相似三角形的判定与性质
相似三角形判定与性质

相似三角形专讲【知识要点】1.对应角相等,对应边成比例的三角形叫做相似三角形。
2.相似三角形的判定:①如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
②如果一个三角形的两条边和另一个三角形的两条边对应成比例,且夹角相等,那么这两个三角形相似。
③如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。
3.相似三角形具有下述性质:①相似三角形对应角相等、对应边成比例;②相似三角形对应高、对应中线的比和对应角平分线的比都等于相似比; ③相似三角形周长的比等于相似比; ④相似三角形面积的比等于相似比的平方。
4.熟悉如图中形如“A ”型,“X ”型,“子母型”等相似三角形。
5.射影定理AC 2=AD ·BD BC 2=BD ·BACD 2=AD ·BD6.位似:如果两个图形不仅相似,而且对应顶点的连线相交于一点,像这样的两个图形叫做 位似图形, 这个点叫做位似中心, 这时的相似比又称为位似比.【典型例题】一、选择题(每小题4分,共40分)1.如图1,在△ABC 中,AB=AC ,∠A=36º,BD 平分∠ABC,DE∥BC,那么在下列三角形中,与△EBD 相似 三角形是( )。
A .△ABC B .△DAB C .△ADE D .△BDC 2.如图2,AB ∥CD ∥EF ,则图中相似三角形的对数为( )。
A .1对B .2对C .3对D .4对3.如图3,已知在△ABC ,P 为AB 上一点,连结CP ,以下各条件中不能判定△ACP ∽△ABC 的是( )。
A .∠ACP =∠B B .∠APC =∠ACB C .AC AP =AB AC D . AC AB =CPBC图1 图2 图34.如图4,在正方形网格上,若使△ABC ∽△PBD ,则点P 应在( )。
A .P 1处B .P 2处C .P 3处D .P 4处5.如图5,若A 、B 、C 、D 、E 、F 、G 、H 、O 都是5×7方格纸中的格点,为使△DME ∽△ABC ,则点M 应是F 、G 、H 、O 四点中的( )。
相似三角形判定与性质定理

(1)相似三角形的对应角相等.
(2)相似三角形的对应边成比例.
(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比.
(4)相似三角形的周长比等于相似比.
(5)相似三角形的面积比等于相似比的平方.
判定方法
证两个相似三角形应该把表示对应顶点的字母写在对应的位置上。
如果是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点没有写在对应的位置上,而如果是符号语言的“△ABC∽△DEF”,那么就说明这两个三角形的对应顶点写在了对应的位置上。
方法一(预备定理)
平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。
(这是相似三角形判定的定理,是以下判定方法证明的基础。
这个引理的证明方法需要平行线分线段成比例的证明)
方法二
如果一个三角形的两个角与另一个三角形的两个角对应相等, 那么这两个三角形相似。
(AA')
方法三
如果两个三角形的两组对应边的比相等,并且相应的夹角相等, 那么这两个三角形相似(SAS)
方法四
如果两个三角形的三组对应边的比相等,那么这两个三角形相似(SSS)
方法五(定义)
对应角相等,对应边成比例的两个三角形叫做相似三角形。
相似三角形的判定与性质

相似三角形的判定与性质一、知识回顾1、相似三角形的判定:(1)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
(2)平行于三角形一边的直线与其它两边相交,所构成的三角形与原三角形相似。
(3)如果两个三角形的两组对应边的比相等,且相应的夹角相等,那么这两个三角形相似(4)如果两个三角形的三组对应边的比相等,那么这两个三角形相似。
2、相似三角形的性质(1)对应边的比相等,对应角相等。
(2)相似三角形的周长比等于相似比。
(3)相似三角形的面积比等于相似比的平方。
(4)相似三角形的对应边上的高、中线、角平分线的比等于相似比。
二、典型例题例 1:如图,已知直线 AB: y=4/3 x+b 交 x 轴于点 A( -3 , 0),交 y 轴于点 B,过点 B 作BC⊥AB 交 x 轴于点 C.(1)试证明:△ ABC∽△ AOB;( 2)求△ ABC 的周长.例 2:如图,一次函数y=kx+b 的图象经过点A( -1 ,0)和点( 1,4)交 y 轴于点 B.( 1)求一次函数解析式和 B 点坐标.( 2)过 B 点的另一直线 1 与直线 AB垂直,且交X轴正半轴于点P,求点 P 的坐标.(3)点 M( 0,a)为 y 轴正半轴上的动点,点N( b,O)为 X 轴正半轴上的动点,当直线MN⊥直线 AB时,求 a: b 的值.例 3:( 2000·陕西)如图,在矩形ABCD 中, EF 是 BD 的垂直平分线,已知 BD=20, EF=15,求矩形 ABCD 的周长.例 4:( 2010·攀枝花)如图所示,在△ ABC 中, BC > AC ,点 D 在 BC 上,且 DC=AC ,∠ ACB 的平分线 CF 交 AD 于点 F .点 E 是 AB 的中点,连接 EF .( 1)求证: EF ∥BC ;( 2)若△ ABD 的面积是 6,求四边形 BDFE 的面积.例题(1) 两个相似三角形的面积比为 s 1 : s 2 ,与它们对应高之比h 1 : h 2 之间的关系为 _______(2) 如图,已知 D E ∥ BC , CD 和 BE 相交于 O ,若 SABC:SCOB9 :16 ,则 AD:DB=_________AABADD ’DEODEEFFGA A ’CC ’OCB B ’BCDBC(2)题图(3) 题图(4) 题图(5) 题图(3)如图,已知 AB ∥CD,BO:OC=1:4, 点 E、 F 分别是 OC, OD的中点,则 EF:AB 的值为(4) 如图,已知DE∥FG∥ BC,且 AD:FD:FB=1:2:3, 则S ABC: S四边形DFGE: S四边形FBCG()A.1:9:36B.1:4:9C.1:8:27D.1:8:36(5)如图,把正方形 ABCD 沿着对角线 AC 的方向移动到正方形 A’B ’C’D ’的位置,它们的重叠部分的面积是原正方形面积的一半,若AC= 2 ,则正方形移动的距离 AA ’是(6) 梯形 ABCD中, AD∥BC,( AD<BC), AC、 BD交于点 O,若S OAB6S ABCD,则△AOD与△BOC的周长25之比为 __________ 。
三角形的相似性及其性质

三角形的相似性及其性质三角形是几何学中重要的图形,它们由三条边和三个角组成。
在研究三角形时,了解三角形的相似性及其性质对于解决各种几何问题非常有帮助。
本文将详细探讨三角形的相似性及其性质。
一、相似三角形的定义及判定相似三角形是指具有相同形状但可能不同大小的三角形。
当两个三角形的对应角度相等时,它们是相似的。
判定两个三角形是否相似有以下几种方法:1. AAA相似判定法:当两个三角形的对应角度分别相等时,它们是相似的。
例如,如果一个三角形的三个内角分别等于另一个三角形的三个内角,那么这两个三角形就是相似的。
2. AA相似判定法:当两个三角形的一个角相等,且两个角所对的边成比例时,这两个三角形是相似的。
例如,如果一个三角形的一个内角等于另一个三角形的一个内角,并且这两个角所对的边的比值相等,那么这两个三角形就是相似的。
3. SSS相似判定法:当两个三角形的对应边成比例时,它们是相似的。
例如,如果一个三角形的三条边分别与另一个三角形的三条边成比例,那么这两个三角形就是相似的。
二、相似三角形的性质在相似三角形中,存在一些重要的性质,这些性质对于解决各种几何问题有很大的帮助。
下面介绍几个常见的相似三角形性质:1. 相似三角形的对应边成比例:如果两个三角形是相似的,那么它们的对应边的长度成比例。
即对应边的比值相等。
例如,如果一个三角形的两边与另一个三角形的两边成比例,那么第三条边也与第三条边成比例。
2. 相似三角形的对应角相等:如果两个三角形是相似的,那么它们的对应角度相等。
即对应角相等。
例如,如果一个三角形的一个内角与另一个三角形的一个内角相等,那么这两个角所对的边的比值也相等。
3. 相似三角形的周长和面积之比:如果两个三角形是相似的,那么它们的周长和面积之比等于对应边长度的比值的平方。
例如,如果一个三角形的周长和面积分别是另一个三角形的周长和面积的2倍,那么这两个三角形就是相似的。
三、应用实例三角形的相似性及其性质在实际问题中有广泛的应用。
相似三角形的判定和性质

A 'B 'C 'CBAA 'B 'C 'CB A相似三角形的性质和判定 一、相似的有关概念1.相似形具有相同形状的图形叫做相似形.相似形仅是形状相同,大小不一定相同.相似图形之间的互相变换称为相似变换. 2.相似图形的特性两个相似图形的对应边成比例,对应角相等. 3.相似比两个相似图形的对应角相等,对应边成比例.二、相似三角形的概念1.相似三角形的定义对应角相等,对应边成比例的三角形叫做相似三角形.如图,ABC △与A B C '''△相似,记作ABC A B C '''△∽△,符号∽读作“相似于”。
2.相似比相似三角形对应边的比叫做相似比.全等三角形的相似比是1.“全等三角形”一定是“相似形”,“相似形”不一定是“全等形”。
三、相似三角形的性质1.相似三角形的对应角相等如图,ABC △与A B C '''△相似,则有A A B B C C '''∠=∠∠=∠∠=∠,,.2.相似三角形的对应边成比例 如图,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C ===''''''(k 为相似比) 。
3.相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比。
如图1,ABC △与A B C '''△相似,AM 是ABC △中BC 边上的中线,A M ''是A B C '''△中B C ''边上的中线,则有AB BC AC AMk A B B C A C A M ====''''''''(k 为相似比).M 'MA 'B 'C 'C B A图(1)H 'H AB C C 'B 'A '图(2)D 'D A 'B 'C 'C B A图(3)A 'B 'C 'CBAH 'HA BC C 'B 'A '如图2,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比).如图3,ABC △与A B C '''△相似,AD 是ABC △中BAC ∠的角平分线,A D ''是A B C '''△中B A C '''∠的角平分线,则有AB BC AC ADk A B B C A C A D ====''''''''(k 为相似比).4.相似三角形周长的比等于相似比. 如图4,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C===''''''(k 为相似比).应用比例的等比性质有AB BC AC AB BC ACk A B B C A C A B B C A C ++====''''''''''''++. 5.相似三角形面积的比等于相似比的平方.如图5,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比).进而可得21212ABC A B C BC AHS BC AH k S B C A H B C A H '''⋅⋅==⋅=''''''''⋅⋅△△. 图4图5四、相似三角形的判定1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.可简单说成:两角对应相等,两个三角形相似。
第一讲(三)相似三角形判定与性质

E
AC边上的点, 且DE // BC.由上一节的例
3可知, ADE和ABC对应边成比例.又 B 图1 16
C
由DE // BC可得, ADE B, AED
C,而A是公共角,因此ADE ~ ABC. E
D
探究 如果 D、E交于BA、CA的延长
线上,且DE // BC 图1 17,那么结论是
因此在D、E的变化过程中, ADE的边长在改变,而角的大
小 始 终 不 变.这 说 明, 只 要 两 个 三 角 形 的 三 个对 应 角 相 等,
那么它们就相似.又由于三角形的内角和为1800 ,所以只要
两 个 三 角 形 中 有 两 个 对应 角 相 等, 那 么 第 三 个 对 应 角 一 定
是同弧上的圆周角.故ACE ABE .则BCE ABE.
又因为BED CEB,故EBD ~ ECB.因此 EB DB . EC CB
A
D1 D
D2
E1 E E2
B
C
图1 18
探究 沿着"从运动变化中找不变性"的思路,可 以发现 ,在图1 18中,对于 DE 的任意一个位置,
判定定理3 对于任意两个三角形,如果一个 三角形的三边 和另一个三角形的三条边对 应成比例, 那么这两个三角形相似. 简述为: 三 边 对 应 成 比 例, 两 三 角 形 相 似.
已知:图1 25, 在ABC和A`B`C`中,
A`
A`B` B`C` C`A`. AB BC CA 求证 : A`B`C`~ ABC .
交圆于一点E .求证 : EB DB .
EC CB
E
分析 要证 EB DB ,应考虑EB、EC、 EC CB
相似三角形的判定和性质

相似三角形的判定和性质1.相似三角形定义:就是它们的形状相同,但大小不一样,然而只要其形状相同,不论大小怎样改变他们都相似,所以就叫做相似三角形。
2.判定:(1)平行与三角形一边的直线(或两边的延长线)和其他两边相交,所构成的三角形与原三角形相似(2)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似(3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似(4)如果两个三角形的三组对应边的比相等,那么这两个三角形相似直角三角形相似判定定理(1)斜边与一条直角边对应成比例的两直角三角形相似。
直角三角形相似判定定理(2)直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。
3.性质:(1)相似三角形的对应角相等.(2)相似三角形的对应边成比例.(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比.(4)相似三角形的周长比等于相似比.(5)相似三角形的面积比等于相似比的平方.(6)相似三角形的传递性。
典型例题例1、如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB的中点.其中正确的结论有例2、如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE 是直角三角形时,t的值为例3、如图,△ABC中,DE∥BC,DE=1,AD=2,DB=3,则BC的长是例4、如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=例5、如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG ⊥AE于G,BG=,则△EFC的周长为例6、如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=例7、如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S△CEF:S四边形BCED的值为例8、如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABD的面积为a,则△ACD 的面积为例9、如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为例10、如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于练习1.如图1,△OED∽△OCB,且OE=6,EC=21,则△OCB与△OED的相似比是()A.37B.52C.85D.352.如图2,点E,F分别在矩形ABCD的边DC,BC上,∠AEF=90°,∠AFB=2∠DAE=72°,则图中甲、乙、丙三个三角形中相似的是()A.只有甲与乙B.只有乙与丙C.只有甲与丙D.甲与乙与丙3.如图3,D是AB的中点,E是AC的中点,则△ADE与四边形BCED的面积比是()A.1 B.12C.13D.144.在相同水压下,口径为4cm的水管的出水量是口径为1cm的水管出水量的()A.4倍B.8倍C.12倍D.16倍5.对于下列说法:(1)相似且有一边为公共边的两个三角形全等;(2)相似且面积相等的两个三角形全等;(3)相似且周长相等的两个三角形全等.其中说法正确的有()A.0个B.1个C.2个D.3个6.我国国土面积约为960万平方千米,画在比例尺为1∶1 000万的地图上的面积约是()A.960平方千米 B.960平方米 C.960平方分米 D.960平方厘米7、如果△ABC∽△A′B′C′,相似比为k (k≠1),则k的值是()A.∠A:∠A′B.A′B′:AB C.∠B:∠B′D.BC:B′C′8、若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于()A.30°B.50° C.40°D.70°9、三角形三边之比3:5:7,与它相似的三角形最长边是21cm,另两边之和是()A.15cm B.18cm C.21cm D.24cm10如图AB∥CD∥EF,则图中相似三角形的对数为()A.1对B.2对 C.3对D.4对11△ABC∽△A1B1C1,相似比为2:3,△A1B1C1∽△A2B2C2,相似比为5:4,则△ABC与△A2B2C2的相似比为()A.B. C.D.12、在比例尺1:10000的地图上,相距2cm的两地的实际距离是()A.200cm B.200dm C.200m D.200km13、已知线段a=10,线段b是线段a上黄金分割的较长部分,则线段b的长是()A.B. C.D.14、若则下列各式中不正确的是()A.B. C.D.15、已知△ABC 中,D 、E 分别在AB 、AC 上,且AE=1.2,EC=0.8,AD=1.5,DB=1,则下列式子正确的是( )A .B .C .D .16、如图:在△ABC 中,DE ∥AC ,则DE :AC=( )A .8:3B .3:8C .8:5D .5:817.已知ABC A B C '''△∽△,且4AB =,6A B ''=,8B C ''=则BC= .18.两个相似三角形,其中一个三角形的两个内角分别是40°和30°,则另一个三角形的最大内角的度数是 .19.如图4,∠ABC=∠CDB=90°,AC=a ,BC=b ,当BD 与a 、b 满足关系 时,△ABC ∽△CDB .20.如图5,P 是等腰梯形ABCD 上底AD 上一点,若∠A=∠BPC ,则和△ABP 相似的三角形有 个.21.相似三角形对应 、 、 的比都等于相似比.22.相似多边形的周长比等于 ,面积比等于 .23.把一个三角形三边同时扩大4倍,则周长扩大了 倍,面积扩大了 倍.24.两个相似三角形对应中线的比为23,则面积比是 . 25.如图6,已知△ABC ∽△DEF ,AB=6,BF=2,CE=8,CA=10,DE=15.求线段DF ,FC 的长.26.要做两个形状相同的三角形框架,其中一个三角形框架的三边长分别是4,5,6,另一个三角形框架的一边长为2,怎样选料可使这两个三角形相似?想想看,你有几种解决方案?27.如图7,已知△ABC ∽△DEF ,AM 、DN 是中线,试判断△ABM 与△DEN 是否相似?为什么?28.如图8,AD 是△ABC 角平分线,试判断BD AB DC AC=是否成立?3.3相似三角形的性质和判定试题练习答案例1∴∠BAC=∠DAC=45°.∵在△APE和△AME中,,∴△APE≌△AME,故①正确;∴PE=EM=PM,同理,FP=FN=NP.∵正方形ABCD中AC⊥BD,又∵PE⊥AC,PF⊥BD,∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE∴四边形PEOF是矩形.∴PF=OE,∴PE+PF=OA,又∵PE=EM=PM,FP=FN=NP,OA=AC,∴PM+PN=AC,故②正确;∵四边形PEOF是矩形,∴PE=OF,在直角△OPF中,OF2+PF2=PO2,∴PE2+PF2=PO2,故③正确.∵△BNF是等腰直角三角形,而△POF不一定是,故④错误;∵△AMP是等腰直角三角形,当△PMN∽△AMP时,△PMN是等腰直角三角形.∴PM=PN,又∵△AMP和△BPN都是等腰直角三角形,∴AP=BP,即P时AB的中点.故⑤正确.例2∴AB=2BC=4(cm),∵BC=2cm,D为BC的中点,动点E以1cm/s的速度从A点出发,∴BD=BC=1(cm),BE=AB﹣AE=4﹣t(cm),若∠DBE=90°,当A→B时,∵∠ABC=60°,∴∠BDE=30°,∴BE=BD=(cm),∴t=3.5,当B→A时,t=4+0.5=4.5.若∠EDB=90°时,当A→B时,∵∠ABC=60°,∴∠BED=30°,∴BE=2BD=2(cm),∴t=4﹣2=2,当B→A时,t=4+2=6(舍去).综上可得:t的值为2或3.5或4.5.例3∴△ADE∽△ABC,则=,∵DE=1,AD=2,DB=3,∴AB=AD+DB=5,∴BC==52.例4∴AB∥CD,∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∵S△DEF:S△ABF=4:25,∴DE:AB=2:5,∵AB=CD,∴DE:EC=2:3.例5解:∵在▱ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E,∴∠BAF=∠DAF,∵AB∥DF,AD∥BC,∴∠BAF=∠F=∠DAF,∠BAE=∠AEB,∴AB=BE=6,AD=DF=9,∴△ADF是等腰三角形,△ABE是等腰三角形,∵AD∥BC,∴△EFC是等腰三角形,且FC=CE,∴EC=FC=9﹣6=3,在△ABG中,BG⊥AE,AB=6,BG=4,∴AG==2,∴AE=2AG=4,∴△ABE的周长等于16,又∵△CEF∽△BEA,相似比为1:2,∴△CEF的周长为8.例6解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE:BE=4:3,∴BE:AB=3:7,∴BE:CD=3:7.∵AB∥CD,∴△BEF∽△DCF,∴BF:DF=BE:CD=3:7,即2:DF=3:7,∴DF=.故答案为:.例7∵DE为△ABC的中位线,∴AE=CE.在△ADE与△CFE中,,∴△ADE≌△CFE(SAS),∴S△ADE=S△CFE.∵DE为△ABC的中位线,∴△ADE∽△ABC,且相似比为1:2,∴S△ADE:S△ABC=1:4,∵S△ADE+S四边形BCED=S△ABC,∴S△ADE:S四边形BCED=1:3,∴S△CEF:S四边形BCED=1:3.例8解答:解:∵∠DAC=∠B ,∠C=∠C ,∴△ACD ∽△BCA ,∵AB=4,AD=2,∴△ACD 的面积:△ABC 的面积为1:4,∴△ACD 的面积:△ABD 的面积=1:3,∵△ABD 的面积为a ,∴△ACD 的面积为a ,例9解:如图,设正方形S 2的边长为x ,根据等腰直角三角形的性质知,AC=x ,x=CD , ∴AC=2CD ,CD==2,∴EC 2=22+22,即EC=;∴S 2的面积为EC 2==8;∵S 1的边长为3,S 1的面积为3×3=9,∴S 1+S 2=8+9=17. 例10解:∵AB=AC ,∴∠ABC=∠ACB ,又∵∠CBD=∠A ,∴△ABC ∽△BDC ,同理可得:△ABC ∽△BDC ∽△CDE ∽△DFE ,∴=,=,=,解得:CD=,DE=,EF=.一、1~6.BDCDC D二、7.163 8.110 9.2b BD a= 10.2 11.高、中线、角平分线 12.相似比,相似比的平方 13.4,16 14.49 三、15.25DF =,2FC =.16.可选料有三种方案,三角形框架边长分别是①2,2.5,3;②1.6,2,2.4;③43,53,2. 17.相似;可用三边对应成比例或两边对应成比例且夹角相等说明.18.过点B 作BE AC ∥交AD 延长线于点E ,则可得BDE CDA △∽△, 从而BD BE DC AC =,然后再由E DAC BAD ==∠∠∠,得BE AB =,故BD AB DC AC=成立.。
相似三角形的判定及性质

R
r
19
习题 1.3
5.如图,线段EF平行于四边形ABCD的一边AD,BE与CF
交于一点G,AE与DF交于一点H.
求证:GH//AB.
H
A
D
E F
B
C
G
BH BC AD AG EH EF EF EG
预备定理 定义 引理 20
习题 1.3
6.已知:DE//AB,EF//BC. O 求证:△DEF∽△ABC.
(2) AD BC AC ED
3、已知:在△ABC和△A′B′C′中,∠A=∠A′,AB=a,AC=b, A′B′=a′,当 A′C′为多少时,△ABC∽△A′B′C′?
22
小结
相
似
三
角 形
预备定理
的
概
念
判定定理1
判定定理2 直角三角形判定定理
判定定理3
23
EF 1 BC, FD 1 CA, DE 1 AB
2
2
2
EF FD DE 1 BC CA AB 2
∴△DEF∽△ABC
A
F
E
B
D
C
9
直角三角形相似的判定定理
定理
两角对应相等
(1)如果两个直角三角形有一个锐角对应相等,那么它 们相似。
两边对应成比例及夹角相等
(2)如果两个直角三角形的两条直角边对应成比例, 那么它们相似。
类比直角三角形全等的判定定理(斜边和一条直角边对应相等
的两个直角三角形全等)能得直角三角形相似的另一个判定定
理.
10
定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的
斜边和一条直角边对应成比例,那么这两个直角三角形相似。
相似三角形的定义与性质

相似三角形的定义与性质相似三角形是初中数学中重要的概念,对于这一概念的理解和运用,有助于提高学生的空间想象能力和解题能力。
本文将从相似三角形的定义、相似三角形的性质以及相关应用等方面进行论述。
一、相似三角形的定义相似三角形是指两个三角形之间,对应角相等且对应边成比例的三角形。
具体来说,若两个三角形ABC与DEF满足以下条件:1. ∠A = ∠D,∠B = ∠E,∠C = ∠F,即它们的内角相等;2. AB/DE = BC/EF = AC/DF,即它们的对应边成比例。
二、相似三角形的性质1. 判定相似的依据根据相似三角形的定义,一般有以下几种判定相似的方式:(1)AAA判定法:若两个三角形的对应角相等,则它们相似。
(2)AA判定法:若两个三角形有某两个对应角相等,则它们相似。
(3)SAS判定法:若两个三角形一个角相等,且包含等边,那么它们相似。
(4)S-S-S判定法:若两个三角形的三条边分别成比例,则它们相似。
2. 相似三角形的比例关系对于相似三角形ABC与DEF,它们所有对应边的比例都相等:AB/DE = BC/EF = AC/DF3. 相似三角形的线性关系相似三角形中,对应角的弧度数等于对应边的比例:m∠A/m∠D = m∠B/m∠E = m∠C/m∠F = AB/DE = BC/EF =AC/DF4. 相似三角形的高线关系如果两个相似三角形的高分别为h和k,它们对应边的比例为p,那么它们的面积的比例也为p²,即S1/S2 = (h₁*k₁)/(h₂*k₂) = p²5.相似三角形的周线关系如果两个相似三角形的周长分别为L₁与L₂,它们对应边的比例为p,那么它们的周长的比例也为p,即L₁/L₂ = AB/DE = BC/EF = AC/DF = p三、相似三角形的应用相似三角形的性质在实际应用中有很广泛的运用,以下是一些常见的应用场景:1. 测量不便的物体的高度:通过测量自己的影子长度和身高,可以利用相似三角形的原理计算出物体的高度。
相似三角形的性质和判定

相似三角形的性质和判定
相似三角形的性质是:
1. 三角形的边长比例相同;
2. 锐角的角度相同;
3. 所有顶角的平分线比例相同。
判定相似三角形:
1. 通迗等腰三角形:两边角相等,其它边等于相应两边角和的一半;
2. 通过等比三角形:边之比等同,两个角之间比例也相同;
3. 通过比例定理:三边比例相同,平分线比例也相同;
4. 通过勾股定理:比值即可表示三边的比例;
5. 通过拉贝尔定理:长度的平方和等于平分线的平方和;
6. 通过比例图:图像表示比例定理,可以比较快速判定相似三角形。
相似三角形的判定与性质

相似三角形的判定与性质在我们的数学世界中,相似三角形是一个非常重要的概念。
它不仅在数学理论中有着关键的地位,还在实际生活的各种场景中有着广泛的应用。
今天,咱们就来好好聊聊相似三角形的判定与性质。
先来说说相似三角形的判定方法。
第一种方法是“两角分别相等的两个三角形相似”。
想象一下,有两个三角形,它们对应的两个角分别相等,就好像两个形状相同但大小可能不同的“模型”,这就足以说明它们是相似的。
比如说,一个三角形的两个角分别是 60 度和 80 度,另一个三角形也有两个角分别是 60 度和 80 度,那么这两个三角形就是相似的。
第二种判定方法是“两边成比例且夹角相等的两个三角形相似”。
假如有两个三角形,其中一组对应边的比例相等,并且它们所夹的角也相等,那就可以判定这两个三角形相似。
打个比方,一个三角形的两条边分别是 4 和 6,夹角是 70 度;另一个三角形对应的两条边是 8 和12,夹角也是 70 度,那它们就是相似的。
第三种是“三边成比例的两个三角形相似”。
如果两个三角形的三条边对应的比例都相等,那它们肯定相似。
就像用不同大小的尺子去量同一个形状的东西,比例一样,形状也就一样。
接下来,咱们看看相似三角形都有哪些重要的性质。
相似三角形的对应边成比例,这是最基本也是最重要的性质之一。
也就是说,如果两个三角形相似,那么它们对应边的长度之比是一个固定的值。
比如一个三角形的三条边分别是 3、4、5,另一个与之相似的三角形对应边分别是 6、8、10,那么它们对应边的比例就是 1 : 2 。
相似三角形的对应角相等。
这意味着相似三角形的形状是完全一样的,只是大小可能不同。
就像前面提到的例子,不管三角形大小如何变化,只要它们相似,对应的角的度数就不会改变。
还有,相似三角形的周长之比等于相似比。
相似比就是对应边的比值。
假设一个三角形的周长是 12,另一个与其相似的三角形的相似比是 2 : 1,那么后者的周长就是 24 。
相似三角形的性质与判定

相似三角形的性质与判定相似三角形是初中数学中的一个重要概念,它在几何学知识体系中有着重要的地位。
相似三角形是指两个或更多个三角形在形状上相似的特殊三角形。
它们的边长比例相等,对应的角度也相等。
通过研究相似三角形的性质和判定条件,我们可以在解决实际问题时更好地应用相似三角形的概念。
首先,我们来介绍一些相似三角形的性质。
相似三角形具有以下性质:1. 对应角相等性质。
如果两个三角形的对应角相等,那么它们是相似三角形。
具体而言,如果两个三角形的三个角分别相等,那么它们一定是相似三角形。
这是相似三角形的性质中最重要的一条。
2. 对应边比例相等性质。
如果两个三角形的对应边的长度比例相等,那么它们是相似三角形。
具体而言,如果两个三角形的三条边的对应长度比例相等,那么它们一定是相似三角形。
这个性质可以直接从三角形的定义和角相等性质推导出来。
其次,我们来介绍一些相似三角形的判定条件。
判定两个三角形是否相似主要有以下几种方法:1. AA 判定法。
如果两个三角形的两个角分别相等,那么它们一定是相似三角形。
2. SSS 判定法。
如果两个三角形的三个边的长度比例相等,那么它们一定是相似三角形。
3. SAS 判定法。
如果两个三角形的一个角相等,而且两个边的长度比例相等,那么它们一定是相似三角形。
4. 等腰三角形判定法。
如果两个三角形的两条边长比例相等且夹角相等,那么它们一定是相似三角形。
相似三角形的性质和判定条件在解决实际问题时非常有用。
例如,在测量高楼的高度时,我们可以利用相似三角形的性质,通过测量实际的距离和角度,计算出高楼的高度。
又如,在地图上测量两个城市之间的直线距离时,我们可以利用相似三角形的判定条件,通过测量两个城市之间的实际距离和角度,计算出直线距离。
这些都是利用相似三角形的性质和判定条件解决实际问题的典型例子。
总的来说,相似三角形是一个重要的几何概念,它涉及到对角、边长比例的研究。
相似三角形的性质和判定条件在解决实际问题时非常有用,能够帮助我们计算出实际的距离和角度,解决实际问题。
教案相似三角形的判定与性质

教案相似三角形的判定与性质相似三角形是初中数学中一个重要的概念,它与比例、比较大小等知识有着密切的联系。
本文将介绍相似三角形的判定方法以及相似三角形的性质。
一、相似三角形的判定相似三角形的判定有以下几种方法:1. AAA判定法:如果两个三角形的对应角度相等,则这两个三角形相似。
2. AA判定法:如果两个三角形有一个角相等,并且两个角对应的边成比例,则这两个三角形相似。
3. SSS判定法:如果两个三角形的三条边对应成比例,则这两个三角形相似。
二、相似三角形的性质相似三角形具有以下一些性质:1. 对应角相等性质:如果两个三角形相似,则它们的对应角相等。
2. 对应边成比例性质:如果两个三角形相似,则它们的对应边成比例。
3. 高线成比例性质:如果两个三角形相似,则它们的高线(从顶点垂直于底边的线段)成比例。
4. 中线成比例性质:如果两个三角形相似,则它们的中线(连接两边中点的线段)成比例。
5. 角平分线成比例性质:如果两个三角形相似,则它们的角平分线成比例。
6. 垂直分线成比例性质:如果两个三角形相似,则它们的垂直分线成比例。
三、应用案例案例1:已知三角形ABC和DEF,∠A=∠D,∠B=∠E,AB/DE=5/7,AC/DF=4/9,证明三角形ABC与三角形DEF相似。
解法:根据AA判定法,已知∠A=∠D且AB/DE=5/7,AC/DF=4/9,可以得出三角形ABC与三角形DEF相似。
案例2:若两个三角形相似,且它们的周长之比为3:4,那么它们的面积之比是多少?解法:设两个相似三角形的周长分别为3x和4x,那么它们的边长之比为3:4。
根据SSS判定法,可以得出它们的面积之比为(3/4)^2=9:16。
结论相似三角形的判定与性质在初中数学中具有重要的应用价值。
通过学习与实践,我们可以更好地理解相似三角形的特点和性质,并能够灵活运用相似三角形的判定方法解决实际问题。
深入掌握相似三角形的知识,不仅有助于提高数学思维能力,还有助于理解几何知识的更多应用。
三角形的相似性质与判定

三角形的相似性质与判定三角形是几何学中最基本的图形之一,它具有相似性质与相似判定,本文将对三角形的相似性质与判定进行详细探讨。
1. 相似三角形的定义相似三角形指的是在形状上相似的两个三角形。
具体来说,如果两个三角形的对应角度相等,并且对应边长成比例,则它们是相似的。
相似三角形之间有许多有趣的性质。
2. 相似三角形的性质2.1 对应角的相等性质两个相似三角形的对应角是相等的。
例如,如果∠ABC = ∠DEF,∠ACB = ∠DFE,那么三角形ABC与三角形DEF是相似的。
2.2 对应边长的比例性质两个相似三角形的对应边长成比例。
例如,在相似三角形ABC与三角形DEF中,若AB与DE的长度比为1:2,BC与EF的长度比为1:2,那么AC与DF的长度比也将为1:2。
2.3 三角形高度的比例性质两个相似三角形的高度之比等于底边之比。
例如,在相似三角形ABC与三角形DEF中,若AC与DF的长度比为2:1,那么以AC和DF为底的三角形的高度之比也将为2:1。
2.4 面积的比例性质两个相似三角形的面积之比等于边长之比的平方。
例如,在相似三角形ABC与三角形DEF中,若AB与DE的长度比为1:2,那么它们的面积比将为1:4。
3. 相似三角形的判定方法判断两个三角形是否相似可以使用以下方法:3.1 AA判定法:如果两个三角形中有两组对应角相等,则它们是相似三角形。
3.2 SAS判定法:如果两个三角形中有一组对应边成比例,并且夹角相等,则它们是相似三角形。
3.3 SSS判定法:如果两个三角形中的对应边成比例,则它们是相似三角形。
4. 相似三角形的应用相似三角形的性质和判定方法在解决实际问题时具有广泛应用。
例如,在测量高度时,可以利用相似三角形的高度比例性质;在工程设计中,可以根据相似三角形的比例关系进行比较和推导。
总结:三角形的相似性质与判定是几何学中重要的概念。
相似三角形具有对应角相等和对应边成比例的特点,可以通过AA、SAS和SSS三种判定法来判断是否相似。
相似三角形判定+性质

。
2.如图所示,当满足下列条件之一时,都可判定 △ADC∽△ACB.
① ② ③ ∠ACD=∠B ∠ACB=∠ADC , ,
D C A
AD AC 或AC 2 AD AB B 。 AC AB
知识点二:相似三角形的性质
BC 点A
△ADE
18
45 C
知识点三:黄金分割
AC BC 点C把线段AB分成两部分, 如果 , AB AC
③三边对应成比例的两个三角形相似.
AB AC BC ' ' ' ' ' ' ABC∽A BC AB AC B C
相似三角形中的基本图形
A型
X型
双垂直型
1. △ABC和△ A1B1C1 中, ∠A=∠A1=80 , 。 。 ∠B=70 , ∠B1=30 ,这两个三角形相 似吗?并说明理由;
图形的相似复习
知识点一:相似三角形的判定
B
9;
①两角对应相等的两个三角形相似. ∵∠A=∠Aˊ, ∠B=∠Bˊ∴△ABC∽△A′B′C′ ②两边对应成比例且夹角相等的两个三角形相似.
AB AC A A , ' ' ' ' ABC∽A BC A B AC
'
A
B
10
D C
4 30°
E
1、有一路灯杆AB(底部B不能直接到达),在 灯光下,小明在点D处测得自己的影长DF= 3m,沿BD方向到达点F处再测得自己得影长 FG=4m,如果小明得身高为1.6m,求路灯 杆AB的高度。 A
C E G
B
D
F
2、如图:小明想测量一颗大树AB的高度,发现树的 影子恰好落在土坡的坡面CD和地面CB上,测得 CD=4m,BC=10m,CD与地面成30度角,且测得1米竹杆 的影子长为2米,那么树的高度是多少?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比例线段
知识要点: 一、比例线段
1.线段的比:如果选用同一长度单位量得两条线段a ,b 的长度分别是m ,n ,那么就说这两条线段的比是a:b=m:n ,或写成
,其中a 叫做比的前项;b 叫做比的后项。
2.成比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段.
3.比例的项:已知四条线段a,b,c,d,如果
,那么a,b,c,d,叫做组成比例
的项,线段a,d 叫做比例外项,线段b,c叫做比例内项,线段d还叫做a,b,c的第四比例项.
4.比例中项:如果作为比例线段的内项是两条相同的线段,即a:b=b:c 或,那么线段b叫
做线段a和c的比例中项. 二、比例的性质 (1)比例的基本性质: (2)反比性质:
(3)更比性质: 或 (4)合比性质:
(5)等比性质: 且
三、黄金分割 黄金分割的定义:
在线段AB 上,点C 把线段AB 分成两条线段AC 和BC (AC>BC ).
如果
AC
BC
AB AC =,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的 比叫做黄金比,其中
618.0≈AB
AC
. 四、平行线分三角形两边成比例
平行线分三角形两边成比例的性质:平行于三角形一边的直线截其他两边,所得对应线段成比例。
1.由平行线产生比例式
基本图形(1): 若l1//l2//l3,则或或或
基本图形(2): 若DE//BC,则或或或
基本图形(3): 若AC//BD,则或或或
2.由比例式产生平行线段
基本图形(2):若, , , ,, 之一成立,则DE//BC。
基本图形(3):若, , , , , 之一成立,则AC//DB。
例1、已知: a:b:c=3:5:7且2a+3b-c=28, 求3a-2b+c的值。
例2、若, 求的值。
例3、如图,在□ABCD中,E为AB中点,,EF,AC相交于G,求。
例4、已知:如图,菱形ABCD内接于△AEF,AE=3,AF=5,求菱形ABCD的边长。
练习:
1、已知,求的值。
2、已知:如图,△ABC中,DE//BC。
AB=8,AD=5,EC=4,求AE的长
3、已知a=4,c=9若b是a,c的比例中项,求b的值。
4、已知:如图,△ABC中,CD平分∠ACB,DE//BC, AD:DB=2:3,AC=10,求DE的长。
相似三角形与相似多边形的判定
知识点:
1、三角对应相等,三边对应成比例的三角形叫相似三角形。
△ABC 与△A /B /C /相似,记作: △ABC ∽△A /B /C / 。
相似三角形的条件
1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形 .
2. 对应相等,两三角形相似.
3.两对应边 且 相等,两三角形相似. 4.三边 ,两三角形相似.
5.如果一个直角三角形的一条斜边和一条直角边与另一个直角三角形的一条斜边和一条直角边 ,那么这两个直角三角形相似.
例1、如图,D 、E 两点分别在△ABC 的边AB ,AC 上,DE 与BC 不平行,当满足 条件(写出一个即可)时,△ADE ∽△ACB
例2、如图所示,给出下列条件:
①B ACD ∠=∠;②ADC ACB ∠=∠; ③
AC AB
CD BC
=
; ④AB AD AC •=2. 其中单独能够判定ABC ACD △∽△的个数为( )
A .1
B .2
C .3
D .4
例3、如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC △相似的是( )
练习:
1、如图,CD 是Rt ABC ∆斜边上的高,则图中相似三角形的对数有
A.
A .0对
B .1对
C .2对
D .3对
2、如图,已知21∠=∠,那么添加下列一个条件后,仍无法..
判定ABC △∽ADE △的是( ) A .
AE AC AD AB = B .DE
BC
AD AB =
C .
D B ∠=∠ D .AED C ∠=∠
-相似三角形的性质
相似三角形的性质
1.相似三角形的 相等,对应边 .
2.相似三角形对应高的比、对应中线的比、对应角平分线的比 相似比. 3.相似三角形的周长比等于 ,面积比等于 .
例1、如图,已知DE BC ∥,5AD =,3DB =,9.9BC =,则
ADE
ABC
S S =△△ .
例2、如图,梯形ABCD 中,AD BC ∥,AC 与BD 相交于O 点,过点B 作BE CD ∥交CA 的延
长线于点E .
求证:2OC OA OE =.
例3、在△ABC 中,已知DE ∥BC ,AD =4,DB =8,DE =3,
(1)求
AD
AB
的值; (2)求BC 的长.
C
B
A
E
1
2
D
M
A
A
B
C
D E C
D
A
O
B
E
例4、如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,
连接DE ,F 为线段DE 上一点,且∠AFE =∠B. (1)求证:△ADF ∽△DEC
(2)若AB =4,AD =33,AE =3,求AF 的长.
练习:
1、在ABC △和DEF △中,22AB DE AC DF A D ==∠=∠,,,如果ABC △的周长是16,面积
是12,那么DEF △的周长、面积依次为( ) A .8,3 B .8,6 C .4,3 D .4,6
2、如图,Rt ABC △中,90ACB ∠=°,
直线EF BD ∥,交AB 于点E ,交AC 于点G ,交AD 于点F ,若1
3
AEG EBCG S S =△四边形,
则CF AD = .
课后作业:
1、如图,小东用长为3.2m 的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m 、与旗杆相距22m ,则旗杆的高为( )A .12m B .10m C .8m D .7m
2、如图所示,在四边形ABCD 中,AD BC ∥,如果要使
ABC DCA △∽△,
那么还要补充的一个条件是 (只要求写出一个条件即可).
3、如图,在△ABC 中,DE ∥BC ,若
1
3
AD AB =,DE =4,则BC =( )
A .9
B .10
C . 11
D .12
4、若
43x y =,则y x y
=+ .
5、如图,在同一时刻,测得小华和旗杆的影长分别为1m 和6m ,小华的身高约为1.6m ,则旗
杆的高约为 m .
6、△ABC,是一张锐角三角形的硬纸片,AD 是边BC 上的高,
BC=40cm,AD=30cm,从这张硬纸片上剪下一个长HG 是宽HE 的2倍的矩形EFGH 使它的一边EF 在BC 上,顶点G 、H 分别在AC ,AB 上,AD 与HG 的交点为M , 1) 求证:
BC
HG
AD AM = 2)求这个矩形EFGH 的周长.
A
D
C
B。