABC=40°, 则∠AOC的度数为( D ) A.20° B.40° C.60° D.80°
提分必练
5.如图,⊙O中,弦AB、CD相交于点P,若∠A=
30°,∠APD=70°,则∠B等于( C ) A.30° B. 35° C. 40° D. 50°
第一部分 夯实基础 提分多
第六单元 圆
第24课时 圆的基本性质
基础点巧练妙记 基础点 1 圆的相关的概念及性质
1.圆的基本概念(参考图(1)) (1)定义:平面内到定点距离等于定长的所 有点组成的图形叫做圆,这个定点叫做圆 心,定长叫做半径,即O为圆心,OA为半 径.
(2)弧、劣弧、优弧:圆上任意两点间的部分叫做圆弧, 简称弧.其中,小于半圆的部分叫做劣弧,A F 为劣弧; 大于半圆的部分叫做①__优__弧__,A E F 为优弧. (3)圆心角:顶点在圆心,角的两边都与圆相交的角叫做 圆心角,∠AOF叫做A F 所对的圆心角. (4)圆周角:顶点在圆上,角的两边都与圆相交的角叫做 圆周角,∠AEF为A F 所对的圆周角.
2.在遇到与直径有关的问题时,一般要构造直径所对 的圆周角,这样可以由直径转化出直角,从而解决问 题.
4.圆内接四边形的性质
(1)圆内接四边形的对角⑪_互__补_,如图(2),∠A+∠BCD =⑫1_8_0_°_,∠B+∠D=⑬1_8_0_°___;
《圆》圆的有关性质PPT教材课件
PPT素材:/s ucai/ PPT图表:www.1ppt .co m/tu biao/ PPT教程: /powerpoint/ 个人简历:www.1ppt. co m/jia nli/ 教案下载:www.1ppt. co m/jia oan/ PPT课件:www.1ppt. co m/ ke jian/ 数学课件:www.1ppt.c om/keji an/shuxue/ 美术课件:www.1ppt.c om/keji an/mei shu/ 物理课件:www.1ppt.c om/keji an/wuli / 生物课件:www.1ppt.c om/keji an/sheng wu/ 历史课件:www.1ppt.c om/keji an/lishi /
感谢您的阅读! 为了便于学习和使用,本 文档下载后内容可随意修 改调整及打印。 欢迎下载!
A ·r O
问题1:圆上各点到定点(圆心 O)的距离有什么规律? 问题2:到定点的距离等于定长的点又有什么特点?
形成性定义(动态):在一个平面内,线段 OA 绕它 固定的一个端点 O 旋转一周,另一个端点 A 所形成的 图形叫做圆.
概 念
与圆有关
半圆:圆的任意一条直径的两个端点把圆分成两条弧,每条弧 都叫做半圆.
的概念 等圆、等弧:能够重合的两个圆叫做等圆,在同圆或等圆中,
优弧、劣弧:能够互相重合的弧叫做等弧. 大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.
24.1.1 圆
推进新课
知识点1 圆的定义
圆的概念
如图,在一个平面内,线段 OA 绕它固定的一
个端点 O 旋转一周,另一个端点 A 所形成的图形叫
做圆.
A
固定的端点 O 叫做圆心;
r
线段 OA 叫做半径;
第22讲 圆的基本性质PPT课件
2.圆的有关性质 (1)圆的对称性: ①圆是____轴__对__称__图形,其对称轴是___过__圆__心__的__任__意__一__条__直__线_. ②圆是____中__心__对__称_图形,对称中心是_____圆__心___. ③旋转不变性,即圆绕着它的圆心旋转任意一个角度,都能与本来 的图形重合.
圆周角定理的推论: ①同弧或等弧所对的圆周角相等;同圆或等圆中相等的圆周角所对 的弧_____相__等__. ②半圆(或直径)所对的圆周角是___直__角____;90°的圆周角所对的弦 是____直__径__. (5)点和圆的位置关系(设d为点P到圆心的距离,r为圆的半径): ①点P在圆上⇔_____d_=__r__; ②点P在圆内⇔_____d_<_r___; ③点P在圆外⇔_____d_>_r___.
△APB和△ADC中, ∠∠AABPBP==∠∠AACDPC,, ∴△APB≌△ADC(AAS), AP=AD,
∴BP=CD,又∵PD=AP,∴CP=BP+AP
(3)当点P为 A︵B 的中点时,四边形APBC的面积最大.理由如
下,如图②,过点P作PE⊥AB,垂足为E.过点C作CF⊥AB,垂足为
F.∵S△APB=
【例4】 矩形ABCD中,AB=8,BC=35,P点在边AB上,且BP =3AP,如果圆P是以点P为圆心,PD为半径的圆,那么下列判断 正确的是( C ) A.点B,C均在圆P外 B.点B在圆P外,点C在圆P内 C.点B在圆P内,点C在圆P外 D.点B,C均在圆P内 【点评】 本题考查了点与圆的位置关系的判定,根据点与圆心 之间的距离和圆的半径的大小关系作出判断.
解: (1)在△AEB和△DEC中,∠A=∠D,
AE=ED,∠AEB=∠DEC,∴△AEB≌△DEC(ASA),∴EB=
《圆的概念及性质》PPT教学课件
/kejian/yuwen/ 数学课件: .
/kejian/shuxue/
英语课件: .
/kejian/yingyu/ 美术课件: .
/kejian/meishu/
科学课件: .
/kejian/kexue/
物理课件: .
/kejian/wuli/
化学课件: .
/kejian/huaxue/ 生物课件: .
(4)过圆心的直线是直径;
(5)直径是最长的弦;
(6)半圆是最长的弧;
(7)长度相等的弧是等弧.
(8)同心圆也是等圆.
5. 一些学生正在做投圈游戏,他们呈“一”字排开.这样的队形对每一
人都公平吗?如果不公平,你认为他们应排成什么样的队形才公平?
不公平,应该站成圆形.
6. 一根5m长的绳子,一端栓在柱子上,另一端栓着一只羊,请画出羊的活动区域.
∠AOD= 40° .
解析:
∵∠BOC=110°,∠BOC+∠AOC=180°,∴∠AOC=70°,∵AD∥OC,OD=OA,∴
∠D=∠A=70°,∴∠AOD=180°-2∠A=40°.故填40°.
4.判断下列说法的正误,并说明理由或举反例.
(1)弦是直径;
(2)过圆心的线段是直径;
(3)半圆是弧;
28.1 圆的概念及性质
- .
学习目标
1.认识圆,理解圆的本质属性.(重点)
2.理解弦、弧、直径、半圆、优弧、劣弧、等圆、等弧等
与圆有关的概念,并了解它们之间的区别和联系. (难点)
新课导入
问题: 观察下列图片,找出共同的图形来.
ppt模板: .
/moban/
ppt素材: .
/sucai/
/kejian/shuxue/
英语课件: .
/kejian/yingyu/ 美术课件: .
/kejian/meishu/
科学课件: .
/kejian/kexue/
物理课件: .
/kejian/wuli/
化学课件: .
/kejian/huaxue/ 生物课件: .
(4)过圆心的直线是直径;
(5)直径是最长的弦;
(6)半圆是最长的弧;
(7)长度相等的弧是等弧.
(8)同心圆也是等圆.
5. 一些学生正在做投圈游戏,他们呈“一”字排开.这样的队形对每一
人都公平吗?如果不公平,你认为他们应排成什么样的队形才公平?
不公平,应该站成圆形.
6. 一根5m长的绳子,一端栓在柱子上,另一端栓着一只羊,请画出羊的活动区域.
∠AOD= 40° .
解析:
∵∠BOC=110°,∠BOC+∠AOC=180°,∴∠AOC=70°,∵AD∥OC,OD=OA,∴
∠D=∠A=70°,∴∠AOD=180°-2∠A=40°.故填40°.
4.判断下列说法的正误,并说明理由或举反例.
(1)弦是直径;
(2)过圆心的线段是直径;
(3)半圆是弧;
28.1 圆的概念及性质
- .
学习目标
1.认识圆,理解圆的本质属性.(重点)
2.理解弦、弧、直径、半圆、优弧、劣弧、等圆、等弧等
与圆有关的概念,并了解它们之间的区别和联系. (难点)
新课导入
问题: 观察下列图片,找出共同的图形来.
ppt模板: .
/moban/
ppt素材: .
/sucai/
沪科版九年级数学(下)24.2圆的基本性质课件(共17张PPT)
在 圆内 ; (2、3)矩若形O的P=四个2c顶m 点是,否则一点定P在能圆在上同。一个圆上,为 什以么O?为圆心、以3cm为半径再画一个圆。如图
这两个圆叫做同心圆
(4)若OP≤2cm,A 则点P在 小D圆上或小圆内 ;
(5)若2cm<OP<3cm,则O 点P在小圆和大圆之;间
(4)过圆心的直线是直径;( )
(5)半圆是最长的弧;( )
(6)直径是最长的弦;( )
(7)半径相等的两个圆是等圆.( )
14
如 图 , 一 根 5m
长的绳子,一端
栓在柱子上,另
5
一端栓着一只羊,
请画出羊的活动
区域.
15
5m
× 4m o
5m
× 4m o
5m 1m
正确答案
16
小结:
1、圆的相关概念(旋转观点、集合点); 2、点与圆的位置关系; 3、与圆有关的概念。
12
例1 已知:如图,AB、CD为⊙O的直径, 求证:AD∥CB
C 证明 连接AC、BD
A
O D
B ∵ AB、CD为⊙O的直径 ∴OA=OB OC=OD ∴四边形ABCD为平行四边形 ∴ AD∥CB
13
想一想 判断下列说法的正误:
(1)弦是直径;( )
(2)半圆是弧; (
)
(3)过圆心的线段是直径; ( )
P
B
O·
·O
C
D
A
静态:圆心为O、半径为r的圆可以看成是所有到定 点O的距离等于定长r 的点组成的图形.
4
5
把车轮做成圆形,车轮上各点到车轮中心 (圆心)的距离都等于车轮的半径,当车轮在平 面上滚动时,车轮中心与平面的距离保持不变, 因此,当车辆在平坦的路上行驶时,坐车的人会 感觉到非常平稳,这也是车轮都做成圆形的数学 道理.
这两个圆叫做同心圆
(4)若OP≤2cm,A 则点P在 小D圆上或小圆内 ;
(5)若2cm<OP<3cm,则O 点P在小圆和大圆之;间
(4)过圆心的直线是直径;( )
(5)半圆是最长的弧;( )
(6)直径是最长的弦;( )
(7)半径相等的两个圆是等圆.( )
14
如 图 , 一 根 5m
长的绳子,一端
栓在柱子上,另
5
一端栓着一只羊,
请画出羊的活动
区域.
15
5m
× 4m o
5m
× 4m o
5m 1m
正确答案
16
小结:
1、圆的相关概念(旋转观点、集合点); 2、点与圆的位置关系; 3、与圆有关的概念。
12
例1 已知:如图,AB、CD为⊙O的直径, 求证:AD∥CB
C 证明 连接AC、BD
A
O D
B ∵ AB、CD为⊙O的直径 ∴OA=OB OC=OD ∴四边形ABCD为平行四边形 ∴ AD∥CB
13
想一想 判断下列说法的正误:
(1)弦是直径;( )
(2)半圆是弧; (
)
(3)过圆心的线段是直径; ( )
P
B
O·
·O
C
D
A
静态:圆心为O、半径为r的圆可以看成是所有到定 点O的距离等于定长r 的点组成的图形.
4
5
把车轮做成圆形,车轮上各点到车轮中心 (圆心)的距离都等于车轮的半径,当车轮在平 面上滚动时,车轮中心与平面的距离保持不变, 因此,当车辆在平坦的路上行驶时,坐车的人会 感觉到非常平稳,这也是车轮都做成圆形的数学 道理.
圆的基本性质ppt 下载
垂径定理 垂直于弦的直径平分这 条弦,并且平分弦所对的两条弧。
A
C
O
ED
B
判断下列图形,能否使用垂径定理?
B
B
B
O
O
C A
DC A
DC
O
O
E DC A
D
注意:定理中的两个条件 (直径,垂直于弦)缺一不 可!
若圆心到弦的距离用d表示, 半径用r表示,弦长用a表示, 这三者之间有怎样的关系?
A
O EB
线 的
性
质 垂 圆心角、
径 弧、弦之
定 间的关系
理 定理
切
位
性
线
置
质
的
分
判
类
定
弧长、扇形面积和圆锥
的侧面积相关计算
篮球是圆吗?
圆的定义辨析
圆必须在一个平面内
以3cm为半径画圆,能画多少个?
以点O为圆心画圆,能画多少个?
由此,你发现半径和圆心分别有什么作用?
半径确定圆的大小;圆心确定圆的位置
B
C
E
A
O
D
O
A
B
F
C
D
推论2 半圆(或直径)所对的圆周角是90°; 90°的圆周角所对的弦是直径。
推论3 如果三角形一边上的中线等于这条边 的一半,那么这个三角形是直角三角形。
C
E 什么时候圆周角是直角?
D
反过来呢?
O
直角三角形斜边中线有什
A
B 么性质?反过来呢?
关于等积式的证明
如图,已知AB是⊙O的弦,半径OP⊥AB, 弦PD交AB于C,求证:PA2=PC·PDP
分类讨论 B
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
意一个角度α,都能与原来的图形重合。
如图,∠AOB=∠A`OB`,OC⊥AB, OC`⊥A`B`。
猜想:弧AB与弧A`B`,AB与A`B`,OC
与OC`之间的关系,并证明你的猜想。
A
定理 在同圆或等圆中,
相等的圆心角所对的弧相等,
C
所对的弦相等,所对的弦的
O
弦心距相等。
B
A' C' B'
题设
结论
n°弧
C
一般地,n°的圆心角
对着n°的弧。
D
n°圆心角
圆心角的度数
O
A
1°圆心角 B
1°弧 和它所对的弧 的度数相等。
圆周角
C
C
O
O
B
A B
B A
A
C
O
圆周角:顶点在圆上,并且两边都和圆相 交的角。
圆心角: 顶点在圆心的角.
一条弧所对的圆周角等于它所对 的圆心角的一半
C
C
C
O
化
归
B
A
化
O
归
A
O A
分类讨论 B
完全归纳法 B
圆周角定理
C
1、已知AOB=75°,求:
C
∠ACB
O
O
2、已知∠AOB=120°,
A 求: ∠ACB
B
A
B
3、已知∠ACD=30°,求: ∠AOB
C
4、已知∠AOB=110°,求:
O
B ∠ACB
O
B
D
A
A
C
定理:一条弧所对的圆周角等于它所对 的圆心角的一半。
也可以理解为:一条弧所对的圆心角是 它所对的圆周角的二倍;圆周角的度数 等于它所对的弧的度数的一半。
A
E
C
O
D
B
圆的两条平行弦所夹的弧相等。
如图,CD为⊙O的直径,AB⊥CD,EF⊥CD,
你能得到什么结论?
E
A
弧AE=弧BF
C
O
D
B F
圆心角、弧、弦、 弦心距之间的关系
圆的性质
圆是轴对称图形,每一条直径所在的直线 都是对称轴。
圆是以圆心为对称中心的中心对称图形。 圆还具有旋转不变性,即圆绕圆心旋转任
圆的基本性质
(1)理解圆及其有关概念
b
(2)了解弧 、弦、圆心角的关系 a
(3)探索并了解点与圆的位置关系 c
⑷探索圆的性质
c
⑸了解圆周角与圆心角的关系、直径所对圆周
角
的特征
a
⑹了解三角形的外心
a
知识体系
圆
基本性质
直线与圆的 位置关系
圆与圆的 位置关系
概 对 圆周角与 切
念 称 圆心角的 性 关系
在
同
()
前 提
圆 或 等
圆
中
( 条 件 )
圆 心 角 相 等
圆心角所对的弧相等, 圆 心角所对的弦相等, 圆心 角所对弦的弦心距相等。
推论 在同圆或等圆中, 如果两个圆心角、两条弧、 两条弦或两条弦的弦心距中有 一组量相等,那么它们所对应 的其余各组量都分别相等。
把顶点在圆心的周角等分成360份时,每一份 的圆心角是1°的角。1°的圆心角所对的弧叫做 1°的弧。
CCC
三角形叫做圆的内接三角形。
A AA
问题1:如何作三角形的外接圆? 如何找三角形的外心?
B
OOO C
B B
问在题三角2:形三内角吗形?的外心一定▲▲AABAB∠CCC是是=钝锐9角0角°三三O角角形形
B
垂直于弦的直径
及其推 论
想一想:将一个圆沿着任一条直径对折,两 侧半圆会有什么关系?
性质:圆是轴对称图形,任何一条直径所在 的直线都是它的对称轴。
D
所对的弧也相等
E
如 如图 果,弧⊙ABO等=1和圆弧⊙C也DO成,2是立那等么圆,
O1
A O2
F
∠E和∠F是什么关系?反过
D
来呢?
C
B
推论1 同弧或等弧所对的圆周角相等; 同圆或等圆中,相等的圆周角所对的弧相等。
思考: 1、“同圆或等圆”的条件能否去掉? 2、判断正误:在同圆或等圆中,如果两个 圆心角、两条弧、两条弦、两条弦心距、两个 圆周角中有一组量相等,那么它们所对应的 其余各组量也相等。
圆是“圆周”还是“圆面”?
圆是一条封闭曲线
圆周上的点与圆心有什么关系?
点与圆的位置关系
你发现点与圆的位置关系是由什么来决定的呢?
如果圆的半径为r, 点到圆心的距离为d,则:
点在圆上 d=r 点在圆内 d<r 点在圆外 d>r
经过三角形的三个顶点的圆叫做三角形的外接圆,
外接圆的圆心叫做三角形的外心,
r2
d
2
a
2
2
变式1:AC、BD有什么关系?
AC
O
D
变式2:AC=BD依然成
B
立吗?
变式3:EA=_F_B__, EC=__F_D__。 A C E O F D B
AC
DB
O
变式4:_O_A_=_O_B_
AC=BD.
变式5:_O_C_=_O_D_
AC=BD. A C
DB
O
如图,P为⊙O的弦BA延长线上一点, PA=AB=2,PO=5,求⊙O的半径。
垂径定理 垂直于弦的直径平分这 条弦,并且平分弦所对的两条弧。
A
C
O
ED
B
判断下列图形,能否使用垂径定理?
B
B
B
O
O
C A
DC A
DC
O
O
E DC A
D
注意:定理中的两个条件 (直径,垂直于弦)缺一不 可!
若圆心到弦的距离用d表示, 半径用r表示,弦长用a表示, 这三者之间有怎样的关系?
A
O EB
推论
弧相等,圆周角是否相等?反过来呢?
什么时候圆周角是直角?反过来呢?
直角三角形斜边中线有什么性质?反过 来呢?
如图,比较同∠A弧C所B、对∠的AD圆B、 ∠AEB的大小 周角相等
C E
D O
A
B
E
A O
B C
F 如等图弧,如所果对弧的A圆B=周弧角C相D,等那;么 ∠E在和同∠F圆是中什,么关相系等?的反圆过周来角呢?
线 的
性
质 垂 圆心角、
径 弧、弦之
定 间的关系
理 定理
切
位
性
线
置
质
的
分
判
类
定
弧长、扇形面积和圆锥
的侧面积相关计算
篮球是圆吗?
圆的定义辨析
圆必须在一个平面内
以3cm为半径画圆,能画多少个?
以点O为圆心画圆,能画多少个?
由此,你发现半径和圆心分别有什么作用?
半径确定圆的大小;圆心确定圆的位置
B
C
E
A
O
D
O
A
B
F
C
D
推论2 半圆(或直径)所对的圆周角是90°; 90°的圆周角所对的弦是直径。
推论3 如果三角形一边上的中线等于这条边 的一半,那么这个三角形是直角三角形。
C
E 什么时候圆周角是直角?
D
反过来呢?
O
直角三角形斜边中线有什
A
B 么性质?反过来呢?
关于等积式的证明
如图,已知AB是⊙O的弦,半径OP⊥AB, 弦PD交AB于C,求证:PA2=PC·PDP
关于弦的问题,常常需 要过圆心作弦的垂线段,
B
M
A
P
这是一条非常重要的辅
O
助线。
圆心到弦的距离、半径、
弦长构成直角三角形,
便将问题转化为直角三
角形的问题。
(1)平分弦(不是直径)的直径垂直 于弦,并且平分弦所对的两条弧;
(2)弦的垂直平分线经过圆心,并 且平分弦所对的两条弧;
(3)平分弦所对的一条弧的直径, 垂直平分弦并且平分弦所对的另一条弧。
如图,∠AOB=∠A`OB`,OC⊥AB, OC`⊥A`B`。
猜想:弧AB与弧A`B`,AB与A`B`,OC
与OC`之间的关系,并证明你的猜想。
A
定理 在同圆或等圆中,
相等的圆心角所对的弧相等,
C
所对的弦相等,所对的弦的
O
弦心距相等。
B
A' C' B'
题设
结论
n°弧
C
一般地,n°的圆心角
对着n°的弧。
D
n°圆心角
圆心角的度数
O
A
1°圆心角 B
1°弧 和它所对的弧 的度数相等。
圆周角
C
C
O
O
B
A B
B A
A
C
O
圆周角:顶点在圆上,并且两边都和圆相 交的角。
圆心角: 顶点在圆心的角.
一条弧所对的圆周角等于它所对 的圆心角的一半
C
C
C
O
化
归
B
A
化
O
归
A
O A
分类讨论 B
完全归纳法 B
圆周角定理
C
1、已知AOB=75°,求:
C
∠ACB
O
O
2、已知∠AOB=120°,
A 求: ∠ACB
B
A
B
3、已知∠ACD=30°,求: ∠AOB
C
4、已知∠AOB=110°,求:
O
B ∠ACB
O
B
D
A
A
C
定理:一条弧所对的圆周角等于它所对 的圆心角的一半。
也可以理解为:一条弧所对的圆心角是 它所对的圆周角的二倍;圆周角的度数 等于它所对的弧的度数的一半。
A
E
C
O
D
B
圆的两条平行弦所夹的弧相等。
如图,CD为⊙O的直径,AB⊥CD,EF⊥CD,
你能得到什么结论?
E
A
弧AE=弧BF
C
O
D
B F
圆心角、弧、弦、 弦心距之间的关系
圆的性质
圆是轴对称图形,每一条直径所在的直线 都是对称轴。
圆是以圆心为对称中心的中心对称图形。 圆还具有旋转不变性,即圆绕圆心旋转任
圆的基本性质
(1)理解圆及其有关概念
b
(2)了解弧 、弦、圆心角的关系 a
(3)探索并了解点与圆的位置关系 c
⑷探索圆的性质
c
⑸了解圆周角与圆心角的关系、直径所对圆周
角
的特征
a
⑹了解三角形的外心
a
知识体系
圆
基本性质
直线与圆的 位置关系
圆与圆的 位置关系
概 对 圆周角与 切
念 称 圆心角的 性 关系
在
同
()
前 提
圆 或 等
圆
中
( 条 件 )
圆 心 角 相 等
圆心角所对的弧相等, 圆 心角所对的弦相等, 圆心 角所对弦的弦心距相等。
推论 在同圆或等圆中, 如果两个圆心角、两条弧、 两条弦或两条弦的弦心距中有 一组量相等,那么它们所对应 的其余各组量都分别相等。
把顶点在圆心的周角等分成360份时,每一份 的圆心角是1°的角。1°的圆心角所对的弧叫做 1°的弧。
CCC
三角形叫做圆的内接三角形。
A AA
问题1:如何作三角形的外接圆? 如何找三角形的外心?
B
OOO C
B B
问在题三角2:形三内角吗形?的外心一定▲▲AABAB∠CCC是是=钝锐9角0角°三三O角角形形
B
垂直于弦的直径
及其推 论
想一想:将一个圆沿着任一条直径对折,两 侧半圆会有什么关系?
性质:圆是轴对称图形,任何一条直径所在 的直线都是它的对称轴。
D
所对的弧也相等
E
如 如图 果,弧⊙ABO等=1和圆弧⊙C也DO成,2是立那等么圆,
O1
A O2
F
∠E和∠F是什么关系?反过
D
来呢?
C
B
推论1 同弧或等弧所对的圆周角相等; 同圆或等圆中,相等的圆周角所对的弧相等。
思考: 1、“同圆或等圆”的条件能否去掉? 2、判断正误:在同圆或等圆中,如果两个 圆心角、两条弧、两条弦、两条弦心距、两个 圆周角中有一组量相等,那么它们所对应的 其余各组量也相等。
圆是“圆周”还是“圆面”?
圆是一条封闭曲线
圆周上的点与圆心有什么关系?
点与圆的位置关系
你发现点与圆的位置关系是由什么来决定的呢?
如果圆的半径为r, 点到圆心的距离为d,则:
点在圆上 d=r 点在圆内 d<r 点在圆外 d>r
经过三角形的三个顶点的圆叫做三角形的外接圆,
外接圆的圆心叫做三角形的外心,
r2
d
2
a
2
2
变式1:AC、BD有什么关系?
AC
O
D
变式2:AC=BD依然成
B
立吗?
变式3:EA=_F_B__, EC=__F_D__。 A C E O F D B
AC
DB
O
变式4:_O_A_=_O_B_
AC=BD.
变式5:_O_C_=_O_D_
AC=BD. A C
DB
O
如图,P为⊙O的弦BA延长线上一点, PA=AB=2,PO=5,求⊙O的半径。
垂径定理 垂直于弦的直径平分这 条弦,并且平分弦所对的两条弧。
A
C
O
ED
B
判断下列图形,能否使用垂径定理?
B
B
B
O
O
C A
DC A
DC
O
O
E DC A
D
注意:定理中的两个条件 (直径,垂直于弦)缺一不 可!
若圆心到弦的距离用d表示, 半径用r表示,弦长用a表示, 这三者之间有怎样的关系?
A
O EB
推论
弧相等,圆周角是否相等?反过来呢?
什么时候圆周角是直角?反过来呢?
直角三角形斜边中线有什么性质?反过 来呢?
如图,比较同∠A弧C所B、对∠的AD圆B、 ∠AEB的大小 周角相等
C E
D O
A
B
E
A O
B C
F 如等图弧,如所果对弧的A圆B=周弧角C相D,等那;么 ∠E在和同∠F圆是中什,么关相系等?的反圆过周来角呢?
线 的
性
质 垂 圆心角、
径 弧、弦之
定 间的关系
理 定理
切
位
性
线
置
质
的
分
判
类
定
弧长、扇形面积和圆锥
的侧面积相关计算
篮球是圆吗?
圆的定义辨析
圆必须在一个平面内
以3cm为半径画圆,能画多少个?
以点O为圆心画圆,能画多少个?
由此,你发现半径和圆心分别有什么作用?
半径确定圆的大小;圆心确定圆的位置
B
C
E
A
O
D
O
A
B
F
C
D
推论2 半圆(或直径)所对的圆周角是90°; 90°的圆周角所对的弦是直径。
推论3 如果三角形一边上的中线等于这条边 的一半,那么这个三角形是直角三角形。
C
E 什么时候圆周角是直角?
D
反过来呢?
O
直角三角形斜边中线有什
A
B 么性质?反过来呢?
关于等积式的证明
如图,已知AB是⊙O的弦,半径OP⊥AB, 弦PD交AB于C,求证:PA2=PC·PDP
关于弦的问题,常常需 要过圆心作弦的垂线段,
B
M
A
P
这是一条非常重要的辅
O
助线。
圆心到弦的距离、半径、
弦长构成直角三角形,
便将问题转化为直角三
角形的问题。
(1)平分弦(不是直径)的直径垂直 于弦,并且平分弦所对的两条弧;
(2)弦的垂直平分线经过圆心,并 且平分弦所对的两条弧;
(3)平分弦所对的一条弧的直径, 垂直平分弦并且平分弦所对的另一条弧。